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Welcome!

Welcome to the GIAN course on Distributed Network Algorithms!
Distributed network algorithms play a major role in many networked systems,
ranging from computer networks (such as sensor networks, peer-to-peer net-
works, software-defined networks, datacenter networks, networks on chip) to
social or even biological networks.
The goal of this course is to introduce the fundamental formal models and
methods needed to reason about the correctness and performance of distrib-
uted network algorithms. In particular, we will teach essential algorithmic and
analytic techniques which, after the course, are a useful toolbox and allow the
students to develop and study their own distributed network algorithms. The
course also discusses applications, e.g., in the context of wireless networks, peer-
to-peer networks, datacenter networks, and virtual networks.
Due to time constraints, we will focus on some selected aspects, and we will not
be able to cover all the material you find in these lecture notes. However, I will
be very happy to talk to you about any other related topic during this week in
person.
Enjoy the course!

Stefan Schmid (Aalborg University, Denmark & TU Berlin, Germany)

Partha Sarathi Mandal (IIT Guwahati, India)
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Chapter 1

Topology & Routing

The most basic network topologies used in practice are trees, rings, grids or
tori. Many other suggested networks are simply combinations or derivatives of
these. The advantage of trees is that the routing is very easy: for every source-
destination pair there is only one possible simple path. However, since the root
of a tree is usually a severe bottleneck, so-called fat trees have been used. These
trees have the property that every edge connecting a node v to its parent u has
a capacity that is equal to all leaves of the subtree routed at v. See Figure 1.1
for an example.

Figure 1.1: The structure of a fat tree.

Remarks:

e Fat trees belong to a family of networks that require edges of non-uniform
capacity to be efficient. Easier to build are networks with edges of uniform
capacity. This is usually the case for grids and tori. Unless explicitly
mentioned, we will treat all edges in the following to be of capacity 1. In
the following, [x] means the set {0,...,x — 1}.

Definition 1.1 (Torus, Mesh). Let m,d € N. The (m,d)-mesh M(m,d) is a

3



4 CHAPTER 1. TOPOLOGY & ROUTING

graph with node set V = [m]? and edge set

d
E = {{(al,...,ad),(bl,...,bd)} | ai,bi S [m], Z|ai —bl| = 1} .

The (m,d)-torus T'(m,d) is a graph that consists of an (m,d)-mesh and addi-
tionally wrap-around edges from nodes (a1,...,a;—1,M,Qiy1,...,aq) to nodes
(@1,...,ai—1,1,ai41,...,aq) for alli € {1,...,d} and all a; € [m] with j # 1.
In other words, we take the expression a; — b; in the sum modulo m prior to
computing the absolute value. M (m,1) is also called a line, T'(m,1) a cycle,
and M(2,d) = T(2,d) a d-dimensional hypercube. Figure 1.2 presents a linear
array, a torus, and a hypercube.

00- 1:0— 2:0— 3?3 110 111

-011——1:1——2:1——317J 100/ 101/

N -012——1:2——2:2——3?J 010 011

- t93—b113—t3'3—t39 ooo/ 001/
M(m,1) T (4,2) M2.3)

Figure 1.2: The structure of M (m, 1), T'(4,2), and M(2, 3).

Remarks:

e Routing on mesh, torus, and hypercube is trivial. On a d-dimensional
hypercube, to get from a source bitstring s to a target bitstring d one only
needs to fix each “wrong” bit, one at a time; in other words, if the source
and the target differ by & bits, there are k! routes with & hops.

e The hypercube can directly be used for a structured Peer-to-Peer (P2P)
architecture. It is trivial to construct a distributed hash table (DHT): We
have n nodes, n for simplicity being a power of 2, i.e., n = 2%. As in
the hypercube, each node gets a unique d-bit ID, and each node connects
to d other nodes, i.e., the nodes that have IDs differing in exactly one
bit. Now we use a globally known hash function f, mapping file names to
long bit strings; SHA-1 is popular in practice, providing 160 bits. Let fy
denote the first d bits (prefix) of the bitstring produced by f. If a node
is searching for file name X, it routes a request message f(X) to node
fa(X). Clearly, node f4(X) can only answer this request if all files with
hash prefix f;(X) have been previously registered at node fq(X).

e The hypercube has many derivatives, the so-called hypercubic networks.
Among these are the butterfly, cube-connected-cycles, shuffle-exchange,
and de Bruijn graph. We start with the butterfly, which is basically a
“rolled out” hypercube (hence directly providing replication!).



Definition 1.2 (Butterfly). Let d € N. The d-dimensional butterfly BF(d) is
a graph with node set V = [d+ 1] x [2]% and an edge set E = E; U Ey with

Er = {{(i,a),(i+1,)} | i€ [d], a2}
and

By = {{(i,0),i+1,08)}|icd], o,B€ 2% aandf differ

only at the i™" position} .

A node set {(i,a) | a € [2]4} is said to form level i of the butterfly. The
d-dimensional wrap-around butterfly W-BF(d) is defined by taking the BF(d)
and identifying level d with level 0.

Remarks:

e Figure 1.3 shows the 3-dimensional butterfly BF(3). The BF(d) has (d+
1)2¢ nodes, 2d - 2% edges and degree 4. It is not difficult to check that
combining the node sets {(i,«) | i € [d]} into a single node results in the
hypercube.

e Butterflies have the advantage of a constant node degree over hypercubes,
whereas hypercubes feature more fault-tolerant routing.

e The structure of a butterfly might remind you of sorting networks from
Chapter 5. Although butterflies are used in the P2P context (e.g.
Viceroy), they have been used decades earlier for communication switches.
The well-known Benes network is nothing but two back-to-back butter-
flies. And indeed, butterflies (and other hypercubic networks) are even
older than that; students familiar with fast fourier transform (FFT) will
recognize the structure without doubt. Every year there is a new applica-
tion for which a hypercubic network is the perfect solution!

e Indeed, hypercubic networks are related. Since all structured P2P archi-
tectures are based on hypercubic networks, they in turn are all related.

e Next we define the cube-connected-cycles network. It only has a degree
of 3 and it results from the hypercube by replacing the corners by cycles.

Definition 1.3 (Cube-Connected-Cycles). Let d € N. The cube-connected-
cycles network CCC(d) is a graph with node set V = {(a,p) | a € [2]¢,p € [d]}
and edge set

E = {{(a,p).(a,(p+1)modd)} [a € [2],p € d]}
U{{(a,p), (b,p)} | a,b € 214, p € [d],a = b except for ap} -
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000 001 o010 011 100 101 110 111

Figure 1.3: The structure of BF(3).

(110,0) (111,0)

11,2

011,2)

(100,2)

000 001 010 o1l 100 101 110 11
(000.2)

(000.,0) (001.0)

Figure 1.4: The structure of CCC(3).

Remarks:
e Two possible representations of a CCC can be found in Figure 1.4.

e The shuffle-exchange is yet another way of transforming the hypercubic
interconnection structure into a constant degree network.

Definition 1.4 (Shuffle-Exchange). Let d € N. The d-dimensional shuffle-
exchange SE(d) is defined as an undirected graph with node set V = [2]¢ and
an edge set E = E1 U FEy with

E, ={{(a1,...,aq),(a1,...,aq)} | (a1,...,0q) € [Q]d, ag=1-—aq}

and
= {{(al, ce 7ad), (ad, ai,..., ad_l)} | (CLl7 . ,ad) S [2](1} .
Figure 1.5 shows the 3- and 4-dimensional shuffle-exchange graph.

Definition 1.5 (DeBruijn). The b-ary DeBruijn graph of dimension d DB(b, d)
is an undirected graph G = (V, E) with node set V = {v € [b]?} and edge set



SEG) 100 101
000 001 110 111 0000 0001
[T O T ) T . .
010 011 0010
[T + E,;

1101

1011

1110 1111

0110 0111

Figure 1.5: The structure of SE(3) and SE(4).

E that contains all edges {v,w} with the property that w € {(x,v1,...,v4-1) :

x € [b]}, where v = (vy,...,vq).

01 001

011

010
00 11 000

101

10 100

110

111

Figure 1.6: The structure of DB(2,2) and DB(2,3).

Remarks:

e Two examples of a DeBruijn graph can be found in Figure 1.6. The
DeBruijn graph is the basis of the Koorde P2P architecture.

e There are some data structures which also qualify as hypercubic networks.
An obvious example is the Chord P2P architecture, which uses a slightly
different hypercubic topology. A less obvious (and therefore good) exam-
ple is the skip list, the balanced binary search tree for the lazy programmer:

Definition 1.6 (Skip List). The skip list is an ordinary ordered linked list of
objects, augmented with additional forward links. The ordinary linked list is the
level 0 of the skip list. In addition, every object is promoted to level 1 with
probability 1/2. As for level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next level with probability
1/2. A special start-object points to the smallest/first object on each level.

Remarks:

e Search, insert, and delete can be implemented in O(logn) expected time
in a skip list, simply by jumping from higher levels to lower ones when
overshooting the searched position. Also, the amortized memory cost of
each object is constant, as on average an object only has two forward

pointers.
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e The randomization can easily be discarded, by deterministically promoting
a constant fraction of objects of level i to level ¢ + 1, for all i. When
inserting or deleting, object o simply checks whether its left and right
level ¢ neighbors are being promoted to level ¢ + 1. If none of them is,
promote object o itself. Essentially we establish a MIS on each level, hence
at least every third and at most every second object is promoted.

e There are obvious variants of the skip list, e.g., the skip graph. Instead
of promoting only half of the nodes to the next level, we always promote
all the nodes, similarly to a balanced binary tree: All nodes are part of
the root level of the binary tree. Half the nodes are promoted left, and
half the nodes are promoted right, on each level. Hence on level ¢ we have
have 2¢ lists (or, more symmetrically: rings) of about n/2¢ objects. This
is pretty much what we need for a nice hypercubic P2P architecture.

e One important goal in choosing a topology for a network is that it has a
small diameter. The following theorem presents a lower bound for this.

Theorem 1.7. Every graph of mazximum degree d > 2 and size n must have a
diameter of at least [(logn)/(log(d —1))] — 2.

Proof. Suppose we have a graph G = (V, E) of maximum degree d and size
n. Start from any node v € V. In a first step at most d other nodes can be
reached. In two steps at most d- (d — 1) additional nodes can be reached. Thus,
in general, in at most k steps at most

(d=1DF—1 _d-(d-1)"
(d—1)—1 — d—2

k—1
14Y d-(d=1)=1+d-
=0

nodes (including v) can be reached. This has to be at least n to ensure that v
can reach all other nodes in V' within k steps. Hence,

(d—1)k2(7' & k>logy ((d—2)-n/d).

Since log,;_,((d — 2)/d) > —2 for all d > 2, this is true only if k¥ >
[(logn)/(log(d = 1))] — 2.

O

Remarks:

e In other words, constant-degree hypercubic networks feature an asymp-
totically optimal diameter.

e There are a few other interesting graph classes, e.g., expander graphs (an
expander graph is a sparse graph which has high connectivity properties,
that is, from every not too large subset of nodes you are connected to
a larger set of nodes), or small-world graphs (popular representations of
social networks). At first sight hypercubic networks seem to be related to
expanders and small-world graphs, but they are not.



Chapter 2

Vertex Coloring

2.1 Introduction

Vertex coloring is an infamous graph theory problem. Vertex coloring does have
quite a few practical applications, for example in the area of wireless networks
where coloring is the foundation of so-called TDMA MAC protocols. Generally
speaking, vertex coloring is used as a means to break symmetries, one of the
main themes in distributed computing. In this chapter we will not really talk
about vertex coloring applications but treat the problem abstractly. At the end
of the class you probably learned the fastest (but not constant!) algorithm ever!
Let us start with some simple definitions and observations.

Problem 2.1 (Vertex Coloring). Given an undirected graph G = (V, E), assign
a color ¢, to each vertex u € V such that the following holds: e = (v,w) €
E = c, # cy.

Remarks:
e Throughout this course, we use the terms vertexr and node interchangeably.

e The application often asks us to use few colors! In a TDMA MAC protocol,
for example, less colors immediately imply higher throughput. However,
in distributed computing we are often happy with a solution which is sub-
optimal. There is a tradeoff between the optimality of a solution (efficacy),
and the work/time needed to compute the solution (efficiency).

Figure 2.1: 3-colorable graph with a valid coloring.
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Assumption 2.2 (Node Identifiers). Fach node has a unique identifier, e.g.,
its IP address. We usually assume that each identifier consists of only logn bits
if the system has n nodes.

Remarks:

e Sometimes we might even assume that the nodes exactly have identifiers
1,...,n.

o It is easy to see that node identifiers (as defined in Assumption 3.11) solve
the coloring problem 2.1, but not very well (essentially requiring n colors).
How many colors are needed at least is a well-studied problem.

Definition 2.3 (Chromatic Number). Given an undirected Graph G = (V, E),
the chromatic number x(G) is the minimum number of colors to solve Problem
2.1.

To get a better understanding of the vertex coloring problem, let us first look
at a simple non-distributed (“centralized”) vertex coloring algorithm:

Algorithm 1 Greedy Sequential

1: while 3 uncolored vertex v do

2:  color v with the minimal color (number) that does not conflict with the
already colored neighbors

3: end while

Definition 2.4 (Degree). The number of neighbors of a vertex v, denoted by
5(v), is called the degree of v. The mazimum degree vertex in a graph G defines
the graph degree A(G) = A.

Theorem 2.5 (Analysis of Algorithm 1). The algorithm is correct and termi-
nates in n “steps”. The algorithm uses A + 1 colors.

Proof: Correctness and termination are straightforward. Since each node has at
most A neighbors, there is always at least one color free in the range {1,..., A+

1).

Remarks:
e For many graphs coloring can be done with much less than A + 1 colors.

e This algorithm is not distributed at all; only one processor is active at a
time. Still, maybe we can use the simple idea of Algorithm 1 to define a
distributed coloring subroutine that may come in handy later.

Now we are ready to study distributed algorithms for this problem. The fol-
lowing procedure can be executed by every vertex v in a distributed coloring
algorithm. The goal of this subroutine is to improve a given initial coloring.
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Procedure 2 First Free

Require: Node Coloring {e.g., node IDs as defined in Assumption 3.11}
Give v the smallest admissible color {i.e., the smallest node color not used by
any neighbor}

Algorithm 3 Reduce

Assume that initially all nodes have ID’s (Assumption 3.11)
Each node v executes the following code
node v sends its ID to all neighbors
node v receives IDs of neighbors
while node v has an uncolored neighbor with higher ID do
node v sends “undecided” to all neighbors
node v receives new decisions from neighbors
end while
node v chooses a free color using subroutine First Free (Procedure 2)
node v informs all its neighbors about its choice

=
=

Remarks:

e With this subroutine we have to make sure that two adjacent vertices are
not colored at the same time. Otherwise, the neighbors may at the same
time conclude that some small color c is still available in their neighbor-
hood, and then at the same time decide to choose this color c.

Theorem 2.6 (Analysis of Algorithm 3). Algorithm 3 is correct and has time
complezity n. The algorithm uses A + 1 colors.

Remarks:
e Quite trivial, but also quite slow.
e However, it seems difficult to come up with a fast algorithm.

e Maybe it’s better to first study a simple special case, a tree, and then go
from there.

2.2 Coloring Trees

Lemma 2.7. x(Tree) <2

Constructive Proof: If the distance of a node to the root is odd (even), color
it 1 (0). An odd node has only even neighbors and vice versa. If we assume
that each node knows its parent (root has no parent) and children in a tree, this
constructive proof gives a very simple algorithm:

Remarks:
e With the proof of Lemma 2.7, Algorithm 4 is correct.

e How can we determine a root in a tree if it is not already given? We will
figure that out later.



12 CHAPTER 2. VERTEX COLORING

Figure 2.2: Vertex 100 receives the lowest possible color.

Algorithm 4 Slow Tree Coloring
: Color the root 0, root sends 0 to its children
: Each node v concurrently executes the following code:
if node v receives a message = (from parent) then
node v chooses color ¢, =1 — x
node v sends ¢, to its children (all neighbors except parent)
end if

AN S

e The time complexity of the algorithm is the height of the tree.

e If the root was chosen unfortunately, and the tree has a degenerated topol-
ogy, the time complexity may be up to n, the number of nodes.

e Also, this algorithm does not need to be synchronous ...!

Theorem 2.8 (Analysis of Algorithm 4). Algorithm /4 is correct. If each node
knows its parent and its children, the (asynchronous) time complezity is the tree
height which is bounded by the diameter of the tree; the message complexity is
n —1 in a tree with n nodes.

Remarks:

e In this case the asynchronous time complexity is the same as the syn-
chronous time complexity.

e Nice trees, e.g. balanced binary trees, have logarithmic height, that is we
have a logarithmic time complexity.

e This algorithm is not very exciting. Can we do better than logarithmic?!?

The following algorithm terminates in log* n time. Log-Star?! That’s the num-
ber of logarithms (to the base 2) you need to take to get down to at least 2,
starting with n:

Definition 2.9 (Log-Star).
Ve<2:log"z:=1 Va>2: log"z:=1+log"(logx)
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Remarks:

e Log-star is an amazingly slowly growing function. Log-star of all the atoms
in the observable universe (estimated to be 108°) is 5! There are functions
which grow even more slowly, such as the inverse Ackermann function,
however, the inverse Ackermann function of all the atoms is 4. So log-star
increases indeed very slowly!

Here is the idea of the algorithm: We start with color labels that have logn bits.
In each synchronous round we compute a new label with exponentially smaller
size than the previous label, still guaranteeing to have a valid vertex coloring!
But how are we going to do that?

Algorithm 5 “6-Color”
1: Assume that initially the vertices are legally colored. Using Assumption
3.11 each label only has logn bits

2: The root assigns itself the label 0.
3: Each other node v executes the following code (synchronously in parallel)
4: send ¢, to all children
5: repeat
6:  receive ¢, from parent
7. interpret ¢, and ¢, as little-endian bit-strings: c¢(k), ..., c(1),¢(0)
8: let i be the smallest index where ¢, and ¢, differ
9:  the new label is ¢ (as bitstring) followed by the bit ¢, (i) itself
10:  send ¢, to all children
11: until ¢, € {0,...,5} for all nodes w
Example:

Algorithm 5 executed on the following part of a tree:

Grand-parent 0010110000 — 10010 —
Parent 1010010000 — 01010 — 111
Child 0110010000 — 10001 — 001

Theorem 2.10 (Analysis of Algorithm 5). Algorithm 5 terminates in log™n
time.

Proof: A detailed proof is, e.g., in [Peleg 7.3]. In class we do a sketch of the
proof.

Remarks:

e Colors 11 (in binary notation, i.e., 6 or 7 in decimal notation) will not be
chosen, because the node will then do another round. This gives a total
of 6 colors (i.e., colors 0,..., 5).

e Can one reduce the number of colors in only constant steps? Note that
algorithm 3 does not work (since the degree of a node can be much higher
than 6)! For fewer colors we need to have siblings monochromatic!

e Before we explore this problem we should probably have a second look at
the end game of the algorithm, the UNTIL statement. Is this algorithm
truly local?! Let’s discuss!
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Algorithm 6 Shift Down

1: Root chooses a new (different) color from {0, 1,2}
2: Each other node v concurrently executes the following code:
3: Recolor v with the color of parent

Lemma 2.11 (Analysis of Algorithm 6). Algorithm 6 preserves coloring legality;
also siblings are monochromatic.

Now Algorithm 3 (Reduce) can be used to reduce the number of used colors
from six to three.

Algorithm 7 Six-2-Three

1

: Each node v concurrently executes the following code:
: Run Algorithm 5 for log* n rounds.
: for x =5,4,3 do

Perform subroutine Shift down (Algorithm 6)

if ¢, = 2 then
choose new color ¢, € {0, 1,2} using subroutine First Free (Algorithm
2)

end if

: end for

Theorem 2.12 (Analysis of Algorithm 7). Algorithm 7 colors a tree with three
colors in time O(log™ n).

Remarks:

e The term O() used in Theorem 2.10 is called “big O” and is often used

in distributed computing. Roughly speaking, O(f) means “in the order of
f, ignoring constant factors and smaller additive terms.” More formally,
for two functions f and g, it holds that f € O(g) if there are constants x
and ¢ so that |f(x)] < ¢|g(z)| for all x > xy. For an elaborate discussion
on the big O notation we refer to other introductory math or computer
science classes.

As one can easily prove, a fast tree-coloring with only 2 colors is more
than exponentially more expensive than coloring with 3 colors. In a tree
degenerated to a list, nodes far away need to figure out whether they are
an even or odd number of hops away from each other in order to get a
2-coloring. To do that one has to send a message to these nodes. This
costs time linear in the number of nodes.

Also other lower bounds have been proved, e.g., any algorithm for 2-
coloring the d-regular tree of radius r which runs in time at most 2r/3
requires at least Q(+/d) colors.

The idea of this algorithm can be generalized, e.g., to a ring topology. Also
a general graph with constant degree A can be colored with A + 1 colors
in O(log™ n) time. The idea is as follows: In each step, a node compares
its label to each of its neighbors, constructing a logarithmic difference-tag
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Figure 2.3: Possible execution of Algorithm 7.

as in 6-color (Algorithm 5). Then the new label is the concatenation of
all the difference-tags. For constant degree A, this gives a 3A-label in
O(log" n) steps. Algorithm 3 then reduces the number of colors to A + 1
in 234 (this is still a constant for constant A!) steps.

e Recently, researchers have proposed other methods to break down long
ID’s for log-star algorithms. With these new techniques, one is able to
solve other problems, e.g., a maximal independent set in bounded growth
graphs in O(log™ n) time. These techniques go beyond the scope of this
course.

e Unfortunately, coloring a general graph is not yet possible with this tech-
nique. We will see another technique for that in Chapter 8. With this
technique it is possible to color a general graph with A + 1 colors in
O(logn) time.

e A lower bound by Linial shows that many of these log-star algorithms are
asymptotically (up to constant factors) optimal. This lower bound uses an
interesting technique. However, because of the one-topic-per-class policy
we cannot look at it today.
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Chapter 3

Leader Election

3.1 Distributed Algorithms and Complexity

In the second part of this course we will often model the distributed system as a
network or graph, and study protocols in which nodes (i.e., the processors) can
only communicate with their neighbors to perform certain tasks. We are often
interested in the following synchronous model or algorithm.

Definition 3.1 (Synchronous Distributed Algorithm). In a synchronous al-
gorithm, nodes operate in synchronous rounds. In each round, each processor
executes the following steps:

1. Do some local computation (of reasonable “local complexity”).
2. Send messages to neighbors in graph (of reasonable size).

3. Receive messages (that were sent by neighbors in step 2 of the same round).

Remarks:
e Any other step ordering is fine.
The other cornerstone model is the asynchronous algorithm.

Definition 3.2 (Asynchronous Distributed Algorithm). In the asynchronous
model, algorithms are event driven (“upon receiving message ..., do ...”).
Processors cannot access a global clock. A message sent from one processor
to another will arrive in finite but unbounded time.

Remarks:

e The asynchronous model and the synchronous model (Definition 3.1) are
the cornerstone models in distributed computing. As they do not neces-
sarily reflect reality there are several models in between synchronous and
asynchronous. However, from a theoretical point of view the synchronous
and the asynchronous model are the most interesting ones (because every
other model is in between these extremes).

e Note that in the asynchronous model, messages that take a longer path
may arrive earlier.

17
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In order to evaluate an algorithm, apart from the local complexity mentioned
above, we consider the following metrics.

Definition 3.3 (Time Complexity). For synchronous algorithms (as defined in
3.1) the time complexity is the number of rounds until the algorithm terminates.

Definition 3.4 (Time Complexity). For asynchronous algorithms (as defined
in 3.1) the time complexity is the number of time units from the start of the
execution to its completion in the worst case (every legal input, every execution
scenario), assuming that each message has a delay of at most one time unit.

Remarks:

e You cannot use the maximum delay in the algorithm design. In other
words, the algorithm has to be correct even if there is no such delay upper
bound.

Definition 3.5 (Message Complexity). The message complexity of a syn-
chronous and asynchronous algorithm is determined by the number of messages
exchanged (again every legal input, every execution scenario).

3.2 Anonymous Leader Election

Some algorithms (e.g., for medium access) ask for a special node, a so-called
“leader”. Computing a leader is a most simple form of symmetry breaking. Al-
gorithms based on leaders do generally not exhibit a high degree of parallelism,
and therefore often suffer from poor (parallel) time complexity. However, some-
times it is still useful to have a leader to make critical decisions in an easy
(though non-distributed!) way.

The process of choosing a leader is known as leader election. Although leader
election is a simple form of symmetry breaking, there are some remarkable issues
that allow us to introduce notable computational models.

In this chapter we concentrate on the ring topology. The ring is the “dro-
sophila” of distributed computing as many interesting challenges already reveal
the root of the problem in the special case of the ring. Paying special attention
to the ring also makes sense from a practical point of view as some real world
systems are based on a ring topology, e.g., the token ring standard for local area
networks.

Problem 3.6 (Leader Election). Each node eventually decides whether it is a
leader or not, subject to the constraint that there is exactly one leader.

Remarks:

e More formally, nodes are in one of three states: wundecided, leader, not
leader. Initially every node is in the undecided state. When leaving the
undecided state, a node goes into a final state (leader or not leader).

Definition 3.7 (Anonymous). A system is anonymous if nodes do not have
unique identifiers.
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Definition 3.8 (Uniform). An algorithm is called uniform if the number of
nodes n is not known to the algorithm (to the nodes, if you wish). If n is
known, the algorithm is called non-uniform.

Whether a leader can be elected in an anonymous system depends on whether
the network is symmetric (ring, complete graph, complete bipartite graph, etc.)
or asymmetric (star, single node with highest degree, etc.). Simplifying slightly,
in this context a symmetric graph is a graph in which the extended neighborhood
of each node has the same structure. We will now show that non-uniform
anonymous leader election for synchronous rings is impossible. The idea is that
in a ring, symmetry can always be maintained.

Lemma 3.9. After round k of any deterministic algorithm on an anonymous
ring, each node is in the same state sy.

Proof by induction: All nodes start in the same state. A round in a synchronous
algorithm consists of the three steps sending, receiving, local computation (see
Definition 3.1). All nodes send the same message(s), receive the same mes-
sage(s), do the same local computation, and therefore end up in the same state.

Theorem 3.10 (Anonymous Leader Election). Deterministic leader election in
an anonymous ring is impossible.

Proof (with Lemma 3.9): If one node ever decides to become a leader (or a
non-leader), then every other node does so as well, contradicting the problem
specification 3.6 for n > 1. This holds for non-uniform algorithms, and therefore
also for uniform algorithms. Furthermore, it holds for synchronous algorithms,
and therefore also for asynchronous algorithms.

Remarks:

e Sense of direction is the ability of nodes to distinguish neighbor nodes in
an anonymous setting. In a ring, for example, a node can distinguish the
clockwise and the counterclockwise neighbor. Sense of direction does not
help in anonymous leader election.

e Theorem 3.10 also holds for other symmetric network topologies (e.g.,
complete graphs, complete bipartite graphs, ... ).

e Note that Theorem 3.10 does not hold for randomized algorithms; if nodes
are allowed to toss a coin, symmetries can be broken.

3.3 Asynchronous Ring

We first concentrate on the asynchronous model from Definition 3.2. Through-
out this section we assume non-anonymity; each node has a unique identifier as
proposed in Assumption 3.11:

Assumption 3.11 (Node Identifiers). Fach node has a unique identifier, e.g.,
its IP address. We usually assume that each identifier consists of only logn bits
if the system has n nodes.

Having ID’s seems to lead to a trivial leader election algorithm, as we can
simply elect the node with, e.g., the highest ID.
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Algorithm 8 Clockwise

1: Each node v executes the following code:

2: v sends a message with its identifier (for simplicity also v) to its clockwise
neighbor. {If node v already received a message w with w > v, then node
v can skip this step; if node v receives its first message w with w < v, then
node v will immediately send v.}
if v receives a message w with w > v then

v forwards w to its clockwise neighbor

v decides not to be the leader, if it has not done so already.
else if v receives its own identifier v then

v decides to be the leader
end if

Theorem 3.12 (Analysis of Algorithm 8). Algorithm 8 is correct. The time
complexity is O(n). The message complezity is O(n?).

Proof: Let node z be the node with the maximum identifier. Node z sends
its identifier in clockwise direction, and since no other node can swallow it,
eventually a message will arrive at z containing it. Then z declares itself to
be the leader. Every other node will declare non-leader at the latest when
forwarding message z. Since there are n identifiers in the system, each node
will at most forward n messages, giving a message complexity of at most n?.
We start measuring the time when the first node that “wakes up” sends its
identifier. For asynchronous time complexity (Definition 3.4) we assume that
each message takes at most one time unit to arrive at its destination. After at
most n — 1 time units the message therefore arrives at node z, waking z up.
Routing the message z around the ring takes at most n time units. Therefore
node z decides no later than at time 2n — 1. Every other node decides before
node z.

Remarks:

e Note that in Algorithm 8 nodes need to distinguish between clockwise
and counterclockwise neighbors. In fact they do not: It is okay to simply
send your own identifier to any neighbor, and forward a message m to the
neighbor you did not receive the message m from. So nodes only need to
be able to distinguish their two neighbors.

e Can we improve this algorithm?

Theorem 3.13 (Analysis of Algorithm 9). Algorithm 9 is correct. The time
complezity is O(n). The message complezity is O(nlogn).

Proof: Correctness is as in Theorem 3.12. The time complexity is O(n) since
the node with maximum identifier z sends messages with round-trip times
2,4,8,16,...,2 - 2" with & < log(n +1). (Even if we include the additional
wake-up overhead, the time complexity stays linear.) Proving the message com-
plexity is slightly harder: if a node v manages to survive round r, no other node
in distance 2" (or less) survives round r. That is, node v is the only node in its
2"-neighborhood that remains active in round 7 + 1. Since this is the same for
every node, less than n/2" nodes are active in round r+ 1. Being active in round
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Algorithm 9 Radius Growth (For readability we provide pseudo-code only; for
a formal version please consult [Attiya/Welch Alg. 3.1])

1: Each node v does the following;:

2: Initially all nodes are active. {all nodes may still become leaders}

3: Whenever a node v sees a message w with w > v, then v decides to not be
a leader and becomes passive.

4: Active nodes search in an exponentially growing neighborhood (clockwise
and counterclockwise) for nodes with higher identifiers, by sending out probe
messages. A probe message includes the ID of the original sender, a bit
whether the sender can still become a leader, and a time-to-live number
(TTL). The first probe message sent by node v includes a TTL of 1.

5: Nodes (active or passive) receiving a probe message decrement the TTL and
forward the message to the next neighbor; if their ID is larger than the one
in the message, they set the leader bit to zero, as the probing node does
not have the maximum ID. If the TTL is zero, probe messages are returned
to the sender using a reply message. The reply message contains the ID of
the receiver (the original sender of the probe message) and the leader-bit.
Reply messages are forwarded by all nodes until they reach the receiver.

6: Upon receiving the reply message: If there was no node with higher ID
in the search area (indicated by the bit in the reply message), the TTL is
doubled and two new probe messages are sent (again to the two neighbors).
If there was a better candidate in the search area, then the node becomes
passive.

7. If a node v receives its own probe message (not a reply) v decides to be the
leader.

r costs 2 - 2 - 2" messages. Therefore, round 7 costs at most 2-2-2" . 5721 = 8n
messages. Since there are only logarithmic many possible rounds, the message
complexity follows immediately.

Remarks:
e This algorithm is asynchronous and uniform as well.

e The question may arise whether one can design an algorithm with an even
lower message complexity. We answer this question in the next section.

3.4 Lower Bounds

Lower bounds in distributed computing are often easier than in the standard
centralized (random access machine, RAM) model because one can argue about
messages that need to be exchanged. In this section we present a first lower
bound. We show that Algorithm 9 is asymptotically optimal.

Definition 3.14 (Execution). An execution of a distributed algorithm is a list
of events, sorted by time. An event is a record (time, node, type, message),
where type is “send” or “receive”.
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Remarks:

e We assume throughout this course that no two events happen at exactly
the same time (or one can break ties arbitrarily).

e An execution of an asynchronous algorithm is generally not only deter-
mined by the algorithm but also by a “god-like” scheduler. If more than
one message is in transit, the scheduler can choose which one arrives first.

o If two messages are transmitted over the same directed edge, then it is
sometimes required that the message first transmitted will also be received
first (“FIFO”).

For our lower bound, we assume the following model:

e We are given an asynchronous ring, where nodes may wake up at arbitrary
times (but at the latest when receiving the first message).

e We only accept uniform algorithms where the node with the maximum
identifier can be the leader. Additionally, every node that is not the
leader must know the identity of the leader. These two requirements can
be dropped when using a more complicated proof; however, this is beyond
the scope of this course.

e During the proof we will “play god” and specify which message in trans-
mission arrives next in the execution. We respect the FIFO conditions for
links.

Definition 3.15 (Open Schedule). A schedule is an execution chosen by the
scheduler. A schedule for a ring is open if there is an open edge in the ring.
An open (undirected) edge is an edge where no message traversing the edge has
been received so far.

The proof of the lower bound is by induction. First we show the base case:

Lemma 3.16. Given a ring R with two nodes, we can construct an open sched-
ule in which at least one message is received. The nodes cannot distinguish this
schedule from one on a larger ring with all other nodes being where the open
edge 1is.

Proof: Let the two nodes be u and v with u < v. Node u must learn the
identity of node v, thus receive at least one message. We stop the execution of
the algorithm as soon as the first message is received. (If the first message is
received by v, bad luck for the algorithm!) Then the other edge in the ring (on
which the received message was not transmitted) is open. Since the algorithm
needs to be uniform, maybe the open edge is not really an edge at all, nobody
can tell. We could use this to glue two rings together, by breaking up this
imaginary open edge and connect two rings by two edges.

Lemma 3.17. By gluing together two rings of size n/2 for which we have open
schedules, we can construct an open schedule on a ring of size n. If M(n/2)
denotes the number of messages already received in each of these schedules, at
least 2M (n/2) + n/4 messages have to be exchanged in order to solve leader
election.
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Proof by induction: We divide the ring into two sub-rings R; and Rs of size
n/2. These subrings cannot be distinguished from rings with n/2 nodes if no
messages are received from “outsiders”. We can ensure this by not scheduling
such messages until we want to. Note that executing both given open schedules
on Ry and Ry “in parallel” is possible because we control not only the scheduling
of the messages, but also when nodes wake up. By doing so, we make sure that
2M (n/2) messages are sent before the nodes in Ry and Ry learn anything of
each other!

Without loss of generality, Ry contains the maximum identifier. Hence, each
node in Ry must learn the identity of the maximum identifier, thus at least
n/2 additional messages must be received. The only problem is that we cannot
connect the two sub-rings with both edges since the new ring needs to remain
open. Thus, only messages over one of the edges can be received. We “play
god” and look into the future: we check what happens when we close only one
of these connecting edges. With the argument that n/2 new messages must be
received, we know that there is at least one edge that will produce at least n/4
additional messages when being scheduled. (These messages may not be sent
over the closed link, but they are caused by a message over this link. They
cannot involve any message along the other (open) edge at distance n/2.) We
schedule this edge and the resulting n/4 messages, and leave the other open.

Lemma 3.18. Any uniform leader election algorithm for asynchronous rings
has at least message complexity M(n) > % (logn + 1).

Proof by induction: For simplicity we assume n being a power of 2. The base
case n = 2 works because of Lemma 3.16 which implies that M(2) > 1 =
%(logQ + 1). For the induction step, using Lemma 3.17 and the induction
hypothesis we have

M(n) 2-M(E)+E

2 4

> (5 (o5 + 1))+

%logn+gz %(long—l).

v

Remarks:

e To hide the ugly constants we use the “big Omega” notation, the lower
bound equivalent of O(). A function f is in (g) if there are constants
xg and ¢ > 0 such that |f(z)| > c|g(z)] for all z > xy. Again we refer
to standard text books for a formal definition. Rewriting Lemma 3.18 we
get:

Theorem 3.19 (Asynchronous Leader Election Lower Bound). Any uniform
leader election algorithm for asynchronous rings has Q(nlogn) message com-
plexity.

3.5 Synchronous Ring

The lower bound relied on delaying messages for a very long time. Since this is
impossible in the synchronous model, we might get a better message complexity
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in this case. The basic idea is very simple: In the synchronous model, not
receiving a message is information as welll First we make some additional
assumptions:

We assume that the algorithm is non-uniform (i.e., the ring size n is
known).

We assume that every node starts at the same time.

The node with the minimum identifier becomes the leader; identifiers are
integers.

Algorithm 10 Synchronous Leader Election

1: Each node v concurrently executes the following code:

2: The algorithm operates in synchronous phases. Each phase consists of n
time steps. Node v counts phases, starting with 0.
3: if phase = v and v did not yet receive a message then
4: v decides to be the leader
5: v sends the message “v is leader” around the ring
6: end if
Remarks:

Message complexity is indeed n.
But the time complexity is huge! If m is the minimum identifier it is m - n.

The synchronous start and the non-uniformity assumptions can be drop-
ped by using a wake-up technique (upon receiving a wake-up message,
wake up your clockwise neighbors) and by letting messages travel slowly.

There are several lower bounds for the synchronous model: comparison-
based algorithms or algorithms where the time complexity cannot be a
function of the identifiers have message complexity Q(nlogn) as well.

In general graphs efficient leader election may be tricky. While time-
optimal leader election can be done by parallel flooding-echo (see next
chapter), bounding the message complexity is generally more difficult.



Chapter 4

Tree Algorithms

In this chapter we learn a few basic algorithms on trees, and how to construct
trees in the first place so that we can run these (and other) algorithms. The
good news is that these algorithms have many applications, the bad news is
that this chapter is a bit on the simple side. But maybe that’s not really bad
news?!

4.1 Broadcast

Definition 4.1 (Broadcast). A broadcast operation is initiated by a single pro-
cessor, the source. The source wants to send a message to all other nodes in
the system.

Definition 4.2 (Distance, Radius, Diameter). The distance between two nodes
u and v in an undirected graph G is the number of hops of a minimum path
between u and v. The radius of a node u is the mazimum distance between u
and any other node in the graph. The radius of a graph is the minimum radius
of any mode in the graph. The diameter of a graph is the mazimum distance
between two arbitrary nodes.

Remarks:

e (learly there is a close relation between the radius R and the diameter D
of a graph, such as R < D < 2R.

e The world is often fascinated by graphs with a small radius. For example,
movie fanatics study the who-acted-with-whom-in-the-same-movie graph.
For this graph it has long been believed that the actor Kevin Bacon has
a particularly small radius. The number of hops from Bacon even got a
name, the Bacon Number. In the meantime, however, it has been shown
that there are “better” centers in the Hollywood universe, such as Sean
Connery, Christopher Lee, Rod Steiger, Gene Hackman, or Michael Caine.
The center of other social networks has also been explored, Paul Erdés for
instance is well known in the math community.

Theorem 4.3 (Broadcast Lower Bound). The message complezity of broadcast
1s at least n — 1. The source’s radius is a lower bound for the time complexity.

25
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Proof: Every node must receive the message.

Remarks:

e You can use a pre-computed spanning tree to do broadcast with tight
message complexity. If the spanning tree is a breadth-first search spanning
tree (for a given source), then the time complexity is tight as well.

Definition 4.4 (Clean). A graph (network) is clean if the nodes do not know
the topology of the graph.

Theorem 4.5 (Clean Broadcast Lower Bound). For a clean network, the num-
ber of edges is a lower bound for the broadcast message complexity.

Proof: If you do not try every edge, you might miss a whole part of the graph
behind it.

Remarks:

e This lower bound proof directly brings us to the well known flooding al-
gorithm.

Algorithm 11 Flooding

1: The source (root) sends the message to all neighbors.

2: Each other node v upon receiving the message the first time forwards the
message to all (other) neighbors.

3: Upon later receiving the message again (over other edges), a node can dis-
card the message.

Remarks:

e If node v receives the message first from node u, then node v calls node
u parent. This parent relation defines a spanning tree T'. If the flooding
algorithm is executed in a synchronous system, then T is a breadth-first
search spanning tree (with respect to the root).

e More interestingly, also in asynchronous systems the flooding algorithm
terminates after R time units, R being the radius of the source. However,
the constructed spanning tree may not be a breadth-first search spanning
tree.

4.2 Convergecast
Convergecast is the same as broadcast, just reversed: Instead of a root sending

a message to all other nodes, all other nodes send information to a root. The
simplest convergecast algorithm is the echo algorithm:
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Algorithm 12 Echo
Require: This algorithm is initiated at the leaves.
1: A leave sends a message to its parent.
2: If an inner node has received a message from each child, it sends a message
to the parent.

Remarks:

e Usually the echo algorithm is paired with the flooding algorithm, which is
used to let the leaves know that they should start the echo process; this
is known as flooding/echo.

e One can use convergecast for termination detection, for example. If a root
wants to know whether all nodes in the system have finished some task, it
initiates a flooding/echo; the message in the echo algorithm then means
“This subtree has finished the task.”

e Message complexity of the echo algorithm is n — 1, but together with
flooding it is O(m), where m = |E| is the number of edges in the graph.

e The time complexity of the echo algorithm is determined by the depth of
the spanning tree (i.e., the radius of the root within the tree) generated
by the flooding algorithm.

e The flooding/echo algorithm can do much more than collecting acknowl-
edgements from subtrees. Omne can for instance use it to compute the
number of nodes in the system, or the maximum ID (for leader election),
or the sum of all values stored in the system, or a route-disjoint matching.

e Moreover, by combining results one can compute even fancier aggrega-
tions, e.g., with the number of nodes and the sum one can compute the
average. With the average one can compute the standard deviation. And
soon...

4.3 BFS Tree Construction

In synchronous systems the flooding algorithm is a simple yet efficient method to
construct a breadth-first search (BFS) spanning tree. However, in asynchronous
systems the spanning tree constructed by the flooding algorithm may be far from
BFS. In this section, we implement two classic BFS constructions—Dijkstra and
Bellman-Ford—as asynchronous algorithms.

We start with the Dijkstra algorithm. The basic idea is to always add the
“closest” node to the existing part of the BFS tree. We need to parallelize this
idea by developing the BFS tree layer by layer:

Theorem 4.6 (Analysis of Algorithm 13). The time complexity of Algorithm
18 is O(D?), the message complezity is O(m + nD), where D is the diameter
of the graph, n the number of nodes, and m the number of edges.

Proof: A broadcast/echo algorithm in T, needs at most time 2D. Finding new
neighbors at the leaves costs 2 time units. Since the BFS tree height is bounded
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Algorithm 13 Dijkstra BFS
1: The algorithm proceeds in phases. In phase p the nodes with distance p to
the root are detected. Let T}, be the tree in phase p. We start with 77 which
is the root plus all direct neighbors of the root. We start with phase p = 1:
2: repeat
The root starts phase p by broadcasting “start p” within 7.
When receiving “start p” a leaf node w of T}, (that is, a node that was
newly discovered in the last phase) sends a “join p + 1”7 message to all
quiet neighbors. (A neighbor v is quiet if u has not yet “talked” to v.)
5: A node v receiving the first “join p+1” message replies with “ACK” and
becomes a leaf of the tree T}, ;.
6: A node v receiving any further “join” message replies with “NACK”.
7:  The leaves of T}, collect all the answers of their neighbors; then the leaves
start an echo algorithm back to the root.
8:  When the echo process terminates at the root, the root increments the
phase
9: until there was no new node detected

by the diameter, we have D phases, giving a total time complexity of O(D?).
Each node participating in broadcast/echo only receives (broadcasts) at most 1
message and sends (echoes) at most once. Since there are D phases, the cost is
bounded by O(nD). On each edge there are at most 2 “join” messages. Replies
to a “join” request are answered by 1 “ACK” or “NACK” , which means that we
have at most 4 additional messages per edge. Therefore the message complexity
is O(m + nD).

Remarks:

e The time complexity is not very exciting, so let’s try Bellman-Ford!

The basic idea of Bellman-Ford is even simpler, and heavily used in the
Internet, as it is a basic version of the omnipresent border gateway protocol
(BGP). The idea is to simply keep the distance to the root accurate. If a
neighbor has found a better route to the root, a node might also need to update
its distance.

Algorithm 14 Bellman-Ford BFS
1: Each node u stores an integer d,, which corresponds to the distance from u
to the root. Initially dyoot = 0, and d,, = oo for every other node w.
: The root starts the algorithm by sending “1” to all neighbors.
if a node u receives a message “y” with y < d, from a neighbor v then
node u sets d,, :=y
node u sends “y + 1”7 to all neighbors (except v)
end if

AN 4

Theorem 4.7 (Analysis of Algorithm 14). The time complexity of Algorithm
14 is O(D), the message complexity is O(nm), where D,n,m are defined as in
Theorem 4.6.

Proof: We can prove the time complexity by induction. We claim that a node
at distance d from the root has received a message “d” by time d. The root
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knows by time 0 that it is the root. A node v at distance d has a neighbor u
at distance d — 1. Node u by induction sends a message “d” to v at time d — 1
or before, which is then received by v at time d or before. Message complexity
is easier: A node can reduce its distance at most n — 1 times; each of these
times it sends a message to all its neighbors. If all nodes do this we have O(nm)
messages.

Remarks:

e Algorithm 13 has the better message complexity and Algorithm 14 has the
better time complexity. The currently best algorithm (optimizing both)
needs O(m + nlog® n) messages and O(Dlog®n) time. This “trade-off”
algorithm is beyond the scope of this course.

4.4 MST Construction

There are several types of spanning trees, each serving a different purpose. A
particularly interesting spanning tree is the minimum spanning tree (MST). The
MST only makes sense on weighted graphs, hence in this section we assume that
each edge e is assigned a weight w,.

Definition 4.8 (MST). Given a weighted graph G = (V, E,w), the MST of G is
a spanning tree T minimizing w(T), where w(G') = Y .o we for any subgraph
G' CG@.

Remarks:

e In the following we assume that no two edges of the graph have the same
weight. This simplifies the problem as it makes the MST unique; however,
this simplification is not essential as one can always break ties by adding
the IDs of adjacent vertices to the weight.

e Obviously we are interested in computing the MST in a distributed way.
For this we use a well-known lemma:

Definition 4.9 (Blue Edges). Let T be a spanning tree of the weighted graph
G and T C T a subgraph of T (also called a fragment). Edge e = (u,v) is an
outgoing edge of T' if u € T" and v ¢ T' (or vice versa). The minimum weight
outgoing edge b(T") is the so-called blue edge of T".

Lemma 4.10. For a given weighted graph G (such that no two weights are the
same), let T denote the MST, and T' be a fragment of T. Then the blue edge
of T" is also part of T, i.e., T'"Ub(T') C T.

Proof: For the sake of contradiction, suppose that in the MST T there is edge
e # b(T") connecting T” with the remainder of T. Adding the blue edge b(T") to
the MST T we get a cycle including both e and b(7”). If we remove e from this
cycle we still have a spanning tree, and since by the definition of the blue edge
We > wy(ry, the weight of that new spanning tree is less than than the weight
of T. We have a contradiction.
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Remarks:

e In other words, the blue edges seem to be the key to a distributed al-

gorithm for the MST problem. Since every node itself is a fragment of
the MST, every node directly has a blue edge! All we need to do is to
grow these fragments! Essentially this is a distributed version of Kruskal’s
sequential algorithm.

At any given time the nodes of the graph are partitioned into fragments
(rooted subtrees of the MST). Each fragment has a root, the ID of the
fragment is the ID of its root. Each node knows its parent and its children
in the fragment. The algorithm operates in phases. At the beginning of a
phase, nodes know the IDs of the fragments of their neighbor nodes.

Algorithm 15 GHS (Gallager—-Humblet—Spira)

1: Initially each node is the root of its own fragment. We proceed in phases:

2: repeat

3:  All nodes learn the fragment IDs of their neighbors.

4:  The root of each fragment uses flooding/echo in its fragment to determine
the blue edge b = (u,v) of the fragment.

5:  The root sends a message to node u; while forwarding the message on the
path from the root to node w all parent-child relations are inverted {such
that u is the new temporary root of the fragment}

6: node u sends a merge request over the blue edge b = (u,v).

7:  if node v also sent a merge request over the same blue edge b = (v, u)
then

either uw or v (whichever has the smaller ID) is the new fragment root
: the blue edge b is directed accordingly
10: else
11: node v is the new parent of node u
12:  end if
13:  the newly elected root node informs all nodes in its fragment (again using

flooding/echo) about its identity

14: until all nodes are in the same fragment (i.e., there is no outgoing edge)

Remarks:

e Algorithm 15 was stated in pseudo-code, with a few details not really

explained. For instance, it may be that some fragments are much larger
than others, and because of that some nodes may need to wait for others,
e.g., if node u needs to find out whether neighbor v also wants to merge
over the blue edge b = (u,v). The good news is that all these details can
be solved. We can for instance bound the asynchronicity by guaranteeing
that nodes only start the new phase after the last phase is done, similarly
to the phase-technique of Algorithm 13.

Theorem 4.11 (Analysis of Algorithm 15). The time complexity of Algorithm
15 4s O(nlogn), the message complexity is O(mlogn).

Proof: Each phase mainly consists of two flooding/echo processes. In general,
the cost of flooding/echo on a tree is O(D) time and O(n) messages. However,
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the diameter D of the fragments may turn out to be not related to the diameter
of the graph because the MST may meander, hence it really is O(n) time. In
addition, in the first step of each phase, nodes need to learn the fragment ID of
their neighbors; this can be done in 2 steps but costs O(m) messages. There are
a few more steps, but they are cheap. Altogether a phase costs O(n) time and
O(m) messages. So we only have to figure out the number of phases: Initially all
fragments are single nodes and hence have size 1. In a later phase, each fragment
merges with at least one other fragment, that is, the size of the smallest fragment
at least doubles. In other words, we have at most logn phases. The theorem
follows directly.

Remarks:

e Algorithm 15 is called “GHS” after Gallager, Humblet, and Spira, three pi-
oneers in distributed computing. Despite being quite simple the algorithm
won the prestigious Edsger W. Dijkstra Prize in Distributed Computing
in 2004, among other reasons because it was one of the first (1983) non-
trivial asynchronous distributed algorithms. As such it can be seen as one
of the seeds of this research area.

e We presented a simplified version of GHS. The original paper by Gallager
et al. featured an improved message complexity of O(m + nlogn).

e In 1987, Awerbuch managed to further improve the GHS algorithm to get
O(n) time and O(m + nlogn) message complexity, both asymptotically
optimal.

e The GHS algorithm can be applied in different ways. GHS for instance
directly solves leader election in general graphs: The leader is simply the
last surviving root!
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Chapter 5

Distributed Sorting

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of sorting [and searching]!”

— Donald E. Knuth, The Art of Computer Programming

In this chapter we study a classic problem in computer science—sorting—
from a distributed computing perspective. In contrast to an orthodox single-
processor sorting algorithm, no node has access to all data, instead the to-be-
sorted values are distributed. Distributed sorting then boils down to:

Definition 5.1 (Sorting). We choose a graph with n nodes vy, ..., v,. Initially
each node stores a value. After applying a sorting algorithm, node vy stores the
kth smallest value.

Remarks:

e What if we route all values to the same central node v, let v sort the values
locally, and then route them to the correct destinations?! According to the
message passing model studied in the first few chapters this is perfectly
legal. With a star topology sorting finishes in O(1) time!

Definition 5.2 (Node Contention). In each step of a synchronous algorithm,
each node can only send and receive O(1) messages containing O(1) values, no
matter how many neighbors the node has.

Remarks:

e Using Definition 5.2 sorting on a star graph takes linear time.

5.1 Array & Mesh

To get a better intuitive understanding of distributed sorting, we start with two
simple topologies, the array and the mesh. Let us begin with the array:

33
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Algorithm 16 Odd/Even Sort

1: Given an array of n nodes (vy,...,v,), each storing a value (not sorted).
2: repeat

3:  Compare and exchange the values at nodes i and 7 + 1, ¢ odd

4:  Compare and exchange the values at nodes ¢ and i + 1, i even

5: until done

Remarks:

e The compare and exchange primitive in Algorithm 16 is defined as follows:
Let the value stored at node i be v;. After the compare and exchange node
i stores value min(v;,v;+1) and node 7 + 1 stores value max(v;, v;y1).

e How fast is the algorithm, and how can we prove correctness/efficiency?

e The most interesting proof uses the so-called 0-1 Sorting Lemma. It allows
us to restrict our attention to an input of 0’s and 1’s only, and works for any
“oblivious comparison-exchange” algorithm. (Oblivious means: Whether
you exchange two values must only depend on the relative order of the
two values, and not on anything else.)

Lemma 5.3 (0-1 Sorting Lemma). If an oblivious comparison-exchange algo-
rithm sorts all inputs of 0’s and 1’s, then it sorts arbitrary inputs.

Proof. We prove the opposite direction (does not sort arbitrary inputs = does
not sort 0’s and 1’s). Assume that there is an input = x1,...,x, that is not
sorted correctly. Then there is a smallest value k£ such that the value at node
vy, after running the sorting algorithm is strictly larger than the k™ smallest
value z(k). Define an input 2} = 0 & x; < z(k), 27 = 1 else. Whenever the
algorithm compares a pair of 1’s or 0’s, it is not important whether it exchanges
the values or not, so we may simply assume that it does the same as on the
input . On the other hand, whenever the algorithm exchanges some values
z; =0 and z} = 1, this means that z; < z(k) < z;. Therefore, in this case the
respective compare-exchange operation will do the same on both inputs. We
conclude that the algorithm will order x* the same way as z, i.e., the output
with only 0’s and 1’s will also not be correct. O

Theorem 5.4. Algorithm 16 sorts correctly in n steps.

Proof. Thanks to Lemma 5.3 we only need to consider an array with 0’s and
1’s. Let j; be the node with the rightmost (highest index) 1. If j; is odd (even)
it will move in the first (second) step. In any case it will move right in every
following step until it reaches the rightmost node v,. Let ji be the node with
the k¥ rightmost 1. We show by induction that j; is not “blocked” anymore
(constantly moves until it reaches destination!) after step k. We have already
anchored the induction at £ = 1. Since ji_; moves after step k — 1, ji gets
a right O-neighbor for each step after step k. (For matters of presentation we
omitted a couple of simple details.) O
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Algorithm 17 Shearsort
2

1: We are given a mesh with m rows and m columns, m even, n = m=~.

2: The sorting algorithm operates in phases, and uses the odd/even sort algo-
rithm on rows or columns.

3: repeat

4:  In the odd phases 1,3, ... we sort all the rows, in the even phases 2,4, ...
we sort all the columns, such that:

5:  Columns are sorted such that the small values move up.

6: Odd rows (1,3,...,m — 1) are sorted such that small values move left.

7. Even rows (2,4,...,m) are sorted such that small values move right.

8: until done

Remarks:

e Linear time is not very exciting, maybe we can do better by using a dif-
ferent topology? Let’s try a mesh (a.k.a. grid) topology first.

Theorem 5.5. Algorithm 17 sorts n values in /n(logn+1) time in snake-like
order.

Proof. Since the algorithm is oblivious, we can use Lemma 5.3. We show that
after a row and a column phase, half of the previously unsorted rows will be
sorted. More formally, let us call a row with only 0’s (or only 1’s) clean, a row
with 0’s and 1’s is dirty. At any stage, the rows of the mesh can be divided
into three regions. In the north we have a region of all-0 rows, in the south all-1
rows, in the middle a region of dirty rows. Initially all rows can be dirty. Since
neither row nor column sort will touch already clean rows, we can concentrate
on the dirty rows.

First we run an odd phase. Then, in the even phase, we run a peculiar
column sorter: We group two consecutive dirty rows into pairs. Since odd and
even rows are sorted in opposite directions, two consecutive dirty rows look as
follows:

00000 ...11111

11111 ...00000

Such a pair can be in one of three states. Either we have more 0’s than 1’s, or
more 1’s than 0’s, or an equal number of 0’s and 1’s. Column-sorting each pair
will give us at least one clean row (and two clean rows if “|0] = [1|”). Then
move the cleaned rows north/south and we will be left with half the dirty rows.

At first glance it appears that we need such a peculiar column sorter. How-
ever, any column sorter sorts the columns in exactly the same way (we are very
grateful to have Lemma 5.3!).

All in all we need 2logm = logn phases to remain only with 1 dirty row in
the middle which will be sorted (not cleaned) with the last row-sort. O



36 CHAPTER 5. DISTRIBUTED SORTING

Remarks:

e There are algorithms that sort in 3m + o(m) time on an m by m mesh
(by diving the mesh into smaller blocks). This is asymptotically optimal,
since a value might need to move 2m times.

e Such a y/n-sorter is cute, but we are more ambitious. There are non-
distributed sorting algorithms such as quicksort, heapsort, or mergesort
that sort n values in (expected) O(nlogn) time. Using our n-fold paral-
lelism effectively we might therefore hope for a distributed sorting algo-
rithm that sorts in time O(logn)!

5.2 Sorting Networks

In this section we construct a graph topology which is carefully manufactured
for sorting. This is a deviation from previous chapters where we always had to
work with the topology that was given to us. In many application areas (e.g.
peer-to-peer networks, communication switches, systolic hardware) it is indeed
possible (in fact, crucial!) that an engineer can build the topology best suited
for her application.

Definition 5.6 (Sorting Networks). A comparator is a device with two inputs
x,y and two outputs x',y’ such that ' = min(x,y) and y' = max(z,y). We
construct so-called comparison networks that consist of wires that connect com-
parators (the output port of a comparator is sent to an input port of another
comparator). Some wires are not connected to comparator outputs, and some
are not connected to comparator inputs. The first are called input wires of the
comparison network, the second output wires. Given n values on the input wires,
a sorting network ensures that the values are sorted on the output wires. We will
also use the term width to indicate the number of wires in the sorting network.

Remarks:

e The odd/even sorter explained in Algorithm 16 can be described as a
sorting network.

e Often we will draw all the wires on n horizontal lines (n being the “width”
of the network). Comparators are then vertically connecting two of these
lines.

e Note that a sorting network is an oblivious comparison-exchange network.
Consequently we can apply Lemma 5.3 throughout this section. An ex-
ample sorting network is depicted in Figure 5.1.

Definition 5.7 (Depth). The depth of an input wire is 0. The depth of a
comparator is the mazimum depth of its input wires plus one. The depth of
an output wire of a comparator is the depth of the comparator. The depth of a
comparison network is the mazimum depth (of an output wire).

Definition 5.8 (Bitonic Sequence). A bitonic sequence is a sequence of numbers
that first monotonically increases, and then monotonically decreases, or vice
versa.
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Figure 5.1: A sorting network.

Remarks:
e <1,4,6,8,3,2> or <5,3,2,1,4,8 > are bitonic sequences.
e <96,2,3,5,4>o0r <7,4,2,5,9,8 > are not bitonic.

e Since we restrict ourselves to 0’s and 1’s (Lemma 5.3), bitonic sequences
have the form 0°170% or 1?01 for 4, j, k > 0.

Algorithm 18 Half Cleaner
1: A half cleaner is a comparison network of depth 1, where we compare wire
i with wire ¢ +n/2 for i = 1,...,n/2 (we assume n to be even).

Lemma 5.9. Feeding a bitonic sequence into a half cleaner (Algorithm 18), the
half cleaner cleans (makes all-0 or all-1) either the upper or the lower half of
the n wires. The other half is bitonic.

Proof. Assume that the input is of the form 0°170* for 4, j, k > 0. If the midpoint
falls into the 0’s, the input is already clean/bitonic and will stay so. If the
midpoint falls into the 1’s the half cleaner acts as Shearsort with two adjacent
rows, exactly as in the proof of Theorem 5.5. The case 1°071* is symmetric. [

Algorithm 19 Bitonic Sequence Sorter

1: A bitonic sequence sorter of width n (n being a power of 2) consists of a
half cleaner of width n, and then two bitonic sequence sorters of width n/2
each.

2: A bitonic sequence sorter of width 1 is empty.

Lemma 5.10. A bitonic sequence sorter (Algorithm 19) of width n sorts bitonic
sequences. It has depth logn.
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Proof. The proof follows directly from the Algorithm 19 and Lemma 5.9. O

Remarks:

e Clearly we want to sort arbitrary and not only bitonic sequences! To do
this we need one more concept, merging networks.

Algorithm 20 Merging Network
1: A merging network of width n is a merger of width n followed by two bitonic
sequence sorters of width n/2. A merger is a depth-one network where we
compare wire ¢ with wire n —i+ 1, for i = 1,...,n/2.

Remarks:

e Note that a merging network is a bitonic sequence sorter where we replace
the (first) half-cleaner by a merger.

Lemma 5.11. A merging network of width n (Algorithm 20) merges two sorted
input sequences of length n/2 each into one sorted sequence of length n.

Proof. We have two sorted input sequences. Essentially, a merger does to two
sorted sequences what a half cleaner does to a bitonic sequence, since the lower
part of the input is reversed. In other words, we can use same argument as
in Theorem 5.5 and Lemma 5.9: Again, after the merger step either the upper
or the lower half is clean, the other is bitonic. The bitonic sequence sorters
complete sorting. O

Remarks:

e How do you sort n values when you are able to merge two sorted sequences
of size n/2?7 Piece of cake, just apply the merger recursively.

Algorithm 21 Batcher’s “Bitonic” Sorting Network
1: A batcher sorting network of width n consists of two batcher sorting net-
works of width n/2 followed by a merging network of width n. (See Figure
5.2.)
2: A batcher sorting network of width 1 is empty.

Theorem 5.12. A sorting network (Algorithm 21) sorts an arbitrary sequence
of n values. It has depth O(log®n).

Proof. Correctness is immediate: at recursive stage k (kK =1,2,3,...,logn) we
merge 2%) sorted sequences into 2¥~! sorted sequences. The depth d(n) of the
sorting network of level n is the depth of a sorting network of level n/2 plus
the depth m(n) of a merging network with width n. The depth of a sorter of
level 1 is 0 since the sorter is empty. Since a merging network of width n has
the same depth as a bitonic sequence sorter of width n, we know by Lemma
5.10 that m(n) = logn. This gives a recursive formula for d(n) which solves to

d(n) =1 log?n + 1logn. O
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Figure 5.2: A batcher sorting network

Remarks:

e Simulating Batcher’s sorting network on an ordinary sequential computer
takes time O(nlog®n). As said, there are sequential sorting algorithms
that sort in asymptotically optimal time O(nlogn). So a natural question
is whether there is a sorting network with depth O(logn). Such a network
would have some remarkable advantages over sequential asymptotically
optimal sorting algorithms such as heapsort. Apart from being highly
parallel, it would be completely oblivious, and as such perfectly suited for
a fast hardware solution. In 1983, Ajtai, Komlos, and Szemeredi presented
a celebrated O(logn) depth sorting network. (Unlike Batcher’s sorting
network the constant hidden in the big-O of the “AKS” sorting network
is too large to be practical, however.)

e It can be shown that Batcher’s sorting network and similarly others can
be simulated by a Butterfly network and other hypercubic networks, see
next chapter.

e What if a sorting network is asynchronous?!? Clearly, using a synchronizer
we can still sort, but it is also possible to use it for something else. Check
out the next section!

5.3 Counting Networks

In this section we address distributed counting, a distributed service which can
for instance be used for load balancing.

Definition 5.13 (Distributed Counting). A distributed counter is a variable
that is common to all processors in a system and that supports an atomic test-
and-increment operation. The operation delivers the system’s counter value to
the requesting processor and increments it.
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Remarks:

e A naive distributed counter stores the system’s counter value with a dis-
tinguished central node. When other nodes initiate the test-and-increment
operation, they send a request message to the central node and in turn
receive a reply message with the current counter value. However, with a
large number of nodes operating on the distributed counter, the central
processor will become a bottleneck. There will be a congestion of request
messages at the central processor, in other words, the system will not
scale.

e Is a scalable implementation (without any kind of bottleneck) of such a
distributed counter possible, or is distributed counting a problem which
is inherently centralized?!?

e Distributed counting could for instance be used to implement a load bal-
ancing infrastructure, i.e. by sending the job with counter value ¢ (modulo
n) to server ¢ (out of n possible servers).

Definition 5.14 (Balancer). A balancer is an asynchronous flip-flop which
forwards messages that arrive on the left side to the wires on the right, the first
to the upper, the second to the lower, the third to the upper, and so on.

Algorithm 22 Bitonic Counting Network.

1: Take Batcher’s bitonic sorting network of width w and replace all the com-
parators with balancers.

2: When a node wants to count, it sends a message to an arbitrary input wire.

3: The message is then routed through the network, following the rules of the
asynchronous balancers.

4: FEach output wire is completed with a “mini-counter.”

5: The mini-counter of wire k replies the value “k + i - w” to the initiator of
the 7™ message it receives.

Definition 5.15 (Step Property). A sequence yo,y1,-..,Yw—1 iS said to have
the step property, if 0 <y; —y; <1, for any i < j.

Remarks:

e If the output wires have the step property, then with r requests, exactly
the values 1,...,r will be assigned by the mini-counters. All we need to
show is that the counting network has the step property. For that we need
some additional facts...

Facts 5.16. For a balancer, we denote the number of consumed messages on the
hinput wire with x;, i = 0,1. Similarly, we denote the number of sent messages
on the i™ output wire with y;, i = 0,1. A balancer has these properties:

(1) A balancer does not generate output-messages; that is, xo + x1 > yo + 11
m any state.

(2) Every incoming message is eventually forwarded. In other words, if we
are in a quiescent state (no message in transit), then xo+ 1 = yo + y1.
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(3) The number of messages sent to the upper output wire is at most one
higher than the number of messages sent to the lower output wire: in any

state yo = [(yo +v1)/2] (thus yr = [(yo +v1)/2]).
Facts 5.17. If a sequence yo,y1,---,Yw—1 has the step property,
(1) then all its subsequences have the step property.
(2) then its even and odd subsequences satisfy

w/2-1 w/2—1

Facts 5.18. If two sequences xg, T1,- .., Tw—_1 and Yo, Y1, - - -, Yw—1 have the step
property,

(1) and >, xl—zzﬂz_olyi, then x; = y; fori=0,...,w— 1.

(2) and S0 @i = S yit1, then there exists a unique j (5= 0,1,...,w—
1) such that x; =y; +1, and x; = y; fori=0,...,w—1, i #j.

Remarks:

e An alternative representation of Batcher’s network has been introduced by
Aspnes et al. Tt is isomorphic to Batcher’s network, and relies on a Merger
Network M [w] which is defined inductively: M [w] consists of two M[w/2]
networks (an upper and a lower one) whose output is fed to w/2 balancers.
The upper balancer merges the even subsequence xg, o, ..., Zy_2, while
the lower balancer merges the odd subsequence x1, x3, ..., Z,_1. Call the
outputs of these two M[w/2], z and 2’ respectively. The final stage of the
network combines z and z’ by sending each pair of wires z; and z; into a
balancer whose outputs yield yo; and y9;41.

e It enough to prove that a merger network M [w] preserves the step prop-

erty.
Lemma 5.19. Let M[w] be a merger network of width w. In a qui-
escent state (no message in transit), if the inputs X0y L1y Toyja—1 TESP.
Taw/2 T /2415 - - - » Tw—1 have the step property, then the output yo,y1,- .-, Yw—-1

has the step property.

Proof. By induction on the width w.

For w = 2: M|[2] is a balancer and a balancer’s output has the step property
(Fact 5.16.3).

For w > 2: Let z resp. 2’ be the output of the upper respectively lower
M[w/2] subnetwork. Since xq, 1, ..., Ty 2—1 and Xy 2, Ty /241, - - Tw—1 Doth
have the step property by assumption, their even and odd subsequences also
have the step property (Fact 5.17.1). By induction hypothesis, the output of

both Mw/2] subnetworks have the step property. Let Z := Zf}/ g ~!2 and

7' = Zf’/gfl z/. From Fact 5.17.2 we conclude that Z = [3 Zw/Q Y2 +

7

3 i o i) and 7 = [ 000 i) 4 [ 05, jp i) Since [a] + b and
la] + [b] differ by at most 1 we know that Z and Z’ differ by at most 1.
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If Z =2, Fact 5.18.1 implies that z; = z} for i = 0,...,w/2 — 1. Therefore,
the output of M[w] is y; = 2|;/2) for i = 0,...,w — 1. Since zp, ..., Zy/2—1 has
the step property, so does the output of M[w] and the lemma follows.

If Z and Z’ differ by 1, Fact 5.18.2 implies that z; = 2 for i = 0,...,w/2—1,
except a unique j such that z; and z§ differ by only 1, for j =0,...,w/2 — 1.
Let [ := min(z;,2}). Then, the output y; (with i < 2j) is [ + 1. The output
y; (with ¢ > 2j 4+ 1) is I. The output ys; and ya;41 are balanced by the final
balancer resulting in yo; = ! + 1 and y9j41 = I. Therefore M[w] preserves the
step property. ]

A bitonic counting network is constructed to fulfill Lemma 5.19, i.e., the
final output comes from a Merger whose upper and lower inputs are recursively
merged. Therefore, the following theorem follows immediately.

Theorem 5.20 (Correctness). In a quiescent state, the w output wires of a
bitonic counting network of width w have the step property.

Remarks:

e Is every sorting network also a counting network? No. But surprisingly,
the other direction is true!

Theorem 5.21 (Counting vs. Sorting). If a network is a counting network
then it is also a sorting network, but not vice versa.

Proof. There are sorting networks that are not counting networks (e.g. odd/even
sort, or insertion sort). For the other direction, let C' be a counting network
and I(C) be the isomorphic network, where every balancer is replaced by a
comparator. Let I(C) have an arbitrary input of 0’s and 1’s; that is, some of
the input wires have a 0, all others have a 1. There is a message at C’s i*"
input wire if and only if I(C')’s ¢ input wire is 0. Since C'is a counting network,
all messages are routed to the upper output wires. I(C) is isomorphic to C,
therefore a comparator in I(C) will receive a 0 on its upper (lower) wire if
and only if the corresponding balancer receives a message on its upper (lower)
wire. Using an inductive argument, the 0’s and 1’s will be routed through I(C)
such that all 0’s exit the network on the upper wires whereas all 1’s exit the
network on the lower wires. Applying Lemma 5.3 shows that I(C) is a sorting
network. O

Remarks:

e We claimed that the counting network is correct. However, it is only
correct in a quiescent state.

Definition 5.22 (Linearizable). A system is linearizable if the order of the
values assigned reflects the real-time order in which they were requested. More
formally, if there is a pair of operations o1, 02, where operation o1 terminates be-
fore operation oo starts, and the logical order is “oq before o1”, then a distributed
system is not linearizable.

Lemma 5.23 (Linearizability). The bitonic counting network is not lineariz-
able.
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Proof. Consider the bitonic counting network with width 4 in Figure 5.3: As-
sume that two inc operations were initiated and the corresponding messages
entered the network on wire 0 and 2 (both in light gray color). After hav-
ing passed the second resp. the first balancer, these traversing messages “fall
asleep”; In other words, both messages take unusually long time before they are
received by the next balancer. Since we are in an asynchronous setting, this
may be the case.

/77

/77

Figure 5.3: Linearizability Counter Example.

In the meantime, another inc operation (medium gray) is initiated and enters
the network on the bottom wire. The message leaves the network on wire 2,
and the inc operation is completed.

Strictly afterwards, another inc operation (dark gray) is initiated and enters
the network on wire 1. After having passed all balancers, the message will leave
the network wire 0. Finally (and not depicted in Figure 5.3), the two light gray
messages reach the next balancer and will eventually leave the network on wires
1 resp. 3. Because the dark gray and the medium gray operation do conflict
with Definition 5.22, the bitonic counting network is not linearizable. O

Remarks:

e Note that the example in Figure 5.3 behaves correctly in the quiescent
state: Finally, exactly the values 0,1, 2, 3 are allotted.

e It was shown that linearizability comes at a high price (the depth grows
linearly with the width).
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Counting Networks



Chapter 6

Shared Memory

6.1 Introduction

In distributed computing, various different models exist. So far, the focus of the
course was on loosely-coupled distributed systems such as the Internet, where
nodes asynchronously communicate by exchanging messages. The “opposite”
model is a tightly-coupled parallel computer where nodes access a common
memory totally synchronously—in distributed computing such a system is called
a Parallel Random Access Machine (PRAM).

A third major model is somehow between these two extremes, the shared
memory model. In a shared memory system, asynchronous processes (or proces-
sors) communicate via a common memory area of shared variables or registers:

Definition 6.1 (Shared Memory). A shared memory system is a system that
consists of asynchronous processes that access a common (shared) memory. A
process can atomically access a register in the shared memory through a set of
predefined operations. An atomic modification appears to the rest of the system
instantaneously. Apart from this shared memory, processes can also have some
local (private) memory.

Remarks:

e Various shared memory systems exist. A main difference is how they allow
processes to access the shared memory. All systems can atomically read
or write a shared register R. Most systems do allow for advanced atomic
read-modify-write (RMW) operations, for example:

— test-and-set(R): t := R; R := 1; return ¢

— fetch-and-add(R, z): t :== R; R := R+ z; return ¢

— compare-and-swap(R, z,y): if R = x then R := y; return true; else
return false; endif;

— load-link(R)/store-conditional(R, z): Load-link returns the current
value of the specified register R. A subsequent store-conditional to
the same register will store a new value z (and return true) only
if no updates have occurred to that register since the load-link. If
any updates have occurred, the store-conditional is guaranteed to fail

45
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(and return false), even if the value read by the load-link has since
been restored.

e The power of RMW operations can be measured with the so-called
consensus-number: The consensus-number k& of a RMW operation defines
whether one can solve consensus for k processes. Test-and-set for instance
has consensus-number 2 (one can solve consensus with 2 processes, but
not 3), whereas the consensus-number of compare-and-swap is infinite. It
can be shown that the power of a shared memory system is determined
by the consensus-number (“universality of consensus”.) This insight has a
remarkable theoretical and practical impact. In practice for instance, after
this was known, hardware designers stopped developing shared memory
systems supporting weak RMW operations.

e Many of the results derived in the message passing model have an equiva-
lent in the shared memory model. Consensus for instance is traditionally
studied in the shared memory model.

e Whereas programming a message passing system is rather tricky (in partic-
ular if fault-tolerance has to be integrated), programming a shared mem-
ory system is generally considered easier, as programmers are given access
to global variables directly and do not need to worry about exchanging
messages correctly. Because of this, even distributed systems which phys-
ically communicate by exchanging messages can often be programmed
through a shared memory middleware, making the programmer’s life eas-
ier.

o We will most likely find the general spirit of shared memory systems in
upcoming multi-core architectures. As for programming style, the multi-
core community seems to favor an accelerated version of shared memory,
transactional memory.

e From a message passing perspective, the shared memory model is like a
bipartite graph: On one side you have the processes (the nodes) which
pretty much behave like nodes in the message passing model (asynchro-
nous, maybe failures). On the other side you have the shared registers,
which just work perfectly (no failures, no delay).

6.2 Mutual Exclusion

A classic problem in shared memory systems is mutual exclusion. We are given
a number of processes which occasionally need to access the same resource. The
resource may be a shared variable, or a more general object such as a data
structure or a shared printer. The catch is that only one process at the time is
allowed to access the resource. More formally:

Definition 6.2 (Mutual Exclusion). We are given a number of processes, each
executing the following code sections:

<Entry> — <Critical Section> — <FEzit> — <Remaining Code>

A mutual exclusion algorithm consists of code for entry and exit sections, such
that the following holds
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o Mutual Exclusion: At all times at most one process is in the critical sec-
tion.

e No deadlock: If some process manages to get to the entry section, later
some (possibly different) process will get to the critical section.

Sometimes we in addition ask for

e No lockout: If some process manages to get to the entry section, later the
same process will get to the critical section.

e Unobstructed exit: No process can get stuck in the exit section.

Using RMW primitives one can build mutual exclusion algorithms quite easily.
Algorithm 23 shows an example with the test-and-set primitive.

Algorithm 23 Mutual Exclusion: Test-and-Set
Input: Shared register R :=0
<Entry>

1: repeat

2: 1 := test-and-set(R)

3: untilr =0
<Critical Section>

4: ...
<Exit>

5 R:=0
<Remainder Code>

6: ...

Theorem 6.3. Algorithm 23 solves the mutual exclusion problem as in Defini-
tion 6.2.

Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let p; be the i*" process to successfully execute the test-and-set,
where successfully means that the result of the test-and-set is 0. This happens
at time ¢;. At time t; process p; resets the shared register R to 0. Between ¢;
and ¢} no other process can successfully test-and-set, hence no other process can
enter the critical section concurrently.

Proving no deadlock works similar: One of the processes loitering in the
entry section will successfully test-and-set as soon as the process in the critical
section exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit. O

Remarks:

e No lockout, on the other hand, is not given by this algorithm. Even with
only two processes there are asynchronous executions where always the
same process wins the test-and-set.

e Algorithm 23 can be adapted to guarantee fairness (no lockout), essentially
by ordering the processes in the entry section in a queue.
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e A natural question is whether one can achieve mutual exclusion with only
reads and writes, that is without advanced RMW operations. The answer
is yes!

Our read/write mutual exclusion algorithm is for two processes py and p; only.
In the remarks we discuss how it can be extended. The general idea is that
process p; has to mark its desire to enter the critical section in a “want” register
W; by setting W; := 1. Only if the other process is not interested (W;_; = 0)
access is granted. This however is too simple since we may run into a deadlock.
This deadlock (and at the same time also lockout) is resolved by adding a priority
variable II. See Algorithm 24.

Algorithm 24 Mutual Exclusion: Peterson’s Algorithm

Initialization: Shared registers Wy, W1, 11, all initially 0.
Code for process p; ,i=1{0,1}

<Entry>
1 W;:=1
2:II:=1—1

3: repeat until [I=7or W;_; =0
<Critical Section>

4: ...
<Exit>

5 W;:=0
<Remainder Code>

6: ...

Remarks:

e Note that line 3 in Algorithm 24 represents a “spinlock” or “busy-wait”,
similarly to the lines 1-3 in Algorithm 23.

Theorem 6.4. Algorithm 24 solves the mutual exclusion problem as in Defini-
tion 6.2.

Proof. The shared variable II elegantly grants priority to the process that passes
line 2 first. If both processes are competing, only process pr; can access the
critical section because of II. The other process p;_pm cannot access the critical
section because Wiy = 1 (and II # 1 — IT). The only other reason to access the
critical section is because the other process is in the remainder code (that is,
not interested). This proves mutual exclusion!

No deadlock comes directly with II: Process prr gets direct access to the
critical section, no matter what the other process does.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Thanks to the shared variable II also no lockout (fairness) is achieved: If a
process p; loses against its competitor p;_; in line 2, it will have to wait until
the competitor resets Wi_; := 0 in the exit section. If process p; is unlucky it
will not check W7_; = 0 early enough before process p;_; sets Wi_; := 1 again
in line 1. However, as soon as p;_; hits line 2, process p; gets the priority due
to II, and can enter the critical section. O
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Remarks:

e Extending Peterson’s Algorithm to more than 2 processes can be done by
a tournament tree, like in tennis. With n processes every process needs to
win log n matches before it can enter the critical section. More precisely,
each process starts at the bottom level of a binary tree, and proceeds to
the parent level if winning. Once winning the root of the tree it can enter
the critical section. Thanks to the priority variables IT at each node of the
binary tree, we inherit all the properties of Definition 6.2.

6.3 Store & Collect

6.3.1 Problem Definition

In this section, we will look at a second shared memory problem that has an
elegant solution. Informally, the problem can be stated as follows. There are
n processes pi,...,Pn. Every process p; has a read/write register R; in the
shared memory where it can store some information that is destined for the
other processes. Further, there is an operation by which a process can collect
(i.e., read) the values of all the processes that stored some value in their register.

We say that an operation op! precedes an operation op2 iff op! terminates
before op2 starts. An operation op2 follows an operation op! iff op1 precedes
op2.

Definition 6.5 (Collect). There are two operations: A STORE(wval) by process
p; sets val to be the latest value of its register R;. A COLLECT operation returns
a view, a partial function V' from the set of processes to a set of values, where
V(p:) is the latest value stored by p;, for each process p;. For a COLLECT
operation cop, the following validity properties must hold for every process p;:

e IfV(p;) = L, then no STORE operation by p; precedes cop.

o IfV(p;)) =v# L, then v is the value of a STORE operation sop of p; that
does not follow cop, and there is no STORE operation by p; that follows
sop and precedes cop.

Hence, a COLLECT operation cop should not read from the future or miss a
preceding STORE operation sop.

We assume that the read/write register R; of every process p; is initialized
to L. We define the step complexity of an operation op to be the number of
accesses to registers in the shared memory. There is a trivial solution to the
collect problem as shown by Algorithm 25.

Algorithm 25 Collect: Simple (Non-Adaptive) Solution
Operation STORE(val) (by process p;) :
1: R; := wval
Operation COLLECT:
2: for i :=1ton do
3 V(pi) =Ry // read register R;
4: end for
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Remarks:

Algorithm 25 clearly works. The step complexity of every STORE operation
is 1, the step complexity of a COLLECT operation is n.

At first sight, the step complexities of Algorithm 25 seem optimal. Because
there are n processes, there clearly are cases in which a COLLECT operation
needs to read all n registers. However, there are also scenarios in which
the step complexity of the COLLECT operation seems very costly. Assume
that there are only two processes p; and p; that have stored a value in
their registers R; and R;. In this case, a COLLECT in principle only needs
to read the registers R; and I?; and can ignore all the other registers.

Assume that up to a certain time ¢, k < n processes have finished or
started at least one operation. We call an operation op at time t adap-
tive to contention if the step complexity of op only depends on k and is
independent of n.

In the following, we will see how to implement adaptive versions of STORE
and COLLECT.

6.3.2 Splitters

Algorithm 26 Splitter Code

Shared Registers: X : {L} U{1,...,n}; Y : boolean
Initialization: X := 1; Y := false

Splitter access by process p;:

1: X :=1;

2: if Y then

3:  return right
4: else

5: Y :=true

6: if X =i then
7 return stop
8 else

9: return left
10: end if

11: end if

To obtain adaptive collect algorithms, we need a synchronization primitive,
called a splitter.

Definition 6.6 (Splitter). A splitter is a synchronization primitive with the
following characteristic. A process entering a splitter exits with either stop,
left, or right. If k processes enter a splitter, at most one process exits with
stop and at most k — 1 processes exit with left and right, respectively.

Hence, it is guaranteed that if a single process enters the splitter, then it
obtains stop, and if two or more processes enter the splitter, then there is
at most one process obtaining stop and there are two processes that obtain
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k processors
at most 1
stop
at most k—1 at most k—1
left right

Figure 6.1: A Splitter

different values (i.e., either there is exactly one stop or there is at least one
left and at least one right). For an illustration, see Figure 6.1. The code
implementing a splitter is given by Algorithm 26.

Lemma 6.7. Algorithm 26 correctly implements a splitter.

Proof. Assume that k processes enter the splitter. Because the first process that
checks whether Y = true in line 2 will find that Y = false, not all processes
return right. Next, assume that ¢ is the last process that sets X := 4. If i does
not return right, it will find X = ¢ in line 6 and therefore return stop. Hence,
there is always a process that does not return left. It remains to show that at
most 1 process returns stop. For the sake of contradiction, assume p; and p;
are two processes that return stop and assume that p; sets X := ¢ before p; sets
X := j. Both processes need to check whether Y is true before one of them
sets Y := true. Hence, they both complete the assignment in line 1 before the
first one of them checks the value of X in line 6. Hence, by the time p; arrives
at line 6, X # 4 (p; and maybe some other processes have overwritten X by
then). Therefore, p; does not return stop and we get a contradiction to the
assumption that both p; and p; return stop. O

6.3.3 Binary Splitter Tree

Assume that we are given 2™ — 1 splitters and that for every splitter S, there
is an additional shared variable Zg : {L} U {L,...,n} that is initialized to L
and an additional shared variable Mg : boolean that is initialized to false. We
call a splitter S marked if Mg = true. The 2" — 1 splitters are arranged in a
complete binary tree of height n — 1. Let S(v) be the splitter associated with
a node v of the binary tree. The STORE and COLLECT operations are given by
Algorithm 27.

Theorem 6.8. Algorithm 27 correctly implements STORE and COLLECT. Let k
be the number of participating processes. The step complezity of the first STORE
of a process p; is O(k), the step complexity of every additional STORE of p; is
O(1), and the step complezity of COLLECT is O(k).

Proof. Because at most one process can stop at a splitter, it is sufficient to show
that every process stops at some splitter at depth at most £k — 1 < n — 1 when
invoking the first STORE operation to prove correctness. We prove that at most
k — i processes enter a subtree at depth i (i.e., a subtree where the root has
distance i to the root of the whole tree). By definition of k, the number of
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Algorithm 27 Adaptive Collect: Binary Tree Algorithm
Operation STORE(val) (by process p;) :

1: R; := val

2: if first STORE operation by p; then

3: v := root node of binary tree

4:  «:= result of entering splitter S(v);
5: M_g(v) = true

6:  while o # stop do

7 if a = left then

8: v := left child of v

9: else

10: v := right child of v

11: end if

12: a := result of entering splitter S(v);
13: Mgy = true

14:  end while
15: ZS(’U) =1
16: end if

Operation COLLECT:

Traverse marked part of binary tree:
17: for all marked splitters S do

18: if Zg 75 1 then

19: i:=Zg; V(pi) := Ry // read value of process p;
20:  end if
21: end for // V(pi) = L for all other processes

processes entering the splitter at depth 0 (i.e., at the root of the binary tree)
is k. For i > 1, the claim follows by induction because of the at most k — i
processes entering the splitter at the root of a depth i subtree, at most kK —i—1
obtain left and right, respectively. Hence, at the latest when reaching depth
k — 1, a process is the only process entering a splitter and thus obtains stop.
It thus also follows that the step complexity of the first invocation of STORE is
O(k).

To show that the step complexity of COLLECT is O(k), we first observe
that the marked nodes of the binary tree are connected, and therefore can
be traversed by only reading the variables Mg associated to them and their
neighbors. Hence, showing that at most 2k — 1 nodes of the binary tree are
marked is sufficient. Let xj be the maximum number of marked nodes in a tree,
where k processes access the root. We claim that x;, < 2k — 1, which is true
for k = 1 because a single process entering a splitter will always compute stop.
Now assume the inequality holds for 1,...,k — 1. Not all k processes may exit
the splitter with left (or right), i.e., k; < k — 1 processes will turn left and
kr < min{k — k;, k — 1} turn right. The left and right children of the root are
the roots of their subtrees, hence the induction hypothesis yields

op =g +an +1< 2k — 1)+ 2k, — 1) +1< 2k —1,

concluding induction and proof. O
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Figure 6.2: 5 x 5 Splitter Matrix

Remarks:

e The step complexities of Algorithm 27 are very good. Clearly, the step
complexity of the COLLECT operation is asymptotically optimal. In order
for the algorithm to work, we however need to allocate the memory for the
complete binary tree of depth n—1. The space complexity of Algorithm 27
therefore is exponential in n. We will next see how to obtain a polynomial
space complexity at the cost of a worse COLLECT step complexity.

6.3.4 Splitter Matrix

Instead of arranging splitters in a binary tree, we arrange n? splitters in an nxn
matrix as shown in Figure 6.2. The algorithm is analogous to Algorithm 27.
The matrix is entered at the top left. If a process receives left, it next visits
the splitter in the next row of the same column. If a process receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n?). The following theorem gives bounds on
the step complexities of STORE and COLLECT.

Theorem 6.9. Let k be the number of participating processes. The step com-
plexity of the first STORE of a process p; is O(k), the step complexity of every
additional STORE of p; is O(1), and the step complexity of COLLECT is O(k?).

Proof. Let the top row be row 0 and the left-most column be column 0. Let z;
be the number of processes entering a splitter in row ¢. By induction on i, we
show that z; < k — 4. Clearly, o < k. Let us therefore consider the case i > 0.
Let j be the largest column such that at least one process visits the splitter in
row 7 — 1 and column j. By the properties of splitters, not all processes entering
the splitter in row ¢ — 1 and column j obtain left. Therefore, not all processes
entering a splitter in row ¢ — 1 move on to row i. Because at least one processes
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stays in every row, we get that x; < k — 4. Similarly, the number of processes
entering column j is at most k — j. Hence, every process stops at the latest in
row k — 1 and column k — 1 and the number of marked splitters is at most k2.
Thus, the step complexity of COLLECT is at most O(k?). Because the longest
path in the splitter matrix is 2k, the step complexity of STORE is O(k). O

Remarks:

e With a slightly more complicated argument, it is possible to show that the
number of processes entering the splitter in row ¢ and column j is at most
k —1i — j. Hence, it suffices to only allocate the upper left half (including
the diagonal) of the n x n matrix of splitters.

e The binary tree algorithm can be made space efficient by using a random-
ized version of a splitter. Whenever returning left or right, a randomized
splitter returns left or right with probability 1/2. With high probability,
it then suffices to allocate a binary tree of depth O(logn).

e Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity and
O(n?) space complexity.



Chapter 7

Shared Objects

7.1 Introduction

Assume that there is a common resource (e.g. a common variable or data struc-
ture), which different nodes in a network need to access from time to time. If
the nodes are allowed to change the common object when accessing it, we need
to guarantee that no two nodes have access to the object at the same time. In
order to achieve this mutual exclusion, we need protocols that allow the nodes
of a network to store and manage access to such a shared object. A simple and
obvious solution is to store the shared object at a central location (see Algorithm
28).

Algorithm 28 Shared Object: Centralized Solution
Initialization: Shared object stored at root node r of a spanning tree of the
network graph (i.e., each node knows its parent in the spanning tree).
Accessing Object: (by node v)
1: v sends request up the tree
2: request processed by root r (atomically)
3: result sent down the tree to node v

Remarks:
e Instead of a spanning tree, one can use routing.

e Algorithm 28 works, but it is not very efficient. Assume that the object is
accessed by a single node v repeatedly. Then we get a high message/time
complexity. Instead v could store the object, or at least cache it. But then,
in case another node w accesses the object, we might run into consistency
problems.

e Alternative idea: The accessing node should become the new master of
the object. The shared object then becomes mobile. There exist several
variants of this idea. The simplest version is a home-based solution like
in Mobile IP (see Algorithm 29).

%)
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Algorithm 29 Shared Object: Home-Based Solution
Initialization: An object has a home base (a node) that is known to every
node. All requests (accesses to the shared object) are routed through the
home base.
Accessing Object: (by node v)
1: v acquires a lock at the home base, receives object.

Remarks:

e Home-based solutions suffer from the triangular routing problem. If two
close-by nodes access the object on a rotating basis, all the traffic is routed
through the potentially far away home-base.

7.2 Arrow and Friends

We will now look at a protocol (called the Arrow algorithm) that always
moves the shared object to the node currently accessing it without creating
the triangular routing problem of home-based solutions. The protocol runs on
a precomputed spanning tree. Assume that the spanning tree is rooted at the
current position of the shared object. When a node u wants to access the shared
object, it sends out a find request towards the current position of the object.
While searching for the object, the edges of the spanning tree are redirected
such that in the end, the spanning tree is rooted at u (i.e., the new holder of the
object). The details of the algorithm are given by Algorithm 30. For simplicity,
we assume that a node w only starts a find request if u is not currently the
holder of the shared object and if u has finished all previous find requests (i.e.,
it is not currently waiting to receive the object).

Remarks:

e The parent pointers in Algorithm 30 are only needed for the find operation.
Sending the variable to u in line 13 or to w.successor in line 23 is done
using routing (on the spanning tree or on the underlying network).

e When we draw the parent pointers as arrows, in a quiescent moment
(where no “find” is in motion), the arrows all point towards the node
currently holding the variable (i.e., the tree is rooted at the node holding
the variable)

e What is really great about the Arrow algorithm is that it works in a
completely asynchronous and concurrent setting (i.e., there can be many
find requests at the same time).

Theorem 7.1. (Arrow, Analysis) In an asynchronous and concurrent setting,
a “find” operation terminates with message and time complexity D, where D is
the diameter of the spanning tree.
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Algorithm 30 Shared Object: Arrow Algorithm

Initialization: As for Algorithm 28, we are given a rooted spanning tree. Each
node has a pointer to its parent, the root r is its own parent. The variable
is initially stored at r. For all nodes v, v.successor := null, v.wait := false.

Start Find Request at Node u:
1: do atomically
2:  wu sends “find by u” message to parent node
3: w.parent :=u
4:  wu.wait := true
5: end do

Upon w Receiving “Find by u” Message from Node v:
6: do atomically
7. if w.parent # w then

8: w sends “find by v’ message to parent

9: w.parent := v

10:  else

11: w.parent := v

12: if not w.wait then

13: send variable to u // w holds var. but does not need it any more
14: else

15: W.SUCCESSOr 1= 1 // w will send variable to u a.s.a.p.
16: end if

17:  end if

18: end do

Upon w Receiving Shared Object:
19: perform operation on shared object
20: do atomically

21:  w.wait := false

22:  if w.successor # null then

23: send variable to w.successor
24: w.successor := null
25:  end if

26: end do
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Before proving Theorem 7.1, we prove the following lemma.

Lemma 7.2. An edge {u,v} of the spanning tree is in one of four states:

1.) Pointer from u to v (no message on the edge, no pointer from v to u)
2.) Message on the move from u to v (no pointer along the edge)
3.) Pointer from v to u (no message on the edge, no pointer from u to v)
4.) Message on the move from v to u (no pointer along the edge)

Proof. W.l.o.g., assume that initially the edge {u,v} is in state 1. With a
message arrival at u (or if u starts a “find by u” request, the edge goes to state
2. When the message is received at v, v directs its pointer to u and we are
therefore in state 3. A new message at v (or a new request initiated by v) then
brings the edge back to state 1. O

Proof of Theorem 7.1. Since the “find” message will only travel on a static tree,
it suffices to show that it will not traverse an edge twice. Suppose for the sake
of contradiction that there is a first “find” message f that traverses an edge
e = {u,v} for the second time and assume that e is the first edge that is
traversed twice by f. The first time, f traverses e. Assume that e is first
traversed from u to v. Since we are on a tree, the second time, e must be
traversed from v to u. Because e is the first edge to be traversed twice, f must
re-visit e before visiting any other edges. Right before f reaches v, the edge e
is in state 2 (f is on the move) and in state 3 (it will immediately return with
the pointer from v to w). This is a contradiction to Lemma 7.2. O

Remarks:

e Finding a good tree is an interesting problem. We would like to have a
tree with low stretch, low diameter, low degree, etc.

o It seems that the Arrow algorithm works especially well when lots of “find”
operations are initiated concurrently. Most of them will find a “close-by”
node, thus having low message/time complexity. For the sake of simplicity
we analyze a synchronous system.

Theorem 7.3. (Arrow, Concurrent Analysis) Let the system be synchronous.
Initially, the system is in a quiescent state. At time 0, a set S of nodes initiates
a “find” operation. The message complexity of all “find” operations is O(log |S|-
m*) where m* is the message complexity of an optimal (with global knowledge)
algorithm on the tree.

Proof Sketch. Let d be the minimum distance of any node in S to the root.
There will be a node u; at distance d from the root that reaches the root in
d time steps, turning all the arrows on the path to the root towards u;. A
node ug that finds (is queued behind) u; cannot distinguish the system from
a system where there was no request w;, and instead the root was initially
located at w;. The message cost of uy is consequentially the distance between
u1 and us on the spanning tree. By induction the total message complexity is
exactly as if a collector starts at the root and then “greedily” collects tokens
located at the nodes in S (greedily in the sense that the collector always goes
towards the closest token). Greedy collecting the tokens is not a good strategy
in general because it will traverse the same edge more than twice in the worst
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case. An asymptotically optimal algorithm can also be translated into a depth-
first-search collecting paradigm, traversing each edge at most twice. In another
area of computer science, we would call the Arrow algorithm a nearest-neighbor
TSP heuristic (without returning to the start/root though), and the optimal
algorithm TSP-optimal. It was shown that nearest-neighbor has a logarithmic
overhead, which concludes the proof. O

Remarks:

e An average request set .S on a not-too-bad tree gives usually a much better
bound. However, there is an almost tight log|S|/loglog|S| worst-case
example.

e It was recently shown that Arrow can do as good in a dynamic setting
(where nodes are allowed to initiate requests at any time). In particular
the message complexity of the dynamic analysis can be shown to have a
log D overhead only, where D is the diameter of the spanning tree (note
that for logarithmic trees, the overhead becomes loglogn).

e What if the spanning tree is a star? Then with Theorem 7.1, each find will
terminate in 2 steps! Since also an optimal algorithm has message cost 1,
the algorithm is 2-competitive...? Yes, but because of its high degree the
star center experiences contention. .. It can be shown that the contention
overhead is at most proportional to the largest degree A of the spanning
tree.

e Thought experiment: Assume a balanced binary spanning tree—by Theo-
rem 7.1, the message complexity per operation is logn. Because a binary
tree has maximum degree 3, the time per operation therefore is at most
3logn.

e There are better and worse choices for the spanning tree. The stretch of
an edge {u,v} is defined as distance between u and v in a spanning tree.
The maximum stretch of a spanning tree is the maximum stretch over all
edges. A few years ago, it was shown how to construct spanning trees that
are O(logn)-stretch-competitive.

What if most nodes just want to read the shared object? Then it does
not make sense to acquire a lock every time. Instead we can use caching (see
Algorithm 31).

Theorem 7.4. Algorithm 31 is correct. More surprisingly, the message com-
plexity is 3-competitive (at most a factor 3 worse than the optimum).

Proof. Since the accesses do not overlap by definition, it suffices to show that
between two writes, we are 3-competitive. The sequence of accessing nodes is
wo, T1, T2, ..., Tk, wy. After wg, the object is stored at wy and not cached
anywhere else. All reads cost twice the smallest subtree T’ spanning the write
wg and all the reads since each read only goes to the first copy. The write w;
costs 1" plus the path P from w; to T. Since any data management scheme
must use an edge in T" and P at least once, and our algorithm uses edges in T
at most 3 times (and in P at most once), the theorem follows. O
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Algorithm 31 Shared Object: Read/Write Caching

e Nodes can either read or write the shared object. For simplicity we first
assume that reads or writes do not overlap in time (access to the object is
sequential).

e Nodes store three items: a parent pointer pointing to one of the neighbors
(as with Arrow), and a cache bit for each edge, plus (potentially) a copy of
the object.

e Initially the object is stored at a single node wu; all the parent pointers point
towards u, all the cache bits are false.

e When initiating a read, a message follows the arrows (this time: without
inverting them!) until it reaches a cached version of the object. Then a copy
of the object is cached along the path back to the initiating node, and the
cache bits on the visited edges are set to true.

e A write at u writes the new value locally (at node u), then searches (follow the
parent pointers and reverse them towards ) a first node with a copy. Delete
the copy and follow (in parallel, by flooding) all edge that have the cache flag
set. Point the parent pointer towards u, and remove the cache flags.

Remarks:

e Concurrent reads are not a problem, also multiple concurrent reads and
one write work just fine.

e What about concurrent writes? To achieve consistency writes need to
invalidate the caches before writing their value. It is claimed that the
strategy then becomes 4-competitive.

e Is the algorithm also time competitive? Well, not really: The optimal
algorithm that we compare to is usually offline. This means it knows the
whole access sequence in advance. It can then cache the object before the
request even appears!

e Algorithms on trees are often simpler, but have the disadvantage that they
introduce the extra stretch factor. In a ring, for example, any tree has
stretch n — 1; so there is always a bad request pattern.
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Algorithm 32 Shared Object: Pointer Forwarding
Initialization: Object is stored at root r of a precomputed spanning tree T (as
in the Arrow algorithm, each node has a parent pointer pointing towards
the object).
Accessing Object: (by node u)
1: follow parent pointers to current root r of T’
2: send object from 7 to u
3: r.parent := u; u.parent := u; // u is the new root

Algorithm 33 Shared Object: Ivy
Initialization: Object is stored at root r of a precomputed spanning tree T
(as before, each node has a parent pointer pointing towards the object). For
simplicity, we assume that accesses to the object are sequential.
Start Find Request at Node u:
1: u sends “find by u” message to parent node
2: u.parent := u
Upon v receiving “Find by u” Message:

3: if v.parent = v then

4 send object to u

5: else

6: send “find by u” message to v.parent

7: end if

8 v.parent :=u // u will become the new root

7.3 Ivy and Friends

In the following we study algorithms that do not restrict communication to a
tree. Of particular interest is the special case of a complete graph (clique). A
simple solution for this case is given by Algorithm 32.

Remarks:
e If the graph is not complete, routing can be used to find the root.

e Assume that the nodes line up in a linked list. If we always choose the
first node of the linked list to acquire the object, we have message/time
complexity n. The new topology is again a linear linked list. Pointer
forwarding is therefore bad in a worst-case.

e If edges are not FIFO, it can even happen that the number of steps is
unbounded for a node having bad luck. An algorithm with such a property
is named “not fair,” or “not wait-free.” (Example: Initially we have the
list 4 = 3 — 2 — 1; 4 starts a find; when the message of 4 passes 3, 3
itself starts a find. The message of 3 may arrive at 2 and then 1 earlier,
thus the new end of the list is 2 — 1 — 3; once the message of 4 passes 2,
the game re-starts.)

There seems to be a natural improvement of the pointer forwarding idea.
Instead of simply redirecting the parent pointer from the old root to the new
root, we can redirect all the parent pointers of the nodes on the path visited
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Figure 7.1: Reversal of the path xg, x1, z2, T3, T4, Ts5.

during a find message to the new root. The details are given by Algorithm 33.
Figure 7.1 shows how the pointer redirecting affects a given tree (the right tree
results from a find request started at node xg on the left tree).

Remarks:

o Also with Algorithm 33, we might have a bad linked list situation. How-
ever, if the start of the list acquires the object, the linked list turns into
a star. As the following theorem shows, the search paths are not long
on average. Since paths sometimes can be bad, we will need amortized
analysis.

Theorem 7.5. If the initial tree is a star, a find request of Algorithm 33 needs
at most logn steps on average, where n is the number of processors.

Proof. All logarithms in the following proof are to base 2. We assume that
accesses to the shared object are sequential. We use a potential function argu-
ment. Let s(u) be the size of the subtree rooted at node u (the number of nodes
in the subtree including u itself). We define the potential ® of the whole tree
T as (V is the set of all nodes)

o(T) =) @.
ueV

Assume that the path traversed by the i*" operation has length k;, i.e., the i*"
operation redirects k; pointers to the new root. Clearly, the number of steps
of the i** operation is proportional to k;. We are interested in the cost of m
consecutive operations, > i k;.

Let Ty be the initial tree and let T; be the tree after the i** operation.
Further, let a; = k; — ®(T;_1) +®(T;) be the amortized cost of the i*" operation.
We have

m

Zm:ai = Z (ki — ®(T;—1) + @(T;)) = Zm: ki — ®(Ty) + ®(T},,)-
i=1 i=1

i=1

For any tree T, we have ®(T') > log(n)/2. Because we assume that Tj is a star,
we also have ®(Tp) = log(n)/2. We therefore get that

m m
Z a; Z Z k’z
i=1 i=1
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Hence, it suffices to upper bound the amortized cost of every operation. We
thus analyze the amortized cost a; of the ith operation. Let zg,x1,%2,..., 2k,
be the path that is reversed by the operation. Further for 0 < j < k;, let s; be
the size of the subtree rooted at x; before the reversal. The size of the subtree
rooted at xg after the reversal is s;, and the size of the one rooted at x; after
the reversal, for 1 < j < k;, is s; —s,_1 (see Figure 7.1). For all other nodes, the
sizes of their subtrees are the same, therefore the corresponding terms cancel
out in the ammortized cost a;. We can thus write a; as

ki ki
~1 1 ~1
a; = k;— Z 5 logs; | + 3 log s, + Z 3 log(s; — sj-1)
7=0 j=1
=
= ki+ 3 Z (log(sj+1 — ;) — logss;)
=0

1 Sj41 — 8§
= ki+=- log [ 2L —27 )
"3 Z Og< 8j

Jj=0

For 0 < j < kz — 1, let o = $j+1/8]'. Note that Sj+1 > Sj and thus that g > 1.
Further note, that (sj11 — s;)/s; = ;j — 1. We therefore have that

] kil
a; = ki+§~ Zlog(aj—l)
7=0
ki—1 1
= Z (1 + ilog(aj - 1)> .
7=0

For o > 1, it can be shown that 1+log(aw—1)/2 < log o (see Lemma 7.6). From
this inequality, we obtain

ki—1 ki—1 ki—1
5.
a; < E log o = E log ;—H = E (log sj+1 — logs;)
=0 =0 J j=0

= logsy, —logsp <logn,
because s, = n and sp > 1. This concludes the proof. O

Lemma 7.6. For a> 1, 1+ log(a—1)/2 <loga.

Proof. The claim can be verified by the following chain of reasoning:

0 < (a—2)?
0 < a®>—4da+14
4la—1) < o
log, (4(a—1)) < log, (o?)
2+logy(ar—1) < 2logy
1+ %logz(a —-1) < logyon.
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Remarks:

e Systems guys (the algorithm is called Ivy because it was used in a system
with the same name) have some fancy heuristics to improve performance
even more: For example, the root every now and then broadcasts its name
such that paths will be shortened.

e What about concurrent requests? It works with the same argument as
in Arrow. Also for Ivy an argument including congestion is missing (and
more pressing, since the dynamic topology of a tree cannot be chosen to
have low degree and thus low congestion as in Arrow).

e Sometimes the type of accesses allows that several accesses can be com-
bined into one to reduce congestion higher up the tree. Let the tree in
Algorithm 28 be a balanced binary tree. If the access to a shared variable
for example is “add value x to the shared variable”, two or more accesses
that accidentally meet at a node can be combined into one. Clearly ac-
cidental meeting is rare in an asynchronous model. We might be able to
use synchronizers (or maybe some other timing tricks) to help meeting a
little bit.



Chapter 8

Maximal Independent Set

In this chapter we present a highlight of this course, a fast maximal independent
set (MIS) algorithm. The algorithm is the first randomized algorithm that we
study in this class. In distributed computing, randomization is a powerful and
therefore omnipresent concept, as it allows for relatively simple yet efficient
algorithms. As such the studied algorithm is archetypal.

A MIS is a basic building block in distributed computing, some other prob-
lems pretty much follow directly from the MIS problem. At the end of this
chapter, we will give two examples: matching and vertex coloring (see Chapter
2).

8.1 MIS

Definition 8.1 (Independent Set). Given an undirected Graph G = (V, E) an
independent set is a subset of modes U C V, such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence. An independent set of maximum cardinality is called
maximum.

Figure 8.1: Example graph with 1) a maximal independent set (MIS) and 2) a
maximum independent set (MaxIS).

65
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Remarks:

e Computing a maximum independent set (MaxIS) is a notoriously difficult
problem. It is equivalent to maximum clique on the complementary graph.
1
Both problems are NP-hard, in fact not approximable within nz~¢.

e In this course we concentrate on the maximal independent set (MIS) prob-
lem. Please note that MIS and MaxIS can be quite different, indeed e.g.
on a star graph the MIS is ©(n) smaller than the MaxIS (cf. Figure 8.1).

e Computing a MIS sequentially is trivial: Scan the nodes in arbitrary order.
If a node u does not violate independence, add u to the MIS. If u violates
independence, discard u. So the only question is how to compute a MIS
in a distributed way.

Algorithm 34 Slow MIS
Require: Node IDs
Every node v executes the following code:
1: if all neighbors of v with larger identifiers have decided not to join the MIS
then
2: v decides to join the MIS
3: end if

Remarks:

e Not surprisingly the slow algorithm is not better than the sequential algo-
rithm in the worst case, because there might be one single point of activity
at any time. Formally:

Theorem 8.2 (Analysis of Algorithm 34). Algorithm 34 features a time com-
plezity of O(n) and a message complexity of O(m).

Remarks:
e This is not very exciting.

e There is a relation between independent sets and node coloring (Chapter
2), since each color class is an independent set, however, not necessarily a
MIS. Still, starting with a coloring, one can easily derive a MIS algorithm:
We first choose all nodes of the first color. Then, for each additional color
we add “in parallel” (without conflict) as many nodes as possible. Thus
the following corollary holds:

Corollary 8.3. Given a coloring algorithm that needs C colors and runs in
time T, we can construct a MIS in time C +T.

Remarks:

e Using Theorem 2.12 and Corollary 8.3 we get a distributed determinis-
tic MIS algorithm for trees (and for bounded degree graphs) with time
complexity O(log" n).



8.2. FAST MIS FROM 1986 67

e With a lower bound argument one can show that this deterministic MIS
algorithm for rings is asymptotically optimal.

e There have been attempts to extend Algorithm 5 to more general graphs,
however, so far without much success. Below we present a radically dif-
ferent approach that uses randomization. Please note that the algorithm
and the analysis below is not identical with the algorithm in Peleg’s book.

8.2 Fast MIS from 1986

Algorithm 35 Fast MIS
The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v marks itself with probability ﬁ(v), where d(v) is the current
degree of v.
2) If no higher degree neighbor of v is also marked, node v joins the MIS. If
a higher degree neighbor of v is marked, node v unmarks itself again. (If the
neighbors have the same degree, ties are broken arbitrarily, e.g., by identifier).
3) Delete all nodes that joined the MIS and their neighbors, as they cannot
join the MIS anymore.

Remarks:

e Correctness in the sense that the algorithm produces an independent set
is relatively simple: Steps 1 and 2 make sure that if a node v joins the
MIS, then v’s neighbors do not join the MIS at the same time. Step 3
makes sure that v’s neighbors will never join the MIS.

e Likewise the algorithm eventually produces a MIS, because the node with
the highest degree will mark itself at some point in Step 1.

e So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.

Lemma 8.4 (Joining MIS). A node v joins the MIS in step 2 with probability
p= 4d1(v)'

Proof: Let M be the set of marked nodes in step 1. Let H(v) be the set of
neighbors of v with higher degree, or same degree and higher identifier. Using
independence of the random choices of v and nodes in H(v) in Step 1 we get

PlvgMISjve M] = P[3we H(w),we M|ve M|
= P[we H{w),w € M]

< ¥ Pwem= Y %
weH (v) weH (v)
1 dv) 1
< D 2d(0) = 2d(v) _ 2

weH (v)
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Then

PlveMIS]|=PlveMISjv e M]-Plve M]>

N | =
]

d(v)’

Lemma 8.5 (Good Nodes). A node v is called good if

1
D Giw) 2

weN (v)

=

Otherwise we call v a bad node. A good node will be removed in Step 3 with
probability p > %

Proof: Let node v be good. Intuitively, good nodes have lots of low-degree
neighbors, thus chances are high that one of them goes into the independent
set, in which case v will be removed in step 3 of the algorithm.

If there is a neighbor w € N(v) with degree at most 2 we are done: With
Lemma 8.4 the probability that node w joins the MIS is at least %, and our
good node will be removed in Step 3.

So all we need to worry about is that all neighbors have at least degree 3:

1
For any neighbor w of v we have m < %. Since Z m > 5 there is a
weEN (v)
1 1 1
subset of neighbors S C N(v) such that 8 < wze; Sd(w) < 3

We can now bound the probability that node v will be removed. Let therefore
R be the event of v being removed. Again, if a neighbor of v joins the MIS in
Step 2, node v will be removed in Step 3. We have

P[R]

Y

P[3u € S,u € MIS]
> Y PueMIS]— Y PlucMISand we MIS].

u€esS u,wES;uFw

For the last inequality we used the inclusion-exclusion principle truncated
after the second order terms. Let M again be the set of marked nodes after
Step 1. Using P [u € M] > P [u € MIS] we get

PR > > PueMS|—- > PlucM and we M|
> SP[ueMIS]—%%e%#;[ueM].P[weM]
wes ueS wes
> o5 Zaw) 2G5 %
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Remarks:

e We would be almost finished if we could prove that many nodes are good
in each phase. Unfortunately this is not the case: In a star-graph, for
instance, only a single node is good! We need to find a work-around.

Lemma 8.6 (Good Edges). An edge e = (u,v) is called bad if both v and v
are bad; else the edge is called good. The following holds: At any time at least
half of the edges are good.

Proof: For the proof we construct a directed auxiliary graph: Direct each edge
towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). Now we need a little helper lemma before we can
continue with the proof.

Lemma 8.7. A bad node has outdegree at least twice its indegree.

Proof: For the sake of contradiction, assume that a bad node v does not have
outdegree at least twice its indegree. In other words, at least one third of the
neighbor nodes (let’s call them S) have degree at most d(v). But then

1 1 1 _dw) 11
2 aw) 2 2 adw) 2 2 2dw) S 3 2d@) ~ 6

weN (v) ( ) - weS weS

which means v is good, a contradiction. |

Continuing the proof of Lemma 8.6: According to Lemma 8.7 the number of
edges directed into bad nodes is at most half the number of edges directed out
of bad nodes. Thus, the number of edges directed into bad nodes is at most
half the number of edges. Thus, at least half of the edges are directed into good
nodes. Since these edges are not bad, they must be good.

Theorem 8.8 (Analysis of Algorithm 35). Algorithm 35 terminates in expected
time O(logn).

Proof: With Lemma 8.5 a good node (and therefore a good edge!) will be
deleted with constant probability. Since at least half of the edges are good
(Lemma 8.6) a constant fraction of edges will be deleted in each phase.

More formally: With Lemmas 8.5 and 8.6 we know that at least half of the
edges will be removed with probability at least 1/36. Let R be the number
of edges to be removed. Using linearity of expectation we know that E[R] >
m/72, m being the total number of edges at the start of a phase. Now let
p:= P[R < E|[R]/2]. Bounding the expectation yields

E[R] =) P[R=r]-r<p-E[R]/2+ (1—p)-m.

Solving for p we get

m — E[R] m —E[R] /2
PSL"EREZS T m

<1-1/144.

In other words, with probability at least 1/144 at least m/144 edges are removed
in a phase. After expected O(logm) phases all edges are deleted. Since m < n?
and thus O(logm) = O(logn) the Theorem follows. m|
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Remarks:

With a bit of more math one can even show that Algorithm 35 terminates
in time O(logn) “with high probability”.

The presented algorithm is a simplified version of an algorithm by Michael
Luby, published 1986 in the SIAM Journal of Computing. Around the
same time there have been a number of other papers dealing with the same
or related problems, for instance by Alon, Babai, and Itai, or by Israeli
and Itai. The analysis presented here takes elements of all these papers,
and from other papers on distributed weighted matching. The analysis in
the book by David Peleg is different, and only achieves O(log2 n) time.

Though not as incredibly fast as the log*-coloring algorithm for trees, this
algorithm is very general. It works on any graph, needs no identifiers, and
can easily be made asynchronous.

Surprisingly, much later, there have been half a dozen more papers pub-
lished, with much worse results!! In 2002, for instance, there was a paper
with linear running time, improving on a 1994 paper with cubic running
time, restricted to trees!

In 2009, Métivier, Robson, Saheb-Djahromi and Zemmari found a slightly
different (and simpler) way to compute a MIS in the same logarithmic
time:

8.3 Fast MIS from 2009

Algorithm 36 Fast MIS 2

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:

1)

Each node v chooses a random value r(v) € [0,1] and sends it to its

neighbors.

2)

If r(v) < r(w) for all neighbors w € N(v), node v enters the MIS and

informs its neighbors.

3)

If v or a neighbor of v entered the MIS, v terminates (v and all edges

adjacent to v are removed from the graph), otherwise v enters the next phase.

Remarks:

Correctness in the sense that the algorithm produces an independent set
is simple: Steps 1 and 2 make sure that if a node v joins the MIS, then
v’s neighbors do not join the MIS at the same time. Step 3 makes sure
that v’s neighbors will never join the MIS.

Likewise the algorithm eventually produces a MIS, because the node with
the globally smallest value will always join the MIS, hence there is progress.

So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.
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e Our proof will rest on a simple, yet powerful observation about expected
values of random variables that may not be independent:

Theorem 8.9 (Linearity of Expectation). Let X;, i = 1,...,k denote random

variables, then
S Xi| =) E[X)].

Proof. Tt is sufficient to prove E [X + Y] = E [X]4E [Y] for two random variables
X and Y, because then the statement follows by induction. Since

E

PIX,Y)=(zy)] = PX=a]-P[Y =ylX =a]
= PV =y - PIX=alY =y

we get that
EX+Y] = >, PUXY)=(zy) (x+y)
(X,Y)=(=y)
= Y > PX=2] PY=ylX=a] 2
X=xY=y
+ D Y PY=y-PX=2Yy =gy
Y=y X=x
= Y PX=a]-z+) PV =yly
X=x Y=y
= EX]+E[Y].
Remarks:

e How can we prove that the algorithm only needs O(log n) phases in expec-
tation? It would be great if this algorithm managed to remove a constant
fraction of nodes in each phase. Unfortunately, it does not.

e Instead we will prove that the number of edges decreases quickly. Again,
it would be great if any single edge was removed with constant probability
in Step 3. But again, unfortunately, this is not the case.

e Maybe we can argue about the expected number of edges to be removed
in one single phase? Let’s see: A node v enters the MIS with probability
1/(d(v) + 1), where d(v) is the degree of node v. By doing so, not only
are v’s edges removed, but indeed all the edges of v’s neighbors as well —
generally these are much more than d(v) edges. So there is hope, but we
need to be careful: If we do this the most naive way, we will count the
same edge many times.

e How can we fix this? The nice observation is that it is enough to count
just some of the removed edges. Given a new MIS node v and a neighbor
w € N(v), we count the edges only if r(v) < r(z) for all x € N(w). This
looks promising. In a star graph, for instance, only the smallest random
value can be accounted for removing all the edges of the star.
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Lemma 8.10 (Edge Removal). In a single phase, we remove at least half of
the edges in expectation.

Proof: To simplify the notation, at the start of our phase, the graph is simply
G = (V, E). Suppose that a node v joins the MIS in this phase, i.e., r(v) < r(w)
for all neighbors w € N(v). If in addition we have r(v) < r(z) for all neighbors
x of a neighbor w of v, we call this event (v — w). The probability of event
(v —= w) is at least 1/(d(v) + d(w)), since d(v) + d(w) is the maximum number
of nodes adjacent to v or w (or both). As v joins the MIS, all edges (w, z) will
be removed; there are d(w) of these edges.

In order to count the removed edges, we need to weigh events properly.

Whether we remove the edges adjacent to w because of event (v — w) is a
random variable X, _,,,. If event (v — w) occurs, X(,_,,,) has the value d(w),
if not it has the value 0. For each edge {v,w} we have two such variables, the
event X () and X(,—.). Due to Theorem 8.9, the expected value of the sum
X of all these random variables is at least

EX] = > EXpow +EXwo)
{v,w}€E
= Z P [Event (v — w)] - d(w) + P [Event (w — v)] - d(v)
{v,w}€eE
d(w) d(v)
= {WX}:GE d(0) + d(w) * d(w) + d(v)
= Y 1=|E|
{v,w}€E

In other words, in expectation all edges are removed in a single phase?!?
Probably not. This means that we still counted some edges more than once.
Indeed, for an edge {v,w} € FE our random variable X includes the edge if the
event (u — v) happens, but X also includes the edge if the event (x — w)
happens. So we may have counted the edge {v,w} twice. Fortunately however,
not more than twice, because at most one event (- — v) and at most one event
(+ — w) can happen. If (u — v) happens, we know that r(u) < r(w) for all
w € N(v); hence another (v’ — v) cannot happen because r(u’) > r(u) € N(v).
Therefore the random variable X must be divided by 2. In other words, in
expectation at least half of the edges are removed.

Remarks:

e This enables us to follow a bound on the expected running time of Algo-
rithm 36 quite easily.

Theorem 8.11 (Expected running time of Algorithm 36). Algorithm 36 ter-
minates after at most 3logy ;3 m + 1 € O(logn) phases in expectation.

Proof: The probability that in a single phase at least a quarter of all edges
are removed is at least 1/3. For the sake of contradiction, assume not. Then
with probability less than 1/3 we may be lucky and many (potentially all) edges
are removed. With probability more than 2/3 less than 1/4 of the edges are
removed. Hence the expected fraction of removed edges is strictly less than
1/3-1+2/3-1/4=1/2. This contradicts Lemma 8.10.



8.3. FAST MIS FROM 2009 73

Hence, at least every third phase is “good” and removes at least a quarter
of the edges. To get rid of all but two edges we need log, /3 m good phases in
expectation. The last two edges will certainly be removed in the next phase.
Hence a total of 3log, /3 m + 1 phases are enough in expectation.

Remarks:

e Sometimes one expects a bit more of an algorithm: Not only should the
expected time to terminate be good, but the algorithm should always
terminate quickly. As this is impossible in randomized algorithms (after
all, the random choices may be “unlucky” all the time!), researchers often
settle for a compromise, and just demand that the probability that the
algorithm does not terminate in the specified time can be made absurdly
small. For our algorithm, this can be deduced from Lemma 8.10 and
another standard tool, namely Chernoff’s Bound.

Definition 8.12 (W.h.p.). We say that an algorithm terminates w.h.p. (with
high probability) within O(t) time if it does so with probability at least 1 — 1/n°
for any choice of ¢ > 1. Here ¢ may affect the constants in the Big-O notation
because it is considered a “tunable constant” and usually kept small.

Definition 8.13 (Chernoft’s Bound). Let X = Zle X, be the sum of k inde-
pendent 0 — 1 random variables. Then Chernoft’s bound states that w.h.p.

| X —E[X]| €O (logn—i— VE[X] logn) .

Corollary 8.14 (Running Time of Algorithm 36). Algorithm 36 terminates
w.h.p. in O(logn) time.

Proof: In Theorem 8.11 we used that independently of everything that happened
before, in each phase we have a constant probability p that a quarter of the edges
are removed. Call such a phase good. For some constants C; and Cy, let us check
after C1logn + Cy € O(logn) phases, in how many phases at least a quarter of
the edges have been removed. In expectation, these are at least p(C; logn+ Cs)
many. Now we look at the random variable X = ngog "€ x. where the X;
are independent 0 — 1 variables being one with exactly probability p. Certainly,
if X is at least = with some probability, then the probability that we have
2 good phases can only be larger (if no edges are left, certainly “all” of the
remaining edges are removed). To X we can apply Chernoff’s bound. If C;
and Cy are chosen large enough, they will overcome the constants in the Big-O
from Chernoff’s bound, i.e., w.h.p. it holds that | X —E[X]| < E[X]/2, implying
X > E[X]/2. Choosing C; large enough, we will have w.h.p. sufficiently many
good phases, i.e., the algorithm terminates w.h.p. in O(logn) phases.

Remarks:

e The algorithm can be improved a bit more even. Drawing random real
numbers in each phase for instance is not necessary. One can achieve
the same by sending only a total of O(logn) random (and as many non-
random) bits over each edge.

e One of the main open problems in distributed computing is whether one
can beat this logarithmic time, or at least achieve it with a deterministic
algorithm.
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e Let’s turn our attention to applications of MIS next.

8.4 Applications

Definition 8.15 (Matching). Given a graph G = (V, E) a matching is a subset
of edges M C E, such that no two edges in M are adjacent (i.e., where no node
is adjacent to two edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of mazimum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.

Remarks:

e In contrast to MaxIS, a maximum matching can be found in polynomial
time (Blossom algorithm by Jack Edmonds), and is also easy to approxi-
mate (in fact, already any maximal matching is a 2-approximation).

e An independent set algorithm is also a matching algorithm: Let G =
(V, E) be the graph for which we want to construct the matching. The
auxiliary graph G’ is defined as follows: for every edge in G there is a node
in G’; two nodes in G’ are connected by an edge if their respective edges
in G are adjacent. A (maximal) independent set in G’ is a (maximal)
matching in G, and vice versa. Using Algorithm 36 directly produces a
O(logn) bound for maximal matching.

e More importantly, our MIS algorithm can also be used for vertex coloring
(Problem 2.1):

Algorithm 37 General Graph Coloring

1: Given a graph G = (V, E) we virtually build a graph G' = (V' E’) as
follows:

2: Every node v € V clones itself d(v) +1 times (vo, ..., vq) € V'), d(v) being
the degree of v in G.

3: The edge set E’ of G’ is as follows:

4: First all clones are in a clique: (v;,v;) € E, for allv € V and all 0 < i <
j <d(v)

5: Second all i clones of neighbors in the original graph G are connected:
(us,v;) € E', for all (u,v) € E and all 0 <4 < min(d(u), d(v)).

6: Now we simply run (simulate) the fast MIS Algorithm 36 on G'.

7: If node v; is in the MIS in G’, then node v gets color i.

Theorem 8.16 (Analysis of Algorithm 37). Algorithm 37 (A + 1)-colors an
arbitrary graph in O(logn) time, with high probability, A being the largest degree
in the graph.

Proof: Thanks to the clique among the clones at most one clone is in the MIS.
And because of the d(v)+1 clones of node v every node will get a free color! The
running time remains logarithmic since G’ has O (112) nodes and the exponent
becomes a constant factor when applying the logarithm.
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Remarks:
e This solves our open problem from Chapter 2.1!

e Together with Corollary 8.3 we get quite close ties between (A+1)-coloring
and the MIS problem.

e However, in general Algorithm 37 is not the best distributed algorithm for
O(A)-coloring. For fast distributed vertex coloring please check Kotha-
palli, Onus, Scheideler, Schindelhauer, IPDPS 2006. This algorithm is
based on a O(loglogn) time edge coloring algorithm by Grable and Pan-
conesi, 1997.

e Computing a MIS also solves another graph problem on graphs of bounded
independence.

Definition 8.17 (Bounded Independence). G = (V, E) is of bounded indepen-
dence, if each neighborhood contains at most a constant number of independent
(i.e., mutually non-adjacent) nodes.

Definition 8.18 ((Minimum) Dominating Sets). A dominating set is a subset
of the nodes such that each node is in the set or adjacent to a node in the set.
A minimum dominating set is a dominating set containing the least possible
number of nodes.

Remarks:

e In general, finding a dominating set less than factor logn larger than an
minimum dominating set is NP-hard.

e Any MIS is a dominating set: if a node was not covered, it could join the
independent set.

e In general a MIS and a minimum dominating sets have not much in com-
mon (think of a star). For graphs of bounded independence, this is differ-
ent.

Corollary 8.19. On graphs of bounded independence, a constant-factor approz-
imation to a minimum dominating set can be found in time O(logn) w.h.p.

Proof: Denote by M a minimum dominating set and by I a MIS. Since M is a
dominating set, each node from I is in M or adjacent to a node in M. Since
the graph is of bounded independence, no node in M is adjacent to more than
constantly many nodes from I. Thus, |I| € O(|M]). Therefore, we can compute
a MIS with Algorithm 36 and output it as the dominating set, which takes
O(logn) rounds w.h.p.
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Chapter 9

Locality Lower Bounds

In Chapter 2, we looked at distributed algorithms for coloring. In particular,
we saw that rings and rooted trees can be colored with 3 colors in log* n+ O(1)
rounds. In this chapter, we will reconsider the distributed coloring problem. We
will look at a classic lower bound by Nathan Linial that shows that the result of
Chapter 2 is tight: Coloring rings (and rooted trees) indeed requires Q(log™ n)
rounds. In particular, we will prove a lower bound for coloring in the following
setting:

e We consider deterministic, synchronous algorithms.
e Message size and local computations are unbounded.
e We assume that the network is a directed ring with n nodes.

e Nodes have unique labels (identifiers) from 1 to n.

Remarks:

e A generalization of the lower bound to randomized algorithms is possible.
Unfortunately, we will however not have time to discuss this.

e Except for restricting to deterministic algorithms, all the conditions above
make a lower bound stronger. Any lower bound for synchronous algo-
rithms certainly also holds for asynchronous ones. A lower bound that is
true if message size and local computations are not restricted is clearly also
valid if we require a bound on the maximal message size or the amount
of local computations. Similarly also assuming that the ring is directed
and that node labels are from 1 to n (instead of choosing IDs from a more
general domain) strengthen the lower bound.

e Instead of directly proving that 3-coloring a ring needs Q(log* n) rounds,
we will prove a slightly more general statement. We will consider deter-
ministic algorithms with time complexity r (for arbitrary r) and derive a
lower bound on the number of colors that are needed if we want to prop-
erly color an n-node ring with an r-round algorithm. A 3-coloring lower
bound can then be derived by taking the smallest r for which an r-round
algorithm needs 3 or fewer colors.

7
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Algorithm 38 Synchronous Algorithm: Canonical Form
1: In r rounds: send complete initial state to nodes at distance at most r
2: // do all the communication first
3: Compute output based on complete information about r-neighborhood
4 // do all the computation in the end

9.1 Locality

Let us for a moment look at distributed algorithms more generally (i.e., not
only at coloring and not only at rings). Assume that initially, all nodes only
know their own label (identifier) and potentially some additional input. As
information needs at least r rounds to travel r hops, after r rounds, a node v
can only learn about other nodes at distance at most r. If message size and local
computations are not restricted, it is in fact not hard to see, that in r rounds,
a node v can exactly learn all the node labels and inputs up to distance r.
As shown by the following lemma, this allows to transform every deterministic
r-round synchronous algorithm into a simple canonical form.

Lemma 9.1. If message size and local computations are not bounded, every
deterministic, synchronous r-round algorithm can be transformed into an algo-
rithm of the form given by Algorithm 38 (i.e., it is possible to first communicate
for r rounds and then do all the computations in the end).

Proof. Consider some r-round algorithm A. We want to show that A can be
brought to the canonical form given by Algorithm 38. First, we let the nodes
communicate for r rounds. Assume that in every round, every node sends its
complete state to all of its neighbors (remember that there is no restriction on
the maximal message size). By induction, after r rounds, every node knows the
initial state of all other nodes at distance at most 7. Hence, after r rounds, a
node v has the combined initial knowledge of all the nodes in its r-neighborhood.
We want to show that this suffices to locally (at node v) simulate enough of
Algorithm A to compute all the messages that v receives in the r communication
rounds of a regular execution of Algorithm A.

Concretely, we prove the following statement by induction on i. For all
nodes at distance at most 7 — ¢ + 1 from v, node v can compute all messages
of the first ¢ rounds of a regular execution of A. Note that this implies that v
can compute all the messages it receives from its neighbors during all r rounds.
Because v knows the initial state of all nodes in the r-neighborhood, v can
clearly compute all messages of the first round (i.e., the statement is true for
i =1). Let us now consider the induction step from i to i+ 1. By the induction
hypothesis, v can compute the messages of the first ¢ rounds of all nodes in
its (r — i 4+ 1)-neighborhood. It can therefore compute all messages that are
received by nodes in the (r — i)-neighborhood in the first ¢ rounds. This is of
course exactly what is needed to compute the messages of round ¢ 4+ 1 of nodes
in the (r — i)-neighborhood. O
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Remarks:

e It is straightforward to generalize the canonical form to randomized algo-
rithms: Every node first computes all the random bits it needs throughout
the algorithm. The random bits are then part of the initial state of a node.

Definition 9.2 (r-hop view). We call the collection of the initial states of all
nodes in the r-neighborhood of a node v, the r-hop view of v.

Remarks:

e Assume that initially, every node knows its degree, its label (identifier)
and potentially some additional input. The r-hop view of a node v then
includes the complete topology of the r-neighborhood (excluding edges
between nodes at distance r) and the labels and additional inputs of all
nodes in the r-neighborhood.

Based on the definition of an r-hop view, we can state the following corollary
of Lemma 9.1.

Corollary 9.3. A deterministic r-round algorithm A is a function that maps
every possible r-hop view to the set of possible outputs.

Proof. By Lemma 9.1, we know that we can transform Algorithm A to the
canonical form given by Algorithm 38. After » communication rounds, every
node v knows exactly its r-hop view. This information suffices to compute the
output of node v. O

Remarks:

e Note that the above corollary implies that two nodes with equal r-hop
views have to compute the same output in every r-round algorithm.

e For coloring algorithms, the only input of a node v is its label. The r-hop
view of a node therefore is its labeled r-neighborhood.

e Since we only consider rings, r-hop neighborhoods are particularly simple.
The labeled r-neighborhood of a node v (and hence its r-hop view) in
a directed ring is simply a (2r + 1)-tuple ({—p,€—pi1,...,40y..., L) Of
distinct node labels where ¢y is the label of v. Assume that for ¢ > 0, /;
is the label of the i*" clockwise neighbor of v and ¢_; is the label of the
i counterclockwise neighbor of v. A deterministic coloring algorithm for
directed rings therefore is a function that maps (2r + 1)-tuples of node
labels to colors.

e Consider two r-hop views V. = ({_,,...,£.) and V. = (¢'_,.,...,0.). If
0, ="V;1q for —r < i <r—1and if €, #¢; for —r < i < r, the r-hop view
V! can be the r-hop view of a clockwise neighbor of a node with r-hop view
V.. Therefore, every algorithm A that computes a valid coloring needs to
assign different colors to V,. and V... Otherwise, there is a ring labeling for
which A assigns the same color to two adjacent nodes.
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9.2 The Neighborhood Graph

We will now make the above observations concerning colorings of rings a bit
more formal. Instead of thinking of an r-round coloring algorithm as a function
from all possible r-hop views to colors, we will use a slightly different perspective.
Interestingly, the problem of understanding distributed coloring algorithms can
itself be seen as a classical graph coloring problem.

Definition 9.4 (Neighborhood Graph). For a given family of network graphs
G, the r-neighborhood graph N,.(G) is defined as follows. The node set of N.(G)
is the set of all possible labeled r-neighborhoods (i.e., all possible r-hop views).
There is an edge between two labeled r-neighborhoods V. and V. if V. and V..
can be the r-hop views of two adjacent nodes.

Lemma 9.5. For a given family of network graphs G, there is an r-round al-
gorithm that colors graphs of G with ¢ colors iff the chromatic number of the
neighborhood graph is x(N-(G)) < c.

Proof. We have seen that a coloring algorithm is a function that maps every
possible r-hop view to a color. Hence, a coloring algorithm assigns a color to
every node of the neighborhood graph A,.(G). If two r-hop views V, and V.. can
be the r-hop views of two adjacent nodes u and v (for some labeled graph in
G), every correct coloring algorithm must assign different colors to V,. and V..
Thus, specifying an r-round coloring algorithm for a family of network graphs
G is equivalent to coloring the respective neighborhood graph N;.(G). O

Remarks:

e If an algorithm is non-uniform, i.e., the nodes know n, we can see this as
having different neighborhood graphs for different values of n (as opposed
to a disconnected neighborhood graph).

e This does not make much of a difference for coloring algorithms on the
ring, as we are interested in neighborhoods that are much smaller than n.

Instead of directly defining the neighborhood graph for directed rings, we
define directed graphs By, that are closely related to the neighborhood graph.
Let k and n be two positive integers and assume that n > k. The node set of
By, contains all k-tuples of increasing node labels ([n] = {1,...,n}):

VIBinl = {(oa,...,ar) 10 € [n],i <j— o <oy} (9.1)

For a = (au1,...,ox) and B = (B1,...,Bk) there is a directed edge from « to 3
iff

v¢€{1,...7k—1}26i:ai+1. (92)
Lemma 9.6. Viewed as an undirected graph, the graph Bayi1, @5 a subgraph
of the r-neighborhood graph of directed n-node rings with node labels from [n].

Proof. The claim follows directly from the observations regarding r-hop views of
nodes in a directed ring from Section 9.1. The set of k-tuples of increasing node
labels is a subset of the set of k-tuples of distinct node labels. Two nodes of
Bar41,n are connected by a directed edge iff the two corresponding r-hop views
are connected by a directed edge in the neighborhood graph. Note that if there
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is an edge between a and 3 in By, a1 # Br because the node labels in o and
B are increasing. O

To determine a lower bound on the number of colors an r-round algorithm
needs for directed n-node rings, it therefore suffices to determine a lower bound
on the chromatic number of By,41,. To obtain such a lower bound, we need
the following definition.

Definition 9.7 (Diline Graph). The directed line graph (diline graph) DL(G)
of a directed graph G = (V, E) is defined as follows. The node set of DL(G) is
VIDL(G)] = E. There is a directed edge ((w,z), (y, 2)) between (w,z) € E and
(y,2) € E iff x =y, i.e., if the first edge ends where the second one starts.

Lemma 9.8. Ifn > k, the graph Bji1,, can be defined recursively as follows:
BkJrl,n = D»C(Bk,n)

Proof. The edges of By, are pairs of k-tuples a = (ai,...,ax) and 8 =
(Bi,-..,Pr) that satisfy Conditions (9.1) and (9.2). Because the last k& — 1
labels in « are equal to the first £ — 1 labels in 3, the pair (a, 8) can be rep-
resented by a (k + 1)-tuple v = (y1,.. ., Vk+1) with 71 = a1, v = Bi1 = a;
for 2 < i < k, and Y41 = Bir. Because the labels in o and the labels in 3
are increasing, the labels in « are increasing as well. The two graphs Bk+1;
and DL(By.,) therefore have the same node sets. There is an edge between
two nodes (ay,3,) and (ay,8,) of DL(By,,) if B, = a,. This is equivalent to
requiring that the two correspondmg (k+1)- tuples Y% and 7, are neighbors in
Bj41,n, i-€., that the last k labels of 7, are equal to the first k: labels of Y,- O

The following lemma establishes a useful connection between the chromatic
numbers of a directed graph G and its diline graph DL(G).

Lemma 9.9. For the chromatic numbers x(G) and x(DL(G)) of a directed
graph G and its diline graph, it holds that

X (DL(G)) > log, (x(G)).

Proof. Given a c-coloring of DL(G), we show how to construct a 2¢ coloring of G.
The claim of the lemma then follows because this implies that x(G) < 2X(P£(&))

Assume that we are given a c-coloring of DL(G). A c-coloring of the diline
graph DL(G) can be seen as a coloring of the edges of G such that no two
adjacent edges have the same color. For a node v of G, let S, be the set of
colors of its outgoing edges. Let v and v be two nodes such that G contains a
directed edge (u,v) from u to v and let x be the color of (u,v). Clearly, x € S,
because (u,v) is an outgoing edge of u. Because adjacent edges have different
colors, no outgoing edge (v, w) of v can have color x. Therefore z ¢ S,. This
implies that S, # S,. We can therefore use these color sets to obtain a vertex
coloring of G, i.e., the color of u is S,, and the color of v is S,,. Because the
number of possible subsets of [¢] is 2¢, this yields a 2°-coloring of G. O

Let log(i) x be the i-fold application of the base-2 logarithm to x:

(i+1)

log(l) z =log, xz, log T = logz(log(i) x).
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Remember from Chapter 2 that
log"x=1ifz <2, log*z =1+ min{s: log z < 2}.
For the chromatic number of By, ,,, we obtain

Lemma 9.10. For alln > 1, x(B1,,) = n. Further, forn >k > 2, x(Bgn) >
log(kfl) n.

Proof. For k =1, By, is the complete graph on n nodes with a directed edge
from node i to node j iff ¢ < j. Therefore, x(B1,,) = n. For k > 2, the claim
follows by induction and Lemmas 9.8 and 9.9. O

This finally allows us to state a lower bound on the number of rounds needed
to color a directed ring with 3 colors.

Theorem 9.11. Fvery deterministic, distributed algorithm to color a directed
ring with 3 or less colors needs at least (log™ n)/2 — 1 rounds.

Proof. Using the connection between By, , and the neighborhood graph for di-
rected rings, it suffices to show that x(Bayi+1,,) > 3 for all r < (log*n)/2 — 1.
From Lemma 9.10, we know that x(Bzr41,,) > log(2r) n. To obtain log(zr) n <2,
we need r > (log*n)/2 — 1. Because log, 3 < 2, we therefore have log*” n > 3
if r <log®n/2—1. O

Corollary 9.12. FEvery deterministic, distributed algorithm to compute an MIS
of a directed ring needs at least log" n/2 — O(1) rounds.

Remarks:

e It is straightforward to see that also for a constant ¢ > 3, the number of
rounds needed to color a ring with ¢ or less colors is log" n/2 — O(1).

e There basically (up to additive constants) is a gap of a factor of 2 between
the log" n+ O(1) upper bound of Chapter 2 and the log* n/2 — O(1) lower
bound of this chapter. It is possible to show that the lower bound is
tight, even for undirected rings (for directed rings, this will be part of the
exercises).

e The presented lower bound is due to Nathan Linial. The lower bound is
also true for randomized algorithms. The generalization for randomized
algorithms was done by Moni Naor.

e Alternatively, the lower bound can also be presented as an application of
Ramsey’s theory. Ramsey’s theory is best introduced with an example:
Assume you host a party, and you want to invite people such that there
are no three people who mutually know each other, and no three people
which are mutual strangers. How many people can you invite? This is
an example of Ramsey’s theorem, which says that for any given integer c,
and any given integers nq, ..., n., there is a Ramsey number R(ny,...,n.),
such that if the edges of a complete graph with R(nq,...,n.) nodes are
colored with ¢ different colors, then for some color ¢ the graph contains
some complete subgraph of color 7 of size n;. The special case in the party
example is looking for R(3,3).
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e Ramsey theory is more general, as it deals with hyperedges. A normal
edge is essentially a subset of two nodes; a hyperedge is a subset of k
nodes. The party example can be explained in this context: We have
(hyper)edges of the form {i,j}, with 1 <4,j < n. Choosing n sufficiently
large, coloring the edges with two colors must exhibit a set S of 3 edges
{i,j} C {v1,v2,v3}, such that all edges in S have the same color. To prove
our coloring lower bound using Ramsey theory, we form all hyperedges of
size k = 2r+1, and color them with 3 colors. Choosing n sufficiently large,
there must be a set S = {v1,...,v541} of k+ 1 identifiers, such that all
k 4+ 1 hyperedges consisting of k nodes from S have the same color. Note
that both {vy,..., vk} and {va,...,vg+1} are in the set S, hence there will
be two neighboring views with the same color. Ramsey theory shows that
in this case n will grow as a power tower (tetration) in k. Thus, if n is so
large that k is smaller than some function growing like log* n, the coloring
algorithm cannot be correct.

e The neighborhood graph concept can be used more generally to study
distributed graph coloring. It can for instance be used to show that with
a single round (every node sends its identifier to all neighbors) it is possible
to color a graph with (1 + 0(1))A%Inn colors, and that every one-round
algorithm needs at least Q(A2/log” A + loglogn) colors.

e One may also extend the proof to other problems, for instance one may
show that a constant approximation of the minimum dominating set prob-
lem on unit disk graphs costs at least log-star time.

e Using r-hop views and the fact that nodes with equal r-hop views have to
make the same decisions is the basic principle behind almost all locality
lower bounds (in fact, we are not aware of a locality lower bound that does
not use this principle). Using this basic technique (but a completely dif-
ferent proof otherwise), it is for instance possible to show that computing
an MIS (and many other problems) in a general graph requires at least

Q(y/logn/loglogn) and Q(log A/loglog A) rounds.
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Chapter 10

Social Networks

Distributed computing is applicable in various contexts. This lecture exemplar-
ily studies one of these contexts, social networks, an area of study whose origins
date back a century. To give you a first impression, consider Figure 10.1.

Figure 10.1: This graph shows the social relations between the members of a
karate club, studied by anthropologist Wayne Zachary in the 1970s. Two people
(nodes) stand out, the instructor and the administrator of the club, both happen
to have many friends among club members. At some point, a dispute caused
the club to split into two. Can you predict how the club partitioned? (If not,
just search the Internet for Zachary and Karate.)

85
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10.1 Small-World Networks

Back in 1929, Frigyes Karinthy published a volume of short stories that pos-
tulated that the world was “shrinking” because human beings were connected
more and more. Some claim that he was inspired by radio network pioneer
Guglielmo Marconi’s 1909 Nobel Prize speech. Despite physical distance, the
growing density of human “networks” renders the actual social distance smaller
and smaller. As a result, it is believed that any two individuals can be connected
through at most five (or so) acquaintances, i.e., within six hops.

e The topic was hot in the 1960s. For instance, in 1964, Marshall McLuhan
coined the metaphor “Global Village”. He wrote: “As electrically con-
tracted, the globe is no more than a village”. He argues that due to the
almost instantaneous reaction times of new (“electric”) technologies, each
individual inevitably feels the consequences of his actions and thus auto-
matically deeply participates in the global society. McLuhan understood
what we now can directly observe — real and virtual world are moving to-
gether. He realized that the transmission medium, rather than the trans-
mitted information is at the core of change, as expressed by his famous
phrase “the medium is the message”.

e This idea has been followed ardently in the 1960s by several sociologists,
first by Michael Gurevich, later by Stanley Milgram. Milgram wanted to
know the average path length between two “random” humans, by using
various experiments, generally using randomly chosen individuals from
the US Midwest as starting points, and a stockbroker living in a suburb
of Boston as target. The starting points were given name, address, oc-
cupation, plus some personal information about the target. They were
asked to send a letter to the target. However, they were not allowed to
directly send the letter, rather, they had to pass it to somebody they knew
on first-name basis and that they thought to have a higher probability to
know the target person. This process was repeated, until somebody knew
the target person, and could deliver the letter. Shortly after starting the
experiment, letters have been received. Most letters were lost during the
process, but if they arrived, the average path length was about 5.5. The
observation that the entire population is connected by short acquaintance
chains got later popularized by the terms “six degrees of separation” and
“small world”.

e Statisticians tried to explain Milgram’s experiments, by essentially giv-
ing network models that allowed for short diameters, i.e., each node is
connected to each other node by only a few hops. Until today there is a
thriving research community in statistical physics that tries to understand
network properties that allow for “small world” effects.

e One of the keywords in this area are power-law graphs, networks were
node degrees are distributed according to a power-law distribution, i.e.
the number of nodes with degree ¢ is proportional to § =%, for some o > 1.
Such power-law graphs have been witnessed in many application areas,
apart from social networks also in the web, or in Biology or Physics.
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e Obviously, two power-law graphs might look and behave completely dif-
ferently, even if o and the number of edges is exactly the same.

One well-known model towards this end is the Watts-Strogatz model. Watts
and Strogatz argued that social networks should be modeled by a combination of
two networks: As the basis we take a network that has a large cluster coefficient

Definition 10.1. The cluster coefficient of a network is defined by the probabil-
ity that two friends of a node are likely to be friends as well, summing up over
all the nodes.

..., then we augment such a graph with random links, every node for in-
stance points to a constant number of other nodes, chosen uniformly at random.
This augmentation represents acquaintances that connect nodes to parts of the
network that would otherwise be far away.

Remarks:

e Without further information, knowing the cluster coefficient is of ques-
tionable value: Assume we arrange the nodes in a grid. Technically, if
we connect each node to its four closest neighbors, the graph has cluster
coeflicient 0, since there are no triangles; if we instead connect each node
with its eight closest neighbors, the cluster coefficient is 3/7. The clus-
ter coefficient is quite different, even though both networks have similar
characteristics.

This is interesting, but not enough to really understand what is going on. For
Milgram’s experiments to work, it is not sufficient to connect the nodes in a
certain way. In addition, the nodes themselves need to know how to forward
a message to one of their neighbors, even though they cannot know whether
that neighbor is really closer to the target. In other words, nodes are not
just following physical laws, but they make decisions themselves. In contrast
to those mathematicians that worked on the problem earlier, Jon Kleinberg
understood that Milgram’s experiment essentially shows that social networks
are “navigable”, and that one can only explain it in terms of a greedy routing.

In particular, Kleinberg set up an artificial network with nodes on a grid
topology, plus some additional random links per node. In a quantitative study
he showed that the random links need a specific distance distribution to allow
for efficient greedy routing. This distribution marks the sweet spot for any
navigable network.

Definition 10.2 (Augmented Grid). We take n = m? nodes (i,j) € V =
{1,... ,m}2 that are identified with the lattice points on an m X m grid. We
define the distance between two nodes (i,7) and (k,0) as d((i, j), (k,0)) = |k —
il + |€ — j| as the distance between them on the m x m lattice. The network is
modeled using a parameter o > 0. FEach node u has a directed edge to every
lattice neighbor. These are the local contacts of a node. In addition, each
node also has an additional random link (the long-range contact). For all u
and v, the long-range contact of u points to node v with probability proportional
to d(u,v)™%, i.e., with probability d(u,v)”%/ Zwev\{u} d(u,w)~%. Figure 10.2
illustrates the model.
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Figure 10.2: Augmented grid with m = 6
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Remarks:

e The network model has the following geographic interpretation: nodes
(individuals) live on a grid and know their neighbors on the grid. Further,
each node has some additional acquaintances throughout the network.

e The parameter o controls how the additional neighbors are distributed
across the grid. If o = 0, long-range contacts are chosen uniformly at
random (as in the Watts-Strogatz model). As « increases, long-range
contacts become shorter on average. In the extreme case, if @ — oo, all
long-range contacts are to immediate neighbors on the grid.

e It can be shown that as long as a < 2, the diameter of the resulting
graph is polylogarithmic in n (polynomial in logn) with high probability.
In particular, if the long-range contacts are chosen uniformly at random
(o = 0), the diameter is O(logn).

Since the augmented grid contains random links, we do not know anything
for sure about how the random links are distributed. In theory, all links could
point to the same node! However, this is almost certainly not the case. Formally
this is captured by the term with high probability.

Definition 10.3 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p > 1 —
1/n¢, where ¢ is a constant. The constant ¢ may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.
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Remarks:

e For instance, a running time bound of clogn or e®logn + 5000c with
probability at least 1 —1/n¢ would be O(logn) w.h.p., but a running time
of n® would not be O(n) w.h.p. since ¢ might also be 50.

e This definition is very powerful, as any polynomial (in n) number of state-
ments that hold w.h.p. also holds w.h.p. at the same time, regardless of
any dependencies between random variables!

Theorem 10.4. The diameter of the augmented grid with a = 0 is O(logn)
with high probability.

Proof Sketch. For simplicity, we will only show that we can reach a node w
starting from some node v. However, it can be shown that (essentially) each
of the intermediate claims holds with high probability, which then by means
of the union bound yields that all of the claims hold simultaneously with high
probability for all pairs of nodes.

Let N, be the [log n]-hop neighborhood of v on the grid, containing Q(log? n)
nodes. Each of the nodes in N; has a random link, probably leading to distant
parts of the graph. As long as we have reached only o(n) nodes, any new
random link will with probability 1 — o(1) lead to a node for which none of its
grid neighbors has been visited yet. Thus, in expectation we find almost |N,|
new nodes whose neighbors are “fresh”. Using their grid links, we will reach
(4—0(1))|N4| more nodes within one more hop. If bad luck strikes, it could still
happen that many of these links lead to a few nodes, already visited nodes, or
nodes that are very close to each other. But that is very unlikely, as we have
lots of random choices! Indeed, it can be shown that not only in expectation,
but with high probability (5 — o(1))|N4| many nodes are reached this way.

Because all these shiny new nodes have (so far unused) random links, we
can repeat this reasoning inductively, implying that the number of nodes grows
by (at least) a constant factor for every two hops. Thus, after O(logn) hops,
we will have reached n/logn nodes (which is still small compared to n). Fi-
nally, consider the expected number of links from these nodes that enter the
(log m)-neighborhood of some target node w with respect to the grid. Since this
neighborhood consists of Q(log®n) nodes, in expectation Q(logn) links come
close enough to w. This is large enough to almost guarantee that this happens.
Summing everything up, we still used merely O(logn) hops in total to get from
v to w.

O

This shows that for @ = 0 (and in fact for all a < 2), the resulting network
has a small diameter. Recall however that we also wanted the network to be
navigable. For this, we consider a simple greedy routing strategy (Algorithm 39).

Algorithm 39 Greedy Routing
1: while not at destination do
2:  go to a neighbor which is closest to destination (considering grid distance
only)
3: end while
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Lemma 10.5. In the augmented grid, Algorithm 39 finds a routing path of
length at most 2(m — 1) € O(y/n).

Proof. Because of the grid links, there is always a neighbor which is closer to
the destination. Since with each hop we reduce the distance to the target at
least by one in one of the two grid dimensions, we will reach the destination
within 2(m — 1) steps. O

This is not really what Milgram’s experiment promises. We want to know
how much the additional random links speed up the process. To this end, we
first need to understand how likely it is that two nodes uw and v are connected
by a random link in terms of n and their distance d(u,v).

Lemma 10.6. Node u’s random link leads to a node v with probability
o O(1/(d(u,v)*m?=9)) if a < 2.
o O(1/(d(u,v)?logn)) if a = 2,
e O(1/d(u,v)*) if a > 2.

Moreover, if a > 2, the probability to see a link of length at least d is in
O(1/d*~2).

Proof. For o # 2, we have that

> mwar < x o -o(Lar ) -e(F=a,)

weV\{u} r=1

If o < 2, this gives ©(m?2~%), if a > 2, it is in O(1). If a = 2, we get

m

> LI > o) _ o(1) - Z% = O(logm) = O(logn).

«@ 2
wevu} d(u, w) r

r=1 r=1

Multiplying with d(u,v)® yields the first three bounds.
For the last statement, compute

S e(1/d(u0)7) = © (/m - dr) _0 ([;Q_Z]j) — 0(1/d2).

=a T
weV
d(u,v)>d

Remarks:

e For o # 2, this is bad news for the greedy routing algorithm, as it will
take n2() = M) expected steps to reach the destination. This is dis-
appointing, we were hoping for something polylogarithmic.

o If o < 2, in distance m(2~®/3 to the target are m22~®/3 many nodes.

Thus it takes ©(m(2~®)/3) links in expectation to find a link that comes
that close to the destination. Without finding such a link, we have to go
at least this far using grid links only.
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o If & > 2, it takes O(m(®~2/(@=1)) steps until we see a link of length
at least m!/(®=1 in expectation. Without such links, it takes at least
m/m/(@=1) = ma=2)/(a=1) gteps to travel a distance of m.

e Any algorithm that uses only the information on long-range contacts that
it can collect at the so far visited nodes cannot be faster.

e However, the case o = 2 looks more promising.

Definition 10.7 (Phase). Consider routing from a node u to a node v and
assume that we are at some intermediate node w. We say that we are in phase
j at node w if the lattice distance d(w,v) to the target node v is between 29 <
d(w,v) < 29+L,

Remarks:

e Enumerating the phases in decreasing order is useful, as notation becomes
less cumbersome.

e There are [logm] € O(logn) phases.

Lemma 10.8. Assume that we are in phase j at node w when routing from u
tov. The probability for getting to phase j—1 in one step is at least Q(1/logn).

Proof. Let B; be the set of nodes x with d(z,v) < 2/. We get from phase j
to phase j — 1 if the long-range contact of node w points to some node in B;.
Note that we always make progress while following the greedy routing path.
Therefore, we have not seen node w before and the long-range contact of w
points to a random node that is independent of anything seen on the path from
u to w.

For all nodes = € B;, we have d(w, z) < d(w,v)+d(z,v) <2771 427 < 27+2,
Hence, for each node x € Bj;, the probability that the long-range contact of w
points to z is 2(1/2%2774logn). Further, the number of nodes in B; is at least
(27)%/2 = 227-1. Hence, the probability that some node in Bj is the long range
contact of w is at least

O (177 [ Y (N, Y 0
<| j.22j+410gn>_ <22j+4logn>_ (logn>'

Theorem 10.9. Consider the greedy routing path from a node u to a node v
on an augmented grid with parameter « = 2. The expected length of the path is
O(log?n).

Proof. We already observed that the total number of phases is O(logn) (the
distance to the target is halved when we go from phase j to phase j — 1). At
each point during the routing process, the probability of proceeding to the next
phase is at least 2(1/logn). Let X; be the number of steps in phase j. Because
the probability for ending the phase is Q(1/logn) in each step, in expectation
we need O(logn) steps to proceed to the next phase, i.e., E[X;] € O(logn). Let
X=> X be the total number of steps of the routing process. By linearity of
expectation, we have

E[X] =) E[X,] € O(log’n). O
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10.2 Propagation Studies

In networks, nodes may influence each other’s behavior and decisions. There are
many applications where nodes influence their neighbors, e.g. they may impact
their opinions, or they may bias what products they buy, or they may pass on
a disease.

On a beach (modeled as a line segment), it is best to place an ice cream
stand right in the middle of the segment, because you will be able to “control”
the beach most easily. What about the second stand, where should it settle?
The answer generally depends on the model, but assuming that people will buy
ice cream from the stand that is closer, it should go right next to the first stand.

Rumors can spread astoundingly fast through social networks. Tradition-
ally this happens by word of mouth, but with the emergence of the Internet
and its possibilities new ways of rumor propagation are available. People write
email, use instant messengers or publish their thoughts in a blog. Many factors
influence the dissemination of rumors. It is especially important where in a net-
work a rumor is initiated and how convincing it is. Furthermore the underlying
network structure decides how fast the information can spread and how many
people are reached. More generally, we can speak of diffusion of information in
networks. The analysis of these diffusion processes can be useful for viral mar-
keting, e.g. to target a few influential people to initiate marketing campaigns.
A company may wish to distribute the rumor of a new product via the most
influential individuals in popular social networks such as Facebook. A second
company might want to introduce a competing product and has hence to select
where to seed the information to be disseminated. Rumor spreading is quite
similar to our ice cream stand problem.

More formally, we may study propagation problems in graphs. Given a
graph, and two players. Let the first player choose a seed node u;; afterwards
let the second player choose a seed node ug, with ug # uy. The goal of the game
is to maximize the number of nodes that are closer to one’s own seed node.

In many graphs it is an advantage to choose first. In a star graph for instance
the first player can choose the center node of the star, controlling all but one
node. In some other graphs, the second player can at least score even. But is
there a graph where the second player has an advantage?

Theorem 10.10. In a two player rumor game where both players select one
node to initiate their rumor in the graph, the first player does not always win.

Proof. See Figure 10.3 for an example where the second player will always win,
regardless of the decision the first player. If the first player chooses the node xg
in the center, the second player can select x1. Choice x; will be outwitted by x2,
and g itself can be answered by z;. All other strategies are either symmetric,
or even less promising for the first player. O



10.2. PROPAGATION STUDIES

Figure 10.3: Counter example.
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Chapter 11

Synchronization

So far, we have mainly studied synchronous algorithms. Generally, asynchro-
nous algorithms are more difficult to obtain. Also it is substantially harder
to reason about asynchronous algorithms than about synchronous ones. For in-
stance, computing a BFS tree (Chapter 4) efficiently requires much more work in
an asynchronous system. However, many real systems are not synchronous, and
we therefore have to design asynchronous algorithms. In this chapter, we will
look at general simulation techniques, called synchronizers, that allow running
synchronous algorithms in asynchronous environments.

11.1 Basics

A synchronizer generates sequences of clock pulses at each node of the network
satisfying the condition given by the following definition.

Definition 11.1 (valid clock pulse). We call a clock pulse generated at a node
v valid if it is generated after v received all the messages of the synchronous
algorithm sent to v by its neighbors in the previous pulses.

Given a mechanism that generates the clock pulses, a synchronous algorithm
is turned into an asynchronous algorithm in an obvious way: As soon as the 7'}
clock pulse is generated at node v, v performs all the actions (local computations
and sending of messages) of round ¢ of the synchronous algorithm.

Theorem 11.2. If all generated clock pulses are valid according to Definition
11.1, the above method provides an asynchronous algorithm that behaves exactly
the same way as the given synchronous algorithm.

Proof. When the i*" pulse is generated at a node v, v has sent and received
exactly the same messages and performed the same local computations as in
the first 4 — 1 rounds of the synchronous algorithm. O

The main problem when generating the clock pulses at a node v is that v can-
not know what messages its neighbors are sending to it in a given synchronous
round. Because there are no bounds on link delays, v cannot simply wait “long
enough” before generating the next pulse. In order satisfy Definition 11.1, nodes
have to send additional messages for the purpose of synchronization. The total

95



96 CHAPTER 11. SYNCHRONIZATION

complexity of the resulting asynchronous algorithm depends on the overhead
introduced by the synchronizer. For a synchronizer S, let T'(S) and M(S) be
the time and message complexities of S for each generated clock pulse. As we
will see, some of the synchronizers need an initialization phase. We denote the
time and message complexities of the initialization by Tinit(S) and Myt (S),
respectively. If T'(A) and M (A) are the time and message complexities of the
given synchronous algorithm A, the total time and message complexities Ty
and M;,; of the resulting asynchronous algorithm then become

Ttot = Tlmt(S)—i—T(A)(l—i—T(S)) and Mtot = Mmlt(S)-i-M(A)—f—T(A)M(S),

respectively.

Remarks:

e Because the initialization only needs to be done once for each network, we
will mostly be interested in the overheads T'(S) and M(S) per round of
the synchronous algorithm.

Definition 11.3 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived at their destinations.

Lemma 11.4. If all neighbors of a node v are safe with respect to the current
clock pulse of v, the next pulse can be generated for v.

Proof. If all neighbors of v are safe with respect to a certain pulse, v has received
all messages of the given pulse. Node v therefore satisfies the condition of
Definition 11.1 for generating a valid next pulse. O

Remarks:

e In order to detect safety, we require that all algorithms send acknowl-
edgements for all received messages. As soon as a node v has received
an acknowledgement for each message that it has sent in a certain pulse,
it knows that it is safe with respect to that pulse. Note that sending
acknowledgements does not increase the asymptotic time and message
complexities.

11.2 The Local Synchronizer o

Algorithm 40 Synchronizer « (at node v)

1: wait until v is safe

2: send SAFE to all neighbors

3: wait until v receives SAFE messages from all neighbors
4: start new pulse

Synchronizer « is very simple. It does not need an initialization. Using
acknowledgements, each node eventually detects that it is safe. It then reports
this fact directly to all its neighbors. Whenever a node learns that all its neigh-
bors are safe, a new pulse is generated. Algorithm 40 formally describes the
synchronizer a.
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Theorem 11.5. The time and message complexities of synchronizer o per syn-
chronous round are

T(a) = O(1) and M(a) = O(m).

Proof. Communication is only between neighbors. As soon as all neighbors of
a node v become safe, v knows of this fact after one additional time unit. For
every clock pulse, synchronizer « sends at most four additional messages over
every edge: Each of the nodes may have to acknowledge a message and reports
safety. O

Remarks:

e Synchronizer o was presented in a framework, mostly set up to have a
common standard to discuss different synchronizers. Without the frame-
work, synchronizer « can be explained more easily:

1. Send message to all neighbors, include round information 7 and actual
data of round i (if any).

2. Wait for message of round 7 from all neighbors, and go to next round.

e Although synchronizer « allows for simple and fast synchronization, it
produces awfully many messages. Can we do better? Yes.

11.3 The Global Synchronizer 3

Algorithm 41 Synchronizer 5 (at node v)
: wait until v is safe
: wait until v receives SAFE messages from all its children in T’
. if v # ¢ then
send SAFE message to parent in 7'
wait until PULSE message received from parent in T'
end if
: send PULSE message to children in T'
: start new pulse

Synchronizer 8 needs an initialization that computes a leader node ¢ and a
spanning tree T" rooted at £. As soon as all nodes are safe, this information is
propagated to £ by a convergecast. The leader then broadcasts this information
to all nodes. The details of synchronizer 8 are given in Algorithm 41.

Theorem 11.6. The time and message complexities of synchronizer 3 per syn-
chronous round are

T(8) = O(diameter(T)) < O(n) and M(B) = O(n).
The time and message complexities for the initialization are

Tinit(8) = O(n) and Mini(8) = O(m +nlogn).
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Proof. Because the diameter of T is at most n — 1, the convergecast and the
broadcast together take at most 2n — 2 time units. Per clock pulse, the syn-
chronizer sends at most 2n — 2 synchronization messages (one in each direction
over each edge of T).

With an improvement (due to Awerbuch) of the GHS algorithm (Algorithm
15) you saw in Chapter 4, it is possible to construct an MST in time O(n)
with O(m+nlogn) messages in an asynchronous environment. Once the tree is
computed, the tree can be made rooted in time O(n) with O(n) messages. [

Remarks:

e We now got a time-efficient synchronizer (o) and a message-efficient syn-
chronizer (f3), it is only natural to ask whether we can have the best of
both worlds. And, indeed, we can. How is that synchronizer called? Quite
obviously: 7.

11.4 The Hybrid Synchronizer ~

Figure 11.1: A cluster partition of a network: The dashed cycles specify the
clusters, cluster leaders are black, the solid edges are the edges of the intracluster
trees, and the bold solid edges are the intercluster edges

Synchronizer  can be seen as a combination of synchronizers a and g. In the
initialization phase, the network is partitioned into clusters of small diameter.
In each cluster, a leader node is chosen and a BFS tree rooted at this leader
node is computed. These trees are called the intracluster trees. Two clusters
C7 and (s are called neighboring if there are nodes v € C7 and v € Cy for
which (u,v) € E. For every two neighboring clusters, an intercluster edge is
chosen, which will serve for communication between these clusters. Figure 11.1
illustrates this partitioning into clusters. We will discuss the details of how to
construct such a partition in the next section. We say that a cluster is safe if
all its nodes are safe.
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Synchronizer v works in two phases. In a first phase, synchronizer f is
applied separately in each cluster by using the intracluster trees. Whenever
the leader of a cluster learns that its cluster is safe, it reports this fact to all
the nodes in the clusters as well as to the leaders of the neighboring clusters.
Now, the nodes of the cluster enter the second phase where they wait until
all the neighboring clusters are known to be safe and then generate the next
pulse. Hence, we essentially apply synchronizer o between clusters. A detailed
description is given by Algorithm 42.

Algorithm 42 Synchronizer v (at node v)

1: wait until v is safe

2: wait until v receives SAFE messages from all children in intracluster tree

3: if v is not cluster leader then

4:  send SAFE message to parent in intracluster tree

5:  wait until CLUSTERSAFE message received from parent

6: end if

7: send CLUSTERSAFE message to all children in intracluster tree

8: send NEIGHBORSAFE message over all intercluster edges of v

9: wait until v receives NEIGHBORSAFE messages from all adjacent inter-
cluster edges and all children in intracluster tree

10: if v is not cluster leader then

11:  send NEIGHBORSAFE message to parent in intracluster tree

12:  wait until PULSE message received from parent

13: end if

14: send PULSE message to children in intracluster tree

15: start new pulse

Theorem 11.7. Let m¢ be the number of intercluster edges and let k be the
maximum cluster radius (i.e., the mazimum distance of a leaf to its cluster
leader). The time and message complexities of synchronizer v are

T(y) = O(k) and M(y) = O(n+mg).

Proof. We ignore acknowledgements, as they do not affect the asymptotic com-
plexities. Let us first look at the number of messages. Over every intraclus-
ter tree edge, exactly one SAFE message, one CLUSTERSAFE message, one
NEIGHBORSAFE message, and one PULSE message is sent. Further, one
NEIGHBORSAFE message is sent over every intercluster edge. Because there
are less than n intracluster tree edges, the total message complexity therefore
is at most 4n + 2me = O(n + me).

For the time complexity, note that the depth of each intracluster tree
is at most k. On each intracluster tree, two convergecasts (the SAFE and
NEIGHBORSAFE messages) and two broadcasts (the CLUSTERSAFE and
PULSE messages) are performed. The time complexity for this is at most 4k.
There is one more time unit needed to send the NEIGHBORSAFE messages
over the intercluster edges. The total time complexity therefore is at most
4k +1 = O(k). O
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11.5 Network Partition

We will now look at the initialization phase of synchronizer . Algorithm 43
describes how to construct a partition into clusters that can be used for syn-
chronizer 7. In Algorithm 43, B(v,r) denotes the ball of radius » around v,
ie, B(v,r) ={u € V : d(u,v) < r} where d(u,v) is the hop distance between
u and v. The algorithm has a parameter p > 1. The clusters are constructed
sequentially. Each cluster is started at an arbitrary node that has not been
included in a cluster. Then the cluster radius is grown as long as the cluster
grows by a factor more than p.

Algorithm 43 Cluster construction

1: while unprocessed nodes do
2 select an arbitrary unprocessed node v;
3 r:=0;
4:  while |B(v,r + 1)| > p|B(v,r)| do
5: r:=r+1
6: end while
7. makeCluster(B(v,r)) // all nodes in B(v,r) are now processed
8: end while
Remarks:

e The algorithm allows a trade-off between the cluster diameter k (and thus
the time complexity) and the number of intercluster edges m¢ (and thus
the message complexity). We will quantify the possibilities in the next
section.

e Two very simple partitions would be to make a cluster out of every single
node or to make one big cluster that contains the whole graph. We then
get synchronizers a and [ as special cases of synchronizer ~.

Theorem 11.8. Algorithm 43 computes a partition of the network graph into
clusters of radius at most log,n. The number of intercluster edges is at most

(p—1)-n.

Proof. The radius of a cluster is initially 0 and does only grow as long as it
grows by a factor larger than p. Since there are only n nodes in the graph, this
can happen at most log, n times.

To count the number of intercluster edges, observe that an edge can only
become an intercluster edge if it connects a node at the boundary of a cluster
with a node outside a cluster. Consider a cluster C' of size |C|. We know that
C = B(v,r) for some v € V and r > 0. Further, we know that |B(v,r + 1)| <
p - |B(v,r)|. The number of nodes adjacent to cluster C' is therefore at most
|B(v,r+1)\ B(v,r)| < p-|C|—|C|. Because there is only one intercluster edge
connecting two clusters by definition, the number of intercluster edges adjacent
to C' is at most (p — 1) - |C]. Summing over all clusters, we get that the total
number of intercluster edges is at most (p — 1) - n. O

Corollary 11.9. Using p = 2, Algorithm 43 computes a clustering with cluster
radius at most loga n and with at most n intercluster edges.
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Corollary 11.10. Using p = n'/*, Algorithm 43 computes a clustering with
cluster radius at most k and at most O(n'*/*) intercluster edges.

Remarks:

e Algorithm 43 describes a centralized construction of the partitioning of
the graph. For p > 2, the clustering can be computed by an asynchronous
distributed algorithm in time O(n) with O(m+nlogn) (reasonably sized)
messages (showing this will be part of the exercises).

e It can be shown that the trade-off between cluster radius and number of
intercluster edges of Algorithm 43 is asymptotically optimal. There are
graphs for which every clustering into clusters of radius at most k requires
n'te/F intercluster edges for some constant c.

The above remarks lead to a complete characterization of the complexity of
synchronizer 7.

Corollary 11.11. The time and message complezities of synchronizer v per
synchronous round are

T(7) = O(k) and M(7) = O(n'*'/*).
The time and message complezities for the initialization are

Tit(7) = O(n) and Mi(y) = O(m+nlogn).

Remarks:

e The synchronizer idea and the synchronizers discussed in this chapter are
due to Baruch Awerbuch.

e In Chapter 4, you have seen that by using flooding, there is a very simple
synchronous algorithm to compute a BFS tree in time O(D) with mes-
sage complexity O(m). If we use synchronizer v to make this algorithm
asynchronous, we get an algorithm with time complexity O(n + D logn)
and message complexity O(m + nlogn + D - n) (including initialization).

e The synchronizers «, (3, and 7 achieve global synchronization, i.e. ev-
ery node generates every clock pulse. The disadvantage of this is that
nodes that do not participate in a computation also have to participate in
the synchronization. In many computations (e.g. in a BFS construction),
many nodes only participate for a few synchronous rounds. An improved
synchronizer due to Awerbuch and Peleg can exploit such a scenario and
achieves time and message complexity 0(10g3 n) per synchronous round
(without initialization).

e It can be shown that if all nodes in the network need to generate all pulses,
the trade-off of synchronizer v is asymptotically optimal.

e Partitions of networks into clusters of small diameter and coverings of net-
works with clusters of small diameters come in many variations and have
various applications in distributed computations. In particular, apart from
synchronizers, algorithms for routing, the construction of sparse spanning
subgraphs, distributed data structures, and even computations of local
structures such as a MIS or a dominating set are based on some kind of
network partitions or covers.
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11.6 Clock Synchronization

“A man with one clock knows what time it is — a man with two is never sure.”

Synchronizers can directly be used to give nodes in an asynchronous network a
common notion of time. In wireless networks, for instance, many basic protocols
need an accurate time. Sometimes a common time in the whole network is
needed, often it is enough to synchronize neighbors. The purpose of the time
division multiple access (TDMA) protocol is to use the common wireless channel
as efficiently as possible, i.e., interfering nodes should never transmit at the
same time (on the same frequency). If we use synchronizer 8 to give the nodes
a common notion of time, every single clock cycle costs D time units!

Often, each (wireless) node is equipped with an internal clock. Using this
clock, it should be possible to divide time into slots, and make each node send
(or listen, or sleep, respectively) in the appropriate slots according to the media
access control (MAC) layer protocol used.

However, as it turns out, synchronizing clocks in a network is not trivial.
As nodes’ internal clocks are not perfect, they will run at speeds that are time-
dependent. For instance, variations in temperature or supply voltage will affect
this clock drift. For standard clocks, the drift is in the order of parts per million,
i.e., within a second, it will accumulate to a couple of microseconds. Wireless
TDMA protocols account for this by introducing guard times. Whenever a node
knows that it is about to receive a message from a neighbor, it powers up its
radio a little bit earlier to make sure that it does not miss the message even
when clocks are not perfectly synchronized. If nodes are badly synchronized,
messages of different slots might collide.

In the clock synchronization problem, we are given a network (graph) with
n nodes. The goal for each node is to have a logical clock such that the logical
clock values are well synchronized, and close to real time. Each node is equipped
with a hardware clock, that ticks more or less in real time, i.e., the time between
two pulses is arbitrary between [1 — €, 1 + €], for a constant € < 1. Similarly as
in our asynchronous model, we assume that messages sent over the edges of the
graph have a delivery time between [0,1]. In other words, we have a bounded
but variable drift on the hardware clocks and an arbitrary jitter in the delivery
times. The goal is to design a message-passing algorithm that ensures that the
logical clock skew of adjacent nodes is as small as possible at all times.

Theorem 11.12. The global clock skew (the logical clock difference between any
two nodes in the graph) is Q(D), where D is the diameter of the graph.

Proof. For a node u, let t, be the logical time of v and let (u — v) denote a
message sent from u to a node v. Let t(m) be the time delay of a message m
and let u and v be neighboring nodes. First consider a case where the message
delays between u and v are 1/2. Then all the messages sent by u and v at time
i according to the clock of the sender arrive at time ¢ 4+ 1/2 according to the
clock of the receiver.

Then consider the following cases

o t,=t,+1/2, t(u—v)=1,tv—>u)=0

oty =1t,—1/2, t(fu > v) =0, t(v = u) =1,
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where the message delivery time is always fast for one node and slow for the
other and the logical clocks are off by 1/2. In both scenarios, the messages sent
at time 4 according to the clock of the sender arrive at time ¢ + 1/2 according
to the logical clock of the receiver. Therefore, for nodes v and v, both cases
with clock drift seem the same as the case with perfectly synchronized clocks.
Furthermore, in a linked list of D nodes, the left- and rightmost nodes [, r cannot
distinguish t; = ¢, + D/2 from ¢; = t,, — D/2. O

Remarks:

e From Theorem 11.12, it directly follows that all the clock synchronization
algorithms we studied have a global skew of (D).

e Many natural algorithms manage to achieve a global clock skew of O(D).

As both the message jitter and hardware clock drift are bounded by con-
stants, it feels like we should be able to get a constant drift between neighboring
nodes. As synchronizer « pays most attention to the local synchronization, we
take a look at a protocol inspired by the synchronizer ce. A pseudo-code repre-
sentation for the clock synchronization protocol « is given in Algorithm 44.

Algorithm 44 Clock synchronization « (at node v)

1: repeat

2 send logical time ¢, to all neighbors

3 if Receive logical time t,, where t,, > t,,, from any neighbor u then
4: ty ==ty

5 end if

6: until done

Lemma 11.13. The clock synchronization protocol a has a local skew of Q(n).

Proof. Let the graph be a linked list of D nodes. We denote the nodes by
V1,02, ...,Up from left to right and the logical clock of node v; by t;. Apart
from the left-most node vy all hardware clocks run with speed 1 (real time).
Node v runs at maximum speed, i.e. the time between two pulses is not 1 but
1 — €. Assume that initially all message delays are 1. After some time, node vy
will start to speed up vo, and after some more time vy will speed up vz, and
so on. At some point of time, we will have a clock skew of 1 between any two
neighbors. In particular t; =tp + D — 1.

Now we start playing around with the message delays. Let t; = T. First we
set the delay between the v; and vy to 0. Now node vy immediately adjusts its
logical clock to T'. After this event (which is instantaneous in our model) we set
the delay between vy and vs to 0, which results in vs setting its logical clock to T'
as well. We perform this successively to all pairs of nodes until vp_s and vp_;.
Now node vp_; sets its logical clock to T', which indicates that the difference
between the logical clocks of vp_y and vp isT— (T —(D—-1))=D—-1. O
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Remarks:

e The introduced examples may seem cooked-up, but examples like this
exist in all networks, and for all algorithms. Indeed, it was shown that
any natural clock synchronization algorithm must have a bad local skew.
In particular, a protocol that averages between all neighbors is even worse
than the introduced « algorithm. This algorithm has a clock skew of
Q(D?) in the linked list, at all times.

e Recently, there was a lot of progress in this area, and it was shown that
the local clock skew is ©(log D), i.e., there is a protocol that achieves this
bound, and there proof that no algorithm can be better than this bound!

e Note that these are worst-case bounds. In practice, clock drift and message
delays may not be the worst possible, typically the speed of hardware
clocks changes at a comparatively slow pace and the message transmission
times follow a benign probability distribution. If we assume this, better
protocols do exist.



Chapter 12

Hard Problems

This chapter is on “hard” problems in distributed computing. In sequential com-
puting, there are NP-hard problems which are conjectured to take exponential
time. Is there something similar in distributed computing? Using flooding/echo
(Algorithms 11,12) from Chapter 4, everything so far was solvable basically in
O(D) time, where D is the diameter of the network.

12.1 Diameter & APSP

But how do we compute the diameter itself!?! With flooding/echo, of course!

Algorithm 45 Naive Diameter Construction

1: all nodes compute their radius by synchronous flooding/echo
2: all nodes flood their radius on the constructed BFS tree
3: the maximum radius a node sees is the diameter

Remarks:

e Since all these phases only take O(D) time, nodes know the diameter in
O(D) time, which is asymptotically optimal.

e However, there is a problem! Nodes are now involved in n parallel flood-
ing/echo operations, thus a node may have to handle many and big mes-
sages in one single time step. Although this is not strictly illegal in the
message passing model, it still feels like cheating! A natural question is
whether we can do the same by just sending short messages in each round.

e In Definition 3.1 of Chapter 2 we postulated that nodes should send only
messages of “reasonable” size. In this chapter we strengthen the definition
a bit, and require that each message should have at most O(logn) bits.
This is generally enough to communicate a constant number of ID’s or
values to neighbors, but not enough to communicate everything a node
knows!

e A simple way to avoid large messages is to split them into small messages
that are sent using several rounds. This can cause that messages are
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getting delayed in some nodes but not in others. The flooding might not
use edges of a BFS tree anymore! These floodings might not compute
correct distances anymore! On the other hand we know that the maximal
message size in Algorithm 45 is O(nlogn). So we could just simulate each
of these “big message” rounds by n “small message” rounds using small
messages. This yields a runtime of O(nD) which is not desirable. A third
possible approach is “starting each flooding/echo one after each other”
and results in O(nD) in the worst case as well.

So let us fix above algorithm! The key idea is to arrange the flooding-
echo processes in a more organized way: Start the flooding processes in
a certain order and prove that at any time, each node is only involved in
one flooding. This is realized in Algorithm 46.

Definition 12.1. (BFS,) Performing a breadth first search at node v produces
spanning tree BFS, (see Chapter 4). This takes time O(D) using small mes-
sages.

Remarks:

e A spanning tree of a graph G can be traversed in time O(n) by sending a

pebble over an edge in each time slot.

This can be done using e.g. a depth first search (DFS): Start at the root
of a tree, recursively visit all nodes in the following way. If the current
node still has an unvisited child, then the pebble always visits that child
first. Return to the parent only when all children have been visited.

Algorithm 46 works as follows: Given a graph G, first a leader | computes
its BFS tree BFS;. Then we send a pebble P to traverse tree BFS;. Each
time pebble P enters a node v for the first time, P waits one time slot,
and then starts a breadth first search (BFS) — using edges in G — from v
with the aim of computing the distances from v to all other nodes. Since
we start a BFS, from every node v, each node u learns its distance to all
these nodes v during the according execution of BFS,. There is no need
for a echo-process at the end of BFS,,.

Algorithm 46 Computes APSP on G.

—
<

Assume we have a leader node [ (if not, compute one first)
compute BFS; of leader [

send a pebble P to traverse BFS; in a DFS way;

while P traverses BFS; do

if P visits a new node v then
wait one time slot; // avoid congestion
start BFS, from node v; // compute all distances to v
// the depth of node u in BFS, is d(u,v)

end if

end while




12.2. LOWER BOUND GRAPHS 107

Remarks:

e Having all distances is nice, but how do we get the diameter? Well, as
before, each node could just floods its radius (its maximum distance) into
the network. However, messages are small now and we need to modify
this slightly. In each round a node only sends the maximal distance that
it is aware of to its neighbors. After D rounds each node will know the
maximum distance among all nodes.

Lemma 12.2. In Algorithm 46, at no time a node w is simultaneously active
for both BFS, and BFS,.

Proof. Assume a BFS,, is started at time ¢, at node u. Then node w will be
involved in BFS,, at time t, + d(u,w). Now, consider a node v whose BFS,
is started at time t, > t,. According to the algorithm this implies that the
pebble visits v after u and took some time to travel from u to v. In particular,
the time to get from w to v is at least d(u,v), in addition at least node v is
visited for the first time (which involves waiting at least one time slot), and
we have t, > t, + d(u,v) + 1. Using this and the triangle inequality, we get
that node w is involved in BFS, strictly after being involved in BFS, since
ty +d(v,w) > (ty, + d(u,v) + 1) + d(v,w) > t, + d(u,w) + 1 > t, + d(u,w). O

Theorem 12.3. Algorithm 46 computes APSP (all pairs shortest path) in time
O(n).

Proof. Since the previous lemma holds for any pair of vertices, no two BFS
“interfere” with each other, i.e. all messages can be sent on time without con-
gestion. Hence, all BFS stop at most D time slots after they were started. We
conclude that the runtime of the algorithm is determined by the time O(D) we
need to build tree BFS;, plus the time O(n) that P needs to traverse BFS;, plus
the time O(D) needed by the last BFS that P initiated. Since D < n, this is
all in O(n). O

Remarks:

e All of a sudden our algorithm needs O(n) time, and possibly n > D. We
should be able to do better, right?!

e Unfortunately not! One can show that computing the diameter of a net-
work needs Q(n/logn) time.

e On the other hand we can check fast whether a graph has diameter 1 or
not: each node just checks whether its degree is n — 1 and tells the result
to its neighbors.

12.2 Lower Bound Graphs

We define a family G of graphs that we use to prove a lower bound on the
rounds needed to compute the diameter. To simplify our analysis, we assume
that (n — 2) can be divided by 8. We start by defining four sets of nodes, each
consisting of ¢ = ¢(n) := (n — 2)/4 nodes. Throughout this chapter we write [¢]
as a short version of {1,...,¢} and define:
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Lo = {l;]ieq} // upper left in Figure 12.1
L, = {Ulicld} //lowerlef

Ro = {ri|iefg]}  // upper right

Ri = {ri|li€lqd} // lower right

Figure 12.1: The above skeleton G’ contains n = 10 nodes, such that g = 2.

We add node ¢;, and connect it to all nodes in Lg and Lq. Then we add
node cg, connected to all nodes in Rg and R;. Furthermore, nodes ¢y, and cg
are connected by an edge. For i € [¢] we connect I; to r; and I} to r}. Also we
add edges such that nodes in Lg are a clique, nodes in L are a clique, nodes
in Rg are a clique, and nodes in Ry are a clique. The resulting graph is called
G'. Graph G’ is the skeleton of any graph in family G.

More formally skeleton G’ = (V', E') is:

vV o= Lo U L; U Ry U Ry U {CL,CR}
E = U {(v,cr)} // connections to cy,
v€LgU Ly
u U {(v,cr)} // connections to cg
veERogUR,
U U {T,r), G,y U {(er,cr)} // connects left to right
i€ld]

U U U {(u,v)} // clique edges
S e {L07 uF#vES
Lla ROa Rl}

To simplify our arguments, we partition G’ into two parts: Part L is the
subgraph induced by nodes Lo U Ly U {c1}. Part R is the subgraph induced
by nodes Ro U Ry U {cgr}.
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Family G contains any graph G that is derived from G’ by adding any com-
bination of edges of the form (I;, l;) resp. (ri,ré) with [; € Lo, l; €Ly, 7 € Ry,
and 7“2- cRy.

Figure 12.2: The above graph G has n = 10 and a member of family G. What
is the diameter of G?

Lemma 12.4. The diameter of a graph G = (V, E) € G is 2 if and only if: For
each tuple (i, j) with,j € [q], there is either edge (l;,1}) or edge (r;,r5) (or both
edges) in E.

Proof. Note that the distance between most pairs of nodes is at most 2. In
particular, the radius of ¢y, resp. cg is 2. Thanks to ¢y, resp. cgr the distance
between, any two nodes within Part L resp. within Part R is at most 2.
Because of the cliques Lo, L1, Ro, R1, distances between I; and r; resp. I} and
7’ is at most 2.

The only interesting case is between a node I; € Lo and node 7’; € R, (or,
symmetrically, between I’ € Ly and node r; € Ro). If either edge (I;,1;) or
edge (r;,7%) is present, then this distance is 2, since the path (I;,1%,7}) or the
path (I;,r, r;) exists. If neither of the two edges exist, then the neighborhood
of [; consists of {cz,7;}, all nodes in Lo, and some nodes in Ly \ {I’}, and the
neighborhood of 75 consists of {cg,l;} , all nodes in Ry, and some nodes in
Ro \ {ri} (see for example Figure 12.3 with ¢ = 1 and j = 2.) Since the two
neighborhoods do not share a common node, the distance between [; and 7“; is
(at least) 3. O

Remarks:
e Each part contains up to ¢? € ©(n?) edges.

e There are 2¢ + 1 € O(n) edges connecting the left and the right part.
Since in each round we can transmit O(logn) bits over each edge (in each
direction), the bandwidth between Part L and Part R is O(nlogn).
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cp Cr
Iy 1
Iy o
i ]
!
ly @)

Figure 12.3: Nodes in the neighborhood of I3 are cyan, the neighborhood of 74
is white. Since these neighborhoods do not intersect, the distance of these two
nodes is d(lz, r5) > 2. If e.g. edge (l2,15) was included, their distance was 2.

o If we transmit the information of the ©(n?) edges in a naive way with a
bandwidth of O(nlogn), we need (n/logn) time. But maybe we can
do better?!? Can an algorithm be smarter and only send the information
that is really necessary to tell whether the diameter is 27

e It turns out that any algorithm needs (n/logn) rounds, since the infor-
mation that is really necessary to tell that the diameter is larger than 2
contains basically ©(n?) bits.

12.3 Communication Complexity

To prove the last remark formally, we can use arguments from two-party com-
munication complexity. This area essentially deals with a basic version of dis-
tributed computation: two parties are given some input each and want to solve
a task on this input.

We consider two students (Alice and Bob) at two different universities con-
nected by a communication channel (e.g. via email) and we assume this channel
to be reliable. Now Alice and Bob want to check whether they received the same
problem set for homework (we assume their professors are lazy and wrote it on
the black board instead of putting a nicely prepared document online.) Do Alice
and Bob really need to type the whole problem set into their emails? In a more
formal way: Alice receives an n-bit string x and Bob another n-bit string y, and
the goal is for both of them to compute the equality function.

Definition 12.5. (Equality.) We define the equality function EQ to be:

raugy={ 4 F5Y
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Remarks:

e In a more general setting, Alice and Bob are interested in computing a
certain function f : {0,1}* x {0,1}* — {0,1} with the least amount
of communication between them. Of course they can always succeed by
having Alice send her whole n-bit string to Bob, who then computes the
function, but the idea here is to find clever ways of calculating f with less
than n bits of communication. We measure how clever they can be as
follows:

Definition 12.6. (Communication complexity CC.) The communication com-
plexity of protocol A for function f is CC(A, f) := minimum number of bits
exchanged between Alice and Bob in the worst case when using A. The commu-
nication complexity of f is CC(f) := min{CC(A, f)| A solves f}. That is the
minimal number of bits that the best protocol needs to send in the worst case.

Definition 12.7. For a given function f, we define a 28 x 2F matriz M7
representing f. That is M{y = f(x,y).

Example 12.8. For EQ, in case k = 3, matriz M®Q looks like this:

EQ | 000 001 010 011 100 101 110 111 +« z
000 | 1 0 0 0 0 0 0 0

001 | 0 1 0 0 0 0 0 0

010 | 0 0 1 0 0 0 0 0

011 0 1 0 0 0

100 0 0 1 . 0 0

101 0 0 0 1 0 0

110 0 0 0 1 0

111 0 0 0 . 0 1

Ty

As a next step we define a (combinatorial) monochromatic rectangle. These
are “submatrices” of M7 which contain the same entry.

Definition 12.9. (monochromatic rectangle.) A set R C {0,1}* x {0,1}* is
called a monochromatic rectangle, if

o whenever (x1,y1) € R and (x2,y2) € R then (z1,y2) € R.
e there is a fized z such that f(x,y) = z for all (x,y) € R.

Example 12.10. The first three of the following rectangles are monochromatic,
the last one is not:

Ry {011} x {011} Ezample 12.8: light gray
R, = {011,100,101,110} x {000,001} Ezample 12.8: gray

Ry = {000,001,101} x {011,100, 110,111}
Ry, = {000,001} x {000,001} Ezample 12.8: bozed

Each time Alice and Bob exchange a bit, they can eliminate columns/rows
of the matrix M7 and a combinatorial rectangle is left. They can stop commu-
nicating when this remaining rectangle is monochromatic. Informally speaking,
a fooling set can be used to fool a protocol that wants to be lazy: if the fooling
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set is large, there will be many maximal monochromatic rectangles (maximal in
the sense that they cannot be extended while staying monochromatic). Since by
communicating one bit the set of possible monochromatic rectangles does not
shrink too much, we can expect that it takes long time until a monochromatic
rectangle is found in the worst case.

Definition 12.11. (fooling set.) A set S C {0,1}* x {0,1}* fools f if there is
a fized z such that

o f(x,y) =z for each (z,y) € S

e For any (x1,y1) # (x2,y2) € S, the rectangle {x1,x2} X {y1,y2} is not
monochromatic: Either f(x1,y2) # z, f(x2,y1) # 2 or both # z.

Example 12.12. Consider S = {(000,000), (001,001)}. Take a look at the
non-monochromatic rectangle Ry in Example 12.10. Verify that S is indeed a
fooling set for EQ!

Remarks:
e Can you find a larger fooling set for EQ?

e We assume that Alice and Bob take turns in sending a bit. This results in
2 possible actions (send 0/1) per round and in 2% action patterns during
a sequence of ¢ rounds.

Lemma 12.13. If S is a fooling set for f, then CC(f) = Q(log|S|).

Proof. For simplicity we assume that | S| is a power of 2. We prove the statement
via contradiction: fix a protocol A and assume that it needs ¢ := log,(]S]/2)
rounds in the worst case. Then there are 2¢ = 2'°22(151/2) — | §| /2 possible action
patterns. On the other hand there are |S| = 2'°8215] elements in S and we
conclude that at least two elements (let’s call them (x1,y1), (z2,¥2)) in S cause
the same action pattern P. Naturally, the action pattern on the alternative
inputs (z1,y2), (z2,y1) will be P as well: in the first round Alice and Bob have
no information on the other party’s string and send the same bit that was sent
in P. Based on this, they determine the second bit to be exchanged, which will
be the same as the second one in P for a similar reason. This continues for all
t rounds. We conclude that after ¢ rounds, Alice does not know whether Bob’s
input is y; or yo and Bob does not know whether Alice’s input is x1 or zo. By
the definition of fooling set, either

o f(r1,y2) # f(x1,y1) in which case Alice (with input z1) does not know
the solution yet,

or

o f(x2,y1) # f(x1,y1) in which case Bob (with input y;) does not know the
solution yet.

This contradicts the assumption that A leads to a correct decision for all inputs
after ¢t rounds. Therefore at least ¢t + 1 rounds are necessary, which is

log ||
log 2

£+ 1 =log,(S]/2) +1 = € Q(log |S)).
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Theorem 12.14. CC(EQ) = Q(k).

Proof. The set S := {(x,z) | x € {0,1}*} fools EQ and has size 2¥. Now apply
Lemma 12.13. O

Definition 12.15. Denote the negation of a string z by Z and by x oy the
concatenation of strings x and y.

Lemma 12.16. Let x,y be k-bit strings. Then x # y if and only if there is an
index i € [2k] such that the it" bit of x o T and the it" bit of oy are both 0.

Proof. If © # vy, there is an j € [k] such that x and y differ in the j!* bit.
Therefore either the j bit of both # and 7 is 0, or the j** bit of T and y is
0. For this reason, there is an i € [2k| such that x o T and § o y are both 0 at
position %.

If x = y, then for any i € [2k] it is always the case that either the i*" bit of
x0T is 1 or the i*" bit of 7 o y (which is the negation of z o Z in this case) is
1. O

Remarks:

e With these insights we get back to the problem of computing the diameter
of a graph and relate this problem to EQ.

Definition 12.17. Using the parameter q defined before, we define a bijective
map between all pairs z,y of q*-bit strings and the graphs in G: each pair of
strings x,y is mapped to graph G,, € G that is derived from skeleton G’ by
adding

e cdge (1;,1;) to Part L if and only if the (j +q - )" bit of z is 1.

e cdge (ri,7}) to Part R if and only if the (j +q- i)t bit of y is 1.

Remarks:

e Clearly, Part L of G, , depends on z only and Part R depends on y
only.
Lemma 12.18. Let x and y be %—bit strings given to Alice and Bob'. Then
graph G := Grozgoy € G has diameter 2 if and only if x = y.

Proof. By Lemma 12.16 and the construction of G, there is neither edge (l;,1})
nor edge (r;,7}) in E if and only if x # y. Applying Lemma 12.4 yields: G has

diameter 2 if and only if x = y. O

Theorem 12.19. Any distributed algorithm A that decides whether a graph G

has diameter 2 might need ) (% + D) time.

1Thats why we need that n — 2 can be divided by 8.
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Proof. Computing D for sure needs time (D). It remains to prove 2 (%)

Assume there is a distributed algorithm A that decides whether the diameter of
a graph is 2 in time o(n/logn). When Alice and Bob are given %—bit inputs z
and y, they can simulate A to decide whether « = y as follows: Alice constructs
Part L of G oz 30y and Bob constructs Part R. As we remarked, both parts
are independent of each other such that Part L can be constructed by Alice
without knowing y and Part R can be constructed by Bob without knowing x.
Furthermore, Gy oz 50y has diameter 2 if and only if = y (Lemma 12.18.)
Now Alice and Bob simulate the distributed algorithm A round by round:
In the first round, they determine which messages the nodes in their part of
G would send. Then they use their communication channel to exchange all
2(2¢ + 1) € O(n) messages that would be sent over edges between Part L and
Part R in this round while executing A on G. Based on this Alice and Bob
determine which messages would be sent in round two and so on. For each
round simulated by Alice and Bob, they need to communicate ©(nlogn) bits:
possibly ©(logn) bits for each of ©(n) messages. Since A makes a decision after
o(n/logn) rounds, this yields a total communication of o(n?) bits. On the other
hand, Lemma 12.14 states that to decide whether x equals y, Alice and Bob

need to communicate at least (%) = (n?) bits. A contradiction. O
Remarks:

e Until now we only considered deterministic algorithms. Can one do better
using randomness?

Algorithm 47 Randomized evaluation of EQ.
1: Alice and Bob use public randomness. That is they both have access to the
same random bit string z € {0, 1}*

2: Alice sends bit a := Ziem x; - z; mod 2 to Bob
3: Bob sends bit b := Ziem y; - z; mod 2 to Alice
4: if a # b then

5:  we know x # y

6: end if

Lemma 12.20. If x #£ y, Algorithm 47 discovers x # y with probability at least
1/2.

Proof. Note that if x = y we have a = b for sure.

If ¢ # y, Algorithm 47 may not reveal inequality. For instance, for k = 2,
ifx =01,y =10 and z = 11 we get a = b = 1. In general, let I be the set of
indices where x; # y;, i.e. I:={i € [k] | x; # y;}. Since x # y, we know that
|I| > 0. We have

la —b| = ZZ" (mod 2),
il
and since all z; with ¢ € I are random, we get that a # b with probability at
least 1/2. O
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Remarks:

e By excluding the vector z = 0* we can even get a discovery probability
strictly larger than 1/2.

e Repeating the Algorithm 47 with different random strings z, the error
probability can be reduced arbitrarily.

e Does this imply that there is a fast randomized algorithm to determine
the diameter? Unfortunately not!

e Sometimes public randomness is not available, but private randomness is.
Here Alice has her own random string and Bob has his own random string.
A modified version of Algorithm 47 also works with private randomness
at the cost of the runtime.

e One can prove an Q(n/logn) lower bound for any randomized distributed
algorithm that computes the diameter. To do so one considers the dis-
jointness function DISJ instead of equality. Here, Alice is given a subset
X C [k] and and Bob is given a subset Y C [k] and they need to determine
whether Y N X = (. (X and Y can be represented by k-bit strings z,y.)
The reduction is similar as the one presented above but uses graph Gz y
instead of G oz 50y. However, the lower bound for the randomized com-
munication complexity of DISJ is more involved than the lower bound for

CC(EQ).

e Since one can compute the diameter given a solution for APSP, an
Q(n/logn) lower bound for APSP is implied. As such, our simple Al-
gorithm 46 is almost optimal!

e Many prominent functions allow for a low communication complexity. For
instance, CC(PARITY) = 2. What is the Hamming distance (number of
different entries) of two strings? It is known that CC(HAM > d) = Q(d).
Also, CC/(decide whether “HAM > k/24+Vk” or “HAM < k/2—k") =
Q(k), even when using randomness. This problem is known as the Gap-
Hamming-Distance.

e Lower bounds in communication complexity have many applications.
Apart from getting lower bounds in distributed computing, one can also
get lower bounds regarding circuit depth or query times for static data
structures.

e In the distributed setting with limited bandwidth we showed that com-
puting the diameter has about the same complexity as computing all pairs
shortest paths. In contrast, in sequential computing, it is a major open
problem whether the diameter can be computed faster than all pairs short-
est paths. No nontrivial lower bounds are known, only that (n?) steps
are needed — partly due to the fact that there can be n? edges/distances in
a graph. On the other hand the currently best algorithm uses fast matrix
multiplication and terminates after O(n2-3727) steps.
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CHAPTER 12. HARD PROBLEMS

12.4 Distributed Complexity Theory

We conclude this chapter with a short overview on the main complexity classes
of distributed message passing algorithms. Given a network with n nodes and
diameter D, we managed to establish a rich selection of upper and lower bounds
regarding how much time it takes to solve or approximate a problem. Currently
we know five main distributed complexity classes:

Strictly local problems can be solved in constant O(1) time, e.g. a constant
approximation of a dominating set in a planar graph.

Just a little bit slower are problems that can be solved in log-star O(log™ n)
time, e.g. many combinatorial optimization problems in special graph
classes such as growth bounded graphs. 3-coloring a ring takes O(log* n).

A large body of problems is polylogarithmic (or pseudo-local), in the sense
that they seem to be strictly local but are not, as they need O(polylog n)
time, e.g. the maximal independent set problem.

There are problems which are global and need O(D) time, e.g. to count
the number of nodes in the network.

Finally there are problems which need polynomial O(poly n) time, even if
the diameter D is a constant, e.g. computing the diameter of the network.



Chapter 13

Stabilization

A large branch of research in distributed computing deals with fault-tolerance.
Being able to tolerate a considerable fraction of failing or even maliciously be-
having (“Byzantine”) nodes while trying to reach consensus (on e.g. the output
of a function) among the nodes that work properly is crucial for building reli-
able systems. However, consensus protocols require that a majority of the nodes
remains non-faulty all the time.

Can we design a distributed system that survives transient (short-lived)
failures, even if all nodes are temporarily failing? In other words, can we build
a distributed system that repairs itself?

13.1 Self-Stabilization

Definition 13.1 (Self-Stabilization). A distributed system is self-stabilizing if,
starting from an arbitrary state, it is guaranteed to converge to a legitimate
state. If the system is in a legitimate state, it is guaranteed to remain there,
provided that no further faults happen. A state is legitimate if the state satisfies
the specifications of the distributed system.

Remarks:

e What kind of transient failures can we tolerate? An adversary can crash
nodes, or make nodes behave Byzantine. Indeed, temporarily an adversary
can do harm in even worse ways, e.g. by corrupting the volatile memory
of a node (without the node noticing — not unlike the movie Memento),
or by corrupting messages on the fly (without anybody noticing). How-
ever, as all failures are transient, eventually all nodes must work correctly
again, that is, crashed nodes get resurrected, Byzantine nodes stop being
malicious, messages are being delivered reliably, and the memory of the
nodes is secure.

e Clearly, the read only memory (ROM) must be taboo at all times for
the adversary. No system can repair itself if the program code itself or
constants are corrupted. The adversary can only corrupt the variables in
the volatile random access memory (RAM).
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Definition 13.2 (Time Complexity). The time complexity of a self-stabilizing
system is the time that passed after the last (transient) failure until the system
has converged to a legitimate state again, staying legitimate.

Remarks:

o Self-stabilization enables a distributed system to recover from a transient
fault regardless of its nature. A self-stabilizing system does not have to
be initialized as it eventually (after convergence) will behave correctly.

e One of the first self-stabilizing algorithms was Dijkstra’s token ring net-
work. A token ring is an early form of a local area network where nodes
are arranged in a ring, communicating by a token. The system is correct
if there is exactly one token in the ring. Let’s have a look at a simple
solution. Given an oriented ring, we simply call the clockwise neighbor
parent (p), and the counterclockwise neighbor child (¢). Also, there is a
leader node vg. Every node v is in a state S(v) € {0,1,...,n}, perpetually
informing its child about its state. The token is implicitly passed on by
nodes switching state. Upon noticing a change of the parent state S(p),
node v executes the following code:

Algorithm 48 Self-stabilizing Token Ring
1: if v = vg then

2:  if S(v) = S(p) then

3 S(v) == 8(v)+1 (mod n)
4:  end if

5: else

6 S(v) = S(p)

7: end if

Theorem 13.3. Algorithm 48 stabilizes correctly.

Proof: As long as some nodes or edges are faulty, anything can happen. In self-
stabilization, we only consider the system after it is correct (at time ¢g, however
starting in an arbitrary state).

Every node apart from leader vy will always attain the state of its parent.
It may happen that one node after the other will learn the current state of the
leader. In this case the system stabilizes after the leader increases its state at
most n time units after time ¢¢. It may however be that the leader increases its
state even if the system is not stable, e.g. because its parent or parent’s parent
accidentally had the same state at time ¢g.

The leader will increase its state possibly multiple times without reaching
stability, however, at some point the leader will reach state s, a state that no
other node had at time ty. (Since there are n nodes and n states, this will
eventually happen.) At this point the system must stabilize because the leader
cannot push for s + 1 (mod n) until every node (including its parent) has s.

After stabilization, there will always be only one node changing its state,
i.e., the system remains in a legitimate state.

O
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Remarks:

e Although one might think the time complexity of the algorithm is quite

bad, it is asymptotically optimal.

e It can be a lot of fun designing self-stabilizing algorithms. Let us try

to build a system, where the nodes organize themselves as a maximal
independent set (MIS, Chapter 8):

Algorithm 49 Self-stabilizing MIS

Require: Node IDs
Every node v executes the following code:
1: do atomically

2:
3:
4:

Leave MIS if a neighbor with a larger ID is in the MIS
Join MIS if no neighbor with larger ID joins MIS
Send (node ID, MIS or not MIS) to all neighbors

5. end do

Remarks:

Note that the main idea of Algorithm 49 is from Algorithm 34, Chapter 8.

As long as some nodes are faulty, anything can happen: Faulty nodes may
for instance decide to join the MIS, but report to their neighbors that
they did not join the MIS. Similarly messages may be corrupted during
transport. As soon as the system (nodes, messages) is correct, however,
the system will converge to a MIS. (The arguments are the same as in
Chapter 8).

Self-stabilizing algorithms always run in an infinite loop, because transient
failures can hit the system at any time. Without the infinite loop, an ad-
versary can always corrupt the solution “after” the algorithm terminated.

The problem of Algorithm 49 is its time complexity, which may be linear
in the number of nodes. This is not very exciting. We need something
better! Since Algorithm 49 was just the self-stabilizing variant of the slow
MIS Algorithm 34, maybe we can hope to “self-stabilize” some of our fast
algorithms from Chapter 87

Yes, we can! Indeed there is a general transformation that takes any
local algorithm (efficient but not fault-tolerant) and turns it into a self-
stabilizing algorithm, keeping the same level of efficiency and efficacy. We
present the general transformation below.

Theorem 13.4 (Transformation). We are given a deterministic local algorithm
A that computes a solution of a given problem in k synchronous communication
rounds. Using our transformation, we get a self-stabilizing system with time
complexity k. In other words, if the adversary does not corrupt the system for k
time units, the solution is stable. In addition, if the adversary does not corrupt
any node or message closer than distance k from a node u, node u will be stable.
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Proof: In the proof, we present the transformation. First, however, we need to
be more formal about the deterministic local algorithm A. In A, each node of
the network computes its decision in k& phases. In phase ¢, node u computes
its local variables according to its local variables and received messages of the
earlier phases. Then node w sends its messages of phase ¢ to its neighbors.
Finally node u receives the messages of phase i from its neighbors. The set of
local variables of node u in phase i is given by Lf. (In the very first phase, node
u initializes its local variables with L1.) The message sent from node u to node
v in phase 7 is denoted by mfw. Since the algorithm A is deterministic, node u
can compute its local variables L and messages mfm of phase ¢ from its state
of earlier phases, by simply applying functions f; and f,,. In particular,

Li = fL(u,LZ_l,miTul), for 7 > 1, and (13.1)
mi, = fm(u,v, L), fori>1. (13.2)

The self-stabilizing algorithm needs to simulate all the k phases of the local
algorithm A in parallel. Each node u stores its local variables L., ..., L as well
as all messages received mi,u, cee m’,f’u in two tables in RAM. For simplicity,
each node u also stores all the sent messages mi,*, .. ,mﬁ’* in a third table. If
a message or a local variable for a particular phase is unknown, the entry in the
table will be marked with a special value L (“unknown”). Initially, all entries
in the table are L.

Clearly, in the self-stabilizing model, an adversary can choose to change
table values at all times, and even reset these values to L. Our self-stabilizing
algorithm needs to constantly work against this adversary. In particular, each

node u runs these two procedures constantly:

e For all neighbors: Send each neighbor v a message containing the complete
row of messages of algorithm A, that is, send the vector (mj, ,,,...,mk ) to
neighbor v. Similarly, if neighbor u receives such a vector from neighbor
v, then neighbor u replaces neighbor v’s row in the table of incoming
messages by the received vector (mj ..., mb ).

u’ s My

e Because of the adversary, node u must constantly recompute its local
variables (including the initialization) and outgoing message vectors using
Functions (13.1) and (13.2) respectively.

The proof is by induction. Let N%(u) be the i-neighborhood of node u (that
is, all nodes within distance i of node u). We assume that the adversary has not
corrupted any node in N*(u) since time to. At time to all nodes in N*(u) will
check and correct their initialization. Following Equation (13.2), at time ¢y all
nodes in N*(u) will send the correct message entry for the first round (m. ) to
all neighbors. Asynchronous messages take at most 1 time unit to be received
at a destination. Hence, using the induction with Equations (13.1) and (13.2)
it follows that at time o + i, all nodes in N*~%(u) have received the correct
messages mly*, o ,mi* Consequently, at time ¢y + k node u has received all
messages of local algorithm A correctly, and will compute the same result value
as in A. O
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Remarks:

e Using our transformation (also known as “local checking”), designing self-
stabilizing algorithms just turned from art to craft.

e As we have seen, many local algorithms are randomized. This brings two
additional problems. Firstly, one may not exactly know how long the
algorithm will take. This is not really a problem since we can simply
send around all the messages needed, until the algorithm is finished. The
transformation of Theorem 13.4 works also if nodes just send all messages
that are not L. Secondly, we must be careful about the adversary. In
particular we need to restrict the adversary such that a node can produce
a reproducible sufficiently long string of random bits. This can be achieved
by storing the sufficiently long string along with the program code in the
read only memory (ROM). Alternatively, the algorithm might not store
the random bit string in its ROM, but only the seed for a random bit
generator. We need this in order to keep the adversary from reshuffling
random bits until the bits become “bad”, and the expected (or with high
probability) efficacy or efficiency guarantees of the original local algorithm
A cannot be guaranteed anymore.

e Since most local algorithms have only a few communication rounds, and
only exchange small messages, the memory overhead of the transformation
is usually bearable. In addition, information can often be compressed in a
suitable way so that for many algorithms message size will remain polylog-
arithmic. For example, the information of the fast MIS algorithm (Algo-
rithm 36) consists of a series of random values (one for each round), plus
two boolean values per round. These boolean values represent whether the
node joins the MIS, or whether a neighbor of the node joins the MIS. The
order of the values tells in which round a decision is made. Indeed, the
series of random bits can even be compressed just into the random seed
value, and the neighbors can compute the random values of each round
themselves.

e There is hope that our transformation as well gives good algorithms for
mobile networks, that is for networks where the topology of the network
may change. Indeed, for deterministic local approximation algorithms,
this is true: If the adversary does not change the topology of a node’s
k-neighborhood in time k, the solution will locally be stable again.

e For randomized local approximation algorithms however, this is not that
simple. Assume for example, that we have a randomized local algorithm
for the dominating set problem. An adversary can constantly switch the
topology of the network, until it finds a topology for which the random
bits (which are not really random because these random bits are in ROM)
give a solution with a bad approximation ratio. By defining a weaker
adversarial model, we can fix this problem. Essentially, the adversary
needs to be oblivious, in the sense that it cannot see the solution. Then it
will not be possible for the adversary to restart the random computation
if the solution is “too good”.
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e Self-stabilization is the original approach, and self-organization may be the
general theme, but new buzzwords pop up every now and then, e.g. self-
configuration, self-management, self-regulation, self-repairing, self-heal-
ing, self-optimization, self-adaptivity, or self-protection. Generally all
these are summarized as “self-*”. One computing giant coined the term
“autonomic computing” to reflect the trend of self-managing distributed
systems.

13.2 Advanced Stabilization

We finish the chapter with a non-trivial example beyond self-stabilization, show-
ing the beauty and potential of the area: In a small town, every evening each
citizen calls all his (or her) friends, asking them whether they will vote for the
Democratic or the Republican party at the next election.! In our town citizens
listen to their friends, and everybody re-chooses his or her affiliation according
to the majority of friends.? Is this process going to “stabilize” (in one way or
another)?

Remarks:
e Is eventually everybody voting for the same party? No.
o Will each citizen eventually stay with the same party? No.

o Will citizens that stayed with the same party for some time, stay with
that party forever? No.

e And if their friends also constantly root for the same party? No.
e Will this beast stabilize at all?!? Yes!

Theorem 13.5 (Dems & Reps). Fventually every citizen is rooting for the
same party every other day.

Proof: To prove that the opinions eventually become fixed or cycle every other
day, think of each friendship between citizens as a pair of (directed) edges, one
in each direction. Let us say an edge is currently “bad” if the party of the
advising friend differs from the next-day’s party of the advised friend. In other
words, the edge is bad if the advised friend did not follow the advisor’s opinion
(which means that the advisor was in the minority). An edge that is not bad,
is “good”.

Consider the out-edges of citizen ¢ on day ¢, during which (say) ¢ roots for
the Democrats. Assume that during day ¢, g out-edges of ¢ are good, and b
out-edges are bad. Note that g + b is the degree of ¢. Since g out-edges were
good, g friends of ¢ root for the Democrats on day ¢+ 1. Likewise, b friends of ¢
root for the Republicans on day ¢+ 1. In other words, on the evening of day ¢+ 1
citizen ¢ will receive g recommendations for Democrats, and b for Republicans.
We distinguish two cases:

1We are in the US, and as we know from The Simpsons, you “throw your vote away” if
you vote for somebody else. As a consequence our example has two parties only.
2 Assume for the sake of simplicity that everybody has an odd number of friends.
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e g > b: In this case, citizen ¢ will still (or again) root for the Democrats on
day t + 2. Note that in this case, on day t + 1, exactly ¢ in-edges of ¢ are
good, and exactly b in-edges are bad. In other words, the number of bad
out-edges on day t is exactly the number of bad in-edges on day ¢ + 1.

e g < b: In this case, citizen ¢ will root for the Republicans on day ¢ + 2.
Note that in this case, on day t + 1, exactly b in-edges of ¢ are good, and
exactly g in-edges are bad. In other words, the number of bad out-edges
on day t was exactly the number of good in-edges on day ¢ + 1 (and vice
versa). Since citizen ¢ is rooting for the Republicans, the number of bad
out-edges on day t was strictly larger than the number of bad in-edges on
day t + 1.

We account for every edge as out-edge on day t, and as in-edge on day ¢ + 1.
Since in both of the above cases the number of bad edges does not increase, the
total number of bad edges B cannot increase. In fact, if any node switches its
party from day t to t + 2, we know that the total number of bad edges strictly
decreases. But B cannot decrease forever. Once B hits its minimum, the system
stabilizes in the sense that every citizen will either stick with his or her party
forever or flip-flop every day — the system “stabilizes”. O

Remarks:

e The model can be generalized considerably by, for example, adding weights
to vertices (meaning some citizens’ opinions are more important than
others), allowing loops (citizens who consider their own current opinions
as well), allowing tie-breaking mechanisms, and even allowing different
thresholds for party changes.

e How long does it take until the system stabilizes?

e Some of you may be reminded of Conway’s Game of Life: We are given an
infinite two-dimensional grid of cells, each of which is in one of two possible
states, dead or alive. Every cell interacts with its eight neighbors. In each
round, the following transitions occur: Any live cell with fewer than two
live neighbors dies, as if caused by lonelyness. Any live cell with more
than three live neighbors dies, as if by overcrowding. Any live cell with
two or three live neighbors lives on to the next generation. Any dead cell
with exactly three live neighbors is “born” and becomes a live cell. The
initial pattern constitutes the “seed” of the system. The first generation
is created by applying the above rules simultaneously to every cell in the
seed, births and deaths happen simultaneously, and the discrete moment
at which this happens is sometimes called a tick. (In other words, each
generation is a pure function of the one before.) The rules continue to
be applied repeatedly to create further generations. John Conway figured
that these rules were enough to generate interesting situations, including
“breeders” with create “guns” which in turn create “gliders”. As such Life
in some sense answers an old question by John von Neumann, whether
there can be a simple machine that can build copies of itself. In fact Life
is Turing complete, that is, as powerful as any computer.
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Figure 13.1: A “glider gun”...

Figure 13.2: ...in action.



Chapter 14

Wireless Protocols

Wireless communication was one of the major success stories of the last decades.
Today, different wireless standards such as wireless local area networks (WLAN)
are omnipresent. In some sense, from a distributed computing viewpoint wireless
networks are quite simple, as they cannot form arbitrary network topologies.
Simplistic models of wireless networks include geometric graph models such as
the so-called unit disk graph. Modern models are more robust: The network
graph is restricted, e.g., the total number of neighbors of a node which are not
adjacent is likely to be small. This observation is hard to capture with purely
geometric models, and motivates more advanced network connectivity models
such as bounded growth or bounded independence.

However, on the other hand, wireless communication is also more difficult
than standard message passing, as for instance nodes are not able to transmit a
different message to each neighbor at the same time. And if two neighbors are
transmitting at the same time, they interfere, and a node may not be able to
decipher anything.

In this chapter we deal with the distributed computing principles of wireless
communication: We make the simplifying assumption that all n» nodes are in the
communication range of each other, i.e., the network graph is a clique. Nodes
share a synchronous time, in each time slot a node can decide to either transmit
or receive (or sleep). However, two or more nodes transmitting in a time slot will
cause interference. Transmitting nodes are never aware if there is interference
because they cannot simultaneously transmit and receive.

14.1 Basics

The basic communication protocol in wireless networks is the medium access
control (MAC) protocol. Unfortunately it is difficult to claim that one MAC
protocol is better than another, because it all depends on the parameters, such as
the network topology, the channel characteristics, or the traffic pattern. When
it comes to the principles of wireless protocols, we usually want to achieve
much simpler goals. One basic and important question is the following: How
long does it take until one node can transmit successfully, without interference?
This question is often called the wireless leader election problem (Chapter 2),
with the node transmitting alone being the leader.
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Clearly, we can use node IDs to solve leader election, e.g., a node with ID 3
transmits in time slot ¢. However, this may be incredibly slow. There are better
deterministic solutions, but by and large the best and simplest algorithms are
randomized.

Throughout this chapter, we use a random variable X to denote the number
of nodes transmitting in a given slot.

Algorithm 50 Slotted Aloha
: Every node v executes the following code:
repeat
transmit with probability 1/n
until one node has transmitted alone

oW

Theorem 14.1. Using Algorithm 50 allows one node to transmit alone (become
a leader) after expected time e.

Proof. The probability for success, i.e., only one node transmitting is

1 """ 1
ne—- (1 — > -,
n n e
where the last approximation is a result from Theorem 14.23 for sufficiently

large n. Hence, if we repeat this process e times, we can expect one success.
O

R
=
>
I
I

Remarks:

e The origin of the name is the ALOHAnet which was developed at the
University of Hawaii.

e How does the leader know that it is the leader? Omne simple solution is
a “distributed acknowledgment”. The nodes just continue Algorithm 50,
including the ID of the the leader in their transmission. So the leader
learns that is the leader.

e One more problem?! Indeed, node v which managed to transmit the ac-
knowledgment (alone) is the only remaining node which does not know
that the leader knows that it is the leader. We can fix this by having the
leader acknowledge v’s successful acknowledgment.

e One can also imagine an unslotted time model. In this model two mes-
sages which overlap partially will interfere and no message is received. As
everything in this chapter, Algorithm 50 also works in an unslotted time
model, with a factor 2 penalty, i.e., the probability for a successful trans-
mission will drop from % to i Essentially, each slot is divided into ¢ small
time slots with ¢ — oo and the nodes start a new t-slot long transmission
with probability ﬁ
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14.2 Initialization

Sometimes we want the n nodes to have the IDs {1,2,...,n}. This process is
called initialization. Initialization can for instance be used to allow the nodes
to transmit one by one without any interference.

14.2.1 Non-Uniform Initialization

Theorem 14.2. If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 50. The leader gets
the next free number and afterwards leaves the process. We know that this
works with probability 1/e. The expected time to finish is hence e - n.

O

Remarks:

e But this algorithm requires that the nodes know n in order to give them
IDs from 1,...,n! For a more realistic scenario we need a uniform algo-
rithm, i.e, the nodes do not know n.

14.2.2 Uniform Initialization with CD

Definition 14.3 (Collision Detection, CD). Two or more nodes transmitting
concurrently is called interference. In a system with collision detection, a re-
cewer can distinguish interference from nobody transmitting. In a system with-
out collision detection, a receiver cannot distinguish the two cases.

Let us first present a high-level idea. The set of nodes is recursively par-
titioned into two non-empty sets, similarly to a binary tree. This is repeated
recursively until a set contains only one node which gets the next free ID. Af-
terwards, the algorithm continues with the next set.

Algorithm 51 RandomizedSplit(d)

1: Every node v executes the following code:
2: repeat
3: if b, = b then
choose 7 uniformly at random from {0, 1}
in the next two time slots:
transmit in slot r, and listen in other slot
end if
until there was at least 1 transmission in both slots
if b, = b then
10: b, := b, + r {append bit r to bitstring b, }
11: end if
12: if some node u transmitted alone in slot r € {0,1} then
13:  node u gets ID m {and becomes passive}
14: m:=m+1
15: else
16:  RandomizedSplit(b + r)
17: end if
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Remarks:

e In line 8 the transmitting nodes need to know if they were the only one
transmitting. Since we have enough time, we can do a leader election first
and use a similar trick as before to ensure this.

e In line 12 we check separately for r =0 and r = 1

Algorithm 52 Initialization with Collision Detection
1: Every node v executes the following code:
2: global variable m := 0 {number of already identified nodes}
3: local variable b, := ¢ {current bitstring of node v, initially empty}
4: RandomizedSplit(*’)

Theorem 14.4. Algorithm 52 correctly initializes the set of nodes in O(n).

Proof. A successful split is defined as a split in which both subsets are non-
empty. We know that there are exactly n — 1 successful splits because we have
a binary tree with n leaves and n — 1 inner nodes. Let us now calculate the
probability for creating two non-empty sets from a set of size k > 2 as

1 1 1
Pl<X <k-1=1-PrX =0~ PriX =K =1- 5 - 5 > _.
Thus, in expectation we need O(n) splits. O

Remarks:

e What if we do not have collision detection?

14.2.3 Uniform Initialization without CD

Let us assume that we have a special node ¢ (leader) and let S denote the set
of nodes which want to transmit. We now split every time slot from before into
two time slots and use the leader to help us distinguish between silence and
noise. In the first slot every node from the set S transmits, in the second slot
the nodes in S U {¢} transmit. This gives the nodes sufficient information to
distinguish the different cases (see Table 14.1).

nodes in S transmit | nodes in S U {¢} transmit
S| =0 no yes
S| =1, ={¢} yes yes
[S]=1,S5 # {¢} yes no
[S| > 2 no no

Table 14.1: Using a leader to distinguish between noise and silence: no repre-
sents noise/silence, yes represents a successful transmission.
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Remarks:

As such, Algorithm 52 works also without CD, with only a factor 2 over-
head.

More generally, a leader immediately brings CD to any protocol.

This protocol has an important real life application, for instance when
checking out a shopping cart with items which have RFID tags.

But how do we determine such a leader? And how long does it take until
we are “sure” that we have one? Let us repeat the notion of with high
probability.

14.3 Leader Election

14.3.1 With High Probability

Definition 14.5 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p > 1 —
1/n°, where ¢ is a constant. The constant ¢ may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Theorem 14.6. Algorithm 50 elects a leader w.h.p. in O(logn) time slots.

Proof. The probability for not electing a leader after ¢ - logn time slots, i.e.,
clogn slots without a successful transmission is

1\°¢ Inn 1 ec’'Inn 1 1
1—- =(1-- S oo T o
e e enn'c nc

Remarks:

What about uniform algorithms, i.e. the number of nodes n is not known?

14.3.2 Uniform Leader Election

Algorithm 53 Uniform leader election

1: Every node v executes the following code:
2: for k=1,2,3,...do

3:
4
5
6:
7
8

9:

for i =1 to ck do
transmit with probability p := 1/2F
if node v was the only node which transmitted then
v becomes the leader
break
end if
end for

10: end for
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Theorem 14.7. By using Algorithm 53 it is possible to elect a leader w.h.p. in
O(log® n) time slots if n is not known.

Proof. Let us briefly describe the algorithm. The nodes transmit with prob-
ability p = 27" for ck time slots for k = 1,2,.... At first p will be too high
and hence there will be a lot of interference. But after logn phases, we have
k =~ logn and thus the nodes transmit with probability ~ % For simplicity’s

sake, let us assume that n is a power of 2. Using the approach outlined above,

we know that after log n iterations, we have p = % Theorem 14.6 yields that we
can elect a leader w.h.p. in O(logn) slots. Since we have to try logn estimates
until k ~ n, the total runtime is O(log®n). O
Remarks:

e Note that our proposed algorithm has not used collision detection. Can we
solve leader election faster in a uniform setting with collision detection?

14.3.3 Fast Leader Election with CD

Algorithm 54 Uniform leader election with CD
1: Every node v executes the following code:
2: repeat
3:  transmit with probability %

4:  if at least one node transmitted then

5 all nodes that did not transmit quit the protocol
6: end if

7: until one node transmits alone

Theorem 14.8. With collision detection we can elect a leader using Algorithm
54 w.h.p. in O(logn) time slots.

Proof. The number of active nodes k is monotonically decreasing and always
greater than 1 which yields the correctness. A slot is called successful if at most
half the active nodes transmit. We can assume that k& > 2 since otherwise we
would have already elected a leader. We can calculate the probability that a
time slot is successful as

k 1 1 1 1
Prl<X < [2]]2 5 Pr[X =0] = 5 o > 1
Since the number of active nodes at least halves in every successful time slot,
log n successful time slots are sufficient to elect a leader. Now let Y be a random
variable which counts the number of successful time slots after 8 - ¢ - logn time
slots. The expected value is E[Y] > 8- ¢-logn - i > 2 -logn. Since all those
time slots are independent from each other, we can apply a Chernoff bound (see
Theorem 14.22) with § = % which states

PrlY < (1-0)E[Y]] < e~ T BN = o~ f2eclogn <n” ¢

for any constant a.
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Remarks:

e Can we be even faster?

14.3.4 Even Faster Leader Election with CD

Let us first briefly describe an algorithm for this. In the first phase the nodes
transmit with probability 1/220, 1/221 , 1/222, ... until no node transmits. This
yields a first approximation on the number of nodes. Afterwards, a binary search
is performed to determine an even better approximation of n. Finally, the third
phase finds a constant approximation of n using a biased random walk. The
algorithm stops in any case as soon as only one node is transmitting which will
become the leader.

Algorithm 55 Fast uniform leader election
i:=1
repeat

1:=2-1

transmit with probability 1/2°
until no node transmitted
{End of Phase 1}
=22
ui=2
while [+ 1 < u do

j=THT |
10:  transmit with probability 1/27
11:  if no node transmitted then

12: u=7j
13:  else

14: l:=3j
15:  end if

16: end while
{End of Phase 2}
17: k:=u
18: repeat
19:  transmit with probability 1/2%
20:  if no node transmitted then

21: k=k—-1
22: else

23: k=k+1
24:  end if

25: until exactly one node transmitted

Lemma 14.9. If j > logn + loglogn, then Pr(X > 1] < —

— logn "
Proof. The nodes transmit with probability 1/27 < 1/2lesntloglogn — nlggn.
The expected number of nodes transmitting is F[X] = nlggn. Using Markov’s

inequality (see Theorem 14.21) yields Pr[X > 1] < Pr[X > E[X]-logn] <
1
O

logn*
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Lemma 14.10. If j <logn —loglogn, then P[X = 0] < %
Proof. The nodes transmit with probability 1/27 < 1/2legn—loglogn — 10%.
Hence, the probability for a silent time slot is (1 — 10%)" = ¢ logn — % O

Corollary 14.11. Ifi > 2logn, then Pr[X > 1] <

— logn "

Proof. This follows from Lemma 14.9 since the deviation in this corollary is
even larger. O

Corollary 14.12. Ifi < logn, then P[X =0] < .

Proof. This follows from Lemma 14.10 since the deviation in this corollary is
even larger. O

Lemma 14.13. Let v be such that 271 < n < 2%, d.e., vlogn. Ifk >v+2,
then Pr(X > 1] < I
Proof. Markov’s inequality yields

2k 2k
PrlX >1] = Pr [X > nE[X]} < Pr[X > 27E[X]] < Pr[X > 4FE[X]] <

|

Lemma 14.14. If k <v — 2, then P[X =0] < 1.

Proof. A similar analysis is possible to upper bound the probability that a
transmission fails if our estimate is too small. We know that k& < v —2 and thus

_n 7211—1 1

Pr[XzO]z(l—) <e T <e F <e?< o

4
O

Lemma 14.15. I[fv—2 < k < v+ 2, then the probability that exactly one node
transmits is constant.

Proof. The transmission probability is p = 2@71@(1) = ©(1/n), and the lemma
follows with a slightly adapted version of Theorem 14.1.
O

Lemma 14.16. With probability 1 — loén we find a leader in phase 3 in
O(loglogn) time.

Proof. For any k, because of Lemmas 14.13 and 14.14, the random walk of the
third phase is biased towards the good area. One can show that in O(loglogn)
steps one gets Q(loglogn) good transmissions. Let Y denote the number of
times exactly one node transmitted. With Lemma 14.15 we obtain E[Y] =
Q(loglogn). Now a direct application of a Chernoff bound (see Theorem 14.22)

yields that these transmissions elect a leader with probability 1 — 101?. O

Theorem 14.17. The Algorithm 55 elects a leader with probability of at least

1- % in time O(loglogn).
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Proof. From Corollary 14.11 we know that after O(loglogn) time slots, the
first phase terminates. Since we perform a binary search on an interval of size
O(logn), the second phase also takes at most O(loglogn) time slots. For the
third phase we know that O(loglogn) slots are sufficient to elect a leader with
probability 1 — @ by Lemma 14.16. Thus, the total runtime is O(loglogn).
Now we can combine the results. We know that the error probability for
every time slot in the first two phases is at most @. Using a union bound (see
Theorem 14.20), we can upper bound the probability that no error occurred by
loglogn “ 45, we know that after phase 2 our estimate is at most log log n away

logn
from logn with probability of at least 1 — lolgol%. Hence, we can apply Lemma
14.16 and thus successfully elect a leader with probability of at least 1 — l(’lgol%
(again using a union bound) in time O(loglogn).
O

Remarks:

e Tightening this analysis a bit more, one can elect a leader with probability

1-— @ in time loglogn + o(loglogn).

e Can we be even faster?

14.3.5 Lower Bound

Theorem 14.18. Any uniform protocol that elects a leader with probability of

at least 1 — loén must run for at least loglogn time slots.

Proof. The probability that exactly one node transmits is
PriX=1l=n-p-(1-p)" L

Consider now a system with only 2 nodes. The probability that exactly one
transmits is at most

1

Prix=1=p-(1-p <3
Thus, after loglogn time slots the probability that a leader was elected is at
most 1—%10glogn:1—loén. [

14.3.6 Uniform Asynchronous Wakeup without CD

Until now we have assumed that all nodes start the algorithm in the same time
slot. But what happens if this is not the case? How long does it take to elect
a leader if we want a uniform and anonymous (nodes do not have an identifier
and thus cannot base their decision on it) algorithm?

Theorem 14.19. If nodes wake up in an arbitrary (worst-case) way, any al-
gorithm may take Q(n/logn) time slots until a single node can successfully
transmit.
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Proof. Nodes must transmit at some point, or they will surely never successfully
transmit. With a uniform protocol, every node executes the same code. We
focus on the first slot where nodes may transmit. No matter what the protocol
is, this happens with probability p. Since the protocol is uniform, p must be a
constant, independent of n.

The adversary wakes up w = €Inn nodes in each time slot with some con-
stant c¢. All nodes woken up in the first time slot will transmit with probability
p. We study the event E; that exactly one of them transmits in that first time
slot. Using the inequality (1 +¢/n)" < e' from Lemma 14.23 we get

PrEy]=w-p-(1-p)""

clnn—p)

clnn (1 —p)%(

—cln+p

IN

clnn-e

=clnn-n"%"

=n"°-0(logn)
11
ne—1 - ne'’

In other words, w.h.p. that time slot will not be successful. Since the nodes
cannot distinguish noise from silence, the same argument applies to every set of
nodes which wakes up. Let E, be the event that all n/w time slots will not be
successful. Using the inequality 1 —p < (1 — p/k)* from Lemma 14.24 we get

— >1-

1 O(n/logn) 1
Pr|E,] = (1 — Pr(E)V" > (1 — )

In other words, w.h.p. it takes more than n/w time slots until some node can

transmit alone.
O

14.4 Useful Formulas

In this chapter we have used several inequalities in our proofs. For simplicity’s
sake we list all of them in this section.

Theorem 14.20. Boole’s inequality or union bound: For a countable set of
events Fv, Es, Fs, ..., we have

PT[U Ej) < Z PrlE;).

Theorem 14.21. Markov’s inequality: If X is any random variable and a > 0,
then
E[X]

Pt
Theorem 14.22. Chernoff bound: Let Y1,...,Y, be a independent Bernoulli
random variables let Y := ZZ Y;. For any 0 <6 <1 it holds

Pr{|X[>d <

PrlY < (1 - 8)E[Y]] < e~ BIY]
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and for § >0
Pr[Y > (1+6) - E[Y]] < e~ 5B
Theorem 14.23. We have

12 t\"
et (1_> S(1+) Set
n n

for alln € N, |t| < n. Note that

t n
lim (1 + ) = el
n— o0 n

Theorem 14.24. For all p,k such that 0 <p <1 and k > 1 we have

1-p< (l—p/k)k.
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Chapter 15

All-to-All Communication

In the previous chapters, we have mostly considered communication on a par-
ticular graph G = (V, E), where any two nodes v and v can only communicate
directly if {u,v} € E. This is however not always the best way to model a net-
work. In the Internet, for example, every machine (node) is able to “directly”
communicate with every other machine via a series of routers. If every node in
a network can communicate directly with all other nodes, many problems can
be solved easily. For example, assume we have n servers, each hosting an ar-
bitrary number of (numeric) elements. If all servers are interested in obtaining
the maximum of all elements, all servers can simultaneously, i.e., in one com-
munication round, send their local maximum element to all other servers. Once
these maxima are received, each server knows the global maximum.

Note that we can again use graph theory to model this all-to-all commu-
nication scenario: The communication graph is simply the complete graph
K= (V, (g)) If each node can send its entire local state in a single message,
then all problems could be solved in 1 communication round in this model!
Since allowing unbounded messages is not realistic in most practical scenarios,
we restrict the message size: Assuming that all node identifiers and all other
variables in the system (such as the numeric elements in the example above)
can be described using O(logn) bits, each node can only send a message of size
O(logn) bits to all other nodes. In other words, only a constant number of
identifiers (and elements) can be packed into a single message. Thus, in this
model, the limiting factor is the amount of information that can be transmitted
in a fixed amount of time. This is fundamentally different from the model we
studied before where nodes are restricted to local information about the network
graph.

In this chapter, we study one particular problem in this model, the com-
putation of a minimum spanning tree (MST), i.e., we will again look at the
construction of a basic network structure. Let us first review the definition of a
minimum spanning tree from Chapter 4. We assume that each edge e is assigned
a weight we.

Definition 15.1 (MST). Given a weighted graph G = (V,E,w). The MST
of G is a spanning tree T minimizing w(T), where w(H) = )y we for any
subgraph H C G.

137
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Remarks:

n

e Since we have a complete communication graph, the graph has (2

in the beginning.

) edges

e As in Chapter 4, we assume that no two edges of the graph have the same
weight. Recall that assumption ensures that the MST is unique. Recall
also that this simplification is not essential as one can always break ties
by using the IDs of adjacent vertices.

For simplicity, we assume that we have a synchronous model (as we are
only interested in the time complexity, our algorithm can be made asynchro-
nous using synchronizer « at no additional cost (cf. Chapter 11). As usual, in
every round, every node can send a (potentially different) message to each of
its neighbors. In particular, note that the message delay is 1 for every edge e
independent of the weight w.. As mentioned before, every message can contain
a constant number of node IDs and edge weights (and O(log n) additional bits).

There is a considerable amount of work on distributed MST construction.
Table 15.1 lists the most important results for various network diameters D.
As we have a complete communication network in our model, we focus only on
D=1.

’ Upper Bounds

Authors
Kutten, Peleg

Graph Class
General Graphs

Time Complexity
O(D + v/n-log* n)

Diameter 2 O(logn) Lotker, Patt-Shamir,
Peleg
Diameter 1 O(loglogn) Lotker, Patt-Shamir,

Pavlov, Peleg

H Lower Bounds H

Graph Class

Time Complexity

Authors

Diameter Q(logn)

Q(D + v/n/log® n)

Peleg, Rubinovich

Diameter 4

Q(n'/?/Vlogn)

Lotker, Patt-Shamir,

Peleg
Diameter 3 Q(n'/*/\/logn) Lotker, Patt-Shamir,
Peleg

Table 15.1: Time complexity of distributed MST construction

Remarks:

e Note that for graphs of arbitrary diameter D, if there are no bounds on the
number of messages sent, on the message size, and on the amount of local
computations, there is a straightforward generic algorithm to compute an
MST in time D: In every round, every node sends its complete state to all
its neighbors. After D rounds, every node knows the whole graph and can
compute any graph structure locally without any further communication.
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e In general, the diameter D is also an obvious lower bound for the time
needed to compute an MST. In a weighted ring, e.g., it takes time D to
find the heaviest edge. In fact, on the ring, time D is required to compute
any spanning tree.

In this chapter, we are not concerned with lower bounds, we want to give an
algorithm that computes the MST as quickly as possible instead! We again use
the following lemma that is proven in Chapter 4.

Lemma 15.2. For a given graph G let T be an MST, and let T' C T be a
subgraph (also known as a fragment) of the MST. Edge e = (u,v) is an outgoing
edge of T" if u € T" andv & T' (or vice versa). Let the minimum weight outgoing
edge of the fragment T' be the so-called blue edge b(T"). Then T Ub(T') C T.

Lemma 15.2 leads to a straightforward distributed MST algorithm. We start
with an empty graph, i.e., every node is a fragment of the MST. The algorithm
consists of phases. In every phase, we add the blue edge b(T”) of every existing
fragment 7" to the MST. Algorithm 56 shows how the described simple MST
construction can be carried out in a network of diameter 1.

Algorithm 56 Simple MST Construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: while v has neighbor v in different fragment do

3:  find lowest-weight edge e between v and a node v in a different fragment
4:  send e to all nodes

5:  determine blue edges of all fragments

6

7

add blue edges of all fragments to MST, update fragments
end while

Theorem 15.3. On a complete graph, Algorithm 56 computes an MST in time
O(logn).

Proof. The algorithm is correct because of Lemma 15.2. Every node only needs
to send a single message to all its neighbors in every phase (line 4). All other
computations can be done locally without sending other messages. In particular,
the blue edge of a given fragment is the lightest edge sent by any node of that
fragment. Because every node always knows the current MST (and all current
fragments), lines 5 and 6 can be performed locally.

In every phase, every fragment connects to at least one other fragment. The
minimum fragment size therefore at least doubles in every phase. Thus, the
number of phases is at most log, n. O

Remarks:

e Algorithm 56 does essentially the same thing as the GHS algorithm (Algo-
rithm 15) discussed in Chapter 4. Because we now have a complete graph
and thus every node can communicate with every other node, things be-
come simpler (and also much faster).

e Algorithm 56 does not make use of the fact that a node can send different
messages to different nodes. Making use of this possibility will allow us to
significantly reduce the running time of the algorithm.
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Our goal is now to improve Algorithm 56. We assume that every node has
a unique identifier. By sending its own identifier to all other nodes, every node
knows the identifiers of all other nodes after one round. Let ¢(F') be the node
with the smallest identifier in fragment F. We call ¢(F) the leader of fragment
F. In order to improve the running time of Algorithm 56, we need to be able
to connect every fragment to more than one other fragment in a single phase.
Algorithm 57 shows how the nodes can learn about the k = |F'| lightest outgoing
edges of each fragment F (in constant time!).

Algorithm 57 Fast MST construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: repeat
F := fragment of v;
VEF' # F, compute min-weight edge eps connecting v to F’
VF' +# F, send ep: to £(F)
if v ={(F) then

VF' # F, determine min-weight edge ep p/ between F' and F’

k:=|F]

E(F) := k lightest edges among ep p for F' # F
10: send send each edge in E(F) to a different node in F

// for simplicity assume that v also sends an edge to itself

© % N>R W

11:  end if

12:  send edge received from ¢(F') to all nodes

13:  // the following operations are performed locally by each node
14:  E’ := edges received by other nodes

15:  AddEdges(F’)

16: until all nodes are in the same fragment

Given this set E’ of edges, each node can locally decide which edges can
safely be added to the constructed tree by calling the subroutine AddEdges
(Algorithm 58). Note that the set of received edges E’ in line 14 is the same for
all nodes. Since all nodes know all current fragments, all nodes add the same
set of edges!

Algorithm 58 uses the lightest outgoing edge that connects two fragments (to
a larger super-fragment) as long as it is safe to add this edge, i.e., as long as it is
clear that this edge is a blue edge. A (super-)fragment that has outgoing edges
in £’ that are surely blue edges is called safe. As we will see, a super-fragment
F is safe if all the original fragments that make up F are still incident to at least
one edge in E’ that has not yet been considered. In order to determine whether
all lightest outgoing edges in E’ that are incident to a certain fragment F' have
been processed, a counter ¢(F) is maintained (see line 2). If an edge incident
to two (distinct) fragments F; and Fj is processed, both ¢(F;) and c¢(F;) are
decremented by 1 (see Line 8).

An edge connecting two distinct super-fragments 7 and F” is added if at
least one of the two super-fragments is safe. In this case, the two super-fragments
are merged into one (new) super-fragment. The new super-fragment is safe if
and only if both original super-fragements are safe and the processed edge e is
not the last edge in E’ incident to any of the two fragments F; and Fj that are
incident to e, i.e., both counters ¢(F;) and c¢(F;) are still positive (see line 12).
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The considered edge e may not be added for one of two reasons. It is possible
that both 7' and F” are not safe. Since a super-fragment cannot become safe
again, nothing has to be done in this case. The second reason is that 7' = F”.
In this case, this single fragment may become unsafe if e reduced either ¢(F;)
or ¢(F}) to zero (see line 18).

Algorithm 58 AddEdges(E’): Given the set of edges E’, determine which
edges are added to the MST
1: Let Fi,..., F, be the initial fragments

2: VF; € {F1,..., F.},c(F;) := # incident edges in E’

3: Let Fy := Fy,...,F, := F, be the initial super-fragments

4: VF;, € {F1,..., Fp}, safe(F;) = true

5. while £/ # 0 do

6: e := lightest edge in E’ between the original fragments F; and Fj
7. E :=FE'"\{e}

8: C(Fl) = C(FZ) -1, C(Fj) = C(Fj) —1

9:  if e connects super-fragments 7' # F" and (safe(F’) or safe(F")) then
10 add e to MST

11: merge F' and F” into one super-fragment Fj,¢.,

12: if safe(F’) and safe(F") and c¢(F;) > 0 and ¢(F;) > 0 then
13: safe(Fnew) := true

14: else

15: safe(Fnew) := false

16: end if

17:  else if 7/ = F" and (c(F;) =0 or ¢(F;) =0) then

18: safe(F') = false

19:  end if
20: end while

Lemma 15.4. The algorithm only adds MST edges.

Proof. We have to prove that at the time we add an edge e in line 9 of Al-
gorithm 58, e is the blue edge of some (super-)fragment. By definition, e is
the lightest edge that has not been considered and that connects two distinct
super-fragments F’ and F”. Since e is added, we know that either safe(F’)
or safe(F") is true. Without loss of generality, assume that F' is safe. Ac-
cording to the definition of safe, this means that from each fragment F' in the
super-fragment F’' we know at least the lightest outgoing edge, which implies
that we also know the lightest outgoing edge, i.e., the blue edge, of F’. Since e
is the lightest edge that connects any two super-fragments, it must hold that e
is exactly the blue edge of F'. Thus, whenever an edge is added, it is an MST
edge. O

Theorem 15.5. Algorithm 57 computes an MST in time O(loglogn).

Proof. Let By denote the size of the smallest fragment after phase k of Algo-
rithm 57. We first show that every fragment merges with at least [y other
fragments in each phase. Since the size of each fragment after phase k is at
least (8 by definition, we get that the size of each fragment after phase k + 1 is
at least B (Br + 1). Assume that a fragment F', consisting of at least Sj nodes,
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does not merge with 5 other fragments in phase k + 1 for any k£ > 0. Note
that F' cannot be safe because being safe implies that there is at least one edge
in E’ that has not been considered yet and that is the blue edge of F. Hence,
the phase cannot be completed in this case. On the other hand, if F' is not
safe, then at least one of its sub-fragments has used up all its 5 edges to other
fragments. However, such an edge is either used to merge two fragments or it
must have been dropped because the two fragments already belong to the same
fragment because another edge connected them (in the same phase). In either
case, we get that any fragment, and in particular F', must merge with at least
B other fragments.

Given that the minimum fragment size grows (quickly) in each phase and
that only edges belonging to the MST are added according to Lemma 15.4, we
conclude that the algorithm correctly computes the MST. The fact that

Br+1 = Be(Br + 1)

implies that gy > 227" for any k > 1. Therefore after 1+log, log, n phases, the
minimum fragment size is n and thus all nodes are in the same fragment. [

Remarks:

o It is not known whether the O(loglogn) time complexity of Algorithm 57
is optimal. In fact, no lower bounds are known for the MST construction
on graphs of diameter 1 and 2.

o Algorithm 57 makes use of the fact that it is possible to send different
messages to different nodes. If we assume that every node always has to
send the same message to all other nodes, Algorithm 56 is the best that
is known. Also for this simpler case, no lower bound is known.
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Consensus

This chapter is the first to deal with fault tolerance, one of the most fundamental
aspects of distributed computing. Indeed, in contrast to a system with a single
processor, having a distributed system may permit getting away with failures
and malfunctions of parts of the system. This line of research was motivated
by the basic question whether, e.g., putting two (or three?) computers into
the cockpit of a plane will make the plane more reliable. Clearly fault-tolerance
often comes at a price, as having more than one decision-maker often complicates
decision-making.

16.1 Impossibility of Consensus

Imagine two cautious generals who want to attack a common enemy.! Their
only means of communication are messengers. Unfortunately, the route of these
messengers leads through hostile enemy territory, so there is a chance that a
messenger does not make it. Only if both generals attack at the very same time
the enemy can be defeated. Can we devise a protocol such that the two generals
can agree on an attack time? Clearly general A can send a message to general
B asking to e.g. “attack at 6am”. However, general A cannot be sure that
this message will make it, so she asks for a confirmation. The problem is that
general B getting the message cannot be sure that her confirmation will reach
general A. If the confirmation message indeed is destroyed, general A cannot
distinguish this case from the case where general B did not even get the attack
information. So, to be safe, general B herself will ask for a confirmation of her
confirmation. Taking again the position of general A we can similarly derive
that she cannot be sure unless she also gets a confirmation of the confirmation
of the confirmation. ..

To make things worse, also different approaches do not seem to work. In
fact it can be shown that this two generals problem cannot be solved, in other
words, there is no finite protocol which lets the two generals find consensus! To
show this, we need to be a bit more formal:

LTf you don’t fancy the martial tone of this classic example, feel free to think about some-
thing else, for instance two friends trying to make plans for dinner over instant messaging
software, or two lecturers sharing the teaching load of a course trying to figure out who is in
charge of the next lecture.
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Definition 16.1 (Consensus). Consider a distributed system with n nodes.
Each node i has an input x;. A solution of the consensus problem must guar-
antee the following:

o Termination: Every non-faulty node eventually decides.
o Agreement: All non-faulty nodes decide on the same value.

o Validity: The decided value must be the input of at least one node.

Remarks:

e The validity condition infers that if all nodes have the same input x, then
the nodes need to decide on x. Please note that consensus is not demo-
cratic, it may well be that the nodes decide on an input value promoted
by a small minority.

e Whether consensus is possible depends on many parameters of the dis-
tributed system, in particular whether the system is synchronous or asyn-
chronous, or what “faulty” means. In the following we study some simple
variants to get a feeling for the problem.

e Consensus is a powerful primitive. With established consensus almost
everything can be computed in a distributed system, e.g. a leader.

Given a distributed asynchronous message passing system with n > 2 nodes.
All nodes can communicate directly with all other nodes, simply by sending a
message. In other words, the communication graph is the complete graph. Can
the consensus problem be solved? Yes!

Algorithm 59 Trivial Consensus

Each node has an input
We have a leader, e.g. the node with the highest ID
if node v is the leader then
the leader shall simply decide on its own input
else
send message to the leader asking for its input
wait for answer message by leader, and decide on that
end if

Remarks:

e This algorithm is quite simple, and at first sight seems to work perfectly,
as all three consensus conditions of Definition 16.1 are fulfilled.

e However, the algorithm is not fault-tolerant at all. If the leader crashes
before being able to answer all requests, there are nodes which will never
terminate, and hence violate the termination condition. Is there a deter-
ministic protocol that can achieve consensus in an asynchronous system,
even in the presence of failures? Let’s first try something slightly different.
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Definition 16.2 (Reliable Broadcast). Consider an asynchronous distributed
system with n nodes that may crash. Any two nodes can exchange messages,
i.e., the communication graph is complete. We want node v to send a reliable
broadcast to the n — 1 other nodes. Reliable means that either nobody receives
the message, or everybody receives the message.

Remarks:
e This seems to be quite similar to consensus, right?

e The main problem is that the sender may crash while sending the message
to the n — 1 other nodes such that some of them get the message, and the
others not. We need a technique that deals with this case:

Algorithm 60 Reliable Broadcast
1: if node v is the source of message m then

2 send message m to each of the n — 1 other nodes

3:  upon receiving m from any other node: broadcast succeeded!
4: else

5:  upon receiving message m for the first time:

6 send message m to each of the n — 1 other nodes

7. end if

Theorem 16.3. Algorithm 60 solves reliable broadcast as in Definition 16.2.

Proof. First we should note that we do not care about nodes that crash during
the execution: whether or not they receive the message is irrelevant since they
crashed anyway. If a single non-faulty node u received the message (no matter
how, it may be that it received it through a path of crashed nodes) all non-
faulty nodes will receive the message through u. If no non-faulty node receives
the message, we are fine as well! O

Remarks:

e While it is clear that we could also solve reliable broadcast by means of a
consensus protocol (first send message, then agree on having received it),
the opposite seems more tricky!

e No wonder, it cannot be done!! For the presentation of this impossibility
result we use the read/write shared memory model introduced in Chapter
6. Not only was the proof originally conceived in the shared memory
model, it is also cleaner.

Definition 16.4 (Univalent, Bivalent). A distributed system is called x-valent
if the outcome of a computation will be x. An x-valent system is also called
univalent. If, depending on the execution, still more than one possible outcome
is feasible, the system is called multivalent. If exactly two outcomes are still
possible, the system is called bivalent.

Theorem 16.5. In an asynchronous shared memory system with n > 1 nodes,
and node crash failures (but no memory failures!) consensus as in Definition
16.1 cannot be achieved by a deterministic algorithm.
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Proof. Let us simplify the proof by setting n = 2. We have processes u and v,
with input values z, and z,. Further let the input values be binary, either 0 or
1.

First we have to make sure that there are input values such that initially the
system is bivalent. If z, = 0 and z, = 0 the system is 0-valent, because
of the validity condition (Definition 16.1). Even in the case where process
v immediately crashes the system remains 0-valent. Similarly if both input
values are 1 and process v immediately crashes the system is 1-valent. If z, =
0 and z, = 1 and v immediately crashes, process u cannot distinguish from
both having input 0, equivalently if v immediately crashes, process v cannot
distinguish from both having 1, hence the system is bivalent!

In order to solve consensus an algorithm needs to terminate. All non-faulty
processes need to decide on the same value = (agreement condition of Definition
16.1), in other words, at some instant this value x must be known to the system
as a whole, meaning that no matter what the execution is, the system will be
z-valent. In other words, the system needs to change from bivalent to univalent.
We may ask ourselves what can cause this change in a deterministic asynchro-
nous shared memory algorithm? We need an element of non-determinism; if
everything happens deterministically the system would have been z-valent even
after initialization which we proved to be impossible already.

The only nondeterministic elements in our model are the asynchrony of ac-
cessing the memory and crashing processes. Initially and after every memory
access, each process decides what to do next: Read or write a memory cell or
terminate with a decision. We take control of the scheduling, either choosing
which request is served next or making a process crash. Now we hope for a crit-
ical bivalent state with more than one memory request, and depending which
memory request is served next the system is going to switch from bivalent to
univalent. More concretely, if process w is being served next the system is going
x-valent, if process v (with v # w) is served next the system is going y-valent
(with y # ). We have several cases:

e If the operations of processes u and v target different memory cells, pro-
cesses cannot distinguish which memory request was executed first. Hence
the local states of the processes are identical after serving both operations
and the state cannot be critical.

e The same argument holds if both processes want to read the same register.
Nobody can distinguish which read was first, and the state cannot be
critical.

e If process u reads memory cell ¢, and process v writes memory cell c,
the scheduler first executes u’s read. Now process v cannot distinguish
whether that read of u did or did not happen before its write. If it did
happen, v should decide on z, if it did not happen, v should decide y. But
since v does not know which one is true, it needs to be informed about
it by u. We prevent this by making u crash. Thus the state can only be
univalent if v never decides, violating the termination condition!

e Also if both processes write the same memory cell we have the same issue,
since the second writer will immediately overwrite the first writer, and
hence the second writer cannot know whether the first write happened at
all. Again, the state cannot be critical.
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Hence, if we are unlucky (and in a worst case, we are!) there is no critical
state. In other words, the system will remain bivalent forever, and consensus is
impossible. O

Remarks:

e The proof presented is a variant of a proof by Michael Fischer, Nancy
Lynch and Michael Paterson, a classic result in distributed computing.
The proof was motivated by the problem of committing transactions in
distributed database systems, but is sufficiently general that it directly
implies the impossibility of a number of related problems, including con-
sensus. The proof also is pretty robust with regard to different communi-
cation models.

e The FLP (Fischer, Lynch, Paterson) paper won the 2001 PODC Influential
Paper Award, which later was renamed Dijkstra Prize.

e One might argue that FLP destroys all the fun in distributed computing,
as it makes so many things impossible! For instance, it seems impossible to
have a distributed database where the nodes can reach consensus whether
to commit a transaction or not.

e So are two-phase-commit (2PC), three-phase-commit (3PC) et al. wrong?!
No, not really, but sometimes they just do not commit!

e What about turning some other knobs of the model? Can we have con-
sensus in a message passing system? No. Can we have consensus in
synchronous systems? Yes, even if all but one node fails!

e Can we have consensus in synchronous systems even if some nodes are
mischievous, and behave much worse than simply crashing, and send for
example contradicting information to different nodes? This is known as
Byzantine behavior. Yes, this is also possible, as long as the Byzantine
nodes are strictly less than a third of all the nodes. This was shown
by Marshall Pease, Robert Shostak, and Leslie Lamport in 1980. Their
work won the 2005 Dijkstra Prize, and is one of the cornerstones not only
in distributed computing but also information security. Indeed this work
was motivated by the “fault-tolerance in planes” example. Pease, Shostak,
and Lamport noticed that the computers they were given to implement a
fault-tolerant fighter plane at times behaved strangely. Before crashing,
these computers would start behaving quite randomly, sending out weird
messages. At some point Pease et al. decided that a malicious behavior
model would be the most appropriate to be on the safe side. Being able to
allow strictly less than a third Byzantine nodes is quite counterintuitive;
even today many systems are built with three copies. In light of the result
of Pease et al. this is a serious mistake! If you want to be tolerant against
a single Byzantine machine, you need four copies, not three!

e Finally, FLP only prohibits deterministic algorithms! So can we solve
consensus if we use randomization? The answer again is yes! We will
study this in the remainder of this chapter.



148 CHAPTER 16. CONSENSUS

16.2 Randomized Consensus

Can we solve consensus if we allow randomization? Yes. The following algorithm
solves Consensus even in face of Byzantine errors, i.e., malicious behavior of
some of the nodes. To simplify arguments we assume that at most f nodes will
fail (crash) with n > 9f, and that we only solve binary consensus, that is, the
input values are 0 and 1. The general idea is that nodes try to push their input
value; if other nodes do not follow they will try to push one of the suggested
values randomly. The full algorithm is in Algorithm 61.

Algorithm 61 Randomized Consensus
1: node u starts with input bit z,, € {0,1}, round:=1.
2: broadcast BID(z,,, round)
3: repeat
4:  wait for n — f BID messages of current round

5. if at least n — f messages have value x then

6: T, := x; decide on =

7. else if at least n — 2f messages have value z then

8: Ty =T

9: else

10: choose x,, randomly, with Pr{z, = 0] = Pr[z, =1 =1/2
11:  end if

12:  round := round + 1
13:  broadcast BID(z,, round)
14: until decided

Theorem 16.6. Algorithm 61 solves consensus as in Definition 16.1 even if up
to f < n/9 nodes exhibit Byzantine failures.

Proof. First note that it is not a problem to wait for n — f BID messages in
line 4 since at most f nodes are corrupt. If all nodes have the same input value
x, then all (except the f Byzantine nodes) will bid for the same value z. Thus,
every node receives at least n — 2f BID messages containing z, deciding on x
in the first round already. We have consensus!

If the nodes have different (binary) input values the validity condition be-
comes trivial as any result is fine. What about agreement? Let u be one of
the first nodes to decide on value z (in line 6). It may happen that due to
asynchronicity another node v received messages from a different subset of the
nodes, however, at most f senders may be different. Taking into account that
Byzantine nodes may lie, i.e., send different BIDs to different nodes, f addi-
tional BID messages received by v may differ from those received by u. Since
node u had at least n — 2f BID messages with value x, node v has at least
n — 4f BID messages with x. Hence every correct node will bid for = in the
next round, and then decide on zx.

So we only need to worry about termination! We already have seen that
as soon as one correct node terminates (in line 6) everybody terminates in the
next round. So what are the chances that some node u terminates in line 67
Well, if push comes to shove we can still hope that all correct nodes randomly
propose the same value (in line 10). Maybe there are some nodes not choosing
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at random (i.e., entering line 8), but they unanimously propose either 0 or 1:
For the sake of contradiction, assume that both 0 and 1 are proposed in line
8. This means that both 0 and 1 had been proposed by at least n — 5f correct
nodes. In other words, we have a total of 2(n —5f) + f =n+ (n—9f) >n
nodes. Contradiction!

Thus, at worst all n— f correct nodes need to randomly choose the same bit,
which happens with probability 2~ (=) If so, all will send the same BID, and
the algorithm terminates. So the expected running time is smaller than 2. [

Remarks:

e The presentation of Algorithm 61 is a simplification of the typical presen-
tation in text books.

e What about an algorithm that allows for crashes only, but can manage
more failures? Good news! Slightly changing the presented algorithm will
do that for f < n/4! See exercises.

e Unfortunately Algorithm 61 is still impractical as termination is awfully
slow. In expectation about the same number of nodes choose 1 or 0 in line
10. Termination would be much more efficient if all nodes chose the same
random value in line 10! So why not simply replacing line 10 with “choose
T, := 17717 The problem is that a majority of nodes may see a majority
of 0 bids, hence proposing 0 in the next round. Without randomization it
is impossible to get out of this equilibrium. (Moreover, this approach is
deterministic, contradicting Theorem 16.5.)

e The idea is to replace line 10 with a subroutine where all nodes compute
a so-called shared (or common, or global) coin. A shared coin is a random
variable that is 0 with constant probability and 1 with constant probabil-
ity. Sounds like magic, but it isn’t! We assume at most f < n/3 nodes
may crash:

Algorithm 62 Shared Coin (code for node u)
set local coin x, := 0 with probability 1/n, else x, :=1
use reliable broadcast to tell everybody about your local coin x,,
memorize all coins you get from others in the set ¢,
wait for exactly n — f coins
copy these coins into your local set s, (but keep learning coins)
use reliable broadcast to tell everybody about your set s,
wait for exactly n — f sets s, (which satisfy s, C ¢,)
if seen at least a single coin 0 then
return 0
else
return 1
. end if

—
M 22

Theorem 16.7. If f < n/3 nodes crash, Algorithm 62 implements a shared
coin.
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Proof. Since only f nodes may crash, each node sees at least n — f coins and
sets in lines 4 and 7, respectively. Thanks to the reliable broadcast protocol
each node eventually sees all the coins in the other sets. In other words, the
algorithm terminates in O(1) time.

The general idea is that a third of the coins are being seen by everybody. If
there is a 0 among these coins, everybody will see that 0. If not, chances are
high that there is no 0 at alll Here are the details:

Let u be the first node to terminate (satisfy line 7). For u we draw a matrix
of all the seen sets s, (columns) and all coins ¢, seen by node u (rows). Here is
an example withn=7,f=2n— f=5:

| [ s1[ss[s5 [ s6]sr]
a [ X[ X[ XXX
o X | X | X
| X | X [ X | X[ X
s | X | X | X X
6| X | X | X | X
cr | X | X X | X

Note that there are exactly (n — f)? X’s in this matrix as node u has seen
exactly n — f sets (line 7) each having exactly n — f coins (lines 4 to 6). We
need two little helper lemmas:

Lemma 16.8. There are at least f + 1 rows that have at least f +1 X's

Proof. Assume (for the sake of contradiction) that this is not the case. Then
at most f rows have all n — f X’s, and all other rows (at most n — f) have at
most f X’s. In other words, the number of total X’s is bounded by

(X[ <f-(n=f)+n—f)-f=2f(n—-1)

Using n > 3f we get n — f > 2f, and hence | X| < 2f(n — f) < (n — f)2. This
is a contradiction to having exactly (n — f)? X’s! O

Lemma 16.9. Let W be the set of local coins for which the corresponding matrix
row has more than f X’s. All local coins in the set W are seen by all nodes that
terminate.

Proof. Let w € W be such a local coin. By definition of W we know that w is
in at least f + 1 seen sets. Since each node must see at least n — f seen sets
before terminating, each node has seen at least one of these sets, and hence w
is seen by everybody terminating. O

Continuing the proof of Theorem 16.7: With probability (1—1/n)" ~ 1/e ~ .37
all nodes chose their local coin equal to 1, and 1 is decided. With probability
1 — (1 —1/n)!"I there is at least one 0 in W. With Lemma 16.8 we know that
|W| =~ n/3, hence the probability is about 1 — (1 —1/n)"/3 ~ 1—(1/e)'/3 ~ .28.
With Lemma 16.9 this 0 is seen by all, and hence everybody will decide 0. So
indeed we have a shared coin. O

Theorem 16.10. Plugging Algorithm 62 into Algorithm 61 we get a randomized
consensus algorithm which finishes in a constant expected number of rounds.
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Remarks:

e If some nodes go into line 8 of Algorithm 61 the others still have a constant
probability to guess the same shared coin.

e For crash failures there exists an improved constant expected time algo-
rithm which tolerates f failures with 2f < n.

e For Byzantine failures there exists a constant expected time algorithm
which tolerates f failures with 3f < n.

e Similar algorithms have been proposed for the shared memory model.
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Chapter 17

Multi-Core Computing

This chapter is based on the article“Distributed Computing and the Multicore
Revolution” by Maurice Herlihy and Victor Luchangco. Thanks!

17.1 Introduction

In the near future, nearly all computers, ranging from supercomputers to cell
phones, will be multiprocessors. It is harder and harder to increase processor
clock speed (the chips overheat), but easier and easier to cram more processor
cores onto a chip (thanks to Moore’s Law). As a result, uniprocessors are giving
way to dual-cores, dual-cores to quad-cores, and so on.

However, there is a problem: Except for “embarrassingly parallel” applica-
tions, no one really knows how to exploit lots of cores.

17.1.1 The Current State of Concurrent Programming

In today’s programming practice, programmers typically rely on combinations
of locks and conditions, such as monitors, to prevent concurrent access by differ-
ent threads to the same shared data. While this approach allows programmers
to treat sections of code as “atomic”, and thus simplifies reasoning about inter-
actions, it suffers from a number of severe shortcomings.

e Programmers must decide between coarse-grained locking, in which a large
data structure is protected by a single lock (usually implemented using
operations such as test-and-set or compare and swap(CAS)), and fine-
grained locking, in which a lock is associated with each component of
the data structure. Coarse-grained locking is simple, but permits little or
no concurrency, thereby preventing the program from exploiting multiple
processing cores. By contrast, fine-grained locking is substantially more
complicated because of the need to ensure that threads acquire all nec-
essary locks (and only those, for good performance), and because of the
need to avoid deadlocks, when acquiring multiple locks. The decision is
further complicated by the fact that the best engineering solution may be

153
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Algorithm  Move(Element e, Table from, Table to)

if from.find(e) then
to.insert(e)
from.delete(e)
end if

platform-dependent, varying with different machine sizes, workloads, and
so on, making it difficult to write code that is both scalable and portable.

e Conventional locking provides poor support for code composition and
reuse. For example, consider a lock-based hash table that provides atomic
insert and delete methods. Ideally, it should be easy to move an ele-
ment atomically from one table to another, but this kind of composition
simply does not work. If the table methods synchronize internally, then
there is no way to acquire and hold both locks simultaneously. If the ta-
bles export their locks, then modularity and safety are compromised. For
a concrete example, assume we have two hash tables T7 and 75 storing
integers and using internal locks only. Every number is only inserted into
a table, if it is not already present, i.e., multiple occurrences are not per-
mitted. We want to atomically move elements using two threads between
the tables using Algorithm Move. If we have external locks, we must pay
attention to avoid deadlocks etc.

Table T1 is contains 1 and T2 is empty

Time Thread 1 Thread 2
Move(1,T1,T2) Move(1,T2,T1)

1 T1.find(1) delayed

2 T2.insert(1)

3 delayed T2.find(1)

4 T1.insert(1)

5 T1.delete(1) T2.delete(1)

both T1 and T2 are empty

e Such basic issues as the mapping from locks to data, that is, which locks
protect which data, and the order in which locks must be acquired and
released, are all based on convention, and violations are notoriously diffi-
cult to detect and debug. For these and other reasons, today’s software
practices make lock-based concurrent programs (too) difficult to develop,
debug, understand, and maintain.

The research community has addressed this issue for more than fifteen
years by developing nonblocking algorithms for stacks, queues and other
data structures. These algorithms are subtle and difficult. For example,
the pseudo code of a delete operation for a (non-blocking) linked list,
recently presented at a conference, contains more than 30 lines of code,
whereas a delete procedure for a (non-concurrent, used only by one thread)
linked list can be written with 5 lines of code.
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17.2 Transactional Memory

Recently the transactional memory programming paradigm has gained mo-
mentum as an alternative to locks in concurrent programming. Rather than
using locks to give the illusion of atomicity by preventing concurrent access
to shared data with transactional memory, programmers designate regions of
code as transactions, and the system guarantees that such code appears to exe-
cute atomically. A transaction that cannot complete is aborted—its effects are
discarded—and may be retried. Transactions have been used to build large,
complex and reliable database systems for over thirty years; with transactional
memory, researchers hope to translate that success to multiprocessor systems.
The underlying system may use locks or nonblocking algorithms to implement
transactions, but the complexity is hidden from the application programmer.
Proposals exist for implementing transactional memory in hardware, in soft-
ware, and in schemes that mix hardware and software. This area is growing at
a fast pace.
More formally, a transaction is defined as follows:

Definition 17.1. A transaction in transactional memory is characterized by
three properties (ACI):

o Atomicity: Fither a transaction finishes all its operations or mo operation
has an effect on the system.

o (Consistency: All objects are in a valid state before and after the transac-
tion.

e Isolation: Other transactions cannot access or see data in an intermediate
(possibly invalid) state of any parallel running transaction.

Remarks:

e For database transactions there exists a fourth property called durability:
If a transaction has completed, its changes are permanent, i.e., even if the
system crashes, the changes can be recovered. In principle, it would be
feasible to demand the same thing for transactional memory, however this
would mean that we had to use slow hard discs instead of fast DRAM
chips...

e Although transactional memory is a promising approach for concurrent
programming, it is not a panacea, and in any case, transactional programs
will need to interact with other (legacy) code, which may use locks or other
means to control concurrency.

e One major challenge for the adoption of transactional memory is that
it has no universally accepted specification. It is not clear yet how to
interact with I/O and system calls should be dealt with. For instance,
imagine you print a news article. The printer job is part of a transaction.
After printing half the page, the transaction gets aborted. Thus the work
(printing) is lost. Clearly, this behavior is not acceptable.

e From a theory perspective we also face a number of open problems. For
example:
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— System model: An abstract model for a (shared-memory) multipro-
cessor is needed that properly accounts for performance. In the 80s,
the PRAM model became a standard model for parallel computation,
and the research community developed many elegant parallel algo-
rithms for this model. Unfortunately, PRAM assume that processors
are synchronous, and that memory can be accessed only by read and
write operations. Modern computer architectures are asynchronous
and they provide additional operations such as test-and-set. Also,
PRAM did not model the effects of contention nor the performance
implications of multilevel caching, assuming instead a flat memory
with uniform-cost access. More realistic models have been proposed
to account for the costs of interprocess communication, but these
models still assume synchronous processors with only read and write
access to memory.

— How to resolve conflicts? Many transactional memory implemen-
tations “optimistically” execute transactions in parallel. Conflicts
between two transactions intending to modify the same memory at
the same time are resolved by a contention manager. A contention
manager decides whether a transaction continues, waits or is aborted.
The contention management policy of a transactional memory imple-
mentation can have a profound effect on its performance, and even
its progress guarantees.

17.3 Contention Management

After the previous introduction of transactional memory, we look at different
aspects of contention management from a theoretical perspective. We start with
a description of the model.

We are given a set of transactions S := {T1, ..., T,,} sharing up to s resources
(such as memory cells) that are executed on n threads. Each thread runs on a
separate processor/core Pi, ..., P,. For simplicity, each transaction T consists
of a sequence of tr operations. An operation requires one time unit and can
be a write access of a resource R or some arbitrary computation.! To perform
a write, the written resource must be acquired exclusively (i.e., locked) before
the access. Additionally, a transaction must store the original value of a written
resource. Only one transaction can lock a resource at a time. If a transaction
A attempts to acquire a resource, locked by B, then A and B face a conflict.
If multiple transactions concurrently attempt to acquire an unlocked resource,
an arbitrary transaction A will get the resource and the others face a conflict
with A. A contention manager decides how to resolve a conflict. Contention
managers operate in a distributed fashion, that is to say, a separate instance of a
contention manager is available for every thread and they operate independently.
Contention managers can make a transaction wait (arbitrarily long) or abort.
An aborted transaction undoes all its changes to resources and frees all locks
before restarting. Freeing locks and undoing the changes can be done with one
operation. A successful transaction finishes with a commit and simply frees

1Reads are of course also possible, but are not critical because they do not attempt to
modify data.
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all locks. A contention manager is unaware of (potential) future conflicts of a
transaction. The required resources might also change at any time.
The quality of a contention manager is characterized by different properties:

e Throughput: How long does it take until all transactions have committed?
How good is our algorithm compared to an optimal?

Definition 17.2. The makespan of the set S of transactions is the time
interval from the start of the first transaction until all transactions have
committed.

Definition 17.3. The competitive ratio is the ratio of the makespans of
the algorithm to analyze and an optimal algorithm.

e Progress guarantees: Is the system deadlock-free? Does every transaction
commit in finite time?

Definition 17.4. We look at three levels of progress guarantees:

— wait freedom (strongest guarantee): all threads make progress in a
finite number of steps

— lock freedom: one thread makes progress in a finite number of steps

— obstruction freedom (weakest): one thread makes progress in a finite
number of steps in absence of contention (no other threads compete
for the same resources)

Remarks:

e For the analysis we assume an oblivious adversary. It knows the algorithm
to analyze and chooses/modifies the operations of transactions arbitrarily.
However, the adversary does not know the random choices (of a random-
ized algorithm). The optimal algorithm knows all decisions of the adver-
sary, i.e. first the adversary must say how transactions look like and then
the optimal algorithm, having full knowledge of all transaction, computes
an (optimal) schedule.

e Wait freedom implies lock freedom. Lock freedom implies obstruction
freedom.

e Here is an example to illustrate how needed resources change over time:
Consider a dynamic data structure such as a balanced tree. If a transaction
attempts to insert an element, it must modify a (parent) node and maybe
it also has to do some rotations to rebalance the tree. Depending on the
elements of the tree, which change over time, it might modify different
objects. For a concrete example, assume that the root node of a binary
tree has value 4 and the root has a (left) child of value 2. If a transaction
A inserts value 5, it must modify the pointer to the right child of the root
node with value 4. Thus it locks the root node. If A gets aborted by a
transaction B, which deletes the node with value 4 and commits, it will
attempt to lock the new root node with value 2 after its restart.
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e There are also systems, where resources are not locked exclusively. All
we need is a correct serialization (analogous to transactions in database
systems). Thus a transaction might speculatively use the current value
of a resource, modified by an uncommitted transaction. However, these
systems must track dependencies to ensure the ACI properties of a trans-
action (see Definition 17.1). For instance, assume a transaction 7; incre-
ments variable x from 1 to 2. Then transaction 75 might access x and
assume its correct value is 2. If 77 commits everything is fine and the
ACI properties are ensured, but if 77 aborts, T» must abort too, since
otherwise the atomicity property was violated.

e In practice, the number of concurrent transactions might be much larger
than the number of processors. However, performance may decrease with
an increasing number of threads since there is time wasted to switch be-
tween threads. Thus, in practice, load adaption schemes have been sug-
gested to limit the number of concurrent transactions close to (or even
below) the number of cores.

e In the analysis, we will assume that the number of operations is fixed for
each transaction. However, the execution time of a transaction (in the
absence of contention) might also change, e.g., if data structures shrink,
less elements have to be considered. Nevertheless, often the changes are
not substantial, i.e., only involve a constant factor. Furthermore, if an
adversary can modify the duration of a transaction arbitrarily during the
execution of a transaction, then any algorithm must make the exact same
choices as an optimal algorithm: Assume two transactions Ty and T} face
a conflict and an algorithm Alg decides to let Ty wait (or abort). The
adversary could make the opposite decision and let Ty proceed such that
it commits at time ¢y. Then it sets the execution time T} to infinity, i.e.,
tr, = 0o after ¢y. Thus, the makespan of the schedule for algorithm Alg is
unbounded though there exists a schedule with bounded makespan. Thus
the competitive ratio is unbounded.

Problem complexity

In graph theory, coloring a graph with as few colors as possible is known to be
hard problem. A (vertex) coloring assigns a color to each vertex of a graph such
that no two adjacent vertices share the same color. It was shown that computing
an optimal coloring given complete knowledge of the graph is NP-hard. Even
worse, computing an approximation within a factor of y(G)98X(%)/25 where
X(G) is the minimal number of colors needed to color the graph, is NP-hard as
well.

To keep things simple, we assume for the following theorem that resource
acquisition takes no time, i.e., as long as there are no conflicts, transactions get
all locks they wish for at once. In this case, there is an immediate connection to
graph coloring, showing that even an offline version of contention management,
where all potential conflicts are known and do not change over time, is extremely
hard to solve.

Theorem 17.5. If the optimal schedule has makespan k and resource acquisi-
tion takes zero time, it is NP-hard to compute a schedule of makespan less than
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klogk/25 even if all conflicts are known and transactions do not change their
resource requirements.

Proof. We will prove the claim by showing that any algorithm finding a schedule
taking k' < k(1°8%)/25 can be utilized to approximate the chromatic number of
any graph better than X(G)%

Given the graph G = (V, E), define that V is the set of transactions and
E is the set of resources. Each transaction (node) v € V needs to acquire a
lock on all its resources (edges) {v,w} € E, and then computes something for
exactly one round. Obviously, this “translation” of a graph into our scheduling
problem does not require any computation at all.

Now, if we knew a x(G)-coloring of G, we could simply use the fact that the
nodes sharing one color form an independent set and execute all transactions
of a single color in parallel and the colors sequentially. Since no two neighbors
are in an independent set and resources are edges, all conflicts are resolved.
Consequently, the makespan k is at most x(G).

On the other hand, the makespan k£ must be at least x(G): Since each trans-
action (i.e., node) locks all required resources (i.e., adjacent edges) for at least
one round, no schedule could do better than serve a (maximum) independent
set in parallel while all other transactions wait. However, by definition of the
chromatic number x(G), V cannot be split into less than x(G) independent sets,
meaning that k > x(G). Therefore k = x(G).

In other words, if we could compute a schedule using k' < k(1°8%)/25 rounds
in polynomial time, we knew that

X(G) =k< ko< k(logk)/25 — X(G)(IOgX(G))/QS.

Remarks:

e The theorem holds for a central contention manager, knowing all trans-
actions and all potential conflicts. Clearly, the online problem, where
conflicts remain unknown until they occur, is even harder. Furthermore,
the distributed nature of contention managers also makes the problem
even more difficult.

e If resource acquisition does not take zero time, the connection between the
problems is not a direct equivalence. However, the same proof technique
shows that it is NP-hard to compute a polynomial approximation, i.e.,
k' < k¢ for some constant ¢ > 1.

Deterministic contention managers

Theorem 17.5 showed that even if all conflicts are known, one cannot produce
schedules which makespan get close to the optimal without a lot of computation.
However, we target to construct contention managers that make their decisions
quickly without knowing conflicts in advance. Let us look at a couple of con-
tention managers and investigate their throughput and progress guarantees.
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e A first naive contention manger: Be aggressive! Always abort the trans-
action having locked the resource. Analysis: The throughput might be
zero, since a livelock is possible. But the system is still obstruction free.
Consider two transactions consisting of three operations. The first opera-
tion of both is a write to the same resource R. If they start concurrently,
they will abort each other infinitely often.

e A smarter contention manager: Approximate the work done. Assume
before a start (also before a restart after an abort) a transaction gets
a unique timestamp. The older transaction, which is believed to have
already performed more work, should win the conflict.

Analysis: Clearly, the oldest transaction will always run until commit
without interruption. Thus we have lock-freedom, since at least one trans-
action makes progress at any time. In other words, at least one processor
is always busy executing a transaction until its commit. Thus, the bound
says that all transactions are executed sequentially. How about the com-
petitive ratio? We have s resources and n transactions starting at the
same time. For simplicity, assume every transaction 7; needs to lock at
least one resource for a constant fraction c of its execution time ¢7,. Thus,
at most s transactions can run concurrently from start until commit with-
out (possibly) facing a conflict (if s+ 1 transactions run at the same time,

at least two of them lock the same resource). Thus, the makespan of an
C'tTi

optimal contention manager is at least: Z?:o . The makespan of our
timestamping algorithm is at most the duration of a sequential execution,
i.e. the sum of the lengths of all transactions: Y ., tr,. The competitive
ratio is:

il _ 5.

St e
=0 s

Remarks:

— Unfortunately, in most relevant cases the number of resources is larger
than the number of cores, i.e., s > n. Thus, our timestamping al-
gorithm only guarantees sequential execution, whereas the optimal
might execute all transactions in parallel.

Are there contention managers that guarantee more than sequential execu-
tion, if a lot of parallelism is possible? If we have a powerful adversary, that can
change the required resources after an abort, the analysis is tight. Though we
restrict to deterministic algorithms here, the theorem also holds for randomized
contention managers.

Theorem 17.6. Suppose n transactions start at the same time and the adver-
sary is allowed to alter the resource requirement of any transaction (only) after

an abort, then the competitive ratio of any deterministic contention manager is

Proof. Assume we have n resources. Suppose all transactions consist of two
operations, such that conflicts arise, which force the contention manager to
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abort one of the two transactions Th;_1,To; for every i < n/2. More precisely,
transaction T5;_1 writes to resource Rs;_1 and to Rs; afterwards. Transaction
Tb; writes to resource Rs; and to Ro;_1 afterwards. Clearly, any contention
manager has to abort n/2 transactions. Now the adversary tells each transaction
which did not finish to adjust its resource requirements and write to resource
Ry as their first operation. Thus, for any deterministic contention manager the
n/2 aborted transactions must execute sequentially and the makespan of the
algorithm becomes Q(n).

The optimal strategy first schedules all transactions that were aborted and in
turn aborts the others. Since the now aborted transactions do not change their
resource requirements, they can be scheduled in parallel. Hence the optimal
makespan is 4, yielding a competitive ratio of Q(n). O

Remarks:

e The prove can be generalized to show that the ratio is Q(s) if s resources
are present, matching the previous upper bound.

e But what if the adversary is not so powerful, i.e., a transaction has a fixed
set of needed resources?

The analysis of algorithm timestamp is still tight. Consider the dining
philosophers problem: Suppose all transactions have length n and trans-
action i requires its first resource R; at time 1 and its second R;;1 (except
T,., which only needs R,,) at time n — 4. Thus, each transaction T; poten-
tially conflicts with transaction 7;_; and transaction 7;41. Let transaction
i have the i*" oldest timestamp. At time n — i transaction i+ 1 with ¢ > 1
will get aborted by transaction ¢ and only transaction 1 will commit at
time n. After every abort transaction i restarts 1 time unit before trans-
action 7 — 1. Since transaction ¢ — 1 acquires its second resource ¢ — 1 time
units before its termination, transaction ¢ — 1 will abort transaction ¢ at
least 4 — 1 times. After ¢ — 1 aborts transaction ¢ may commit. The total
time until the algorithm is done is bounded by the time transaction n stays
in the system, i.e., at least > 1 (n — i) = Q(n?). An optimal schedule
requires only O(n) time: First schedule all transactions with even indices,
then the ones with odd indices.

e Let us try to approximate the work done differently. The transaction,
which has performed more work should win the conflict. A transac-
tion counts the number of accessed resources, starting from 0 after ev-
ery restart. The transaction which has acquired more resources, wins the
conflict. In case both have accessed the same number of resources, the
transaction having locked the resource may proceed and the other has to
wait.

Analysis: Deadlock possible: Transaction A and B start concurrently.
Transaction A writes to Ry as its first operation and to Ry as its second
operation. Transaction B writes to the resources in opposite order.

Randomized contention managers

Though the lower bound of the previous section (Theorem 17.6) is valid for both
deterministic and randomized schemes, let us look at a randomized approach:
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Each transaction chooses a random priority in [1,n]. In case of a conflict, the
transaction with lower priority gets aborted. (If both conflicting transactions
have the same priority, both abort.)

Additionally, if a transaction A was aborted by transaction B, it waits until
transaction B committed or aborted, then transaction A restarts and draws a
new priority.

Analysis: Assume the adversary cannot change the resource requirements,
otherwise we cannot show more than a competitive ratio of n, see Theorem
17.6. Assume if two transactions A and B (potentially) conflict (i.e., write to
the same resource), then they require the resource for at least a fraction ¢ of their
running time. We assume a transaction 7' potentially conflicts with dr other
transactions. Therefore, if a transaction has highest priority among these dr
transactions, it will abort all others and commit successfully. The chance that
for a transaction T a conflicting transaction chooses the same random number
is (1 —1/n)47 > (1 — 1/n)" ~ 1/e. The chance that a transaction chooses the
largest random number and no other transaction chose this number is thus at
least 1/dp - 1/e. Thus, for any constant ¢ > 1, after choosing e - dr - c-Inn
random numbers the chance that transaction 7" has commited successfully is

edr-clnn
1 1
1—(1— ) ~Al—e =1 —,
e-dp nt

Assuming that the longest transaction takes time t,,4,, within that time a
transaction either commits or aborts and chooses a new random number. The
time to choose € - t;,q42 - € - Inn numbers is thus at most € - ty00 - d7 - c-Inn =
O(tmaz - dr - Inn). Therefore, with high probability each transaction makes
progress within a finite amount of time, i.e., our algorithm ensures wait freedom.
Furthermore, the competitive ratio of our randomized contention manger for the
previously considered dining philosophers problem is w.h.p. only O(lnn), since
any transaction only conflicts with two other transactions.



Chapter 18

Dominating Set

In this chapter we present another randomized algorithm that demonstrates the
power of randomization to break symmetries. We study the problem of finding
a small dominating set of the network graph. As it is the case for the MIS, an
efficient dominating set algorithm can be used as a basic building block to solve
a number of problems in distributed computing. For example, whenever we need
to partition the network into a small number of local clusters, the computation
of a small dominating set usually occurs in some way. A particularly important
application of dominating sets is the construction of an efficient backbone for
routing.

Definition 18.1 (Dominating Set). Given an undirected graph G = (V, E), a
dominating set is a subset S C V of its nodes such that for all nodes v € V,
either v € S or a neighbor u of v is in S.

Remarks:

e It is well-known that computing a dominating set of minimal size is NP-
hard. We therefore look for approximation algorithms, that is, algorithms
which produce solutions which are optimal up to a certain factor.

e Note that every MIS (cf. Chapter 8) is a dominating set. In general,
the size of every MIS can however be larger than the size of an optimal
minimum dominating set by a factor of Q(n). As an example, connect the
centers of two stars by an edge. Every MIS contains all the leaves of at
least one of the two stars whereas there is a dominating set of size 2.

All the dominating set algorithms that we study throughout this chapter
operate in the following way. We start with S = (§ and add nodes to S until
S is a dominating set. To simplify presentation, we color nodes according to
their state during the execution of an algorithm. We call nodes in S black, nodes
which are covered (neighbors of nodes in S) gray, and all uncovered nodes white.
By W(v), we denote the set of white nodes among the direct neighbors of v,
including v itself. We call w(v) = |W (v)| the span of v.

163
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18.1 Sequential Greedy Algorithm

Intuitively, to end up with a small dominating set S, nodes in S need to cover
as many neighbors as possible. It is therefore natural to add nodes v with a
large span w(v) to S. This idea leads to a simple greedy algorithm:

Algorithm 63 Greedy Algorithm
1: S =0
2: while 3 white nodes do
3 v:={v|w) =max,{wu)}};
4
5

S :=SUuv;
: end while

Theorem 18.2. The Greedy Algorithm computes a In A-approzimation, that
is, for the computed dominating set S and an optimal dominating set S*, we
have

||
< InA.
5]

Proof. Each time, we choose a new node of the dominating set (each greedy
step), we have cost 1. Instead of letting this node pay the whole cost, we
distribute the cost equally among all newly covered nodes. Assume that node
v, chosen in line 3 of the algorithm, is white itself and that its white neighbors
are vy, vz, v3, and v4. In this case each of the 5 nodes v and wvy,...,v4 get
charged 1/5. If v is chosen as a gray node, only the nodes vy, ..., v4 get charged
(they all get 1/4).

Now, assume that we know an optimal dominating set S*. By the definition
of dominating sets, to each node which is not in S*, we can assign a neighbor
from S*. By assigning each node to exactly one neighboring node of S*, the
graph is decomposed into stars, each having a dominator (node in S*) as center
and non-dominators as leaves. Clearly, the cost of an optimal dominating set
is 1 for each such star. In the following, we show that the amortized cost
(distributed costs) of the greedy algorithm is at most In A + 2 for each star.
This suffices to prove the theorem.

Consider a single star with center v* € S* before choosing a new node u
in the greedy algorithm. The number of nodes that become dominated when
adding u to the dominating set is w(u). Thus, if some white node v in the star of
v* becomes gray or black, it gets charged 1/w(u). By the greedy condition, u is a
node with maximal span and therefore w(u) > w(v*). Thus, v is charged at most
1/w(v*). After becoming gray, nodes do not get charged any more. Therefore
first node that is covered in the star of v* gets charged at most 1/(d(v*) + 1).
Because w(v*) > d(v*) when the second node is covered, the second node gets
charged at most 1/d(v*). In general, the i node that is covered in the star of
v* gets charged at most 1/(d(v*) + ¢ — 2). Thus, the total amortized cost in the
star of v* is at most

Lo o]
dlv*)+1  d(v*) 2

+ % = H(d(v") +1) < H(A +1) <In(A) +2

where A is the maximal degree of G and where H(n) = Y. | 1/i is the n*™
number. O
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Remarks:

e One can show that unless NP € DTIME(n® (o198 ")) 1o polynomial-time
algorithm can approximate the minimum dominating set problem better
than (1 — o(1)) - In A. Thus, unless P &~ NP, the approximation ratio of
the simple greedy algorithm is optimal (up to lower order terms).

18.2 Distributed Greedy Algorithm

For a distributed algorithm, we use the following observation. The span of a
node can only be reduced if any of the nodes at distance at most 2 is included
in the dominating set. Therefore, if the span of node v is greater than the span
of any other node at distance at most 2 from v, the greedy algorithm chooses
v before any of the nodes at distance at most 2. This leads to a very simple
distributed version of the greedy algorithm. Every node v executes the following
algorithm.

Algorithm 64 Distributed Greedy Algorithm (at node v):

1: while v has white neighbors do

2:  compute span w(v);

3:  send w(v) to nodes at distance at most 2;

4:  if w(v) largest within distance 2 (ties are broken by IDs) then
5 join dominating set

6: end if

7. end while

Theorem 18.3. Algorithm 64 computes a dominating set of size at most In A+2
times the size of an optimal dominating set in O(n) rounds.

Proof. The approximation quality follows directly from the above observation
and the analysis of the greedy algorithm. The time complexity is at most linear
because in every iteration of the while loop, at least one node is added to the
dominating set and because one iteration of the while loop can be implemented
in a constant number of rounds. O

The approximation ratio of the above distributed algorithm is best possi-
ble (unless P ~ NP or unless we allow local computations to be exponential).
However, the time complexity is very bad. In fact, there really are graphs on
which in each iteration of the while loop, only one node is added to the dom-
inating set. As an example, consider a graph as in Figure 18.1. An optimal
dominating set consists of all nodes on the center axis. The distributed greedy
algorithm computes an optimal dominating set, however, the nodes are chosen
sequentially from left to right. Hence, the running time of the algorithm on
the graph of Figure 18.1 is Q(y/n). Below, we will see that there are graphs on
which Algorithm 64 even needs §2(n) rounds.

The problem of the graph of Figure 18.1 is that there is a long path of
descending degrees (spans). Every node has to wait for the neighbor to the
left. Therefore, we want to change the algorithm in such a way that there
are no long paths of descending spans. Allowing for an additional factor 2 in
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Figure 18.1: Distributed greedy algorithm: Bad example

e

e

Figure 18.2: Distributed greedy algorithm with rounded spans: Bad example

the approximation ratio, we can round all spans to the next power of 2 and
let the greedy algorithm take a node with a maximal rounded span. In this
case, a path of strictly descending rounded spans has at most length logn. For
the distributed version, this means that nodes whose rounded span is maximal
within distance 2 are added to the dominating set. Ties are again broken by
unique node IDs. If node IDs are chosen at random, the time complexity for
the graph of Figure 18.1 is reduced from Q(y/n) to O(logn).

Unfortunately, there still is a problem remaining. To see this, we consider
Figure 18.2. The graph of Figure 18.2 consists of a clique with n/3 nodes
and two leaves per node of the clique. An optimal dominating set consists
of all the n/3 nodes of the clique. Because they all have distance 1 from each
other, the described distributed algorithm only selects one in each while iteration
(the one with the largest ID). Note that as soon as one of the nodes is in the
dominating set, the span of all remaining nodes of the clique is 2. They do not
have common neighbors and therefore there is no reason not to choose all of
them in parallel. However, the time complexity of the simple algorithm is (n).
In order to improve this example, we need an algorithm that can choose many
nodes simultaneously as long as these nodes do not interfere too much, even
if they are neighbors. In Algorithm 65, N(v) denotes the set of neighbors of
v (including v itself) and N2(v) = U,en() N(u) are the nodes at distance at
most 2 of v. As before, W (v) = {u € N(v) : u is white} and w(v) = [W(v)|.

It is clear that if Algorithm 65 terminates, it computes a valid dominating set.
We will now show that the computed dominating set is small and that the
algorithm terminates quickly.

Theorem 18.4. Algorithm 65 computes a dominating set of size at most (6 -
In A+ 12) - |S*|, where S* is an optimal dominating set.
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Algorithm 65 Fast Distributed Dominating Set Algorithm (at node v):
1 W(v) := N(v); w(v) := |W(v)|;
2: while W (v) # 0 do

w(v) = 2082w, // round down to next power of 2

W(v) 1= maxye N, (v) W(W);

if @w(v) = w(v) then v.active := true else v.active := false end if;

compute support s(v) := |[{u € N(v) : u.active = true}|;

§(U) = MaXyew (v) S(U),

v.candidate := false;

if v.active then

10: v.candidate := true with probability 1/3(v)

11:  end if;

12:  compute c¢(v) := [{u € W(v) : u.candidate = true};

13:  if v.candidate and }, oy, c(u) < 3w(v) then

14: node v joins dominating set

15:  end if

16:  W(v) :={u € N(v) : u is white}; w(v) := |W(v)|;

17: end while

Proof. The proof is a bit more involved but analogous to the analysis of the
approximation ratio of the greedy algorithm. Every time, we add a new node v
to the dominating set, we distribute the cost among v (if it is still white) and its
white neighbors. Consider an optimal dominating set S*. As in the analysis of
the greedy algorithm, we partition the graph into stars by assigning every node
u not in S* to a neighbor v* in S*. We want to show that the total distributed
cost in the star of every v* € S* is at most 6 H(A + 1).

Consider a node v that is added to the dominating set by Algorithm 65. Let
W (v) be the set of white nodes in N(v) when v becomes a dominator. For a
node u € W(v) let ¢(u) be the number of candidate nodes in N(u). We define
C(v) = >y ew(w c(u). Observe that C(v) < 3w(v) because otherwise v would
not join the dominating set in line 15. When adding v to the dominating set,
every newly covered node u € W (v) is charged 3/(c(u)w(v)). This compensates
the cost 1 for adding v to the dominating set because

3 3 3
ue;(v) W > w(v) - w(v) - Zuew(v) c(u)/wv)  C)/w) > 1.

The first inequality follows because it can be shown that for c; > 0, Zle 1/a; >
k/a where a = Zle a;/k.

Now consider a node v* € S* and assume that a white node u € W (v*) turns
gray or black in iteration ¢ of the while loop. We have seen that w is charged
3/(c(u)w(v)) for every node v € N(u) that joins the dominating set in iteration
t. Since a node can only join the dominating set if its span is largest up to a
factor of two within two hops, we have w(v) > w(v*)/2 for every node v € N (u)
that joins the dominating set in iteration ¢. Because there are at most ¢(u) such
nodes, the charge of u is at most 6/w(v*). Analogously to the sequential greedy
algorithm, we now get that the total cost in the star of a node v* € S* is at
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To bound the time complexity of the algorithm, we first need to prove the
following lemma.

Lemma 18.5. Consider an iteration of the while loop. Assume that a node u is
white and that 2s(u) > max,cc(y) 5(v) where C(u) = {v € N(u) : v.candidate =
true}. Then, the probability that u becomes dominated (turns gray or black) in
the considered while loop iteration is larger than 1/9.

Proof. Let D(u) be the event that u becomes dominated in the considered while
loop iteration, i.e., D(u) is the event that u changes its color from white to gray
or black. Thus, we need to prove that Pr[D(u)] > 1/9. We can write this
probability as

Pr [D(u)] =Pr [c(u) > 0] -Pr [D(u)|c(u) > 0] +Pr[c(u) = O} ~Pr[D(u)\c(u) = O] .

=0

It is therefore sufficient to lower bound the probabilities Pr[c(u) > 0] and
Pr[D(u)|c(u) > 0]. We have 2s(u) > max,ecc(u) $(v). Therefore, in line 10, each
of the s(u) active nodes v € N(u) becomes a candidate node with probability
1/8(v) > 1/(2s(u)). The probability that at least one of the s(u) active nodes
in N(u) becomes a candidate therefore is

" > 17i>1
Ve 3

We used that for x > 1, (1—1/z)* < 1/e. We next want to bound the probability
Pr[D(u)|c(u) > 0] that at least one of the c(u) candidates in N(u) joins the
dominating set. We have

Pric(u) > 0] > 1— (1 25

Pr[D(u)|c(u) > 0] > vg}\}?u) Pr[v joins dominating set|v.candidate = true].
Consider some node v and let C(v) = 3, cyy(,) ¢(v'). If v is a candidate, it joins
the dominating set if C'(v) < 3w(v). We are thus interested in the probability
Pr[C(v) < Sw(v)‘v.candidate = true|]. Assume that v is a candidate. Let
(') = ¢(v') — 1 be the number of candidates in N(v') \ {v}. For a node
v' € W(v), ¢(v') is upper bounded by a binomial random variable Bin(s(v') —
1,1/s(v")) with expectation (s(v') —1)/s(v"). We therefore have

/!
-1
E[c(v')|v.candidate = true] = 1+E[d (V)] =1+ S(U() /) <2
s(v
By linearity of expectation, we hence obtain
E[C(v)|v.candidate = true| = Z E[c(v")|v.candidate = true]

v’ €W (v)
< 2w(v).
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We can now use Markov’s inequality to bound the probability that C(v) becomes
too large:

Pr[C(v) > 3w(v)|v.candidate = true] < %
Combining everything, we get
Pr [v joins dom. set|v.candidate = true}
= Pr[C(v) < 3w(v)|v.candidate = true] > %
and hence
Pr[D(u)] = Pr[c(u) > 0] - Pr[D(u)|c(u) > 0] >
O

Theorem 18.6. In expectation, Algorithm 65 terminates in O(logQA - logn)
rounds.

Proof. First observe that every iteration of the while loop can be executed in
a constant number of rounds. Consider the state after ¢ iterations of the while
loop. Let Wax(t) = max,cy w(v) be the maximal span rounded down to the
next power of 2 after ¢ iterations. Further, let spax(t) be the maximal support
s(v) of any node v for which there is a node v € N(v) with w(u) > Wmax(t)
after ¢ while loop iterations. Observe that all nodes v with w(v) > Wmax(t) are
active in iteration ¢t + 1 and that as long as the maximal rounded span Wmax(t)
does not change, Smax(t) can only get smaller with increasing ¢. Consider the
pair (Wmax, Smax) and define a relation < such that (w’,s") < (w,s) iff W' < w
or w=w' and s’ < s/2. From the above observations, it follows that

(Wmax (1), Smax(t)) < (Wmax(t)), Smax(t')) = t >t (18.1)
For a given time ¢, let T'(t) be the first time for which
(Wmax(T(t)), $max (T(t))) < (Wmax (), Smax (t))-
We first want to show that for all ¢,
E[T(t)—t] = O(logn). (18.2)

Let us look at the state after ¢t while loop iterations. By Lemma 18.5, every white
node u with support s(u) > Smax(t)/2 will be dominated after the following while
loop iteration with probability larger than 1/9. Consider a node u that satisfies
the following three conditions:

(1) w is white
(2) Jv e N(u) : w(v) > Wyax(t)

(3) s(u) > smax(t)/2.
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As long as u satisfies all three conditions, the probability that v becomes domi-
nated is larger than 1/9 in every while loop iteration. Hence, after t+7 iterations
(from the beginning), u is dominated or does not satisfy (2) or (3) with prob-
ability larger than (8/9)7. Choosing 7 = logg 5(2n), this probability becomes
1/(2n). There are at most n nodes u satisfying Conditions (1) — (3). Therefore,
applying union bound, we obtain that with probability more than 1/2; there is
no white node u satisfying Conditions (1) — (3) at time ¢ +logg 5(2n). Equiva-
lently, with probability more than 1/2, T'(t) <t + logg,s(2n). Analogously, we
obtain that with probability more than 1/2%, T'(t) <t + kloggs(2n). We then
have

ET(t)—1] = Y PrT(t)—t=1] 7
< Z (;k - 2]3“) - klogg,g(2n) = loggs(2n)
k=1

and thus Equation (18.2) holds.

Let to =0 and ¢; = T'(t;—1) for i = 1,..., k. where t; = min; Wmax(t) = 0.
Because Wmax(t) = 0 implies that w(v) = 0 for all v € V' and that we therefore
have computed a dominating set, by Equations (18.1) and (18.2) (and linearity
of expectation), the expected number of rounds until Algorithm 65 terminates
is O(k-logn). Since Wmax(t) can only have |log A| different values and because
for a fixed value of Wyax(t), the number of times sy,.x(t) can be decreased by a
factor of 2 is at most log A times, we have k < log?A. O

Remarks:

e It is not hard to show that Algorithm 65 even terminates in O(logQA .
logn) rounds with probability 1 — 1/n® for an arbitrary constant c.

e Using the median of the supports of the neighbors instead of the maximum
in line 8 results in an algorithm with time complexity O(log A - logn).
With another algorithm, this can even be slightly improved to O(log®A).

e One can show that Q(log A/loglog A) rounds are necessary to obtain an
O(log A)-approximation.

e It is not known whether there is a fast deterministic approximation al-
gorithm. This is an interesting and important open problem. The best
deterministic algorithm known to achieve an O(log A)-approximation has
time complexity 20(VIogn)
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Routing

19.1 Array

(Routing is important for any distributed system. This chapter is only an
introduction into routing; we will see other facets of routing in a next chapter.)

Definition 19.1 (Routing). We are given a graph and a set of routing requests,
each defined by a source and a destination node.

Definition 19.2 (One-to-one, Permutation). In a one-to-one routing problem,
each node is the source of at most one packet and each node is the destination of
at most one packet. In a permutation routing problem, each node is the source
of exactly one packet and each node is the destination of exactly one packet.

Remarks:
e Permutation routing is a special case of one-to-one routing.

Definition 19.3 (Store and Forward Routing). The network is synchronous.
In each step, at most two packets (one in each direction) can be sent over each
link.

Remarks:

e If two packets want to follow the same link, then one is queued (stored)
at the sending node. This is known as contention.

Algorithm 66 Greedy on Array
An array is a linked list of n nodes; that is, node 4 is connected with nodes
it—land ¢+ 1, for i = 2,...,n — 1. With the greedy algorithm, each node
injects its packet at time 0. At each step, each packet that still needs to move
rightward or leftward does so.

Theorem 19.4 (Analysis). The greedy algorithm terminates in n — 1 steps.
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Proof. By induction two packets will never contend for the same link. Then
each packet arrives at its destination in d steps, where d is the distance between
source and destination. O

Remarks:

e Unfortunately, only the array (or the ring) allows such a simple contention-
free analysis. Already in a tree (with nodes of degree 3 or more) there
might be two packets arriving at the same step at the same node, both
want to leave on the same link, and one needs to be queued. In a
“Mercedes-Benz” graph Q(n) packets might need to be queued. We will
study this problem in the next section.

e There are many strategies for scheduling packets contending for the same
edge (e.g. “farthest goes first” ); these queuing strategies have a substantial
impact on the performance of the algorithm.

19.2 Mesh

Algorithm 67 Greedy on Mesh

A mesh (a.k.a. grid, matrix) is a two-dimensional array with m columns and
m rows (n = m?). Packets are routed to their correct column (on the row in
greedy array style), and then to their correct row. The farthest packet will
be given priority.

Theorem 19.5 (Analysis). In one-to-one routing, the greedy algorithm termi-
nates 1 2m — 2 steps.

Proof. First note that packets in the first phase of the algorithm do not interfere
with packets in the second phase of the algorithm. With Theorem 19.4 each
packet arrives at its correct column in m — 1 steps. (Some packets may arrive
at their turning node earlier, and already start the second phase; we will not
need this in the analysis.) We need the following Lemma for the second phase
of the algorithm.

Lemma 19.6 (Many-to-One on Array, Lemma 1.5 in Leighton Section 1.7).
We are given an array with n nodes. Fach node is a destination for at most
one packet (but may be the source of many). If edge contention is resolved by
farthest-to-go (FTG), the algorithm terminates in n — 1 steps.

Leighton Section 1.7 Lemma 1.5. Leftward moving packets and rightward mov-
ing packets never interfere; so we can restrict ourselves to rightward moving
packets. We name the packets with their destination node. Since the queu-
ing strategy is FTG, packet i can only be stopped by packets j > i. Note
that a packet ¢ may be contending with the same packet j several times. How-
ever, packet ¢ will either find its destination “among” the higher packets, or
directly after the last of the higher packets. More formally, after k steps, pack-
ets 7,7+ 1,...,n do not need links 1,...,l anymore, with k =n — j + [. Proof
by induction: Packet n has the highest priority: After k& steps it has escaped
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the first k links. Packet n — 1 can therefore use link [ in step [ + 1, and so on.
Packet ¢ not needing link 7 in step kK = n means that packet ¢ has arrived at its

destination node ¢ in step n — 1 or earlier. O
Lemma 19.6 completes the proof. O]
Remarks:

e A 2m — 2 time bound is the best we can hope for, since the distance
between the two farthest nodes in the mesh is exactly 2m — 2.

e One thing still bugs us: The greedy algorithm might need queues in the
order of m. And queues are expensive! In the next section, we try to bring
the queue size down!

19.3 Routing in the Mesh with Small Queues

(First we look at a slightly simpler problem.)

Definition 19.7 (Random Destination Routing). In a random destination rout-
ing problem, each mode is the source of at most one packet with destination
chosen uniformly at random.

Remarks:

e Random destination routing is not one-to-one routing. In the worst case,
a node can be destination for all n packets, but this case is very unlikely
(with probability 1/n"~1)

e We study algorithm 19.2, but this time in the random destination model.
Studying the random destination model will give us a deeper understand-
ing of routing... and distributed computing in general!

Theorem 19.8 (Random destination analysis of algorithm 19.2). If desti-
nations are chosen at random the mazimum queue size is O(logn/loglogn)
with high probability. (With high probability means with probability at least
1-0(1/n).)

Proof. We can restrict ourselves to column edges because there will not be any
contention at row edges. Let us consider the queue for a north-bound column
edge. In each step, there might be three packets arriving (from south, east,
west). Since each arriving south packet will be forwarded north (or consumed
when the node is the destination), the queue size can only grow from east or
west packets — packets that are “turning” at the node. Hence the queue size
of a node is always bounded by the number of packets turning at the node. A
packet only turns at a node v when it is originated at a node in the same row as
u (there are only m nodes in the row). Packets have random destinations, so the
probability to turn for each of these packets is 1/m only. Thus the probability
P that r or more packets turn in some particular node wu is at most

= (M)
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(The factor (1 —1/m)™" is not present because the event “exactly r” includes
the event “more than r” already.) Using

(;) < (f)y, forO<y<z
P () () = ()

Hence most queues do not grow larger than O(1). Also, when we choose r :=

we directly get

l(fgl‘l)fg% we can show P = o(1/n?). The probability that any of the 4n queues
ever exceeds 7 is less than 1 — (1 — P)*" = o(1/n). O
Remarks:

e OK. We got a bound on the queue size. Now what about time complex-
ity?!? The same analysis as for one-to-one routing applies. The probability
that a node sees “many” packets in phase 2 is small... it can be shown
that the algorithm terminates in O(m) time with high probability.

e In fact, maximum queue sizes are likely to be a lot less than logarithmic.
The reason is the following: Though ©(logn/loglogn) packets might turn
at some node, these turning packets are likely to be spread in time. Early
arriving packets might use gaps and do not conflict with late arriving
packets. With a much more elaborate method (using the so-called “wide-
channel” model) one can show that there will never be more than four(!)
packets in any queue (with high probability only, of course).

e Unfortunately, the above analysis only works for random destination prob-
lems. Question: Can we devise an algorithm that uses small queues only
but for any one-to-one routing problem? Answer: Yes, we can! In the
simplest form we can use a clever trick invented by Leslie Valiant: In-
stead of routing the packets directly on their row-column path, we route
each packet to a randomly chosen intermediate node (on the row-column
path), and from there to the destination (again on the row-column path).
Valiant’s trick routes all packets in O(m) time (with high probability)
and only needs queues of size O(logn). Instead of choosing a random
intermediate node one can choose a random node that is more or less in
the direction of the destination, solving any one-to-one routing problem
in 2m + O(logn) time with only constant-size queues. You don’t wanna
know the details...

e What about no queues at all?!?

19.4 Hot-Potato Routing

Definition 19.9 (Hot-Potato Routing). Like the store-and-forward model the
hot-potato model is synchronous and at most two packets (one in each direction)
can be sent over a link. However, contending packets cannot be stored; instead all
but one contending packet must be sent over a “wrong link” (known as deflection)
immediately, since the hot-potato model does not allow queuing.
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Remarks:

e Don’t burn your fingers with “hot-potato” packets. If you get one you
better forward it directly!

e A node with degree § receives up to ¢ packets at the beginning of each step
— since the node has § links, it can forward all of them, but unfortunately
not all in the right direction.

e Hot-potato routing is easier to implement, especially on light-based net-
works, where you don’t want to convert photons into electrons and then
back again. There are a couple of parallel machines that use the hot-potato
paradigm to simplify and speed up routing.

e How bad does hot-potato routing get (in the random or the one-to-one
model)? How bad can greedy hot-potato routing (greedy: whenever there
is no contention you must send a packet into the right direction) get in a
worst case?

Algorithm 68 Greedy Hot-Potato Routing on a Mesh

Packets move greedy towards their destination (any good link is fine if there
is more than one). If a packet gets deflected, it gets excited with probability
p (we set p = ©(1/m)). An excited packet has higher priority. When being
excited, a packet tries to reach the destination on the row-column path. If
two excited packets contend, then the one that wants to exit the opposite link
is given priority. If an excited packet fails to take its desired link it becomes
normal again.

Theorem 19.10 (Analysis). A packet will reach its destination in O(m) ex-
pected time.

Sketch, full proof in Busch et al., SODA 2000. An excited packet can only be
deflected at its start node (after becoming excited), and when trying to turn.
In both cases, the probability to fail is only constant since other excited packets
need to be at the same node at exactly the right instant. Thus the probability
that an excited packets finds to its destination is constant, and therefore a packet
needs to “try” (to become excited) only constantly often. Since a packet tries
every p’th time it gets deflected, in only gets deflected O(1/p) = O(m) times
in expectation. Since each time it does not get deflected, it gets closer to its
destination, it will arrive at the destination in O(m) expected time. O

Remarks:

e It seems that at least in expectation having no memory at all does not
harm the time bounds much.

e It is conjectured that one-to-one routing can be shown to have time com-
plexity O(m) for this greedy hot-potato routing algorithm. However, the
best known bound needs an additional logarithmic factor.
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19.5 More Models

Routing comes in many flavors. We mention some of them in this section for
the sake of completeness.

Store-and-forward and hot-potato routing are variants of packet-switching.
In the circuit-switching model, the entire path from source to destination must
be locked such that a stream of packets can be transmitted.

A packet-switching variant where more than one packet needs to be sent
from source to destination in a stream is known as wormhole routing.

Static routing is when all the packets to be routed are injected at time 0.
Instead, in dynamic routing, nodes may inject new packets constantly (at a
certain rate). Not much is known for dynamic routing.

Instead of having a single source and a single destination for each packet
as in one-to-one routing, researchers have studied many-to-one routing, where a
node may be destination for many sources. The problem of many-to-one routing
is that there might be congested areas in the network (areas with nodes that
are destinations of many packets). Packets that can be routed around such a
congested area should do that, or they increase the congestion even more. Such
an algorithm was studied by Busch et al. at STOC 2000.

Also one-to-many routing (multicasting) was considered, where a source
needs to send the same packet to many destinations. In one-to-many routing,
packets can be duplicated whenever needed.

Nobody knows the topology of the Internet (and it is certainly not an array
or a mesh!). The problem is to find short paths without storing huge routing
tables at each node. There are several forms of routing (e.g. compact routing,
interval routing) that study the trade-off between routing table size and quality
of routing.

Also, researchers started studying the effects of mixing various queuing
strategies in one network. This area of research is known as adversarial queuing
theory.

And last not least there are several special networks. A mobile ad-hoc net-
work, for example, consists of mobile nodes equipped with a wireless communi-
cation device. In such a networks nodes can only communicate when they are
within transmission range. Since the network is mobile (dynamic), and since
the nodes are considered to be simple, a variety of new problems arise.



