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The Trend: Flexibilities




Flexibilities: Along 3 Dimensions

Somewhere in beautiful Germany...
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Another Trend: Improved
Visibility of the Networks




Visibility: SDN, Telemetry, Sketching

Can also improve security

Traditionally: e.g., trajectory sampling

— Sample packets with
hash(imm. header) €[x,y] \
— See routes of some packets
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Visibility: SDN, Telemetry, Sketching

Can also improve security

mirror, exfiltrate, modify, drop,
insert, ... and misreport: knows

Traditionally: e.g., trajectory sampling what is currently sampled!

— Sample packets with

hash(imm. header) €[x,y] ‘
— See routes of some packets
— Others not! (Usually later...)

BSI question: What can we do if

switches may be malicious?

— Problem: all switches sample
the same space: known!

— Can exploit, e.g., know when
unobserved.



Visibility: SDN, Telemetry, Sketching

Solution: adversarial trajectory
sampling with SDN

Idea:

— Use secure channels
between controller and
switches to distribute hash
ranges

— Give different hash ranges
hash ranges to different
switches, but add some
redundancy: risk of being
caught!

In general: obtaining live data
from the network becomes
easier!

\ SDN Controller
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Preacher: Network Policy Checker for Adversarial Environments.
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid. SRDS 20109.




Together, Enables A Paradigm Shift:
Demand-Aware Networks




[ Flexibility

Demand-Aware Efficiency /
Networks Performance

Data about
Demand




A Case Study: Flexible Topologies




Enabling optical technologies for

reconfigurable networks

Example: Manya Ghobadi et al.
Kudos for some slides!
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Example: ProjecToR

e Based on free-
space optics
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Example: ProjecToR
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 Reconfiguration
in ~10 us:




Example: ProjecToR

Faster than
moving
antennas!

Based on free-
space optics

Reconfiguration




ProjecToR in More Details:

Technological Enabler

Photodetector

Laser



ProjecToR in More Details:
DMDs

Array of
micromirrors

INSTRUMENTS

Memory cell

e Each micromirror can be turned on/off
e Essentially a 0/1-image: e.g., array size 768 x 1024
e Direction of the diffracted light can be finely tuned



ProjecToR in More Details:
DMDs to Redirect Light Fast

Light Intensity

Light Intensity

o




ProjecToR in More Details:
DMDs to Redirect Light Fast

Light Intensity

Challenge:
limited angular
range +/- 3°

o




ProjecToR in More Details:
Coupling DMDs with angled mirrors

2 Assembly’s angled facets magnify

the DMD’s reach to the entire DC.

Coupling: point the DMDs toward
a “disco-ball” mirror assembly
mstalled overhead.




ProjecToR in More Details:
Coupling DMDs with angled mirrors

60x higher fan-out (can directly connect all pairs)
and 2500x faster switching time
than optical circuit switches




Other Technologies

Based on silicon photonics 2-NEMS Rotating disks

Further reading:
Wade et al., A Bandwidth-Dense, Low Power Electronic-Photonic Platform and Architecture for Multi-Tbps Optical I/O [OFC'18]
Porter et al., “Integrating Microsecond Circuit Switching into the Data Center”, Sigcomm’13



Timeline

Reconfiguration time: from
milliseconds to microseconds
(and decentralized).

Survey of Reconfigurable Data Center
Networks. Foerster and Schmid.
SIGACT News, 2019.

2009
2010

2011

2012
2013

2014

2015

2016

2017

2018
2019

Flyways [51]: Steerable antennas (narrow beamwidth at 60 GHz [78]) to serve hotspots
Helios [33]/c-Through [98, 99]: Hybrid switch architecture, maximum matching (Edmond’s
algorithm [30]), single-hop reconfigurable connections (O(10)ms reconfiguration time).

Proteus [21, 89]: k reconfigurable connections per ToR, multi-hop path stitching, multi-hop
reconfigurable connections (weighted b-matching [69], edge-exchanges for connectivity [72], wavelength
assignment via edge-coloring [67] on multigraphs)

Extension of Flyways [51] to better handle practical concerns such as stability and interference for
60GHz links, along with greedy heuristics for dynamic link placement [45]

Mirror Mirror on the ceiling [106]: 3D-beamforming (60 Ghz wireless), signals bounce off the ceiling
Mordia [31, 32, 77]: Traffic matrix scheduling, matrix decomposition (Birkhoff-von-Neumann
(BvN) [18, 97]), fiber ring structure with wavelengths (O(10)ps reconfiguration time)

SplayNets [6, 76, 82]: Fine-grained and online reconfigurations in the spirit of self-adjusting
datastructures (all links are reconfigurable), aiming to strike a balance between short route lengths
and reconfiguration costs

REACToeR [56]: Buffer burst of packets at end-hosts until circuit provisioned, employs [77]

Firefly [14] Combination of Free Space Optics and Galvo/switchable mirrors (small fan-out)

Solstice [57): Greedy perfect matching based hybrid scheduling heuristic that outperforms BvN [77]

Designs for optical switches with a reconfiguration latency of O(10)ns [3]

ProjecToR [39]: Distributed Free Space Optics with digital micromirrors (high fan-out) [38] (Stable
Matching [26]), goal of (starvation-free) low latency

Eclipse [95, 96]: (1 — 1/e"'~%))-approximation for throughput in traffic matrix scheduling (single-hop
reconfigurable connections, hybrid switch architecture), outperforms heuristics in [57]

DAN [7, 8, 11, 12]: Demand-aware networks based on reconfigurable links only and optimized for a
demand snapshot, to minimized average route length and/or minimize load

MegaSwitch [23]: Non-blocking circuits over multiple fiber rings (stacking rings in [77] doesn’t suffice)
Rotornet [63]: Oblivious cyclical reconfiguration w. selector switches [64] (Valiant load balancing [94])
Tale of Two Topolagies [105]: Convert locally between Clos [24] topology and random graphs [87, 88]
DeepConf [81]/xWeaver [102]: Machine learning approaches for topology reconfiguration

Complexity classifications for weighted average path lengths in reconfigurable topologies [34, 35, 36]
ReNet [13] and Push-Down-Trees [9] providing statically and dynamically optimal reconfigurations
DisSplayNets [75]: fully decentralized SplayNets

Opera [60]: Maintaining expander-based topologies under (oblivious) reconfiguration



When Are Demand-Aware Networks Useful?




A Simple Answer

Demand-Oblivious Networks =




Seriously: We believe, often, in practice!

A B C D A B C D
A |0]3]3]3 AloO|e6|@e]|o0
B |[3|/0]3]3 Blo|o|o|oO
C 31310713 C|e| 0|06 |0
D |33]3]0 Dio|l®| 6 |0
In theory: traffic matrix In practice: skewed

uniform and static and dynamic



Empirical Motivation
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Microsoft data: 200K servers across 4 production clusters, cluster sizes: 100 - 2500 racks.
Mix of workloads: MapReduce-type jobs, index builders, database and storage systems.



So: How much structure is there?

How to measure it?
? And which types of structures? E.g., temporal
structure in addition to non-temporal structure?

@ Tricky!



Often only intuitions in the literature...

“less than 1% of the rack pairs account for
80% of the total traffic”

“only afew ToRs switches are hot

and most of their traffic goes to a few
other ToRS”

“over 90% bytes
flow in elephant flows”




... and it is intuitive!
Non-temporal Structure

Color =
comm. pair

Traffic matrix of two different distributed ML applications (GPU-to-GPU):

Which one has more structure?



... and it is intuitive!
Non-temporal Structure

More Color =
[ Uniform More comm. pair
skewed Yo

Traffic matrix of two different distributed ML applications (GPU-to-GPU):

Which one has more structure?



... and it is intuitive!
Temporal Structure
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Two different ways to generate same traffic matrix (same non-temporal structure):

Which one has more structure?



... and it is intuitive!
Temporal Structure

Which one has more structure?
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Two different ways to generate same traffic matrix (same non-temporal structure):




... and it is intuitive!

Temporal Structure [ More ]
bursty

pu—
0 - 500 B 1
Time

Quite intuitive: but how to define and
measure systematically?

000

Two different ways to generate same traffic matrix (same non-temporal structure):

Which one has more structure?



The Trace Complexity

An information-theoretic approach: how can we measure the entropy
(rate) of a traffic trace?

Henceforth called the trace complexity

Simple approximation: ,shuffle&compress”
— Remove structure by iterative randomization
— Difference of compression before and after randomization: structure



The Trace Complexity

Original src-dst trace Randomize rows Randomized columns Uniform trace

?»g»g»%

<




The Trace Complexity

Original src-dst trace Randomize rows Randomized columns Uniform trace
@ (
Difference in Difference in Difference in

compression? compression? compression?



The Trace Complexity

Original src-dst trace Randomize rows Randomized columns Uniform trace

Difference in Difference in Difference in
compression? compression? compression?

Can be used to define a ,,complexity map“!



Non-temporal complexity
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Complexity Map: Entropy
(,,complexity”) of traffic traces.



Non-temporal complexity
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The Complexity Map
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of entropy

Complexity Map: Entropy
(,,complexity”) of traffic traces.



Non-temporal complexity

The Complexity Map

1.0 p—Bursty Uniform
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0.4 Skewed

0.3 I
03 04 05 06 07 08 09 1.0

Temporal complexity

Uniform: Today’s

datacenters J

* Traditional networks are optimized
for the “worst-case” (all-to-all
communication traffic)

e Example, fat-tree topologies:
provide full bisection bandwidth
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Non-temporal complexity
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Non-temporal complexity
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Non-temporal structure could
be exploited already with static
demand-aware networks!




To exploit temporal structure, .
need adaptive demand-aware pIEXIty Ma p
(“self-adjusting”) networks.

1.0 —Bursty Uniform
- 0.9
2 o8 " Good in the worst case but: )
S o0 cannot leverage different
g 06 temporal and non-temporal
5 \_ structures of traffic traces! )
Z 0.5
2 0.4 Skewed

0.3 s Non-temporal structure could

03 04 05 06 07 08 09 10 be exploited already with static

Temporal complexity

demand-aware networks!




Non-temporal complexity

The Complexity Map
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The Complexity Map
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The Complexity Map

No structure!

N D
Uniform Goal: Design self-adjusting

networks which leverage both

dimensions of structure!
g Y,

S

e
o

e
~

o
o

Mirrors —> N

ol . N Lasers —> m
| TOR switches —> |
0.3
0.3 Both structures! |10
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=)
o]

Avin, Ghobadi, Griner, Schmid. ArXiv 2019.




So: How to design networks which exploit
this structure? How good can they be?

Metrics again!



Roadmap

 Entropy: A metric for demand-aware networks?
— Intuition
— Alower bound
— Algorithms achieving entropy bounds ’

 From static to dynamic demand-aware networks
— Empirical motivation
— A connection to self-adjusting datastructures




Roadmap

 Entropy: A metric for demand-aware networks?
— Intuition
— Alower bound
— Algorithms achieving entropy bounds ’




A Simple Example

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed
Computing (DISC), Vienna, Austria, October 2017.
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More Formally




Sources

g OO0 U1 A W N

Input:
Workload

Destinations

3 4 5

Gl
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Output:
Constant-Degree DAN




Sources

g OO0 U1 A W N

Input:

Output:

5 6 7 7

Constant-Degree DAN

Workload

Destinations
2 3 4
2 1 1 2 3
65 65 | 65 65 | 65
o|lL|lo|lo]| 0|2

65 65

% 0| 2 Much from 4 to 5.

o] ©of ©

4

5

Makes sense
to add link!




Input: Output:
Workload Constant-Degree DAN
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Sources

g OO0 U1 A W N

Input:

Workload

Destinations

2 3 4 5 6 7
2 1 1 2 3
5 5 | e | &5 | &
olX|lo|lo| 0|2
65 65
110 0
65
2 : P

o] ©of ©

A\

communicate...

4 and 6 don’t

65

0

Output:
Constant-Degree DAN

... but “extra” link still
makes sense: not a
subgraph.

\




Objective: Expected Route Length

DAN N of degree A path length on N
L L—

ERL(D,N) = z p(u,v) - dy(u,v)
7 N
2[p(, j)]: joint distribution (wv) 2 frequency




Remark

e (Can represent demand matrix as a demand graph

sparse distribution 2 sparse graph G(D)

Destinations

Sources




Some Examples

e DANs of A =3:

— E.g., complete binary tree
— dy(uv) <2logn
— Can we do better than log n?

e DANsof A=2:

— E.g., set of lines and cycles



Remark: Hardness Proof




DAN design can be NP-hard

e Example A =2: A Minimum Linear

Arrangement (MLA) problem

— A “Virtual Network Embedding Problem”, VNEP
— Minimize sum of lengths of virtual edges

Embedding?

o OO 00O
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DAN design can be NP-hard

e Example A =2: A Minimum Linear

Arrangement (MLA) problem

— A “Virtual Network Embedding Problem”, VNEP
— Minimize sum of lengths of virtual edges




DAN design can be NP-hard

* Example A = 2: A Min@@=cainear
Arrangement ([\ .
" sedding Problem”, VNEP




DAN design can be NP-hard

e But what about > 2? Embedding
problem still hard, but we have an
additional degree of freedom:

A new knob for
optimization!

Do topological flexibilities make problem
easier or harder?!
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Is there a better tradeoff in DANs?




Sometimes, DANs can be much better!

Example 1: low-degree demand

YTy

-

\_

If demand graph is of degree A, it is trivial
to design a DAN of degree A which achieves
an expected route length of 1.

~

J

Just take DAN =

demand graph!



Sometimes, DANs can be much better!

Example 2: skewed demand

-

\_

If demand is highly skewed, it is also

possible to achieve an expected route
length of O(1) in a constant-degree DAN.

~N

J




Sometimes, DANs can be much better!

Example 2: skewed demand

{

Toward Demand-Aware Networking: A Theory for Self-
Adjusting Networks. Chen Avin and Stefan Schmid. ACM
SIGCOMM CCR, October 2018

]

4 )
If demand is highly skewed, it is also
possible to achieve an expected route
length of O(1) in a constant-degree DAN.

g J

v

E.g., arrange neighbors of node 1
in a Huffman tree!



So on what does it depend?




So on what does it depend?

We argue (but still don‘t know!): on the
“entropy” of the demand!

>
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HMIT L Intuition: Entropy Lower Bound
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Lower Bound Idea:
Leverage Coding or Datastructure

Destinations

Sources

1 2 3 4 5 6 7 - _

1l olzl2x]xlz]z  DAN just for a single (source) node 3
65 13 65 65 65 65

2 1 2
2|0 |<]0|0|0]= .

1 1 2 1 R

1 2 y)
4| =100 |00
5| |0|2|&|0|0]0 e How good can this tree be? Cannot do better
6 olololololsz than A-ary Huffman tree for its destinations

s | 2 | 1 —  Entropy lower bound on ERL known for binary
Tlael|lasls|%9]9%s]|0 trees, e.g. Mehlhorn 1975




Lower Bound |dea:
Leverage Coding or Datastructure

Destinations

An optimal “ego-tree”
for this source!

P

DAN just for a single (source) node 3

A

v

Sources

1 2 3 4 5 6 7
1o 2| XL X222
65 13 65 65 65 65
212102 ]|0|0]|]o0]2
65 65 65
3|6 &5 13
1 2 4
4|00 ]|0]0O
3 4

5| |0|x|=]0|0]0O
3
6|-|0|0]0|O0|0]2

2 3
Tlele|n]| %% &]”

How good can this tree be? Cannot do better
than A-ary Huffman tree for its destinations

Entropy lower bound on ERL known for binary
trees, e.g. Mehlhorn 1975



So: Entropy of the Entire Demand
@ destinations

Proof idea (EPL=Q(H,(Y|X))): A

entropy degree \
1 2 3 4 5 6 7
Compute ego-tree for each source \ £ o B B ]

node

Take union of all ego-trees

Violates degree restriction but valid A
lower bound



Entropy of the Entire Demand:
Sources and Destinations

Do this in both dimensions:
EPL > Q(max{H,(Y|X), H,(X]Y)})

| Qthy(v1)

Q(H,(X]Y)
VR
1 2 3 4 6 7
1oz T2Txllz]z
65 13 65 6 65 65
2 1 2
2|20 Lo 0|2
1 1 2 1
[3 sle| 0% & |90 |5
T i
4o [ZTo[Z[[o]o
1 3 4
5lesl 9% s les 010
2 3
6|2 |0fofofo]fol2
3 2 1 3
Tlaslals 9]0 !0
—




Entropy of the Entire Demand:
Sources and Destinations

Q(HA(X]Y))
1 2 3 4 5(6 |7
Lol g s lslallels
Do this in both dimensions: 2|2 0|0 0 ||2
312X |lo|2]oflol|
EPL > Q(max{Hy(Y[X), Hy(X[V)}) Lo fo [e (ool | k(¥
50022 0 |lo
6|Z|0|ofo|of o0l
7121212 ]o0]o]2l]o

Demand-Aware Network Designs of Bounded Degree. Chen
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017.




Achieving Entropy Limit: Algorithms




Ego-Trees Revisited

e ego-tree: optimal tree for
a row (= given source)

T — AN

ego-tree



Ego-Trees Revisited

e ego-tree: optimal tree for
a row (= given source)

—A

ego-tree

3
=

\[2 0 o[ofofZ

(3 0 ool

A (4 0 0 oo
N[S 0 0]o]o

e

0

L L JL L _JL JU

Can we merge the trees without
distortion and keep degree low?



Ego-Trees Revisited

* ego-tree: optimal tree for \\ L2 5 4 56 7

L L JL L _JL JU

a row (= given source) N - IEADDOE
BILZ]Z]olZ]o]o]:
A [4 o[ZJo[i]o]o
M,[S tlol2 0|o0]o

(6]2]ofofo]o]o
/[? slalalo]o 0

A /J
- For sparse demands yes: A
enough low-degree nodes which can
serve as “helper nodes”!
Dli]

ego-tree Can we merge the trees without
distortion and keep degree low?



From Trees to Networks




ldea: Degree Reduction

@ Demand graph @ Hierarchical representation

» U v w
h h

low degree

high degree

“ @ Add low-degree nodes as helpers
u v w

O O O
Taking union of ego-trees results in high degree: 8 Qh hﬂ( );Q h O Q
u and v will appear in many ego-trees g

] Node h helps edge (u, v) by participating in ego-tree(u) as a

relay node toward v and in ego-tree(v) as a relay toward u

Demand-Aware Network Designs of Bounded Degree. Chen
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017.




But: How to design DANs which
also leverage temporal structure?

Inspiration from self-adjusting
datastructures again!



Roadmap

e From static to dynamic demand-aware networks

— A connection to self-adjusting datastructures




An Analogy

Static vs dynamic demand-
aware networks!?

DANSs vs SANs?



,Coming to the LKN retreat?”

An Analogy to Coding i oovto101. 1

if demand arbitrary and unknown

Full BW

worst case coding: i
| 00,01, 10, I | ‘ log # bits / symbol

worst case network: .
( W log diameter




,Coming to the LKN retreat?”

An Analogy to Coding [ 01011..

if demand arbitrary and unknown

worst case network: .
( Full BW W log diameter

ding:
@ l WOBS& (;: ?’STOC,C: |mg ‘ log # bits / symbol

if demand known and fixed

static
entropy? (Demand-Aware Netsw

static Huffman:
entropy / symbol 1,01,001,000




,Coming to the LKN retreat?”

An Analogy to Coding [ o11..

if demand arbitrary and unknown

worst case network: .
( Full BW W log diameter

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

v sgsissire ] avsisombo

L
SAN!

if demand known and fixed  if demand unknown but reconfigurable

static r dynamic
entropy? Demand-Aware Nets Demand-Aware Nets

static Huffman: dynamic
entropy / symbol 1,01,001,000 Huffman codes




,Coming to the LKN retreat?”

An Analogy to Coding [ o11..

if demand arbitrary and unknown

Dynamic DANs:
(worSt Fcuaﬁ%cstwork) log diameter Aka. Self-Adjusting
Networks (SANs)!
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if demand known and fixed  if demand unknown but reconfigurable

static r dynamic
Can exploit Demand-Aware Nets Demand-Aware Nets

spatial locality! static Huffman: dynamic
1,01,001, 000 Huffman codes

@ Additionally exploit
temporal locality!




,Coming to the LKN retreat?”

An Analogy to Coding o11.
if demand arbitrary and unknown
Dynamic DANs:
(worSt chfzcstwork"] log diameter Aka. Self-Adjusting
Networks (SANs)!

Additionally exploit
temporal locality)!

static Huffman:
1,01,001, 000



Analogous to Datastructures: Oblivious...

Traditional, fixed BSTs do not rely on any
assumptions on the demand

Optimize for the worst-case

Example demand:
1,..,1,3,...,3,5,...,5,7,...,7,...,log(n),...,log(n)

many many many many many
Many requests ... then for
for leaf 1... leaf 3.
Items stored at O(log n) from the root, oriea ea

uniformly and independently of their

frequency Corresponds to
max possible demand!




... Demand-Aware ...

Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

E.g.: place frequently accessed elements
close to the root

E.g., Knuth/Mehlhorn/Tarjan trees

Recall example demand:
1,..,1,3,...,3,5,...,5,7,...,7,...,log(n),..., log(n)
— Amortized cost Ofloglog n) ﬁ

() Amortized cost corresponds
£ to empirical entropy of demand!




... Self-Adjusting!

Demand-aware reconfigurable BSTs
can additionally take advantage of
temporal locality

By moving accessed element to the
root: amortized cost is constant, i.e.,
0(1)

— Recall example demand:
1,..,1,3,..,3,5,..,5,7,...,7,...,log(n),...,log(n)




Datastructures

Oblivious Demand-Aware Self-Adjusting

BST; BST}.4
(5) 7
»
ONONONONONE
©
® ®
Lookup Exploit spatial locality: Exploit temporal locality as well:

O(log n) empirical entropy O(loglog n) 0(1)



Analogously for Networks

Oblivious DAN SAN

Const degree

(e.g., expander): Exploit spatial locality Exploit temporal locality as well

route lengths Oflog n) [ Avin, S.: Toward Demand-Aware Networking: A Theory ]

for Self-Adjusting Networks. SIGCOMM CCR 2018.




Algorithms for Self-Adjusting Networks

- i ‘ _'II’:,. i -.

~_ From trees to networks!

@ Ego-trees strike back!



Total Recall: Ego-Trees!

A

2|i] Ego—Tree



Total Recall: Ego-Trees!

Idea: use our old

approach but
@ now let each
node adjust its

2|i] Ego—Tree



-Tree

Ego

A Dynamic

Splay Tree




Uncharted Landscape!

[

Toward Demand-Aware Networking: A Theory for
Self-Adjusting Networks. SIGCOMM CCR, 2018.

‘ Demand-Oblivious | Demand-Aware Awareness

: Fixed Fixed Reconfigurable Topology

[ Unknown ] Sequence: :Generator: Offline Online Input

OBL STAT GEN OFF ON Algorithm

[ st | |t | ooy | | [ ooty | roverty
Resiliency Learning

[

Optimality

]




Flexibilities and Algorithms:
Opportunities and Challenges




Optimizing Individual Routers

Online Aggregation of the Forwarding Information Base: Accounting for
Locality and Churn. Marcin Bienkowski, Nadi Sarrar, Stefan Schmid, and
Steve Uhlig. IEEE/ACM Transactions on Networking (TON), 2018.




Poor IP Routers

FO rwa rd | N g R
I nfo rm ati O n Ba Se ( F I B) L T

s in Fl

BGP ent

Active

00* to [

| | | | |
1988 1992 1997 2001 2005 2009

01*to [
1*to []

most specific prefix fast?

... and requirements grow
quickly (e.g., virtualization).
IPv6 does not help.

N

TCAM memory expensive
y exp Ports

and power-hungry...



ldea: Represent as Trie ﬂ

00* to - represent as trie...

01*to [}
1*to []

Good
Potential:

Down to 40%
(RouteView), depending
on # ports.




ldea: Represent as Trie ﬁ

00* to - represent as trie...

01* to [
1*to []

But may introduce
update churn!




I ;' == epresent as Trig update cost2:

remove + add

0 2000 4000 6000 8000 10000

00* tc: present as trie... 1
L <:> 0
1* to Time in day:

- update cost 3:

remove + add

81
_ subtree ... and compress it!
But may introduce

update churn!




An Optimization Problem

Route Processor FIB or SDN Switch
BGP or SDN Controller | —
Events update!
An online problem: ‘

1. Forwarding must always be correct
(equivalent)
2. Minimize update cost and memory size




Optimization of Local Fast Failover

(

\.

P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures. Jesper
Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba,
and Marc Tom Thorgersen. ACM CoNEXT, Heraklion/Crete, Greece, December 2018.

\

J

7

Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba. IEEE INFOCOM, Honolulu, Hawaii, USA, April 2018.

\




Responsibilities of a Sysadmin

Routers and switches store
list of forwarding rules, and
conditional failover rules.

ey S
T

"




Responsibilities of a Sysadmin

Sysadmin responsible for:

* Reachability: Can traffic from ingress
port A reach egress port B?

Reachability?

&
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Sysadmin responsible for:

* Reachability: Can traffic from ingress
port A reach egress port B?

* Loop-freedom: Are the routes implied
by the forwarding rules loop-free?




Responsibilities of a Sysadmin

Sysadmin responsible for:

* Reachability: Can traffic from ingress
port A reach egress port B?

* Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

* Policy: Is it ensured that traffic from A
to B never goes via C?

E.g. NORDUnet: no traffic via
Iceland (expensive!). Or no traffic
through route reflectors.




Responsibilities of a Sysadmin

Sysadmin responsible for:

E.g. IDS, firewall

Reachability: Can traffic from ingress
port A reach egress port B?

Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Policy: Is it ensured that traffic from A
to B never goes via C?

Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C?



E.g. IDS, firewall

... and everything even under multiple failures?!

Sysadmin responsible for:

Reachability: Can traffic from ingress
port A reach egress port B?

Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

Policy: Is it ensured that traffic from A
to B never goes via C?

Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C?



Can we automate such tests
or even self-repair?




Can we automate such tests
or even self-repair?

@ Yes! Encouraging: sometimes even fast:

L What-if Analysis Tool for MPLS and SR



Leveraging Automata-Theoretic Approach

Compilation pXinX

o pX = qg¥X

TSNP © | qYy = ryy
e o oS .. o ry=r
rX = pX

Interpretation

Pushdown Automaton
MPLS configurations, and Prefix Rewriting
Segment Routing etc. Systems Theory



Leveraging Autor

e e e v,# V; =p- OUL;

p . I
Vs = Vg Wy Vg = OUL;

MPLS configurations,
Segment Routing etc.

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

Compilation

0
Q5

Interpretation

pX = gXX
pX = q¥X
qY = rYY
rY=-r
rX = pX

Pushdown Automaton
and Prefix Rewriting
Systems Theory



A Complex and Big Formal Language!
Why Polynomial Time?!

e Arbitrary number k of failures: How can | avoid
checking all (Z) many options?!

k failures = Y

S (Z) possibilities

e Even if we reduce to push-down automaton:
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!



A Complex and Big Formal Language!
Why Polynomial Time?!

e Arbitrary number k of failures: How can | avoid
checking all (Z) many options?!

k failures = Y

S (Z) possibilities

e Even if we reduce to push-down automaton:
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

O

This is not how we will
use the PDA!



A Complex and Big Formal Language!
Why Polynomial Time?!

e Arbitrary number k of failures: How can | avoid
w SIS = checking all ) many options?!
‘\'\;.‘..‘.;v'» k .

7 (Z) possibilities

e Even if we reduce to push-down automaton:
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even

undecidable!
o °

_——

The words in our language are sequences of pushdown }

stack symbols, not the labels of transitions.




Time for Automata Theory
(from Switzerland)!

 Classic result by Bilichi 1964: the set of all reachable
configurations of a pushdown automaton a is regular set

 Hence, we can operate only on Nondeterministic Finite
Automata (NFAs) when reasoning about the pushdown
automata

Julius Richard Biichi
1924-1984
Swiss logician

* The resulting regular operations are all polynomial time

* Important result of model checking



Tool and Query Language

.’header .mo
Part 1: Parses query ]

and constructs Push- k<a>b<c>"
Down System (PDS)
e |n Python 3

Regular query language

Part 2: Reachability
analysis of
constructed PDS

* Using Moped tool

query processing flow



Example: Traversal Testing With 2 Failures

Traversal test with k=2: Can traffic starting with [] go through s5, under up to k=2 failures?

o, E \ Query: k= 2 [] s1>>s5>>s7(]

YES!

(Gives witness!)

s1



Formal methods are nice (give
guarantees!)... But what about ML...?!

DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning. Fabien Geyer
and Stefan Schmid. IFIP Networking, Warsaw, Poland, May 2019.




Speed Up Further and Synthesize:
Deep Learning (s. talk by Fabien Geyer)

N 0}— Rule —|W ap —. 51| i
* Yes sometimes without losing guarantees 'm PP
B »4\ ) — {1} o@o—o@o

Sw ap | ,\T f.:' O

 Extend graph-based neural networks e @@

Network topologies and MPLS rules
e Predict counter-examples and fixes

" Initial Ierbv?ﬂ\"«.‘ Final label
@ @ —O— @t
. N

|

Network topologies and query



Challenges of Self-* Networks

Can a self-* network realize its limits?
E.g., when quality of input data is not good enough?
When to hand over to human? Or fall back to , safe/oblivious mode“?

Can we learn from self-driving cars?




Security Challenges of
More Flexible Networks

Kashyap Thimmaraju, Saad Hermak, Gabor Retvari,

~
MTS: Bringing Multi-Tenancy to Virtual Switches.
and Stefan Schmid. USENIX ATC, 2019.

via the Data Plane. Kashyap Thimmaraju et

N
Taking Control of SDN-based Cloud Systems
al. ACM SOSR, USA, March 2018.




Security of vSwitch

VM VM VM

\ <
User =
—————————————————— [ Virtual Switch ] 5 Q.
, Kernel L]
2,
N >

I

C

Virtual switches reside in the server’s virtualization layer
(e.g., Xen’s Dom0). Goal: provide connectivity and isolation.



Security of vSwitch
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Number of parsed high-level protocols constantly increases...



Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP VM
UDP

ARP

SCTP

IPv6

ICMPV6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR
TUNNEL-ID
IPv6 ND

IPv6 EXT HDR
IPv6HOPOPTS l

IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPV6ESP

IPv6 AH

RARP

IGMP

Security of vSwitch
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Security of vSwitch
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Security of vSwitch




Security of vSwitch
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Security of vSwitch
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Further Reading

Demand-aware networks

Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid. |
SIGACT News, June 2019. A su rvey *

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)

Chen Avin and Stefan Schmid.

ACM SIGCOMM Computer Communication Review (CCR), October 2018.

Measuring the Complexity of Network Traffic Traces

Chen Griner, Chen Avin, Manya Ghobadi, and Stefan Schmid.

arXiv, 2019.

Demand-Aware Network Design with Minimal Congestion and Route Lengths

Chen Avin, Kaushik Mondal, and Stefan Schmid.

38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Distributed Self-Adjusting Tree Networks

Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks

Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anais Villedieu.

IFIP Networking, Warsaw, Poland, May 2019.

DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks

Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu.

IEEE/ACM International Symposium on Quality of Service (IWQoS), Phoenix, Arizona, USA, June 2019.
Demand-Aware Network Designs of Bounded Degree

Chen Avin, Kaushik Mondal, and Stefan Schmid.

31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
SplayNet: Towards Locally Self-Adjusting Networks

Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures

Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.

ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.


https://www.univie.ac.at/ct/stefan/sigact19.pdf
https://www.univie.ac.at/ct/stefan/ccr18san.pdf
https://www.univie.ac.at/ct/stefan/Poster-khen.pdf
https://www.univie.ac.at/ct/stefan/infocom2019a.pdf
https://www.univie.ac.at/ct/stefan/infocom2019b.pdf
https://www.univie.ac.at/ct/stefan/ifip19dan.pdf
https://www.univie.ac.at/ct/stefan/iwqos19.pdf
https://net.t-labs.tu-berlin.de/%7Estefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/%7Estefan/ancs18.pdf

Further Reading

What-if analysis

P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures

Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.

14th ACM International Conference on emerging Networking EXperiments and Technologies (CONEXT), Heraklion/Crete, Greece,
December 2018.

Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks

Stefan Schmid and Jiri Srba.

37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.

Secure sampling and dataplane

Preacher: Network Policy Checker for Adversarial Environments

Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.

38th International Symposium on Reliable Distributed Systems (SRDS), Lyon, France, October 2019.

MTS: Bringing Multi-Tenancy to Virtual Switches

Kashyap Thimmaraju, Saad Hermak, Gabor Retvari, and Stefan Schmid.

USENIX Annual Technical Conference (ATC), Renton, Washington, USA, July 2019.

Taking Control of SDN-based Cloud Systems via the Data Plane (Best Paper Award)

Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.
ACM Symposium on SDN Research (SOSR), Los Angeles, California, USA, March 2018.



https://www.univie.ac.at/ct/stefan/conext18.pdf
https://www.univie.ac.at/ct/stefan/infocom18prefixnet.pdf
https://www.univie.ac.at/ct/stefan/srds19sats.pdf
https://www.univie.ac.at/ct/stefan/atc19mswitch.pdf
https://www.univie.ac.at/ct/stefan/sosr18.pdf
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How Predictable is Traffic?

Even if reconfiguration fast, control plane

(e.g., data collection) can become a '| n h '] “
bottleneck. However, many good examples: L LT

(GGB/s)

(a) parameter-se (b) replicated v:

ulu !W M

e Machine learning applications

b GEs)

throughpa

 Trend to disaggregation (specialized

FacC kS) ©Pp @ MP
e Datacenter communication dominated ML workload (GPU to GPU):
by elepha nt flows deep convolutional neural network

Predictable from their dataflow graph
e Etc. f flow grap



	Self-* networks: when flexibility meets algorithms
	 
	Flexibilities: Along 3 Dimensions 
	Flexibilities: Along 3 Dimensions 
	Flexibilities: Along 3 Dimensions 
	 
	Visibility: SDN, Telemetry, Sketching
	Visibility: SDN, Telemetry, Sketching
	Visibility: SDN, Telemetry, Sketching
	Visibility: SDN, Telemetry, Sketching
	Visibility: SDN, Telemetry, Sketching
	 
	Slide Number 13
	A Case Study: Flexible Topologies
	 
	 
	Example: ProjecToR
	Example: ProjecToR
	Example: ProjecToR
	Example: ProjecToR
	ProjecToR in More Details: �Technological Enabler
	ProjecToR in More Details: �DMDs
	ProjecToR in More Details: �DMDs to Redirect Light Fast
	ProjecToR in More Details: �DMDs to Redirect Light Fast
	ProjecToR in More Details: �Coupling DMDs with angled mirrors 
	ProjecToR in More Details: �Coupling DMDs with angled mirrors 
	Other Technologies
	Timeline
	 
	A Simple Answer
	Seriously: We believe, often, in practice!
	Empirical Motivation
	So: How much structure is there?
	Often only intuitions in the literature…
	… and it is intuitive!�Non-temporal Structure
	… and it is intuitive!�Non-temporal Structure
	… and it is intuitive!�Temporal Structure
	… and it is intuitive!�Temporal Structure
	… and it is intuitive!�Temporal Structure
	The Trace Complexity
	The Trace Complexity
	The Trace Complexity
	The Trace Complexity
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	 
	Roadmap
	Roadmap
	 
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	 
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Objective: Expected Route Length
	Remark
	Some Examples
	Remark: Hardness Proof
	DAN design can be NP-hard
	DAN design can be NP-hard
	DAN design can be NP-hard
	DAN design can be NP-hard
	DAN design can be NP-hard
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Is there a better tradeoff in DANs?
	Sometimes, DANs can be much better!
	Sometimes, DANs can be much better!
	Sometimes, DANs can be much better!
	So on what does it depend?
	So on what does it depend?
	Intuition: Entropy Lower Bound
	Lower Bound Idea: �Leverage Coding or Datastructure
	Lower Bound Idea: �Leverage Coding or Datastructure
	So: Entropy of the Entire Demand
	Entropy of the Entire Demand: �Sources and Destinations
	Entropy of the Entire Demand: �Sources and Destinations
	Achieving Entropy Limit: Algorithms
	Ego-Trees Revisited
	Ego-Trees Revisited
	Ego-Trees Revisited
	From Trees to Networks
	Idea: Degree Reduction
	But: How to design DANs which �also leverage temporal structure?
	Roadmap
	An Analogy
	An Analogy to Coding
	An Analogy to Coding
	An Analogy to Coding
	An Analogy to Coding
	An Analogy to Coding
	Analogous to Datastructures: Oblivious…
	… Demand-Aware …
	… Self-Adjusting!
	Datastructures
	Analogously for Networks
	Algorithms for Self-Adjusting Networks
	Total Recall: Ego-Trees!
	Total Recall: Ego-Trees!
	A Dynamic Ego-Tree:�Splay Tree
	Slide Number 114
	Flexibilities and Algorithms: �Opportunities and Challenges
	Optimizing Individual Routers
	Poor IP Routers
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Optimization of Local Fast Failover
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Can we automate such tests �or even self-repair?
	Can we automate such tests �or even self-repair?
	Leveraging Automata-Theoretic Approach
	Leveraging Automata-Theoretic Approach
	A Complex and Big Formal Language! �Why Polynomial Time?!
	A Complex and Big Formal Language! �Why Polynomial Time?!
	A Complex and Big Formal Language! �Why Polynomial Time?!
	Time for Automata Theory �(from Switzerland)!
	Tool and Query Language
	Example: Traversal Testing With 2 Failures
	Formal methods are nice (give guarantees!)… But what about ML…?!
	Speed Up Further and Synthesize:�Deep Learning (s. talk by Fabien Geyer)
	Challenges of Self-* Networks
	Security Challenges of �More Flexible Networks
	Security of vSwitch
	Security of vSwitch
	Security of vSwitch
	Security of vSwitch
	Security of vSwitch
	Security of vSwitch
	Security of vSwitch
	Thank you! Questions?
	Further Reading
	Further Reading
	Backup Slides
	How Predictable is Traffic?

