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1 Introduction

At the heart of any distributed system lies some kind of logical interconnecting structure, also called overlay

network, which supports the exchange of information between the different sites. With an increasing scale,

distributed systems are likely to become more dynamic and have to deal with sites continuously entering

and leaving the system. Reasons for a dynamic membership include, e.g., site failures, sites which have

to be updated and replaced by new sites, or the addition of new sites or resources which are required to

preserve the functionality of the system. Hence, any large-scale distributed system needs an overlay network

that supports joining, leaving, and routing between the sites. Without a scalable implementation of such a

network, it is impossible to build large high-performance distributed systems.

Scalability is especially critical for peer-to-peer systems . Peer-to-peer systems are self-organizing systems

whose members, the peers, cooperate without relying on any central server. A key characteristic of peer-to-

peer systems is that they typically support an open membership: peers can join and leave at will. Peer-to-peer

systems do not require an investment in additional high-performance hardware, and are hence low-cost. In

particular, peer-to-peer systems can leverage the tremendous amount of resources (such as computation and

storage) available at its constituent parts, the peers: while not used by their owners, these resources may sit

idle on the individual computers.
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A truly scalable peer-to-peer system must support efficient operations for joining, leaving, and routing

between the sites: ideally, the work required for such operations should be at most polylogarithmic in the

system size. In particular, the maximum degree and the diameter of (and route lengths in) the overlay

network should be at most polylogarithmic in n, where n is the total number of peers in the system. The

overlay network should also be well-connected, and be robust against faulty peers. The well-connectedness

of a graph is usually measured by its expansion, which we will formally define later in this chapter. Another

important parameter is the stretch factor of an overlay network, which measures by how much the length of

a shortest route between two nodes v and w in the overlay network is off from a shortest route from v to w

when using the underlying physical network.

To summarize, a scalable peer-to-peer system must offer efficient Join, Leave (assuming graceful depar-

tures), and Route operations such that for any sequence of join, leave and route request:

• the work of executing these requests is as small as possible,

• the degree, diameter and stretch factor of the resulting network are as small as possible, and

• the expansion of the resulting network is as large as possible.

In other words, we are dealing with multi-objective optimization problems.

In addition, we want our systems to be fault-tolerant: our system should not only provide leave operations

allowing peers to leave gracefully, but it should also tolerate peer failures. In particular, we aim to design self-

stabilizing peer-to-peer systems: peer-to-peer networks which automatically recover from any configuration.

To address these problems, we first introduce some basic notation and techniques for constructing overlay

networks (Section 2). Afterwards, we discuss supervised overlay network designs (i.e., the topology is main-

tained by a supervisor but routing is done on a peer-to-peer basis), and then we present various decentralized

overlay network designs (i.e., the topology is maintained by the peers themselves). Finally, in Section 5, we

identify reliable connectivity primitives and study the design of self-stabilizing overlay networks.
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2 Basic notation and techniques

We start with some basic notation. A graph G = (V,E) consists of a node set V and an edge set E ⊆ V ×V .

We will only consider directed graphs. The in-degree of a node is the number of incoming edges, the out-

degree of a node is the number of outgoing edges, and the degree of a node is the number of incoming and

outgoing edges. Given two nodes v and w, let d(v, w) denote the length of a shortest directed path from v

to w in G. G is strongly connected if d(v, w) is finite for every pair v, w ∈ V . In this case,

D = max
v,w∈V

d(v, w)

is the diameter of G. The expansion of G is defined as

α = min
S⊆V, |S|≤|V |/2

|Γ(S)|
|S|

.

where Γ(S) = {v ∈ V \S | ∃u ∈ S : (u, v) ∈ E} is the neighbor set of S. The following relationship between

the expansion and diameter of a graph is easy to show.

Fact 1.1 For any graph G with expansion α, the diameter of G is in O(α−1 log n).

The vast majority of overlay networks for peer-to-peer systems suggested in the literature is based on

the concept of virtual space . That is, every site is associated with a point in some space U and connections

between sites are established based on rules how to interconnect points in that space. In this case, the

following operations need to be implemented:

• Join(p): add new peer p to the network by choosing a point in U for it

• Leave(p): remove peer p from the network

• Route(m,x): route message m to point x in U

Several virtual space approaches are known. The most influential techniques are the hierarchical decompo-

sition technique, the continuous-discrete technique, and the prefix technique. We will give a general outline

of each technique in this section. At the end of this section, we present two important families of graphs

that we will use later in this chapter to construct dynamic overlay networks.
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2.1 The hierarchical decomposition technique

Consider the space U = [0, 1]d for some fixed d ≥ 1. The decomposition tree T (U) of U is an infinite binary

tree, whose root represents U . In general, every node v in the tree represents a subcube U ′ in U , and the

children of v represent two subcubes U ′′ and U ′′′: U ′′ and U ′′′ are the result of cutting U ′ in the middle at

the smallest dimension in which U ′ has a maximum side length. The subcubes U ′′ and U ′′′ are closed, i.e.,

their intersection defines the cut. Let every edge to a left child in T (U) be labeled with 0 and every edge to

a right child in T (U) be labeled with 1. Then the label of a node v, `(v), is the sequence of all edge labels

encountered when moving along the unique path from the root of T (U) downwards to v. For d = 2, the

result of this decomposition is shown in Figure 1.1.
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Figure 1.1: The decomposition tree for d = 2.

The goal is to map the peers to nodes in T (U) so that the following conditions are met:

Condition 1.1

(1) The interiors of the subcubes associated with the (nodes assigned to the) peers are disjoint,

(2) the union of the subcubes of the peers gives the entire set U , and

(3) every peer p with subcube Up is connected to all peers p′ with subcubes Up′ that are adjacent to Up (i.e.,

Up ∩ Up′ is a d− 1-dimensional subcube).

In the 2-dimensional case, for example, condition (3) means that p and p′ share a part of the cut line

through their first common ancestor in T (U). It is not difficult to see that the following result is true.
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Fact 1.2 Consider the space U = [0, 1]d for some fixed d and suppose we have n peers. If the peers are

associated with nodes that are within k levels of T (U) and Condition 1.1 is satisfied, then the maximum

degree of a peer is at most (2d) · 2k−1 and the diameter of the graph is at most d · n1/d + 2(k − 1).

The diameter of the graph can be as large as d · n1/d and therefore too large for a scalable graph if d is

fixed, but its degree is small as long as k = O(log log n).

An example of a peer-to-peer system based on hierarchical decomposition technique is CAN [30]. In

the original CAN construction, a small degree is achieved by giving each peer p a label `(p) consisting of

a (sufficiently long) random bit string when it joins the system. This bit string is used to route p to the

unique peer p′ that is reached when traversing the tree T (U) according to `(p) (a 0 bit means “go left” and

a 1 bit means “go right”) until a node v is reached that is associated with a peer. (Such a node must always

exist if there is at least one peer in the system and the two rules of assigning peers to nodes in Condition 1.1

are satisfied.) One of p and p′ is then placed in the left child of v and the other in the right child of v.

Leave operations basically reverse join operations so that Condition 1.1 is maintained. Due to the use of a

random bit sequence, one can show that the number of levels the peers are apart is indeed O(log logn), as

desired. However, it can also be as bad as that. Strategies that achieve a more even level balancing were

subsequently proposed in several papers (see, e.g., [37] and the references therein).

2.2 The continuous-discrete technique

The basic idea underlying the continuous-discrete approach [26] is to define a continuous model of graphs

and to apply this continuous model to the discrete setting of a finite set of peers. A well-known peer-to-peer

system that uses an approach closely related to the continuous-discrete approach is Chord [35].

Consider the d-dimensional space U = [0, 1)d, and suppose that we have a set F of continuous functions

fi : U → U . Then we define EF as the set of all pairs (x, y) ∈ U2 with y = fi(x) for some i. Given any

subset S ⊆ U , let Γ(S) = {y ∈ U \ S | ∃x ∈ S : (x, y) ∈ EF }. If Γ(S) 6= ∅ for every S ⊂ U , then F is said

to be mixing. If F does not mix, then there are disconnected areas in U .

Consider now any set of peers V , and let S(v) be the subset in U that has been assigned to peer v. Then

the following conditions have to be met:
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Condition 1.2

(1) ∪vS(v) = U and

(2) for every pair of peers v and w it holds that v is connected to w if and only if there are two points

x, y ∈ U with x ∈ S(v), y ∈ S(w) and (x, y) ∈ EF .

Let GF (V ) be the graph resulting from the conditions above. Then the following fact is easy to see.

Fact 1.3 If F is mixing and ∪vS(v) = U , then GF (V ) is strongly connected.

To bound the diameter of GF (V ), we introduce some further notation. For any point x and any ε ∈ [0, 1),

let B(x, ε) denote the d-dimensional ball of volume ε centered at x. For any two points x and y in U , let

dn(x, y) denote the shortest sequence (s1s2s3 . . . sk) ∈ INk so that there are two points x′ ∈ B(x, 1/n) and

y′ ∈ B(y, 1/n) with fs1 ◦ fs2 ◦ . . . fsk(x′) = y′. Then we define the diameter of F as

D(n) = max
x,y∈U

dn(x, y)

Using this definition, it holds:

Fact 1.4 If ∪vS(v) = U and every S(v) contains a ball of volume at least 1/n, then GF (V ) has a diameter

of at most D(n).

Also the expansion of GF (V ) can be bounded with a suitable parameter for F . However, it is easier to

consider explicit examples here, and therefore we defer a further discussion to Section 4.1.

2.3 The prefix technique

The prefix technique was first presented in [27, 28] and first used in the peer-to-peer world by Pastry [13]

and Tapestry [38]. Given a label ` = (`1`2`3 . . .), let prefixi(`) = (`1`2 . . . `i) for all i ≥ 1 and prefix0(`) = ε,

the empty label.

In the prefix technique, every peer node v is associated with a unique label `(v) = `(v)1 . . . `(v)k, where

each `(v)i ∈ {0, . . . , b− 1}, for some constant b ≥ 2 and sufficiently large k. The following condition has to

be met concerning connections between the nodes.
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Condition 1.3 For every peer v, every digit α ∈ {0, . . . , b− 1}, and every i ≥ 0, v has a link to a peer node

w with prefixi(`(v)) = prefixi(`(w)) and `(w)i+1 = α, if such a node w exists.

Since for some values of i and α there can be many nodes w satisfying the condition above, a rule has to

be specified which of these nodes w to pick. For example, a peer may connect to the geographically closest

peer w, or a peer may connect to a peer w it has the best connection to. The following fact is easy to show:

Fact 1.5 If the maximum length of a node label is L and the node labels are unique, then any rule of choosing

a node w as in Condition 1.3 guarantees strong connectivity. Moreover, the maximum out-degree of a node

and the diameter of the network are at most L.

However, the in-degree, i.e., the number of incoming connections, can be quite high, depending on the

rule. A simple strategy guaranteeing polylogarithmic in- and out-degree and logarithmic diameter is that

every node chooses a random binary sequence as its label, and a node v connects to the node w among the

eligible candidates with the closest distance to v, i.e., |`(v) − `(w)| is minimized. This rule also achieves a

good expansion but not a good stretch factor. In order to address the stretch factor, other rules are necessary.

We will discuss them in Section 4.2.

2.4 Basic classes of graphs

We will apply our basic techniques above to two important classes of graphs: the hypercube and the de

Bruijn graph. They are defined as follows.

Definition 1.1 For any d ∈ IN, the d-dimensional hypercube is an undirected graph G = (V,E) with

V = {0, 1}d and E = {{v, w} | H(v, w) = 1} where H(v, w) is the Hamming distance between v and w.

Definition 1.2 For any d ∈ IN, the d-dimensional de Bruijn graph is an undirected graph G = (V,E)

with node set V = {v ∈ {0, 1}d} and edge set E. It contains all edges {v, w} with the property that w ∈

{(x, vd−1, . . . , v1) : x ∈ {0, 1}}, where v = (vd−1, . . . , v0).
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3 Supervised overlay networks

A supervised overlay network is a network formed by a supervisor but in which all other activities can

be performed in a peer-to-peer fashion involving the supervisor. Supervised overlays therefore lie between

server-based overlay networks and pure peer-to-peer overlay networks. In order for a supervised network to

be highly scalable, two central requirements have to be satisfied:

1. The supervisor needs to store at most a polylogarithmic amount of information about the system at

any time. For example, if there are n peers in the system, storing contact information about O(log2 n)

of these peers would be fine.

2. The supervisor needs at most a constant number of messages to include a new peer into or exclude an

old peer from the network.

The second condition makes sure that the work of the supervisor to include or exclude peers from the system

is kept at a minimum. First, we present a general strategy of constructing supervised overlay networks,

which combines the hierarchical decomposition technique with the continuous-discrete technique and the

recursive labeling technique below. Subsequently, we give some explicit examples that achieve near-optimal

results for the cost of the join, leave and route operations as well as the degree, diameter and expansion of

the network.

3.1 The recursive labeling technique

In the recursive labeling approach, the supervisor assigns a label to every peer that wants to join the system.

The labels are represented as binary strings and are generated in the following order:

0, 1, 01, 11, 001, 011, 101, 111, 0001, 0011, 0101, 0111, 1001, 1011, . . .

Basically, when stripping off the least significant bit, then the supervisor first creates all binary numbers of

length 0, then length 1, then length 2, and so on. More formally, consider the mapping ` : IN0 → {0, 1}∗ with

the property that for every x ∈ IN0 with binary representation (xd . . . x0)2 (where d is minimum possible),

`(x) = (xd−1 . . . x0xd) .
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Then ` generates the sequence of labels displayed above. In the following, it will also be helpful to view

labels as real numbers in [0, 1). Let the function r : {0, 1}∗ → [0, 1) be defined so that for every label

` = (`1`2 . . . `d) ∈ {0, 1}∗, r(`) =
∑d

i=1
`i
2i . Then the sequence of labels above translates into

0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, 7/16, 9/16, . . .

Thus, the more labels are used, the more densely the [0, 1) interval will be populated. When employing the

recursive approach, the supervisor aims to maintain the following condition at any time:

Condition 1.4 The set of labels used by the peers is {`(0), `(1), . . . , `(n−1)}, where n is the current number

of peers in the system.

This condition is preserved with the following simple strategy:

• Whenever a new peer v joins the system and the current number of peers is n, the supervisor assigns

the label `(n) to v and increases n by 1.

• Whenever a peer w with label ` wants to leave the system, the supervisor asks the peer with currently

highest label `(n− 1) to take over the role of w (and thereby change its label to `) and reduces n by 1.

3.2 Putting the pieces together

We assume that we have a single supervisor for maintaining the overlay network. In the following, the label

assigned to some peer v will be denoted by `v. Given n peers with unique labels, we define the predecessor

pred(v) of peer v as the peer w for which r(`w) is closest from below to r(`v), and we define the successor

succ(v) of peer v as the peer w for which r(`w) is closest from above to r(`v) (viewing [0, 1) as a ring in both

cases). Given two peers v and w, we define their distance as

δ(v, w) = min{(1 + r(`v)− r(`w)) mod 1, (1 + r(`w)− r(`v)) mod 1} .

In order to maintain a doubly linked cycle among the peers, we simply have to maintain the following

condition:

Condition 1.5 Every peer v in the system is connected to pred(v) and succ(v).
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Now, suppose that the labels of the peers are generated via the recursive strategy above. Then we have

the following properties:

Lemma 1.1 Let n be the current number of peers in the system, and let n̄ = 2blognc. Then for every peer

v ∈ V , |`v| ≤ dlog ne and δ(v,pred(v)) ∈ {1/(2n̄), 1/n̄}.

So the peers are approximately evenly distributed in [0, 1) and the number of bits for storing a label is

almost as low as it can be without violating the uniqueness requirement.

Recall the hierarchical decomposition approach. The supervisor will assign every peer p to the unique

node v in T (U) at level log(1/δ(p,pred(p))) with `v being equal to `p (padded with 0’s to the right so that

|`v| = |`p|). As an example, if we currently have 4 peers in the system, then the mapping of peer labels to

node labels is

0→ 00, 1→ 10, 01→ 01, 11→ 11

With this strategy, it follows from Lemma 1.1 that Fact 1.2 applies with k = 2.

Consider now any family F of functions acting on some space U = [0, 1)d and let C(p) be the subcube of

the node in T (U) that p has been assigned to. Then the goal of the supervisor is to maintain the following

condition at any time.

Condition 1.6 For the current set V of peers in the system it holds that

1. the set of labels used by the peers is {`(0), `(1), . . . , `(n− 1)}, where n = |V |,

2. every peer v in the system is connected to pred(v) and succ(v), and

3. there is an edge (v, w) for every pair of peers v and w for which there is an edge (x, y) ∈ EF with

x ∈ C(v) and y ∈ C(w).

3.3 Maintaining Condition 1.6

Next we describe the actions that the supervisor has to perform in order to maintain Condition 1.6 during

a join or leave operation. We start with the following important fact.
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Fact 1.6 Whenever a new peer v enters the system, then pred(v) has all the connectivity information v

needs to satisfy Condition 1.6(3). Moreover, to maintain Condition 1.6(3), whenever an old peer w leaves

the system, it suffices that w transfers all of its connectivity information to pred(w).

The first part of the fact follows from the observation that when v enters the system, then the subcube

of pred(v) splits into two subcubes where one resides at pred(v) and the other is taken over by v. Hence, if

pred(v) passes all of its connectivity information to v, then v can establish all edges relevant for it according

to the continuous-discrete approach. The second part of the fact follows from the observation that the

departure of a peer is the reverse of the insertion of a peer.

Thus, if the peers take care of the connections in Condition 1.6(3), the only part that the supervisor has

to take care of is maintaining the cycle. For this we require the following condition.

Condition 1.7 At any time, the supervisor stores the contact information of pred(v), v, succ(v), and

succ(succ(v)) where v is the peer with label `(n− 1).

In order to satisfy Condition 1.7, the supervisor performs the following actions. If a new peer w joins,

then the supervisor:

• informs w that `(n) is its label, succ(v) is its predecessor, and succ(succ(v)) is its successor,

• informs succ(v) that w is its new successor,

• informs succ(succ(v)) that w is its new predecessor,

• asks succ(succ(v)) to send its successor information to the supervisor, and

• sets n = n+ 1.

If an old node w leaves and reports `w, pred(w), and succ(w) to the supervisor (recall that we are

assuming graceful departures), then the supervisor

• informs v (the node with label `(n − 1)) that `w is its new label, pred(w) is its new predecessor, and

succ(w) is its new successor,

• informs pred(w) that its new successor is v and succ(w) that its new predecessor is v,

• informs pred(v) that succ(v) is its new successor and succ(v) that pred(v) is its new predecessor,
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• asks pred(v) to send its predecessor information to the supervisor and to ask pred(pred(v)) to send its

predecessor information to the supervisor, and

• sets n = n− 1.

Thus, the supervisor only needs to handle a small constant number of messages for each arrival or

departure of a peer, as desired. Next we look at two examples resulting in scalable supervised overlay

networks.

3.4 Examples

For a supervised hypercubic network, simply select F as the family of functions on [0, 1) with fi(x) =

x+ 1/2i (mod 1) for every i ≥ 1. Using our framework, this gives an overlay network with degree O(log n),

diameter O(log n), and expansion O(1/
√

log n), which matches the properties of ordinary hypercubes.

For a supervised de Bruijn network, simply select F as the family of functions on [0, 1) with f0(x) = x/2

and f1(x) = (1 + x)/2. Using our framework, this gives an overlay network with degree O(1), diameter

O(log n), and expansion O(1/ log n). This matches the properties of ordinary de Bruijn graphs.

In both networks, routing with logarithmic work can be achieved by using the bit adjustment strategy.

4 Decentralized overlay networks

Next we show that scalable overlay networks can also be maintained without involving a supervisor. Since

the hierarchical decomposition technique cannot yield networks of polylogarithmic diameter, in the following,

we will only discuss examples for the latter two basic techniques in Section 2.

4.1 Overlay networks based on the continuous-discrete approach

Similar to the supervised approach, we first show how to maintain a hypercubic overlay network. Subse-

quently, we show how to maintain a de Bruijn-based overlay network.
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Maintaining a dynamic hypercube

Let U = [0, 1) and consider the family F of functions on [0, 1) with fi(x) = x + 1/2i (mod 1) for every

i ≥ 1. Given a set of points V ⊂ [0, 1), we define the region S(v) associated with point v as the interval

(pred(v), v) where pred(v) is the closest predecessor of v in V and U is seen as a ring. The following result

follows from [6]:

Theorem 1.1 If every peer is given a random point in [0, 1), then the graph GF (V ) with |V | = n resulting

from the continuous-discrete approach has a degree of O(log2 n), a diameter of O(log n), and an expansion

of Ω(1/ log n), with high probability.

Suppose that Condition 1.2 is satisfied for our family of hypercubic functions. Then it is fairly easy to

route a message from any point x ∈ [0, 1) to any point y ∈ [0, 1) along edges in GF (V ):

Consider the path P in the continuous space that results from using a bit adjustment strategy in order

to get from x to y. That is, given that x1x2x3 . . . is the bit sequence for x and y1y2y3 . . . is the bit sequence

for y, P is the sequence of points z0 = x1x2x3 . . . , z1 = y1x2x3 . . . , z2 = y1y2x3 . . . , . . . , y1y2y3 . . . = y. Of

course, P may have an infinite length, but simulating P in GF (V ) only requires traversing a finite sequence

of edges:

We start with the region S(v) containing x = z0. Then we move along the edge (v, w) in GF (V ) to the

region S(w) containing z1. This edge must exist because we assume that Condition 1.2 is satisfied. Then we

move along the edge (w,w′) simulating (z1, z2), and so on, until we reach the node whose region contains y.

Using this strategy, it holds:

Theorem 1.2 Given a random node set V ⊂ [0, 1) with |V | = n, it takes at most O(log n) hops, with high

probability, to route in GF (V ) from any node v ∈ V to any node w ∈ V .

Next we explain how nodes can join and leave. Suppose that a new node v contacts some node already

in the system to join the system. Then v’s request is first sent to the node u in V with u = succ(v), which

only takes O(log n) hops according to Theorem 1.2. Node u forwards information about all of its incoming

and outgoing edges to v, deletes all edges that it does not need any more, and informs the corresponding

endpoints about this. Because S(v) ⊆ S(u) for the old S(u), the edges reported to v are a superset of the
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edges that it needs to establish. Node v checks which of the edges are relevant for it, informs the other

endpoint for each relevant edge, and removes the others.

If a node v wants to leave the network, it simply forwards all of its incoming and outgoing edges to

succ(v). Node succ(v) will then merge these edges with its existing edges and notifies the endpoints of these

edges about the changes.

Combining Theorem 1.1 and Theorem 1.2 we obtain:

Theorem 1.3 It takes a routing effort of O(log n) hops and an update work of O(log2 n) messages that can

be processed in O(log n) communication rounds in order to execute a join or leave operation.

Maintaining a dynamic deBruijn graph

Next we show how to dynamically maintain a deBruijn graph. Let U = [0, 1) and F consist of two functions,

f0 and f1, where fi(x) = (i+ x)/2 for each i ∈ {0, 1}. Then one can show the following result:

Theorem 1.4 If the peers are mapped to random points in [0, 1), then the graph GF (V ) resulting from

the continuous-discrete approach has a degree of O(log n), diameter of O(log n) and node expansion of

Ω(1/ log n), with high probability.

Next we show how to route in the de Bruijn network. Suppose that Condition 1.2 is satisfied. Then we

use the following trick to route a message from any point x ∈ [0, 1) to any point y ∈ [0, 1) along edges in

GF (V ).

Let z be a randomly chosen point in [0, 1). Let x1x2x3 . . . be the binary representation of x, let y1y2y3 . . .

be the binary representation of y, and let z1z2z3 be the binary representation of z. Let P be the path along

the points x = x1x2x3 . . . , z1x1x2 . . . , z2z1x1 . . . , . . . and let P ′ be the path along the points y = y1y2y3 . . . ,

z1y1y2 . . . , z2z1y1 . . . , . . . Then we simulate moving along the points in P by moving along the corresponding

edges in GF (V ). We stop when we hit a node w ∈ V with the property that S(w) contains a point in P and

a point in P ′. At that point, we follow the points in P ′ backwards until we arrive at the node w′ ∈W that

contains y in S(w′). Using this strategy, it holds:

Theorem 1.5 Given a random node set V ⊂ [0, 1) with |V | = n, it takes at most O(log n) hops, with high

probability, to route in GF (V ) from any point x ∈ [0, 1) to any point y ∈ [0, 1).
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01

Figure 1.2: An example of a dynamic de Bruijn network (only some short-cut pointers for two nodes are

given).

Joining and leaving the network is done in basically the same way as in the hypercube, giving the following

result:

Theorem 1.6 It takes a routing effort of O(log n) hops and an update work of O(log n) messages that can

be processed in a logarithmic number of communication rounds in order to execute a join or leave operation

in the dynamic de Bruijn graph.

4.2 Overlay networks based on prefix connections

The efficiency of routing on an overlay network is quite often measured in terms of the number of hops

(neighbor links) followed by a message. While this measure indicates the latency of a message in the overlay

network, it fails to convey the complexity of the given operation with respect to the original underlying

network. In other words, while in the overlay network all overlay links may have the same cost, this is not

true when those overlay links are translated back into paths in the underlying network. Hence, in practice,

in order to evaluate the routing performance of an overlay network, one should not only study the cost of

following a path in the overlay network, but also take into account the different internode communication

costs in the underlying network. For example, a hop from a peer in the USA to a peer in Europe costs a
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lot more (in terms of reliability, speed, cost of deploying and maintaining the link, etc.) than a hop going

between two peers in a local area network. In brief, keeping routing local is important: It may make sense

to route a message originated in Phoenix for a destination peer in San Francisco through Los Angeles, but

not through a peer in Europe.

In this section, we present peer-to-peer overlay network design schemes which take locality into account

and which are able to achieve constant stretch factors, while keeping polylogarithmic degree and diameter,

and polylogarithmic complexity for join and leave operations. All of the work in this section assumes that

the underlying peer-to-peer system is a growth-bounded network, which we define a few paragraphs later.

Peers communicate with one another by means of messages; each message consists of at least one word. We

assume that the underlying network provides reliable communication. We define the cost of communication

by a function c : V 2 → <. This function c is assumed to reflect the combined effect of the relevant network

parameter values, such as latency, throughput, congestion, etc. In other words, for any two peers u and v

in V , c(u, v) is the cost of transmitting a single-word message from u to v. We assume that c is symmetric

and satisfies the triangle inequality. The cost of transmitting a message of length l from peer u to peer v is

given by f(l)c(u, v), where f : N→ <+ is any nondecreasing function such that f(1) = 1.

A growth-bounded network satisfies the following property: Given any u in V and any real r, let B(u, r)

denote the set of peers v such that c(u, v) ≤ r. We refer to B(u, r) as the ball of radius r around u. We

assume that there exist a real constant ∆ such that for any peer u in V and any real r ≥ 1, we have

|B(u, 2r)| ≤ ∆|B(u, r)|. (1.1)

In other words, the number of peers within radius r from u grows polynomially with r. This network

model has been validated by both theoreticians and practitioners as to model well existing internetworking

topologies [38, 13, 2, 22].

Plaxton, Rajaraman and Richa (PRR) in [28, 27] pioneered the work on locality-aware routing schemes

in dynamic environments. Their work actually addresses a more general problem — namely the object

location problem — than that of designing efficient overlay networks with respect to the parameters outlined

in Section 1. In that early work, Plaxton, et al. formalize the problem of object location in a peer-to-

peer environment, pinpointing the issue of locality and developing a formal framework under which object
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location schemes have been rigorously analyzed. In the object location problem, peers seek to find objects in

a dynamic and fully distributed environment, where multiple (identical) copies of an object may exist in the

network: The main goal is to be able to locate and find a copy of an object within cost that is proportional

to the cost of retrieving the closest copy of the object to the requesting peer, while being able to efficiently

support these operations in a dynamic peer-to-peer environment where copies of the objects are continuously

inserted and removed from the network.

Our overlay network design problem can be viewed as a subset of the object location problem addressed

by PRR, where each object is a peer (and hence there exists a single copy of each object in the network).

Hence the results in the PRR scheme and other object location schemes to follow, in particular the LAND

scheme to be addressed later in this section, directly apply to our overlay network design problem. Both PRR

and LAND assume a growth-bounded network model. For these networks, the LAND scheme provides the

best currently known overlay design scheme with 1 + ε stretch, and polylogarithmic bounds on diameter and

degree, for any fixed constant ε > 0. Combining the LAND scheme with a technique by Hildrum et al [19] to

find nearest neighbors enable us to also attain polylogarithmic work for Join and Leave operations. Since

the LAND scheme heavily relies on the PRR scheme, we will present the latter in more detail and then

highlight the changes introduced by the LAND scheme. We will address both schemes in the light of overlay

routing, rather than the object location problem originally addressed by these schemes.

In the PRR and related schemes, each peer p will have two attributes in addition to its exact location

in the network (which is unknown to other peers): a virtual location x in U , and a label `(x) generated

independently and uniformly at random. We call the virtual location x of p the peer identifier x, or simply,

the ID x. In the remainder of this section, we will indistinctly use the ID x to denote the peer p itself.

4.2.1 The PRR scheme

The original PRR scheme assumes that we have a growth-bounded network with the extra assumption of

also having a lower bound on the rate of growth. Later work that evolved from the PRR scheme (e.g., the

LAND scheme) showed that this assumption could be dropped by slightly modifying the PRR scheme. The

PRR scheme and the vast majority of provably efficient object location schemes rely on a basic yet powerful
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technique called prefix routing, which we outlined in Section 4.2. Below, we re-visit prefix routing in the

context of the PRR scheme.

Theorem 1.7 The PRR scheme, when combined with a technique by Hildrum et al. for finding nearest

neighbors, achieves an overlay peer-to-peer network with the following properties: expected constant stretch

for Route operations, O(log n) diameter, and, with high probability, O(log2 n) degree and work for Join,

Leave and Route operations.

Prefix Routing

The basic idea behind prefix routing (see also Section 4.2) is that the path followed in a routing operation

will be guided solely by the ID y we are seeking for: Every time a Route(m, y) request is forwarded from

a peer u to a peer v in the overlay path, the prefix of `(v) that (maximally) matches a prefix of the ID y is

strictly larger than that of `(u).

We now sketch the PRR prefix routing scheme (for more details, see [27]). Each peer x in the network

is assigned a (logb n)-digit label1 `(x) = `(x)1 . . . `(x)logb n, where each `(x)i ∈ {0, . . . , b − 1}, uniformly at

random, for some large enough constant b ≥ 2. Recall that each peer also has a unique (logb n)-digit ID

which is independent of this label. We denote the ID of peer x by x1 . . . xlogb n, where each xi ∈ {0, . . . , b−1}.

The random labels are used to construct a neighbor table at each peer. For a base b sequence of digits

γ = γ1 . . . γm, prefixi(γ) denotes the first i digits, γ1 . . . γi, of γ. For each peer x, each integer i between 1

and logb n, and each digit α between 0 and b− 1, the neighbor table at peer x stores the (logb n)-digit ID of

the closest peer y to x — i.e., the peer with minimum c(x, y) — such that prefixi−1(`(x)) = prefixi−1(`(y))

and `(y)i = α. We call y the (i, α)-neighbor of peer x. There exists an edge between any pair of neighbor

peers in the overlay network.

The degree of a peer in the overlay network is given by the size (number of entries) of its neighbor table.

The size of the neighbor table at each peer, as constructed above, is O(log n). In the final PRR scheme (and

other follow-up schemes) the neighbor table at a peer will have size polylogarithmic in n (namely O(log2 n)

in the PRR scheme), since a set of “auxiliary” neighbors at each peer will need to be maintained in order for

the scheme to function efficiently. Each peer x will also need to maintain a set of “pointers” to the location

1Without loss of generality, assume that n is a power of b.
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of the subset of peers that were published at x by Join operations. In the case of routing, each peer will

maintain O(log2 n) such pointers with high probability 2. We describe those pointers in more detail while

addressing the Join operation in PRR.

The sequence of peers visited in the overlay network during a routing operation for ID y initiated by peer

x will consist of the sequence x = x0, x1, . . . , xq, where xi is the (i, yi)-neighbor of peer xi−1, for 1 ≤ i ≤ q,

and xp is a peer that holds a pointer to y in the network (p ≤ logb n). We call this sequence the neighbor

sequence of peer x for (peer ID) y. Below we explain in more detail the Route, Join and Leave operations

according to PRR.

Route, Join, and Leave

Before we describe a routing operation in the PRR scheme, we need to understand how Join and Leave op-

erations are processed. Since we are interested in keeping low stretch, the implementation of such operations

will be different in the PRR scheme than in the two other overlay network design techniques presented in this

chapter. In a Route(m,x) operation, we will, as in the hierarchical decomposition and continuous-discrete

approaches, start by routing towards the virtual location x; however as we route toward this virtual location,

as soon as we find some information on the network regarding the actual location of the peer p corresponding

to x, we will redirect our route operation in order to reach p. This way, we will be able to show that the

total stretch of a route operation is low. (If we were to route all the way to the virtual location x, in order

to find information about the actual location of p, the total incurred stretch might be too large.).

There are two main components in a Join(p) operation: First, information about the location of peer p

joining the peer-to-peer system needs to be published in the network, such that subsequent Route operations

can indeed locate peer p. Second, peer p needs to build its own neighbor table, and other peers in the network

may need to update their neighbor tables given the presence of peer x in the network. Similarly, there are

two main components in a Leave(p) operation: unpublishing any information about p’s location in the

network, and removing any entries containing peer p in the neighbor tables of other peers. We will address

these two issues separately. For the moment, we will only be concerned with how information about p is

published or unpublished in the network, since this is what we need in order to guarantee the success of a

2With probability at least 1− 1/p(n), where p(n) is a polynomial function on n.
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Route operation. We will assume that the respective routing table entries are updated correctly upon the

addition or removal of p from the system. Later, we will explain how the neighbor tables can be efficiently

updated.

Whenever a peer p with ID x decides to join the peer-to-peer system, we place (publish) a pointer leading

to the actual location of p in the network, which we call an x-pointer, at up to logb n peers of the network.

For convenience of notation, in the remainder of this section, we will always use x to indistinctly denote both

the ID of peer p and the peer p itself. Let x0 = x, x1, . . . , xlogb n−1 be the neighbor sequence of peer x for

node ID x. We place an x-pointer to xi−1 at each peer xi in this neighbor sequence. Thus, whenever we find

a peer with an x-pointer (at a peer xj , 1 ≤ j ≤ logb n) during a Route(m,x) operation, we can forward the

message all the way “down” the reverse neighbor sequence xj , . . . , x0 = x to the actual location of peer x.

The Leave(p) operation is the reverse of a Join operation: We simply unpublish (remove) all the x-

pointers from the peers x0, . . . , xlogb n.

There is an implicit search tree associated with each peer ID y in prefix routing. Assume for a moment

that there is only one peer r matching a prefix of the ID y in the largest number of digits in the network.

At the end of this section, we address the case when this assumption does not hold. Let the search tree

T (y) for peer y be defined by the network edges in the neighbor sequences for peer ID y for each peer x in

the network, where, for each edge of the type (xi−1, xi) in the neighbor sequence of x for y, we view xi as

the parent of xi−1 in the tree. The above implementation of the publish and unpublish operations trivially

maintain the following invariant. Let Tx(y) be the subtree rooted at x in T (y).

Invariant 1.1 If peer y belongs to Tx(y), then peer x has a y-pointer.

We now describe how a Route(m, y) operation initiated at peer x proceeds. Let x0 = x, x1, . . . , xlogb n−1

be the neighbor sequence of peer x for y. Starting with i = 0, peer xi first checks whether it has a y-pointer.

If it does then xi will forward the message m using its y-pointer down the neighbor sequence that was

used when publishing information about peer y during a Join(y) operation. More specifically, let j be the

maximum index such that prefixj(`(x
i)) = prefixj(y) (note that j ≥ i). Then xi must be equal to yj , where

y = y0, y1, . . . is the neighbor sequence of peer y for the ID y, used during Join(y). Thus message m will be

forwarded using the y-pointers at yj , . . . , y0 = y (if yj has a y-pointer, then so does yk for all 1 ≤ k ≤ j) all
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the way down to peer y. If xi does not have a y-pointer, it will simply forward the message m to xi+1.

Given Invariant 1.1, peer x will locate peer y in the network if peer y is indeed part of the peer-to-peer

system. The cost of routing to peer y can be bounded by:

Fact 1.7 A message from peer x to peer y will be routed through a path with cost O(
∑j

k=1[c(xk−1, xk) +

c(yk−1, yk)]).

The main challenge in the analysis of the PRR scheme is to show that this summation is indeed O(c(x, y))

in expectation.

A deficiency of this scheme, as described, is that there is a chance that we may fail to locate a pointer to

y at x1 through xlogb n. In this case, we must have more than one “root peer” in T (y) (a root peer is a peer

such that the length of its maximal prefix matching the ID of y is maximum among all peers in the network),

and hence there is no guarantee that there exists a peer r which will have a global view of the network with

respect to the ID of peer y. Fortunately, this deficiency may be easily rectified by a slight modification of

the algorithm, as shown in [27].

The probability that the k-digit prefix of the label of an arbitrary peer matches a particular k-digit string

γ = prefixk(y), for some peer y, is b−k. Consider a ball B around peer xk−1 containing exactly bk peers. Note

that there is a constant probability (approximately 1/e) that no peer in B matches γ. Thus the radius of B

is a lower bound (up to a constant factor) on the expected distance from xk−1 to its (k, yk)-neighbor. Is this

radius also an upper bound? Not for an arbitrary metric, since (for example) the diameter of the smallest

ball around a peer z containing bk + 1 peers can be arbitrarily larger than the diameter of the smallest ball

around z containing bk peers. However, it can be shown that the radius of B provides a tight bound on the

expected distance from xk−1 to its (k, yk)-neighbor. Furthermore, Equation 1.1 implies that the expected

distance from xk−1 to its (k, yk)-neighbor is geometrically increasing in k. The latter observation is crucial

since it implies that the expected total distance from xk−1 to its (k, yk)-neighbor, summed over all k such

that 1 ≤ k ≤ j, is dominated by (i.e., within a constant factor of) the expected communication cost from

xj−1 to its (j, yj)-neighbor xj .

The key challenge of the complexity analysis of PRR is to show that, c(x, y) = O(E[c(xj−1, xj)]), and

hence that the routing stretch factor in the PRR scheme is constant in expectation. This proof is technically
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rather involved and we refer the reader to [27]. In the next section, we will show how the PRR scheme can

be elegantly modified in order to yield deterministic constant stretch. More specifically, the LAND scheme

achieves deterministic stretch 1 + ε, for any fixed ε > 0.

Updating the neighbor tables

In order to be able to have Join and Leave operations with low work complexity, while still enforcing low

stretch Route operations and polylogarithmic degree, one needs to devise an efficient way for updating the

neighbor tables upon the arrival or departure of a peer from the system. The PRR scheme alone does not

provide such means. Luckily, we can combine the work by Hildrum et al. [19], which provides an efficient

way for finding nearest neighbors in a dynamic and fully distributed environment, with the PRR scheme in

order to be able to efficiently handle the insertion or removal of a peer from the system. Namely, the work by

Hildrum et al. presents an algorithm which can build the neighbor table of a peer p joining the system and

update the other peers’ neighbor tables to account for the new peer in the system with total work O(log2 n).

4.2.2 The LAND scheme

The LAND scheme proposed by Abraham, Malkhi and Dobzinski in [2] was the first peer-to-peer overlay

network design scheme to achieve constant deterministic stretch for routing, while maintaining a polyloga-

rithmic diameter, degree, and work (for Route, Join and Leave) for growth-bounded metrics. Note that

LAND does not require a lower bound on the growth as PRR does. Like the PRR scheme, the LAND scheme

was also designed for the more general problem of object location in peer-to-peer systems.

Namely, the main results of the LAND scheme are summarized in the following theorem:

Theorem 1.8 The LAND scheme, when combined with a technique by Hildrum et al. for finding nearest

neighbors, achieves an overlay peer-to-peer network with the following properties: deterministic (1+ε) stretch

for Route operations, for any fixed ε > 0, O(log n) diameter, and expected O(log n) degree and work for

Join, Leave and Route operations.

The LAND scheme is a variant of the PRR scheme. The implementation of Route, Join, and Leave

operations in this later scheme are basically the same as in PRR. The basic difference between the two
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schemes is on how the peer labels are assigned to the peers during the neighbor table construction phase.

A peer may hold more than one label, some of which may not have been assigned in a fully random and

independent way.

In a nutshell, the basic idea behind the LAND scheme is that instead of letting the distance between a

peer x and its (i, α)-neighbor be arbitrarily large, it will enforce that this distance be always at most some

constant β times bi by letting peer x emulate a virtual peer with label γ such that prefixi(γ) = x1 . . . xi−1α

if no peer has x1 . . . xi−1α as a prefix of its label in a ball centered at x with O(bi) peers in it. Another

difference in the LAND scheme which is crucial to guarantee a deterministic bound on stretch is that the set

of “auxiliary” neighbors it maintains are only used during join/leave operations, rather than during routing

operations such as in the PRR scheme.

The analysis of the LAND scheme is elegant, consisting of short and intuitive proofs. Thus, this is also a

main contribution of this scheme, given that the analysis of the PRR scheme is rather lengthy and involved.

5 Self-stabilizing overlay networks

5.1 Introduction: From Fault-Tolerance to Self-Stabilization

Besides efficiency, fault-tolerance is arguably one of the most important requirements of large-scale overlay

networks. Indeed, at large scale and when operating for long time periods, the probability of even unlikely

failure events to happen can become substantial. In particular, the assumption that all peers leave the

network gracefully, executing a pre-defined Leave protocol, seems unrealistic. Rather, many peers are likely

to leave unexpectedly (e.g., crash). The situation of course becomes worse if the peer-to-peer system is

under attack. Intuitively, the larger and hence more popular the peer-to-peer system, the more attractive

it also becomes for attackers. For example, Denial-of-Service (DoS) attacks or partitions of the underlying

physical network may push the overlay network into an undesired state. Also other kinds of unexpected and

uncooperative behaviors may emerge in large-scale networks with open membership, such as selfish peers

aiming to obtain an unfair share of the resources.

It is hence difficult in practice to rely on certain invariants and assumptions on what can and what cannot
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happen during the (possibly very long) lifetime of a peer-to-peer system. Accordingly, it is important that a

distributed overlay network be able to recover from unexpected or even arbitrary situations. This recovery

should also be quick: once in an illegal state, the overlay network may be more vulnerable to further changes

or attacks. This motivates the study of self-stabilizing peer-to-peer systems.

Self-stabilzation is a very powerful concept in fault-tolerance. A self-stabilizing algorithm guarantees to

“eventually” converge to a desirable system state from any initial configuration. Indeed, a self-stabilizing

system allows to survive arbitrary failures, beyond Byzantine failures, including for instance a total wipe

out of volatile memory at all nodes. Once the external or even adversarial changes stop, the system will

simply “self-heal” and converge to a correct state. The idea of self-stabilization in distributed computing

first appeared in a classical paper by E.W. Dijkstra in 1974 [11], which considered the problem of designing

a self-stabilizing token ring. Since Dijkstra’s paper, self-stabilization has been studied in many contexts,

including communication protocols, graph theory problems, termination detection, clock synchronization,

and fault containment [12].

In general, the design of self-stabilizing algorithms is fairly well-understood today. In particular, already

in the late 1980s, very powerful results have been obtained on how any synchronous, not fault-tolerant local

network algorithm can be transformed into a very robust, self-stabilizing algorithm which performs well both

in synchronous and asynchronous environments [8, 9, 23]. These transformations rely on synchronizers and

on the (continuous) emulation of one-shot local network algorithms.

While these transformations are attractive to strengthen the robustness of local algorithms on a given

network topology, e.g., for designing self-stabilizing spanning trees, they are not applicable, or only applicable

at high costs, in overlay peer-to-peer networks whose topology is subject to change and optimization itself.

Indeed, many decentralized overlay networks (including very well-known examples like Chord) are not

self-stabilizing, in the sense that the proposed protocols only manage to recover the network from a restricted

class of illegal states [3, 5, 36]. Informally, the self-stabilizing overlay network design problem is the following:

1. An adversary can manipulate the peers’ neighborhood (and hence topology) information arbitrarily

and continuously. In particular, it can remove and add arbitrary nodes and links.

2. As soon as the adversary stops manipulating the overlay topology, say at some unknown time t0,
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the self-stabilization protocols will ensure that eventually, and in the absence of further adversarial

changes, a desired topology is reached.

A topological self-stabilizing mechanism must guarantee convergence and closure properties: by local

neighborhood changes (i.e., by creating, forwarding and deleting links with neighboring nodes), the nodes

will eventually form an overlay topology with desirable properties (e.g., polylogarithmic degree and diameter)

from any initial topology. The system will also stay in a desirable configuration provided that no further

external topological changes occur.

In order for a distributed self-stabilizing algorithm to recover any connected topology, the initial topology

must at least be weakly connected.

Condition 1.8

• At t0, the peers are weakly connected to each other.

Designing a topological self-stabilizing algorithm is non-trivial for several reasons. First, as the time t0 is

not known to the self-stabilizing algorithm, the self-stabilizing procedure must run continuously, respectively,

local detectability is required: at least one peer should notice (i.e., locally detect) an inconsistency, if it exists.

This peer can then trigger (local or global) convergence. Moreover, a key insight is that a topologically self-

stabilizing algorithm can never remove links: it may happen that this link is the only link connecting

two otherwise disconnected components. Clearly, once disconnected, connectivity can never be established

again. Now one may wonder how a self-stabilizing algorithm starting (at t0) from a super-graph of the

target topology will ever be able to reach the desired topology without edge deletion. The answer is simple:

while an edge cannot be removed, it can be moved resp. delegated (e.g., one or both of its endpoints can be

forwarded to neighboring peers) and merged (with parallel edges).

Another fundamental implication of the self-stabilization concept is that self-stabilizing algorithms cannot

cycle through multiple stages during their execution. For instance, it may be tempting to try to design an

algorithm which, given the initial weakly connected topology, first converts the topology into a clique graph,

a “full-mesh”; once in the clique state, any desirable target topology could be achieved efficiently, simply be

removing (i.e., merging) unnecessary links. The problem with this strategy is twofold:
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1. Self-stabilizing algorithms can never assume a given stage of the stabilization has been reached, and

based on this assumption, move into a different mode of stabilization. The problem is that this

assumption can be violated anytime by the adversary, ruining the invariant and hence correctness of

the stabilization algorithm.

2. The transient properties of the dynamic topology, i.e., the topological properties during convergence,

may be undesirable: even though the initial and the final peer degrees may be low, the intermediate

clique topology has a linear degree and hence does not scale.

Given these intuitions, we will next identify fundamental connectivity primitives and topological oper-

ations which are sufficient and necessary to transform any initial network into any other network. Subse-

quently, we will discuss how these primitives can be exploited systematically for the design of distributed

algorithms. Finally, we present two case studies for topological self-stabilization: self-stabilizing linearization

and the self-stabilizing construction of skip graphs.

5.2 Universal Primitives for Reliable Connectivity

This section identifies universal connectivity primitives: local graph operations which allow us to transform

any topology into any other topology. While we in this section focus on feasibility, we will later use these

primitives to design topologically self-stabilizing algorithms.

Let us first define the notion of links (u, v). Links can either be explicit or implicit. An explicit link

(u, v) (in the following depicted as solid line) means that u knows v, i.e., u stores a reference of v (e.g., v’s

IP address). An implicit link (u, v) (depicted as dashed line) means that a message including v’s reference

is currently in transit to u (from some arbitrary sender). We are often interested in the union of the two

kinds of links.

As discussed above, a first most fundamental principle in the design of distributed self-stabilizing algo-

rithms is that links can never be deleted:

Rule 1.1 During the execution of a topologically self-stabilizing algorithm, weak connectivity must always

be preserved. In particular, a pointer (i.e., information about a peer) can never be deleted.
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Figure 1.3: Basic connectivity primitives.

We next identify four basic primitives which preserve connectivity (cf. Figure 1.3): Introduce, For-

ward, Merge, Invert.

1. Introduce: Assume node u has a pointer to nodes v and w: there are two directed links (u, v) and

(u,w). Then, u can introduce w to v by sending the pointer to w to v.

2. Forward: Assume node u has a pointer to nodes v and w, i.e., (u, v) and (u,w). Then, u can forward

the reference to w to v.

3. Merge: If u has two pointers to v, i.e., (u, v) and (u, v), then u can merge the two.

4. Invert: If u is connected to v, it can invert the link (u, v) to (v, u) by forwarding a pointer to itself

to v, and delete the reference to v.

It is easy to see that these primitives indeed preserve weak connectivity. In fact, the Introduce,

Forward, and Merge operations even preserve strong connectivity. We also note that we need a compare

operation to implement the merge operation: namely, we need to be able to test whether two references

point to the same node.

These operations turn out to be very powerful. In the following, we first show that three of them are

sufficient to transform any weakly connected graph into any strongly connected graph. In other words, they
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are weakly universal. Subsequently, we show that all four of them together are even universal : they are

sufficient to transform any weakly connected graph into any weakly connected graph. Finally, we prove that

these primitives are also necessary.

Theorem 1.9 The three primitives Introduce, Forward, and Merge are weakly universal: they are

sufficient to turn any weakly connected graph G = (V,E) into any strongly connected graph G′ = (V,E′).

Let us provide some intuition why this theorem is true. Note that we only need to prove feasibility, i.e.,

that a transformation exists; how to devise a distributed algorithm that finds such a transformation is only

discussed later in this chapter.

The proof proceeds in two stages, from G = (V,E) to the clique, and from the clique to G′ = (V,E′).

From the definition of weak connectivity, it follows that for any two nodes v and w, there is a path from v

to w (ignoring link directions). It is easy to see that if in each communication round, each node introduces

its neighbors to each other as well as itself to its neighbors, we reach a complete network (the clique) after

O(log n) communication rounds.

So now assume G = (V,E) is a clique. Then using Forward and Merge operations, we can transform

G into G′ using the following steps (without removing edges in G′):

1. Let (u,w) be an arbitrary edge which needs to be removed, i.e., (u,w) 6∈ E′. Since G′ = (V,E′) is

strongly connected, there is a shortest directed path from u to w in G′. Let v be the next node along

this path.

2. Node u forwards (“delegates”) (u,w) to v, i.e., (u,w) becomes (v, w). This reduces the distance between

an unused node pair in G′ by 1.

3. Since the maximal distance is n− 1, the distance of a superfluous edge can be reduced at most n− 1

many times before it merges with an edge in G′. Thus, we eventually obtain G′.

Theorem 1.10 The four primitives Introduce, Forward, Merge, and Invert are universal: they are

sufficient to turn any weakly connected graph G = (V,E) into any weakly connected graph G′ = (V,E′).

We again provide some intuition for this theorem:
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1. Let G′′ = (V,E′′) be the graph in which for each edge (u, v) ∈ E′, both edges (u, v) and (v, u) are in

E′′. Note that G′′ is strongly connected.

2. According to Theorem 1.9, it is possible to transform any G to G′′.

3. In order to transform G′′ to G′, we need the Invert primitive, to remove undesired edges: we invert

any undesired edge (u, v) to (v, u) and then merge it with (v, u).

Interestingly, the primitives are not only sufficient but also necessary.

Theorem 1.11 The four primitives Introduce, Forward, Merge, and Invert are also necessary.

The reason is that Introduce is the only primitive which generates an edge, Forward is the only

primitive which separates a node pair, Merge is the only primitive which removes an edge, and Inversion

is the only primitive rendering a node unreachable.

5.3 Distributed Algorithms for Self-Stabilization

In the previous section we have presented universal primitives that allow to transform any weakly-connected

graph G into any weakly-connected graph G′. However, the mere existence or feasibility of such transfor-

mations is often not interesting in practice, if there do not exist efficient distributed algorithms to find a

transformation.

In the following, we will show how to devise distributed algorithms exploiting our primitives to render

systems truly self-stabilizing. We first need to introduce some terminology. We first differentiate between

the following notions of state.

1. State of a process: The state of a process includes all variable information stored at the process,

excluding the messages in transit.

2. State of the network: The network states includes all messages currently in transit.

3. State of the system: The system state is the state of all proceses plus the network state.

Reformulating our objective accordingly, we aim to transition from any initial network state S to a legal

network state S′(S). For the algorithm design, we usually assume node actions to be locally atomic: at each
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moment in time, a process executes a single action. Multiple processes however may execute multiple actions

simultaneously: actions are not globally atomic. Moreover, it is usually assumed that the scheduler is fair:

every enabled node action will eventually be executed.

Concretely, we consider the following action types:

1. Name(Object-List) → Commands:

(a) A local call of action A is executed immediately.

(b) Incoming Request : The correspnding action will eventually be scheduled (the request never ex-

pires).

2. Name: Predicate → Commands: The rule will only be executed in finite time if the the predicate is

always enabled, e.g., the rule does not time out.

Independently of the initial states as well as possible messages in transit, a self-stabilizing system should

fulfill the following crteria:

Definition 1.3 A system is self-stabilizing with respect to a given network problem P , if the following

requirements are fulfilled when no failure or external error occurs and if nodes are static:

Convergence: For all initial states S and all fair executions, the system eventually reaches a state S′ with

S′ ∈ L(S): a legal state.

Closure: For all legal initial states S, also each subsequent state is legal.

A central requirement in topologically self-stabilizing system is the monotonicity of reachability : if v is

reachable from u at time t, using explicit or implicit edges, then, if no further failures or errors occur and

given a static node set, v is also reachable from u at any time t′ > t.

The following theorem can easily be proved using induction, as long as there are no references to non-

existent nodes in the system.

Theorem 1.12 The Introduce, Forward, and Merge operations fulfill monotonic reachability.

Remarks:
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1. One particularly annoying challenge in the design of self-stabilizing algorithms is due to the fact that

there may still be corrupt messages in transit in the system. Such messages can threaten the correctness

of an algorithm later.

2. In particular, corrupted message may violate the closure property: although initially in a legal state,

the system may move to an illegal state.

3. The set of legal states is hence only a subset of the “correct states”.

In general, the following performance metrics are most relevant in topological self-stabilization:

1. Convergence Time: Assuming a synchronous environment (or assuming an upper bound on the message

transmission per link), the distributed convergence time measures how many (parallel) communication

rounds are required until the final topology is reached.

2. Work: The work measures how many edges are inserted, changed, or removed in total, during the

covergence process.

3. Locality: While a self-stabilizing algorithm by definition will re-establish a desired property from any

initial configuration, it is desirable that the parallel convergence time as well as the overall work is

proportional to “how far” the initial topology is from the desired one. In particular, if there are only one

or two links missing, it should be possible to handle these situations more efficiently than performing a

complete stabilization. Similarly, single peer Join and Leave operations should be efficient (in terms

of time and work).

4. Transient Behavior: While the initial and the final network topologies are given, it is desirable that

during convergence, only efficient topologies transiently emerge. For example, it may be desirable that

no topology during convergence will have a higher degree or diameter than the initial or the final

topology.

Usually, we do not assume synchronous executions or that nodes process requests at the same speed.

Rather, requests may be processed asynchronously. In order to measure time in asynchronous executions,

we use the notion of a round: in a round, each node which has to process one or more requests, completed
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at least one of these requests. The time complexity is measured in terms of number of rounds (usually in

the worst-case).

5.3.1 Case Study Linearization

Linearization is a most simple example for topological self-stabilization [14, 21, 31]: essentially, we are

looking for a local-control strategy for converting an arbitrary connected graph (with unique node IDs) into

a sorted list. In order to provide some intuition and for the sake of simplicity, let us assume an undirected

network topology, where peers have unique identifiers. In order to sort and linearize this overlay network in

a distributed manner, two basic rules are sufficient, defined over node triples (cf. Figure 1.4):

1. Linearize right: Any node u which currently has two neighbors v, w with larger IDs than its own ID,

i.e., u < v < w, introduces these two nodes to each other, essentially forwarding the edge. That is, the

edge {u,w} is forwarded from u to v and becomes edge {v, w}.

2. Linearize left: Any node w which currently has two neighbors u, v with lower IDs than its own ID,

i.e., u < v < w, introduces these two nodes to each other, essentially forwarding the edge. That is, the

edge {u,w} is forwarded from w to v and becomes edge {u, v}.

u

Linearize left

(w<v<u):

Linearize right

(u<v<w):

vw wvu

Figure 1.4: Linearize operations.

Note that the algorithm indeed does not remove any edges, but only forwards and merges them. It is

fairly easy to see that connectivity is preserved: if there is a path between x and y at time t, then there also

exists a path between the two nodes after the linearization step. In order to prove that the algorithm will

eventually converge, we can use a potential function argument. First however we note that if the network

is in a configuration in which it does not constitute the linear chain graph yet, then there must exist a
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node having at least two left neighbors or at least two right neighbors. Accordingly, the linearize left or

linearize right rule is enabled and will continue to change the topology in this step. Now, to show eventual

convergence to the unique legal configuration (the linear graph), we will prove that after any execution of

the linearize left or linearize right rule, the topology will come closer to the linearized configuration, in the

following sense: We can define a potential function whose value is (strictly) monotonically decreased with

each executed rule. Consider the potential function that sums up the lengths (differences) of all existing

links with respect to the linear ordering of the nodes. As the initial configuration is connected, this sum is

at least n − 1 (n − 1 links of length 1). Whenever an action is executed (in our case: a linearization step

is performed), the potential is reduced by at least the length of the shorter edge in the linearization triple.

Thus, we will eventually reach a topology of minimal potential, where all actions are disabled.

5.3.2 Case Study Skip Graphs

The first self-stabilizing and scalable overlay network is SKIP+ [20], a self-stabilizing variant of the skip

graph family [4, 15]. Similarly to the original skip graphs, SKIP+ features a polylogarithmic degree and

diameter. However, in constrast to the original skip graph versions, SKIP+ contains additional edges which

enable local detectability : only with these edges it can be ensured that at least one peer will always notice,

locally, if the overall network is not in the desired state yet.

SKIP+ distinguishes between stable edges and temporary edges. Similarly to the linearization example

above, temporary edges will travel through the topology (i.e., they are forwarded), and eventually merge or

stabilize. Node v considers an edge (v, w) to be temporary if from v’s point of view (v, w) does not belong

to SKIP+ and so v will try to forward it to some of its neighbors for which the edge would be more relevant.

Otherwise, v considers (v, w) to be a stable edge and will make sure that the connection is bidirected, i.e.,

it will propose (w, v) to w.

As many self-stabilizing algorithms, the self-stabilizing protocol for SKIP+ is very simple: the peers in

SKIP+ continuously must execute three rules:

1. Rule 1: Create Reverse Edges and Introduce Stable Edges. This rule makes sure that a directed edge

becomes a bidirected edge, introducing the peers to each other. Also, stable edges are created where
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needed.

2. Rule 2: Forward Temporary Edges. This rule is used for forwarding temporary edges to neighboring

nodes. Eventually, the edges will stabilize or merge.

3. Rule 3: Introduce All and Linearize. The rule has two parts. It performs some kind of local transitive

closure, where peers introduce all their neighbors to each other. Moreover, the rule is responsible for

sorting neighboring nodes according to their identifiers. (In a skip graph, nodes are ordered on each

level, facilitating search operations.)

The three rules are continuously checked and executed in parallel by all nodes. However, while the

algorithm itself is simple, its analysis is non-trivial. In a nutshell, the stabilization proof is based on the

observation that the execution of the algorithm can be divided into phases in which certain properties

(milestones) are achieved. In particular, the execution can be thought of being divided into a bottom-up and

a top-down phase. The bottom-up phase (i.e., from skip graph level 0 upwards), connected components for

increasingly larger prefixes are formed in the identifier space. This will be accomplished by Rules 1 (where

new nodes in the range of a node are discovered and where ranges may be refined) and Rules 3 (where an

efficient variation of a local transitive closure is performed). Once the connected components are formed,

in the second phase of the algorithm (recall that the division into phases is a purely analytical one) will

form a sorted list out of each prefix component. This is accomplished in a top-down fashion by merging the

two already sorted subcomponents into a sorted larger component until all nodes in the bottom level form

a sorted list.

In summary, Jacob et al. [20] show the following result.

Theorem 1.13 SKIP+ converges, for any initial state in which the nodes are weakly connected, in O(log2 n)

rounds. A single join event (i.e., a new node connects to an arbitrary node in the system) or leave event

(i.e., a node just leaves without prior notice) can be handled with polylogarithmic work.

One drawback of this approach however is its transient behavior: it may happen that node degrees can

increase significantly during covergence (namely due to the Introduce All in Rule 3), even though the initial

and the final topology have low degrees, i.e., are scalable.
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We conclude this section by emphasizing that the field of topological self-stabilization is relatively young

and many algorithmic techniques and limitations still wait to be discovered.

6 Other related work

There is a wealth of literature on peer-to-peer systems, and papers on this subject can be found in every major

computer science conference. Peer-to-peer overlay networks can roughly be classified into three categories:

social networks, random networks, and structured networks.

Examples of social networks are Gnutella and KaZaA. Their basic idea of interconnecting peers is that

connections follow the principle of highest benefit: a peer preferably connects to peers with similar interests

by maintaining direct links to those peers that can successfully answer queries.

An example for random networks is JXTA, a Java library developed by SUN to facilitate the development

of peer-to-peer systems. The basic idea behind the JXTA core is to maintain a random-looking network

between the peers. In this way, peers are very likely to stay in a single connected component because random

graphs are known to be robust against even massive failures or departures of nodes. Theory work on random

peer-to-peer networks can be found, e.g., in [10, 25].

Most of the scientific work on peer-to-peer networks has focused on structured overlay networks, i.e.,

networks with a regular structure that makes it easy to route in them with low overhead. The vast majority

of these networks is based on the concept of virtual space. The most prominent among these are Chord

[35], CAN [30], Pastry [13] and Tapestry [38]. The virtual space approach has the problem that it requires

node labels to be evenly distributed in the space in order to obtain a scalable overlay network. Alternative

approaches that yield scalable overlay networks for arbitrary distinct node labels are skip graphs [4], skip

nets [15] and the hyperring [7].

As we have already seen above, structured overlay networks are also known that can take locality into

account. All of this work is based on the results in [28, 27]. The first peer-to-peer systems were Tapestry [38]

and Pastry [13]. Follow-up schemes addressed some of the shortcomings of the PRR scheme. In particular,

the LAND scheme [2] improves the results in PRR as seen in the previous section; algorithms for efficiently

handling peer arrival and departures are presented in [18, 19]; a simplified scheme with provable bounds for
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ring networks is given in [24]; a fault-tolerant extension is given in [17]; a scheme that addresses general

networks, at the expense of an O(log n) stretch bound, is given in [29]; a scheme that considers object

location under more realistic networks is given in [16]; and a first attempt at designing overlay networks in

peer-to-peer systems consisting of mobile peers is presented in [1] (no formal bounds are proven in [1] for

any relevant network distribution though).

Finally, overlay networks have not only been designed for wired networks but also for wireless networks.

See, for example, [32] and the references therein for more results in this area. We also refer the reader to the

various comprehensive surveys and books on peer-to-peer computing [34, 33].
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