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Introducing CVSAP

Our Work in a Nutshell

Virtualization on the rise: SDN + NFV
How to compute virtual aggregation / multicasting trees?
Where to place in-network processing functionality?

Our Answer
New Model: Constrained Virtual Steiner Arborescence Problem
New Algorithm: VirtuCast

Objective: Jointly minimize . . .
bandwidth
number of processing nodes
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Introducing CVSAP

Communication Schemes: Multicast

processing = duplication + reroute

sender

receiver

receiver

receiver
processing node
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Introducing CVSAP

Communication Schemes: Multicast

processing = duplication + reroute

Figure: Hierarchy of processing nodes
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Introducing CVSAP

Communication Schemes: Aggregation

processing = merge + reroute

sender

receiver

processing node

sender

sender
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Introducing CVSAP

Communication Schemes: Aggregation

processing = merge + reroute

Figure: Hierarchy of processing nodes
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Introducing CVSAP Introductory Example

Introductory Example

Aggregation scenario
grid graph with 14 senders and one
receiver

Virtualized links
Flow can be routed along arbitrary
paths

receiver sender
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Introducing CVSAP Introductory Example

Without in-network processing: Unicast

Solution Method
minimal cost flow

Solution uses
43 edges
0 processing nodes

receiver sender

Figure: Unicast solution
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Introducing CVSAP Introductory Example

With in-network processing at all nodes

Solution Method
Steiner arborescence

Solution uses
16 edges
9 processing nodes

receiver

processing

sender

sender with
processingnode

Figure: Aggregation tree
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Introducing CVSAP Introductory Example

How to Trade-off?

vs.
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Introducing CVSAP Introductory Example

Our Solution: CVSAP & VirtuCast

Solution uses
26 edges
2 processing
nodes

receiver

processing

sender

node
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Introducing CVSAP Introductory Example

Our Solution: CVSAP & VirtuCast

Solution uses
26 edges
2 processing nodes

New Model
Constrained Virtual Steiner
Arboresence Problem (CVSAP)

New Solution Method
VirtuCast algorithm
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Definition of the
Constrained Virtual Steiner Arborescence Problem



Introducing CVSAP Definition of CVSAP

Multicast , Aggregation

Multicasting scenario can be reduced onto the aggregation scenario
We only consider the aggregation scenario.
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Introducing CVSAP Definition of CVSAP

Input to the Constained Virtual Steiner Arborescence
Problem

Graph

Directed Graph G = (VG ,EG )

Root r ∈ VG , i.e. single receiver
Terminals T ⊂ VG , i.e. sender
Steiner sites S ⊂ VG , i.e. potential processing locations
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Input to the Constained Virtual Steiner Arborescence
Problem

Graph

Directed Graph G = (VG ,EG )

Root r ∈ VG , i.e. single receiver
Terminals T ⊂ VG , i.e. sender
Steiner sites S ⊂ VG , i.e. potential processing locations

Important
No processing functionality can be placed on non-Steiner nodes.
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Introducing CVSAP Definition of CVSAP

Input to the Constained Virtual Steiner Arborescence
Problem

Graph

Directed Graph G = (VG ,EG )

Root r ∈ VG , i.e. single receiver
Terminals T ⊂ VG , i.e. sender
Steiner sites S ⊂ VG , i.e. potential processing locations

Important
No processing functionality can be placed on non-Steiner nodes.

Costs
for edges
for opening Steiner sites

Capacities
for edges
for Steiner sites & the root
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Introducing CVSAP Definition of CVSAP

CVSAP Solution

Virtual Links
sender & processing nodes are
connected via paths

receiver

processing

sender

node
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Introducing CVSAP Definition of CVSAP

Solution Structure

Virtual Arborescence
directed tree towards root r
terminals are leaves
non Steiner sites are forbidden
if a Steiner site is included,
processing functionality is placed
edges represent paths in
underlying network

Figure: Virtual Arborescence
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Introducing CVSAP Definition of CVSAP

Constrained Virtual Steiner Arborescence Problem

Definition
Find a Virtual Arborescence such that

Degree constraints
degrees of root r and Steiner sites are bounded by ur and uS

Reasoning
aggregation nodes are not able to handle arbitrary many
incoming flows
multicasting nodes are not able to duplicate an incoming
stream arbitrarily many times
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Introducing CVSAP Definition of CVSAP

Constrained Virtual Steiner Arborescence Problem

Definition
Find a Virtual Arborescence such that

Degree constraints

Edge capacities
edge capacities in the underlying network are not violated
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Introducing CVSAP Definition of CVSAP

Constrained Virtual Steiner Arborescence Problem

Definition
Find a Virtual Arborescence such that

Degree constraints
Edge capacities

minimizing
sum of edge costs + sum of installation costs
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Introducing CVSAP Applications

Applications

Network Application Technology, e.g.

m
ul

ti
ca

st ISP
service replication / cache
placement [8, 9]

middleboxes / NFV
+ SDN

backbone optical multicast [5] ROADM1 + SDH

all application-level multicast [12] different

ag
gr

eg
at

io
n sensor

network
value & message aggrega-
tion [4, 6]

source routing

ISP
network analytics: Gigascope
[3]

middleboxes / NFV
+ SDN

data center
big data / map-reduce: Cam-
doop [2]

SDN

1reconfigurable optical add/drop multiplexer
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Introducing CVSAP Applications

Gigascope [3]

Problem
Network monitoring and analysis of large communication networks
500 GB data / day in 2003

Idea
Develop structured query language (similar to SQL) for analysis
Move analysis close to source to reduce traffic
Implemented and used at AT&T (2003)

Modeled via aggregation CVSAP
single receiver instantiates query
processing nodes can perform e.g. join operations, reducing output
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Introducing CVSAP Applications

Camdoop [2]

Problem
Optimize data-center for MapReduce (running on the whole system)
At Facebook: in 82% of cases output has only 5.4% size of input

Idea
Use direct-interconnect 3D-torus network
Devise disjoint set of paths for shuffle operations
Aggregate values (if possible) at each node to reduce traffic

Modeled via aggregation CVSAP
processing nodes can perform aggregation of data
receiver(s) run final reduce operation and store result
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Algorithms Solution Approach

Overview of Solution Approach

CVSAP
novel problem
inapproximable (if P 6= NP)

Goal: exact algorithm
solves CVSAP to optimality
non-polynomial runtime
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Algorithms Solution Approach

Overview of Solution Approach

CVSAP
novel problem
inapproximable (if P 6= NP)

Goal: exact algorithm
solves CVSAP to optimality
non-polynomial runtime

Motivation for exact algorithms
application dependent: allows trading-off runtime with solution quality,
e.g. when designing new networks
baseline for heuristics
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Algorithms Solution Approach

Overview of Solution Approach

CVSAP
novel problem
inapproximable (if P 6= NP)

Goal: exact algorithm
solves CVSAP to optimality
non-polynomial runtime

Motivation for exact algorithms
application dependent: allows trading-off runtime with solution quality,
e.g. when designing new networks
baseline for heuristics

Solution Approach: Integer Programming (IP)

lower bounds are computed on-the-fly
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Algorithms Solution Approach

Our Algorithms for CVSAP

Developed two different IP formulations

Multi-Commodity Flow based
bad lower bounds
cannot be used on large
instances

Single-Commodity Flow based
good lower bounds
can be used to solve large
instances
VirtuCast
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Algorithms Solution Approach

Single- vs. Multi-Commodity Flows

Single-Commodity Flow Formulation
computes aggregated flow on edges independently of the origin
does not represent virtual arborescence

Figure: Single-commodity
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Algorithms Solution Approach

Single- vs. Multi-Commodity Flows

Example: 6000 edges and 200 Steiner sites
Single-commodity: 6000 integer variables
Multi-commodity: 1,200,000 binary variables

Figure: Single-commodity Figure: Multi-commodity
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Algorithms VirtuCast

VirtuCast Algorithm

Outline of VirtuCast
1 Solve single-commodity flow IP formulation.
2 Decompose IP solution into Virtual Arborescence.

How to
decompose?

(a) IP solution

→

(b) Virtual Arborescence
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Algorithms VirtuCast: IP Formulation

Extended Graph

Additional nodes

source o+

sinks o−r and o−S

Additional edges

o−r

o−S

o+

receiver

Steiner

sender

site
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Algorithms VirtuCast: IP Formulation

Outline of IP Formulation

Variables
∀ s ∈ S . xs ∈ {0, 1}

∀ e ∈ Eext. fe ∈ Z≥0

Constraints
1 single-commodity flow on extended graph
2 capacity constraints
3 connectivity inequalities
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Algorithms VirtuCast: IP Formulation

Outline of IP Formulation

Variables
∀ s ∈ S . xs ∈ {0, 1}

∀ e ∈ Eext. fe ∈ Z≥0

Constraints
1 single-commodity flow on extended graph

terminals receive one unit of flow
activated Steiner sites receive one unit of flow
flow preservation on all original nodes

2 capacity constraints
3 connectivity inequalities
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Algorithms VirtuCast: IP Formulation

Outline of IP Formulation

Variables
∀ s ∈ S . xs ∈ {0, 1}

∀ e ∈ Eext. fe ∈ Z≥0

Constraints
1 single-commodity flow on extended graph
2 capacity constraints

enforce degree constraints
enforce that edge capacities hold

3 connectivity inequalities
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Algorithms VirtuCast: IP Formulation

Outline of IP Formulation

Variables
∀ s ∈ S . xs ∈ {0, 1}

∀ e ∈ Eext. fe ∈ Z≥0

Constraints
1 single-commodity flow on extended graph
2 capacity constraints
3 connectivity inequalities
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Algorithms VirtuCast: IP Formulation

Connectivity Inequalities

∀ W ⊆ VG , s ∈W ∩ S 6= ∅. f (δ+ER
ext

(W )) ≥ xs

From each activated Steiner site, there exists a path
towards o−r .

Exponentially many constraints, but . . .
can be separated in polynomial time.
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Algorithms VirtuCast: IP Formulation

Example

Scenario

receiver

Steiner

sender

site
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Algorithms VirtuCast: IP Formulation

Example

Extended Graph

o−r

o−S o+

receiver

Steiner

sender

site
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Algorithms VirtuCast: IP Formulation

Example

Solution

o−r

o−S o+

1 1 1

11

1

1 1

1

1

1

3

receiver

Steiner

sender

site

activated
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Algorithms VirtuCast: Decomposition Algorithm

Decomposing flow is non-trivial.

Flow solution is . . .
not a tree and
not a DAG [7].

Flow solution . . .
contains cycles and
represents arbitrary
hierarchies.
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Algorithms VirtuCast: Decomposition Algorithm

Outline of Decomposition Algorithm

Iterate
1 select a terminal t
2 construct path P from t towards o−r or o−S
3 remove one unit of flow along P
4 connect t to the second last node of P and remove t

After each iteration
Problem size reduced by one.
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Algorithms VirtuCast: Decomposition Algorithm

Outline of Decomposition Algorithm

Reduced problem must be feasible
Removing flow must not invalidate any connectivity inequalities.

Principle: Repair & Redirect
decrease flow on path edge by edge
if connectivity inequalities are violated

repair increment flow on edge to remain feasible
redirect choose another path from the current node
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Algorithms VirtuCast: Decomposition Algorithm

Decomposition Example I

o−r

o−S o+

t1

vr

s
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Algorithms VirtuCast: Decomposition Algorithm

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s
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Algorithms VirtuCast: Decomposition Algorithm
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Algorithms VirtuCast: Decomposition Algorithm
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Algorithms VirtuCast: Decomposition Algorithm

Decomposition Example I

P = 〈o+, t1, v , r , o−r 〉

o−r

o−S o+

t1

vr

s
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Algorithms VirtuCast: Decomposition Algorithm

Redirecting Flow

o−r

o−S o+

t1

vr

s

W

Violation of Connectivity Inequality

f (δ+ER
ext

(W )) ≥ xs ∀ W ⊆ VG , s ∈W ∩ S 6= ∅
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Algorithms VirtuCast: Decomposition Algorithm

Redirecting Flow

Redirection towards o−S is possible!

There exists a path from v towards o−S in W .

Reasoning
1 Flow preservation holds within W .
2 s could reach o−r via v before the reduction of flow.
3 v receives at least one unit of flow.
4 Flow leaving v must eventually terminate at o−S .
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Algorithms VirtuCast: Decomposition Algorithm

Decomposition Example II

P = 〈o+, t1, v , s, o−S 〉

o−r

o−S o+

t1

vr

s
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Algorithms VirtuCast: Decomposition Algorithm

Decomposition Example II

P = 〈o+, t1, v , s, o−S 〉

o−r

o−S o+

t1

vr

s
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Algorithms VirtuCast: Decomposition Algorithm

Decomposition Example II

o−r

o−S o+

vr

s

Solution

s

〈t 1
,v
,s
〉

t1
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Algorithms VirtuCast: Decomposition Algorithm

Decomposition Example II

o−r

o−S o+

vr

s

Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉
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Algorithms VirtuCast: Decomposition Algorithm

Decomposition Example II

o−r

o−S o+

vr Solution

s

〈t 1
, v
, s
〉

t1 t2 t3

〈t 2
,s
〉

〈t3
,s
〉

Matthias Rost (TU Berlin & T-Labs) VirtuCast (OPODIS ’13) EURECOM, December 2013 38



Algorithms VirtuCast: Decomposition Algorithm

Decomposition Example II

o−r

o−S o+

vr Solution
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, v
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t1 t2 t3
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〈t3
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Algorithms VirtuCast: Decomposition Algorithm

Decomposition Example II

Final Solution

s

〈t1 , v, s〉
t1

t2

t3

〈t2, s〉

〈t3,
s〉

r
〈s, v, r〉
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Algorithms VirtuCast: Decomposition Algorithm

Runtime of Decomposition Algorithm

Theorem
Given an optimal solution, the Decompososition Algorithm computes a
Virtual Arborescence in time O

(
|VG |2 · |EG | · (|VG |+ |EG |)

)
.
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Algorithms VirtuCast: Proof of Correctness

Outline of Proof

Cost-preserving mapping

T̂G ∈ FCVSAP (x̂, f̂ ) ∈ FIP
easy

via Decomposition
algorithm

Theorem
Algorithm VirtuCast solves CVSAP to optimality.
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Implementation

Overview over Implementation

VirtuCast is implemented in C++ using SCIP [1].
Separation of connectivity inequalities is implemented using the
Edmonds-Karp algorithm.
FlowDecoRound heuristic to generate primal solutions during the
branch-and-bound process [11].
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Implementation FlowDecoRound Heuristic

Outline

Goal
Develop a fast primal heuristic for generating solutions during the
branch-and-bound process.

Important Note

The algorithm takes as input a fractional solution (x̂ , f̂ ) ∈ FLP.
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Implementation FlowDecoRound Heuristic

Outline

1 Select terminal randomly and connect it according to local flow
decomposition

If node t is connected to an inactive Steiner site s ∈ S , place s into the
set of terminals.

2 Connect all unconnected terminals using shortest paths.
3 Prune active Steiner nodes.
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Implementation FlowDecoRound Heuristic

Phase 1

1 Randomly choose a terminal t
(a) Compute flow decomposition from t to o−S , o

−
r with flow f (o+, t)

(b) Prune infeasible paths
(c) Choose a path uniformly at random according to the flow value and

connect t to the respective node.
(d) If t was connected to inactive Steiner site s ∈ S , place s into the set of

terminals.
(e) Remove t from the set of terminals.
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Implementation FlowDecoRound Heuristic

Phase 2

2 Choose an unconnected terminal t randomly
Compute shortest path towards any of the activated Steiner nodes,
while not introducing a cycle into the Virtual Arborescence.
Connect node according to found shortest path or abort if no path was
found.
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Implementation FlowDecoRound Heuristic

Phase 3

3 Iterate over active Steiner nodes s ∈ S in decreasing order of its cost
divided by the number of incoming connections.

Temporarily, disconnect all nodes connected to s and remove the
outgoing connection of s.
Try to reconnect all unconnected nodes using shortest paths.
If a cheaper solution was found, accept it. Otherwise restore previous
solution.
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Computational Evaluation Test Set

Test Set I: n × n Grid Graphs

uniform costs
uniform edge costs
uniform installation costs

Sizes

n nodes edges Steiner sites terminals
16 256 960 51 64
20 400 1520 80 100
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Computational Evaluation Test Set

Test Set II: Synthetic ISP Topologies [10]

Figure: IGen topology with 1600 nodes

Matthias Rost (TU Berlin & T-Labs) VirtuCast (OPODIS ’13) EURECOM, December 2013 52



Computational Evaluation Test Set

Test Set II: Synthetic ISP Topologies [10]

non-uniform costs
metric edge costs
uniformly distributed installation costs

Size

Name nodes edges Steiner sites terminals
IGen.1600 1600 6816 200 300
IGen.3200 3200 19410 400 600
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Computational Evaluation Computational Setup

Computational Setup

General
25 instances for each test set and each graph size.
Terminate experiments after 2 hours of runtime.

Multi-commodity flow formulation
is solved with CPLEX
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Computational Evaluation VirtuCast Performance

VirtuCast - Objective Gap: Grids

16× 16
After 30 minutes: median gap around 2 %

After 120 minutes: median gap around 1 %
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Computational Evaluation VirtuCast Performance

VirtuCast - Objective Gap: Grids

20× 20
After 30 minutes: median gap around 4 %

After 120 minutes: median gap around 3 %
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Computational Evaluation VirtuCast Performance

VirtuCast - Objective Gap: IGen

IGen.1600
After 30 minutes: gap below 0.3 %

After 120 minutes: median gap below 0.1 %
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Computational Evaluation VirtuCast Performance

VirtuCast - Objective Gap: IGen

IGen.3200
After 30 minutes: median gap around 4 %

After 120 minutes: median gap around 3 %
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Computational Evaluation Performance of FlowDecoRound

Performance of FlowDecoRound: Grids
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Computational Evaluation Performance of FlowDecoRound

Performance of FlowDecoRound: IGen
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Computational Evaluation Comparison with MCF

Computational Results of MCF

IGen.3200
Cannot be solved (efficiently) using MCF formulation: more than 6,000,000
variables

IGen.1600: Strength of MCF formulation

VirtuCast’s lower bound improves upon MCF’s lower bound by around 90%
w.r.t to the best known solution.
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Conclusion Related Work

Related Work

Molnar: Constrained Spanning Tree Problems [7]

Shows that optimal solution is a ‘spanning hierarchy’ and not a DAG.

Oliveira et. al: Flow Streaming Cache Placement Problem [9]

Consider a weaker variant of multicasting CVSAP without bandwidth
Give weak approximation algorithm

Shi: Scalability in Overlay Multicasting [12]

Provided heuristic and showed improvement in scalability.
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Conclusion Future Work

Future Work

Model Extensions
Generalize CVSAP for multiple concurrent multicast / aggregation
sessions.
Try to incorporate service-chaining (EU project UNIFY).

Heuristics for CVSAP
Currently testing different approaches.
Algorithmically challenging problem.
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Conclusion Summary

Conclusion

Motivation
Network virtualization enables virtual multicasting / aggregation trees.
NFV enables placement of processing functionality.
Goals: Improve scalability or reduce costs.

Summary
Concise graph theoretic definition of CVSAP.
Algorithm to solve CVSAP: VirtuCast.
Computational Evaluation:

Feasible to solve realistically sized instances using VirtuCast.
Significant Improvement over naive multi-commodity flow IP.
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Conclusion Summary

Discussion

Restriction of single-commodity flow model: no path semantics
iterative aggregation of flows
no control over path length / latency

Advantages
yields good solutions quickly
models multicast scenarios accurately
aggregation compression is limited (at each node)

Applications to BigFoot?
Can CVSAP be used to model workloads in private clouds?
If not, which model extensions are necessary?
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Conclusion Summary

Thanks for your attention.

Project homepage
www.net.t-labs.tu-berlin.de/~stefan/cvsap.html

OPODIS ’13
link.springer.com/chapter/10.1007/978-3-319-03850-6_16

Technical Report
arxiv.org/abs/1310.0346
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Other Current Work IPDPS 2014

IPDPS Paper 2014

It’s About Time: On Optimal Virtual Network Embeddings under Temporal
Flexibilities

Joint work with Stefan Schmid und Anja Feldmann
Algorithms for embedding & scheduling virtual networks under
temporal flexibilities
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Other Current Work IPDPS 2014

Outline

Temporal Virtual Network Embedding Problem
Requests consisting of node allocations and link allocations need to be
embedded over time
Temporal specification allows for flexibility in scheduling requests

Task
Find embedding of requests and a schedule to . . .

maximize number of embedded requests
minimize makespan
. . .
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Contribution

Continuous-Time
Requests may be scheduled at (real valued) times
Avoids discretization (errors)
Uses fewer variables

IP formulations
∆: represents state changes only (bad idea)
Σ: represent state changes explicitly (better idea)
cΣ: Σ-model using symmetry & state-space reductions (best idea)

Greedy Heuristic
based on cΣ-model
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Computational Evaluation: One-day workload

Scenario
consider scenarios with 20 requests over time
poisson inter-arrival time
weibull duration (heavy tailed)
node-mappings are fixed
link-mappings are not fixed
30, 60, 90, 120, . . . , 300 minutes of flexibility

Task
Decide which requests to embed &
when to embed &
how to route flow.
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Objective Gap
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Runtime
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Benefit of Flexibility & Performance of Heuristic
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Discussion & Future Work

Future Work
Incorporate flexible duration of requests
Develop heuristics for other objectives as well
Evaluate our approach in conjunction with embedding heuristics

Applications to BigFoot?

Scheduling and routing of (time insensitive) background data
transfers?
Plan bandwidth intense jobs like VM migration ahead?
. . .
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