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Flexibilities: Along 3 Dimensions 

Enabler: 
SDN

Enabler: 
Virtualization

Enabler: 
Optics



Another Trend: Improved 
Visibility of the Networks



Visibility: SDN, Telemetry, Sketching

• Can also improve security

• Traditionally: e.g., trajectory sampling 
– Sample packets with

hash(imm. header) ∈ [x,y]
– See routes of some packets
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Visibility: SDN, Telemetry, Sketching

• Can also improve security

• Traditionally: e.g., trajectory sampling 
– Sample packets with

hash(imm. header) ∈ [x,y]
– See routes of some packets
– Others not! (Usually later…)

• BSI question: What can we do  if
switches may be malicious?

– Problem: all switches sample    
the same space: known!

– Can exploit, e.g., know when
unobserved.

mirror, exfiltrate, modify, drop, 
insert, … and misreport: knows

what is currently sampled! 



Visibility: SDN, Telemetry, Sketching
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• Solution: adversarial trajectory 
sampling with SDN

• Idea:
– Use secure channels

between controller and
switches to distribute hash
ranges

– Give different hash ranges
hash ranges to different 
switches, but add some
redundancy: risk of being
caught!

• In general: obtaining live data
from the network becomes
easier!

SDN Controller

r1

r2

r1

r2

r2r3

r3

Preacher: Network Policy Checker for Adversarial Environments. 
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid. SRDS 2019.



Together, Enables A Paradigm Shift: 
Demand-Aware Networks



Flexibility

Data about
Demand

Demand-Aware 
Networks

Efficiency / 
Performance



Somewhere in beautiful Germany…

A Case Study: Flexible Topologies

Enabler: 
SDN

Enabler: 
Virtualization

Enabler: 
Optics



Enabling optical technologies for
reconfigurable networks

Example: Manya Ghobadi et al.
Kudos for some slides!



Enabling optical technologies for
reconfigurable networks

Example: Manya Ghobadi et al.
Kudos for some slides!

Also for
WAN!



Example: ProjecToR

t=1

• Based on free-
space optics

• in ~10 μs: 
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Example: ProjecToR

t=2

• Based on free-
space optics

• Reconfiguration
in ~10 μs: 

Digital Micromirror Devices (DMDs)

Faster than
moving

antennas!



ProjecToR in More Details: 
Technological Enabler

21

Laser Photodetector



ProjecToR in More Details: 
DMDs

Array of 
micromirrors Memory cell 

• Each micromirror can be turned on/off
• Essentially a 0/1-image: e.g., array size 768 x 1024
• Direction of the diffracted light can be finely tuned



ProjecToR in More Details: 
DMDs to Redirect Light Fast
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ProjecToR in More Details: 
DMDs to Redirect Light Fast

0 0 0
0 1 0
0 0 0

1 1 1
1 0 1
1 1 1

Challenge: 
limited angular 

range +/- 3°



ProjecToR in More Details: 
Coupling DMDs with angled mirrors 
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Coupling: point the DMDs toward 
a “disco-ball” mirror assembly
installed overhead.

Assembly’s angled facets magnify
the DMD’s reach to the entire DC.



ProjecToR in More Details: 
Coupling DMDs with angled mirrors 
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60x higher fan-out (can directly connect all pairs)
and 2500x faster switching time

than optical circuit switches



Other Technologies

Based on silicon photonics

Further reading:
Wade et al., A Bandwidth-Dense, Low Power Electronic-Photonic Platform and Architecture for Multi-Tbps Optical I/O [OFC’18]
Porter et al., “Integrating Microsecond Circuit Switching into the Data Center”, Sigcomm’13

2-NEMS Rotating disks



Timeline

Reconfiguration time:  from
milliseconds to microseconds
(and decentralized).

Survey of Reconfigurable Data Center 
Networks. Foerster and Schmid. 
SIGACT News, 2019.



When Are Demand-Aware Networks Useful?



A Simple Answer

Demand-Oblivious Networks =



Seriously: We believe, often, in practice!

0 3 3 3
3 0 3 3
3 3 0 3
3 3 3 0

In theory: traffic matrix 
uniform and static

0 6 6 0
0 0 0 0
0 0 0 0
0 0 0 0

In practice: skewed
and dynamic

A
B
C
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0 0 0 0
0 0 0 0
0 0 0 0



Microsoft data: 200K servers across 4 production clusters, cluster sizes: 100 - 2500 racks.
Mix of workloads: MapReduce-type jobs, index builders, database and storage systems.

Observation 1:
• Many rack pairs exchange 

little traffic
• Only some hot rack pairs

are active

Observation 2:
• Some source racks send 

large amounts of traffic to 
many other racks

Empirical Motivation



So: How much structure is there?

How to measure it?
And which types of structures? E.g., temporal 

structure in addition to non-temporal structure?
Tricky!



Often only intuitions in the literature…
“less than 1% of the rack pairs account for 

80% of the total traffic”

“only a few ToRs switches are hot 
and most of their traffic goes to a few 

other ToRs”

“over 90% bytes 
flow in elephant flows”



… and it is intuitive!
Non-temporal Structure

Traffic matrix of two different distributed ML applications (GPU-to-GPU):
Which one has more structure?

vs

Color = 
comm. pair
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Traffic matrix of two different distributed ML applications (GPU-to-GPU):
Which one has more structure?

vs

Color = 
comm. pair

More 
uniform

More 
skewed



Two different ways to generate same traffic matrix (same non-temporal structure):
Which one has more structure?

vs

… and it is intuitive!
Temporal Structure



Two different ways to generate same traffic matrix (same non-temporal structure):
Which one has more structure?

vs

… and it is intuitive!
Temporal Structure More 

bursty

More 
random



Two different ways to generate same traffic matrix (same non-temporal structure):
Which one has more structure?

vs

… and it is intuitive!
Temporal Structure More 

bursty

More 
randomQuite intuitive: but how to define and 

measure systematically?



The Trace Complexity

• An information-theoretic approach: how can we measure the entropy
(rate) of a traffic trace?

• Henceforth called the trace complexity

• Simple approximation: „shuffle&compress“
– Remove structure by iterative randomization
– Difference of compression before and after randomization: structure



The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Increasing complexity (systematically randomized)

More structure (compresses better)



The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Remove 
temporal locality

Break src-dst
pairs

Remove non-
temporal locality

Difference in 
compression?

Difference in 
compression?

Difference in 
compression?



The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Remove 
temporal locality

Break src-dst
pairs

Remove non-
temporal locality

Difference in 
compression?

Difference in 
compression?

Difference in 
compression?

Can be used to define a „complexity map“!



The Complexity Map

Complexity Map: Entropy 
(„complexity“) of traffic traces.

!

!

More complexity

More structure
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Complexity Map: Entropy 
(„complexity“) of traffic traces.

Size = product 
of entropy

!

!
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Uniform: Today’s 
datacenters

• Traditional networks are optimized 
for the “worst-case” (all-to-all 
communication traffic)

• Example, fat-tree topologies: 
provide full bisection bandwidth

The Complexity Map



Good in the worst case but: 
cannot leverage different 

temporal and non-temporal 
structures of traffic traces! 

The Complexity Map



Non-temporal structure could 
be exploited already with static 

demand-aware networks!

Good in the worst case but: 
cannot leverage different 

temporal and non-temporal 
structures of traffic traces! 

The Complexity Map



The Complexity MapTo exploit temporal structure, 
need adaptive demand-aware 

(“self-adjusting”) networks.

Non-temporal structure could 
be exploited already with static 

demand-aware networks!

Good in the worst case but: 
cannot leverage different 

temporal and non-temporal 
structures of traffic traces! 



• Facebook clusters: DB, WEB, HAD
• HPC workloads: CNS, Multigrid
• Distributed Machine Learning (ML)
• Synthetic traces like pFabric

Observation: different applications 
feature quite significant (and 
different!) temporal and non-

temporal structures.

The Complexity Map



Both structures!

TOR switches

Mirrors

Lasers

Goal: Design self-adjusting 
networks which leverage both

dimensions of structure!

The Complexity Map



Potential gain / tax of
self-adjusting

networks!

Both structures!

No structure!

TOR switches

Mirrors

Lasers

Goal: Design self-adjusting 
networks which leverage both

dimensions of structure!

The Complexity Map

Measuring the Complexity of Packet Traces. 
Avin, Ghobadi, Griner, Schmid. ArXiv 2019.



So: How to design networks which exploit 
this structure? How good can they be?

Metrics again!



Roadmap

• Entropy: A metric for demand-aware networks?
– Intuition
– A lower bound
– Algorithms achieving entropy bounds

• From static to dynamic demand-aware networks
– Empirical motivation
– A connection to self-adjusting datastructures

5
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A Simple Example

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.

31st International Symposium on Distributed 
Computing (DISC), Vienna, Austria, October 2017.
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More Formally
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ERL D,N = �
(u,v)∈D

p u, v � dN(u, v)

Objective: Expected Route Length

path length on N

frequencyD[𝐩𝐩 𝐢𝐢, 𝐣𝐣 ]: joint distribution

DAN N of degree Δ



Remark

• Can represent demand matrix as a demand graph

sparse distribution D sparse graph G(D)

3 4

So
ur

ce
s

Destinations
1 2



Some Examples
• DANs of Δ = 3:

– E.g., complete binary tree
– dN(u,v) ≤ 2 log n
– Can we do better than log n?

• DANs of Δ = 2:
– E.g., set of lines and cycles



Remark: Hardness Proof



DAN design can be NP-hard
• Example Δ = 2: A Minimum Linear 

Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges

Embedding?



DAN design can be NP-hard

Bad!

e.g., 
cost 5

• Example Δ = 2: A Minimum Linear 
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges
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DAN design can be NP-hard

Better!

e.g., 
cost 1

• Example Δ = 2: A Minimum Linear 
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges



DAN design can be NP-hard

A new knob for 
optimization!

e.g., 
cost 1

• But what about > 2? Embedding
problem still hard, but we have an 
additional degree of freedom:

Do topological flexibilities make problem
easier or harder?!

• Example Δ = 2: A Minimum Linear 
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges



Rewinding the clock of the 
Internet  to a decade ago...



Rewinding the Clock: 
Degree-Diameter Tradeoff

Each network with n nodes and max degree Δ >2 
must have a diameter of at least log(n)/log(Δ-1)-1.

Example: constant Δ, log(n) diameter

Kudos to: Pedro Casas



Proof Idea

In k steps, reach at 
most 1+ Σ Δ(Δ -1)k

nodes

Kudos to: Pedro Casas

1 Δ Δ(Δ -1) …



Is there a better tradeoff in DANs?



Sometimes, DANs can be much better!

Example 1: low-degree demand

If demand graph is of degree Δ, it is trivial 
to design a DAN of degree Δ which achieves

an expected route length of 1.

Just take DAN = 
demand graph!



Sometimes, DANs can be much better!

Example 2: skewed demand

If demand is highly skewed, it is also 
possible to achieve an expected route 

length of O(1) in a constant-degree DAN.

?



Sometimes, DANs can be much better!

Example 2: skewed demand

If demand is highly skewed, it is also 
possible to achieve an expected route 

length of O(1) in a constant-degree DAN.

E.g., arrange neighbors of node 1 
in a Huffman tree!

Toward Demand-Aware Networking: A Theory for Self-
Adjusting Networks. Chen Avin and Stefan Schmid. ACM 

SIGCOMM CCR, October 2018



So on what does it depend?



So on what does it depend?

We argue (but still don‘t know!): on the
“entropy” of the demand!

?



Intuition: Entropy Lower Bound?



Lower Bound Idea: 
Leverage Coding or Datastructure

So
ur
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Destinations

• DAN just for a single (source) node 3

• How good can this tree be? Cannot do better 
than Δ-ary Huffman tree for its destinations

• Entropy lower bound on ERL known for binary 
trees, e.g. Mehlhorn 1975       
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An optimal “ego-tree“ 
for this source!



So: Entropy of the Entire Demand

• Proof  idea (EPL=Ω(HΔ(Y|X))): 

• Compute ego-tree for each source 
node

• Take union of all ego-trees

• Violates degree restriction but valid 
lower bound

sources destinations

entropy degree



Do this in both dimensions:

Ω(HΔ(X|Y)) 

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)}) Ω(HΔ(Y|X)) 

Entropy of the Entire Demand: 
Sources and Destinations



Do this in both dimensions:

Ω(HΔ(X|Y)) 

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)}) Ω(HΔ(Y|X)) 

Entropy of the Entire Demand: 
Sources and Destinations

Demand-Aware Network Designs of Bounded Degree. Chen 
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017.



Achieving Entropy Limit: Algorithms



Ego-Trees Revisited
• ego-tree: optimal tree for 

a row (= given source)

D[i]
ego-tree



Ego-Trees Revisited

D[i] Can we merge the trees without
distortion and keep degree low?

• ego-tree: optimal tree for 
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ego-tree



Ego-Trees Revisited

D[i] Can we merge the trees without
distortion and keep degree low?

For sparse demands yes: 
enough low-degree nodes which can 

serve as “helper nodes“!

• ego-tree: optimal tree for 
a row (= given source)

ego-tree



From Trees to Networks



Taking union of ego-trees results in high degree: 
u and v will appear in many ego-trees

Idea: Degree Reduction
Demand graph1 2 Hierarchical representation

3 Add low-degree nodes as helpers

Node h helps edge (u, v) by participating in ego-tree(u) as a 
relay node toward v and in ego-tree(v) as a relay toward u

high degree

low degree

Demand-Aware Network Designs of Bounded Degree. Chen 
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017.



But: How to design DANs which 
also leverage temporal structure?

Inspiration from self-adjusting 
datastructures again!



Roadmap

• Entropy: A metric for demand-aware networks?
– Empirical motivation
– A lower bound
– Algorithms achieving entropy bounds

• From static to dynamic demand-aware networks
– A connection to self-adjusting datastructures

5



An Analogy

Static vs dynamic demand-
aware networks!?

DANs vs SANs?



00110101…

if demand arbitrary and unknown

log diameter

log # bits / symbol

An Analogy to Coding
„Coming to the LKN retreat?“
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„Coming to the LKN retreat?“
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if demand known and fixed

entropy / symbol

entropy?

DAN! SAN!

Dynamic DANs: 
Aka. Self-Adjusting 
Networks (SANs)! 

An Analogy to Coding

if demand unknown but reconfigurable

„Coming to the LKN retreat?“
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Aka. Self-Adjusting 
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spatial locality!
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temporal locality!

if demand known and fixed if demand unknown but reconfigurable

„Coming to the LKN retreat?“



An Analogy to Coding 011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs: 
Aka. Self-Adjusting 
Networks (SANs)! 

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable

„Coming to the LKN retreat?“



Analogous to Datastructures: Oblivious…
• Traditional, fixed BSTs do not rely on any

assumptions on the demand

• Optimize for the worst-case

• Example demand: 
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root, 
uniformly and independently of their
frequency

many many many many
Many requests 

for leaf 1…
… then for 

leaf 3…

many

Corresponds to 
max possible demand!



• Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

• E.g.: place frequently accessed elements
close to the root

• E.g., Knuth/Mehlhorn/Tarjan trees

• Recall example demand:       
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

– Amortized cost O(loglog n)
Amortized cost corresponds 

to empirical entropy of demand!

loglog n

… Demand-Aware …



• Demand-aware reconfigurable BSTs 
can additionally take advantage of
temporal locality

• By moving accessed element to the
root: amortized cost is constant, i.e., 
O(1)

– Recall example demand:       
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

… Self-Adjusting!



Datastructures
Oblivious Demand-Aware Self-Adjusting

Lookup 
O(log n)

Exploit spatial locality: 
empirical entropy O(loglog n)

Exploit temporal locality as well:
O(1)



Analogously for Networks
Oblivious DAN SAN

Const degree
(e.g., expander): 

route lengths O(log n)

Exploit spatial locality Exploit temporal locality as well

000
Avin, S.: Toward Demand-Aware Networking: A Theory 

for Self-Adjusting Networks. SIGCOMM CCR 2018.



Algorithms for Self-Adjusting Networks

Ego-trees strike back!

From trees to networks!



Total Recall: Ego-Trees!

D[i] Ego−Tree

i



Total Recall: Ego-Trees!

D[i]

Idea: use our old
approach but 
now let each

node adjust its
ego-tree!

i

Ego−Tree



A Dynamic Ego-Tree:
Splay Tree



Demand-Oblivious

Fixed

Unknown

Bisection

Demand-Aware

Fixed Reconfigurable

Sequence Generator Offline Online

Awareness

Topology

Input

Static
Optimality

AlgorithmOFF ON

PropertyDiameter

Resiliency

Dynamic
Optimality

Learning
Optimality

STAT GENOBL

Uncharted Landscape! 000
Toward Demand-Aware Networking: A Theory for 

Self-Adjusting Networks. SIGCOMM CCR, 2018.



Flexibilities and Algorithms: 
Opportunities and Challenges



Optimizing Individual Routers

Online Aggregation of the Forwarding Information Base: Accounting for 
Locality and Churn. Marcin Bienkowski, Nadi Sarrar, Stefan Schmid, and 

Steve Uhlig. IEEE/ACM Transactions on Networking (TON), 2018.



Poor IP Routers

Ports

Forwarding 
Information Base  (FIB)

00* to    

01* to    

1* to    

TCAM memory expensive 
and power-hungry…

… and requirements grow 
quickly (e.g., virtualization). 

IPv6 does not help.
most specific prefix fast?



00* to    

01* to    

1* to    

0

0 1
1

0 1

Good 
Potential:

Down to 40% 
(RouteView), depending 

on # ports.

represent as trie… 

Idea: Represent as Trie

... and compress it!



00* to    

01* to    

1* to    

0

0 1
1

0 1

But may introduce
update churn!

represent as trie… 

Idea: Represent as Trie

BGP update

... and compress it!



00* to    

01* to    

1* to    

0

0 1
1

0 1

But may introduce
update churn!

represent as trie… 

Idea: Represent as Trie

BGP update

... and compress it!

update cost 2: 
remove + add

update cost 3: 
remove + add 

subtree



An Optimization Problem

0

0 1
1

Route Processor
or SDN Controller 

FIB or SDN Switch

update!

An online problem:
1. Forwarding must always be correct 

(equivalent)
2. Minimize update cost and memory size

BGP 
Events



Optimization of Local Fast Failover

P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures. Jesper 
Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, 

and Marc Tom Thorgersen. ACM CoNEXT, Heraklion/Crete, Greece, December 2018.

Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba. IEEE INFOCOM, Honolulu, Hawaii, USA, April 2018.



Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and 

conditional failover rules.

48



Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

No loops?
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A 

to B never goes via C?
• Waypoint ensurance: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via 
Iceland (expensive!). Or no traffic 

through route reflectors. 48



Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A 

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C?

A

B

C

Waypoint?

E.g. IDS, firewall
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Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A 

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C?

A

B

C

… and everything even under multiple failures?!

k failures = 
(𝑛𝑛
𝑘𝑘) possibilities

48

E.g. IDS, firewall



Can we automate such tests 
or even self-repair?



Can we automate such tests 
or even self-repair?

Yes! Encouraging: sometimes even fast: 
What-if Analysis Tool for MPLS and SR



MPLS configurations, 
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting 

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Leveraging Automata-Theoretic Approach

50



Leveraging Automata-Theoretic Approach

MPLS configurations, 
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting 

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries 
to test certain properties, or do it 
on a regular basis automatically!

50



A Complex and Big Formal Language! 
Why Polynomial Time?!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛𝑛

𝑘𝑘) many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures = 
(𝑛𝑛
𝑘𝑘) possibilities

54



This is not how we will 
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛𝑛

𝑘𝑘) many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures = 
(𝑛𝑛
𝑘𝑘) possibilities

A Complex and Big Formal Language! 
Why Polynomial Time?!
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This is not how we will 
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛𝑛

𝑘𝑘) many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

The words in our language are sequences of pushdown 
stack symbols, not the labels of transitions.

k failures = 
(𝑛𝑛
𝑘𝑘) possibilities

A Complex and Big Formal Language! 
Why Polynomial Time?!

54



Time for Automata Theory
(from Switzerland)!

Julius Richard Büchi

1924-1984

Swiss logician

• Classic result by Büchi 1964: the set of all reachable
configurations of a pushdown automaton a is regular set

• Hence, we can operate only on Nondeterministic Finite 
Automata (NFAs) when reasoning about the pushdown 
automata

• The resulting regular operations are all polynomial time
• Important result of model checking

55



Tool and Query Language

Part 1: Parses query
and constructs Push-
Down System (PDS)
• In Python 3

query processing flow

Part 2: Reachability 
analysis of 
constructed PDS
• Using Moped tool

Regular query language

k <a> b <c>
# failures header

header
path

56



YES!
(Gives witness!)

2 failures

Example: Traversal Testing With 2 Failures
Traversal test with k=2: Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: k=2 [] s1 >> s5 >> s7 []

57



Formal methods are nice (give 
guarantees!)… But what about ML…?!

DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning. Fabien Geyer 
and Stefan Schmid. IFIP Networking, Warsaw, Poland, May 2019.



Speed Up Further and Synthesize:
Deep Learning (s. talk by Fabien Geyer)

• Yes sometimes without losing guarantees

• Extend graph-based neural networks

• Predict counter-examples and fixes
Network topologies and MPLS rules

Network topologies and query 59



Challenges of Self-* Networks

• Can a self-* network realize its limits? 

• E.g., when quality of input data is not good enough? 

• When to hand over to human? Or fall back to „safe/oblivious mode“?

• Can we learn from self-driving cars?

63



Security Challenges of 
More Flexible Networks

MTS: Bringing Multi-Tenancy to Virtual Switches. 
Kashyap Thimmaraju, Saad Hermak, Gabor Retvari, 

and Stefan Schmid. USENIX ATC, 2019.

Taking Control of SDN-based Cloud Systems 
via the Data Plane. Kashyap Thimmaraju et 

al. ACM  SOSR, USA, March 2018.



Security of vSwitch

Virtualization
Layer

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Virtual switches reside in the server’s virtualization layer
(e.g., Xen’s Dom0). Goal: provide connectivity and isolation. 29



Security of vSwitch

Number of parsed high-level protocols constantly increases…
30



Security of vSwitch

User

Kernel

VM VM VM

N
I
C

Virtual SwitchL2,L2.5,
L3,L4

Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN
PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP 31



Security of vSwitch

User

Kernel

VM VM VM

Virtual Switch
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Security of vSwitch

User

Kernel

VM VM VM

Virtual Switch
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Security of vSwitch

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
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Security of vSwitch

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
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Thank you! Questions?
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Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid.
SIGACT News, June 2019.
Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.
Measuring the Complexity of Network Traffic Traces
Chen Griner, Chen Avin, Manya Ghobadi, and Stefan Schmid.
arXiv, 2019.
Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Distributed Self-Adjusting Tree Networks
Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks
Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu.
IFIP Networking, Warsaw, Poland, May 2019.
DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks
Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu.
IEEE/ACM International Symposium on Quality of Service (IWQoS), Phoenix, Arizona, USA, June 2019.
Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.

A survey!

Demand-aware networks

https://www.univie.ac.at/ct/stefan/sigact19.pdf
https://www.univie.ac.at/ct/stefan/ccr18san.pdf
https://www.univie.ac.at/ct/stefan/Poster-khen.pdf
https://www.univie.ac.at/ct/stefan/infocom2019a.pdf
https://www.univie.ac.at/ct/stefan/infocom2019b.pdf
https://www.univie.ac.at/ct/stefan/ifip19dan.pdf
https://www.univie.ac.at/ct/stefan/iwqos19.pdf
https://net.t-labs.tu-berlin.de/%7Estefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/%7Estefan/ancs18.pdf
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P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion/Crete, Greece, 
December 2018.
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.

What-if analysis

Preacher: Network Policy Checker for Adversarial Environments
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
38th International Symposium on Reliable Distributed Systems (SRDS), Lyon, France, October 2019.
MTS: Bringing Multi-Tenancy to Virtual Switches
Kashyap Thimmaraju, Saad Hermak, Gabor Retvari, and Stefan Schmid.
USENIX Annual Technical Conference (ATC), Renton, Washington, USA, July 2019.
Taking Control of SDN-based Cloud Systems via the Data Plane (Best Paper Award)
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.
ACM Symposium on SDN Research (SOSR), Los Angeles, California, USA, March 2018.

Secure sampling and dataplane

https://www.univie.ac.at/ct/stefan/conext18.pdf
https://www.univie.ac.at/ct/stefan/infocom18prefixnet.pdf
https://www.univie.ac.at/ct/stefan/srds19sats.pdf
https://www.univie.ac.at/ct/stefan/atc19mswitch.pdf
https://www.univie.ac.at/ct/stefan/sosr18.pdf
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How Predictable is Traffic?
Even if reconfiguration fast, control plane 
(e.g., data collection) can become a 
bottleneck. However, many good examples:
• Machine learning applications
• Trend to disaggregation (specialized 

racks)
• Datacenter communication dominated 

by elephant flows
• Etc.

ML workload (GPU to GPU):
deep convolutional neural network

Predictable from their dataflow graph
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