“We cannot direct the wind,
but we can adjust the sails.”

(Folklore)
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Datacenters (“hyper-scale”)
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Datacenters (“hyper-scale”)
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Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.
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Network equipment reaching
capacity limits

— Transistor density rates stalling

— “End of Moorefs Law in networking” [1]

Hence: more equipment,
larger networks

Resource intensive and:
inefficient

Gbps/€

[1] Source: Microsoft, 2019
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How to interconnect?
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Root Cause:

Fixed and Demand-Oblivious Topology

Many flavors,
but in common:
fixed and

oblivious to
actual demand.




Root Cause:

Fixed and Demand-Oblivious Topology
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Many flavors,
but in common:
fixed and
oblivious to
actual demand.

Highway which ignores

actual traffic:

frustrating!
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e.g.,

mirrors
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Our Vision:

Flexible and Demand-Aware Topologies
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Empirical studies:

traffic matrices sparse and skewed
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Sounds Crazy?
Emerging Enabling
Technology.

H2020:

“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council:
“Photons are the new
Electrons.”

Photonics
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Spectrum of prototypes

— Different sizes, different reconfiguration times
— From our last month‘s ACM SIGCOMM workshop
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Prototype 1

Prototype 2

Prototype 3



-> Based on DMDs

— programmable ,,image‘

~» Challenge: limited
angular range

— namely +/-3°

Manya Ghobadi (MIT)




Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency
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Everywhere, but mainly
in software

Algorithmic trading

Our focus:
in hardware
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-» Traffic matrices of two different distributed
ML applications
— GPU-to0-GPU
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-» Traffic matrices of two different distributed
ML applications
— GPU-to0-GPU

More uniform More structure
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-» Two different ways to generate same traffic matrix:
— same non-temporal structure

-> Which one has more structure?
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Trace Complexity:

A Systematic “Shuffle&Compress” Approach

Original Randomize rows Randomized columns Uniform

Increasing complexity (systematically randomized) >

< More structure (compresses better)
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Trace Complexity:

A Systematic “Shuffle&Compress” Approach

Original Randomize rows Randomized columns Uniform

Difference in Difference in Difference in
compression? compression? compression?
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Trace Complexity:

A Systematic “Shuffle&Compress” Approach

Original Randomize rows Randomized columns Uniform
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Difference in Difference in Difference in
compression? compression? compression?

Can be used to define a “Complexity Map”!
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non-temporal complexity
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A first insight: entropy of the demand.
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Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost >

15



Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST;
©

BST; 4
@

More structure: improved access cost / shorter codes >
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Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)
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O] @

Similar benefits? >
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Traditional BST Demand-aware BST Self-adjusting BST

(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)
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Reduced expected route lengths! >

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

First result:
Demand-aware networks
of asymptotically
optimal route lengths.

15



Traditional BST Demand-aware BST Self-adjusting BST

(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST;
©

BST; 4
@

Reduced expected route lengths! >

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

First result:
Demand-aware networks
of asymptotically
optimal route lengths.

15



Destinations
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Sources

ERLON) = ) p(u,v) - dy(uv)
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Destinations
1 2 3 4 5 6 7

\

Sources

Huffman tree:
“ego-tree”

17



18



-»> Idea for algorithm:
— union of trees
— reduce degree

-> 0k for sparse demands
— helper nodes

What about dynamic case?
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~» Dynamic the same

— union of dynamic ego-trees

-> E.g., SplayNets
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Notion of self-adjusting networks opens a

so far _ large uncharted field with many questions:
scratched — By how much can load be lowered,
surface energy reduced, quality-of-service
improved, etc. in demand-aware networks?
— How to model reconfiguration costs?
— How to render these networks robust?
to do © — Impact on other layers?
- — How to design scalable control planes?
Domain 1 Domain 2 Domain 3
Challenges: Models and Algorithms Integration
metrics

Requires knowledge in networking, distributed systems, algorithms, performance evaluation.
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