
On Kirill's Contribution to Packet 
Classification and an Example Why It 

Matters

Gábor Rétvári and Stefan Schmid



Motivation

● A joint presentation by Gabor and Stefan: two friends and colleagues of Kirill

● We have a joint national project inspired by and building upon Kirill’s work
○ Dependable Network Data Plane for the Cloud (DELTA)
○ Funded by NKFIH and FWF

● Emerging programmable data plane: new opportunities for innovative 
algorithms as the ones devised by Kirill



Agenda

● Algorithms in the data plane and example: Tuple Space Search
● Why designing good algorithms matters: a case study
● One solution by Kirill and Gabor



Packet Classification: Basics

Given an ordered list of wildcard (ternary) rules, find the first rule that matches a 
given packet header

Exact-match and longest-prefix-match (LPM) are simpler subproblems

Indispensable in packet processing: IP packet forwarding (only LPM), 
firewalls/ACLs, QoS shapers/rate-limiters/classifiers, OpenFlow/P4 match-action 
processing & policy routing, accounting & billing, etc. [Gupta, 2001]

Example: allow HTTP and DNS traffic from select networks, deny everything else

Src Dst Proto Dst port Action
10.10.0.0/16 192.168.1.100 6 (TCP) 80 (HTTP) Allow
10.0.0.0/8 192.168.1.53 17 (UDP) 53 (DNS) Allow
* * * * Deny



Packet Classification: Algorithms

“Easy” in hardware (TCAMs), notoriously difficult in software: "a packet 
classifier with n rules and k>1 fields uses either O(nk) bits space and O(log n) 
time, or O(n) space and O((log n)k) time" [Feldman 2000, Gupta, 2001, Kogan 
2014]

Difficulty stems from that (1) rules can have wildcard bit (“don’t care” bit *) and so 
(2) may overlap, but (3) we need to find the first matching rule

Software implementations typically use heuristics: linear search, hierarchical 
tries, tuple space search & decision trees (see later), geometric/cut-based 
algorithms (HiCuts/Efficuts), etc.

Kirill was highly active in this area [Kogan 2013, Kogan 2014, Nikolenko 2016, 
Demianiuk 2021] 



Tuple Space Search (TSS): Idea

Hash-tables work for exact-match but a generic packet classifier has wildcards in 
the rules: we need something more clever

TSS: decompose a w bit wide ruleset into at most 2w exact-match instances

1. Find all combinations of wildcard bit positions in the rules (called tuples)
2. For each tuple, create a hash on the non-wildcard bit positions (“mask”)
3. Mask & match each each incoming packet against all hashes/tuples
4. Return the highest priority match (if any)

Heuristic “prerequisite”: O(2w) hash lookups in the worst case,
but typically much fewer



An IPv6 forwarding table: rather wide (w=128), but only prefix rules

3 tuples, a separate hash table for each one 

Input 0111 matches only the 2nd hash only, 1100 matches both 2nd and 3rd, F3 “wins” 

Good news: the number of tuples (3) is much smaller than the worst case (24=16)

Observe that (1) each rule maps to a single tuple, and (2) rules per each tuple admit 
an exact-match lookup (i.e., be order-independent, [Kogan 2014])

Tuple Space Search (TSS): Example



A Threat: Algorithmic Complexity Attacks

● In general, algorithmic complexity attacks exploit known cases in which an 
algorithm will exhibit worst-case behavior

○ E.g., Billion Laughs: attack on XML parsers, exponentially expanding itself (“lol”)
○ E.g., Zip bomb: attack on virus scanner unpacking an archive (resource explosion)

● Algorithmic complexity attacks are also a threat for network algorithms
● We have recently shown that Tuple Space Search (TSS) has such an issue

○ TSS for example used in the Open vSwitch (OvS) MegaFlow Cache (MFC)
○ OvS is the “de facto” software switch in data centers

● Simple flow table: “allow some but drop others”



Denial-of-Service Attack on OVS Packet Processing

● OVS uses a MegaFlow cache: 
first packet subject to full-table 
processing, then flow-specific 
rules and actions cached

● Entries matching on the same 
headers are collected into a hash 

○ Masked packet headers can be found 
fast

○ However, masks and associated 
hashes are searched sequentially



A Denial-of-Service Attack on TSS

● KEY FINDING: More masks -> slower packet processing
● Strategy: for each packet for the allow rule, add a packet with the 

relevant bits inverted
○ Each packet gives one mask

● Multiple allow rules on multiple header fields -> Exponential growth
● Matching on either 1) and 2) -> 512 masks

With less than 1 Mbps specially crafted packet sequence we get a full 
Denial-of-Service (OVS performance drops close to 0%). 



TSS on steroids: Kirill’s beautiful idea

TSS is extremely simple but slow if the number of hashes grows huge

How to decrease the number of tuples/hashes?

Recall the “invariants” of TSS: (1) each rule must map to a single hash, (2) rules 
per each hash must be order-independent

This may allow to map rules that belong to different tuples to a single hash

Kirill’s observation: rules that belong to different tuples can be assigned 
into a single hash as long as the above two prerequisites hold



Reduced order-independent decompositions: Idea

Strong reduced order-independent decompositions [Nikolenko 2016]:

1) partition the rules into the smallest number of groups, where each group is 
associated with a bitmask, so that

2) the rules in each group masked with the group’s bit positions are 
order-independent

But we may lose “valuable” bits in each group due to applying the mask

Perform a false positive (FP) check after each hash-lookup (cf. [Kogan 2014])

TSS is the worst-case order-independent reduction, so we may only get fewer 
hash lookups, this may be worth the additional false-positive check

Simulations show that usually only 20-30 hashes (w=16) is enough, instead of 128



Reduced order-independent decompositions: Example

Recall the previous IPv6 forwarding table: TSS needed 3 hash lookups

A reduced order-independent decomposition with just 2 hash lookups + 1 FP check 

Kirill’s crazy optimal solution: 1 bit per hash (FP checks not shown)



Closing thoughts

SW packet classification is an actively researched area

Kirill made cornerstone contributions to the field

His ideas will always be an inspiration to the community



References

Csikor et al.: Tuple Space Explosion: A Denial-of-Service Attack Against a 
Software Packet Classifier, ACM CoNEXT 2019.

Demianiuk, Kogan, Nikolenko: Approximate Packet Classifiers With Controlled 
Accuracy, IEEE/ACM Transactions on Networking, 29:3, 2021.

Gupta, McKeown: Algorithms for packet classification, IEEE Network, 15:2, 2001.
Feldman, Muthukrishnan: Tradeoffs for packet classification, IEEE INFOCOM 

2000.
Kogan et al.: Towards efficient implementation of packet classifiers in 

SDN/OpenFlow, ACM HotSDN 2013.
Kogan et al.: SAX-PAC (scalable and expressive packet classification), ACM 

SIGCOMM 2014.
Molnár et al.: Dataplane Specialization for High-performance OpenFlow Software 

Switching, ACM SIGCOMM 2016.
Nikolenko, Kogan, Rétvári et al., How to represent IPv6 forwarding tables on IPv4 

or MPLS dataplanes, IEEE GI, 2016.
Srinivasan, Suri, Varghese: Packet classification using tuple space search, ACM 

SIGCOMM 1999.


