On Kirill's Contribution to Packet
Classification and an Example Why It
Matters

Gabor Rétvari and Stefan Schmid
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Motivation

e Ajoint presentation by Gabor and Stefan: two friends and colleagues of Kirill

e \We have a joint national project inspired by and building upon Kirill's work

o Dependable Network Data Plane for the Cloud (DELTA)
o Funded by NKFIH and FWF

e Emerging programmable data plane: new opportunities for innovative
algorithms as the ones devised by Kirill



Agenda

e Algorithms in the data plane and example: Tuple Space Search
e \Why designing good algorithms matters: a case study
e One solution by Kirill and Gabor



Packet Classification: Basics

Given an ordered list of wildcard (ternary) rules, find the first rule that matches a
given packet header

Exact-match and longest-prefix-match (LPM) are simpler subproblems

Indispensable in packet processing: IP packet forwarding (only LPM),
firewalls/ACLs, QoS shapers/rate-limiters/classifiers, OpenFlow/P4 match-action
processing & policy routing, accounting & billing, etc. [Gupta, 2001]

Example: allow HTTP and DNS traffic from select networks, deny everything else

Src Dst Proto Dst port Action
10.10.0.0/16 192.168.1.100 | 6 (TCP) 80 (HTTP) Allow
10.0.0.0/8 192.168.1.53 17 (UDP) 53 (DNS) Allow
% % % % Deny




Packet Classification: Algorithms

“‘Easy” in hardware (TCAMs), notoriously difficult in software: "a packet
classifier with n rules and k>1 fields uses either O(n*) bits space and O(log n)
time, or O(n) space and O((log n)¥) time" [Feldman 2000, Gupta, 2001, Kogan
2014]

Difficulty stems from that (1) rules can have wildcard bit (“don’t care” bit *) and so
(2) may overlap, but (3) we need to find the first matching rule

Software implementations typically use heuristics: linear search, hierarchical
tries, tuple space search & decision trees (see later), geometric/cut-based
algorithms (HiCuts/Efficuts), etc.

Kirill was highly active in this area [Kogan 2013, Kogan 2014, Nikolenko 2016,
Demianiuk 2021]



Tuple Space Search (TSS): Idea

Hash-tables work for exact-match but a generic packet classifier has wildcards in
the rules: we need something more clever

TSS: decompose a w bit wide ruleset into at most 2" exact-match instances

1. Find all combinations of wildcard bit positions in the rules (called tuples)
2. Foreach tuple, create a hash on the non-wildcard bit positions (“mask”)
3. Mask & match each each incoming packet against all hashes/tuples

4. Return the highest priority match (if any)

Heuristic “prerequisite”: O(2") hash lookups in the worst case,
but typically much fewer




Tuple Space Search (TSS): Example

An IPv6 forwarding table: rather wide (w=128), but only prefix rules

Prefix | Next-hop filter | #0 #1 #2 #3
0x80::/4 a F 1 0 0 O
0x40::/2 b Fy 0 & * =
0xc0::/2 & Fs I 4 * %
0x80::/1 d Fy I = * 5
3 tuples, a separate hash table for each one
filer | #0 #1 #2 #3 ﬁ;er ‘:O #11 filter | #0
2
Fy 1 0 0 O Py I : Fy 1

J

Input 0111 matches only the 2nd hash only, 1100 matches both 2nd and 3rd, F, “wins’
Good news: the number of tuples (3) is much smaller than the worst case (24=16)

Observe that (1) each rule maps to a single tuple, and (2) rules per each tuple admit
an exact-match lookup (i.e., be order-independent, [Kogan 2014])



A Threat: Algorithmic Complexity Attacks

e In general, algorithmic complexity attacks exploit known cases in which an

algorithm will exhibit worst-case behavior
o E.g., Billion Laughs: attack on XML parsers, exponentially expanding itself (“lol”)
o E.qg., Zip bomb: attack on virus scanner unpacking an archive (resource explosion)

e Algorithmic complexity attacks are also a threat for network algorithms

e \We have recently shown that Tuple Space Search (TSS) has such an issue

o TSS for example used in the Open vSwitch (OvS) MegaFlow Cache (MFC)
o OvSis the “de facto” software switch in data centers

e Simple flow table: “allow some but drop others”



Denial-of-Service Attack on OVS Packet Processing

e (QVS uses a MegaFlow cache:
first packet subject to full-table
processing, then flow-specific
rules and actions cached

slow path

e Entries matching on the same fast path

headers are collected into a hash
o Masked packet headers can be found
fast
o However, masks and associated
hashes are searched sequentially

OVS Kernel moud!'~

Can be a costly linear search in case of lots of masks!




A Denial-of-Service Attack on TSS

e KEY FINDING: More masks -> slower packet processing
e Strategy: for each packet for the allow rule, add a packet with the

relevant bits inverted
o Each packet gives one mask

e Multiple allow rules on multiple header fields -> Exponential growth
e Matching on either 1) and 2) -> 512 masks

With less than 1 Mbps specially crafted packet sequence we get a full
Denial-of-Service (OVS performance drops close to 0%).



TSS on steroids: Kirill's beautiful idea

TSS is extremely simple but slow if the number of hashes grows huge
How to decrease the number of tuples/hashes?

Recall the “invariants” of TSS: (1) each rule must map to a single hash, (2) rules
per each hash must be order-independent

Kirill’s observation: rules that belong to different tuples can be assigned
into a single hash as long as the above two prerequisites hold

This may allow to map rules that belong to different tuples to a single hash



Reduced order-independent decompositions: |dea

Strong reduced order-independent decompositions [Nikolenko 2016]:

1) partition the rules into the smallest number of groups, where each group is
associated with a bitmask, so that

2) the rules in each group masked with the group’s bit positions are
order-independent

But we may lose “valuable” bits in each group due to applying the mask
Perform a false positive (FP) check after each hash-lookup (cf. [Kogan 2014])

TSS is the worst-case order-independent reduction, so we may only get fewer
hash lookups, this may be worth the additional false-positive check

Simulations show that usually only 20-30 hashes (w=176) is enough, instead of 128



Reduced order-independent decompositions: Example

Recall the previous IPv6 forwarding table: TSS needed 3 hash lookups

filter | #0 #1 #2 #3
Fy 1 0 0 O

F, |10 1 * =
F3 1. 1 * *
Fy . % %

A reduced order-independent decomposition with just 2 hash lookups + 1 FP check

filter | #0 #1 #2 #3

FrLoplro 0000 filter | 80 #1 #2 %3
F|lo 1 * = e
75 | 4§ 4

false-positive check

Kirill's crazy optimal solution: 1 bit per hash (FP checks not shown)

filter | #1 filter | #0
Fi 0 F5 0
F3 1 Fy 1




Closing thoughts

SW packet classification is an actively researched area
Kirill made cornerstone contributions to the field

His ideas will always be an inspiration to the community
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