Overlay Networks for Peer-to-Peer Networks

Andréa W. Richa* Christian Scheideler? Stefan Schmid*

1 Introduction

At the heart of any distributed system lies some kind of logical interconnecting structure, also called overlay
network, which supports the exchange of information between the different sites. With an increasing scale,
distributed systems are likely to become more dynamic and have to deal with sites continuously entering
and leaving the system. Reasons for a dynamic membership include, e.g., site failures, sites which have
to be updated and replaced by new sites, or the addition of new sites or resources which are required to
preserve the functionality of the system. Hence, any large-scale distributed system needs an overlay network
that supports joining, leaving, and routing between the sites. Without a scalable implementation of such a
network, it is impossible to build large high-performance distributed systems.

Scalability is especially critical for peer-to-peer systems . Peer-to-peer systems are self-organizing systems
whose members, the peers, cooperate without relying on any central server. A key characteristic of peer-to-
peer systems is that they typically support an open membership: peers can join and leave at will. Peer-to-peer
systems do not require an investment in additional high-performance hardware, and are hence low-cost. In
particular, peer-to-peer systems can leverage the tremendous amount of resources (such as computation and
storage) available at its constituent parts, the peers: while not used by their owners, these resources may sit

idle on the individual computers.

*Department of Computer Science, Arizona State University, Tempe, AZ 85281, USA, aricha@asu.edu. This work was

supported by NSF CAREER grant CCR-9985284.
TDepartment of Computer Science, Fiirstenallee 11, 33102 Paderborn, Germany, scheideler@upb.de.
fDepartment of Computer Science, Aalborg University, Selma Lagerlofs Vej 300, 9220 Aalborg, Denmark,

schmiste@cs.aau.dk. Stefan Schmid is supported by Aalborg University’s talent program.

1 INTRODUCTION 2

A truly scalable peer-to-peer system must support efficient operations for joining, leaving, and routing
between the sites: ideally, the work required for such operations should be at most polylogarithmic in the
system size. In particular, the maximum degree and the diameter of (and route lengths in) the overlay
network should be at most polylogarithmic in n, where n is the total number of peers in the system. The
overlay network should also be well-connected, and be robust against faulty peers. The well-connectedness
of a graph is usually measured by its expansion, which we will formally define later in this chapter. Another
important parameter is the stretch factor of an overlay network, which measures by how much the length of
a shortest route between two nodes v and w in the overlay network is off from a shortest route from v to w
when using the underlying physical network.

To summarize, a scalable peer-to-peer system must offer efficient JOIN, LEAVE (assuming graceful depar-

tures), and ROUTE operations such that for any sequence of join, leave and route request:

e the work of executing these requests is as small as possible,

e the degree, diameter and stretch factor of the resulting network are as small as possible, and

e the expansion of the resulting network is as large as possible.

In other words, we are dealing with multi-objective optimization problems.

In addition, we want our systems to be fault-tolerant: our system should not only provide leave operations
allowing peers to leave gracefully, but it should also tolerate peer failures. In particular, we aim to design self-
stabilizing peer-to-peer systems: peer-to-peer networks which automatically recover from any configuration.

To address these problems, we first introduce some basic notation and techniques for constructing overlay
networks (Section 2). Afterwards, we discuss supervised overlay network designs (i.e., the topology is main-
tained by a supervisor but routing is done on a peer-to-peer basis), and then we present various decentralized
overlay network designs (i.e., the topology is maintained by the peers themselves). Finally, in Section 5, we

identify reliable connectivity primitives and study the design of self-stabilizing overlay networks.

2 BASIC NOTATION AND TECHNIQUES 3
2 Basic notation and techniques

We start with some basic notation. A graph G = (V, E) consists of a node set V and an edge set E C V x V.
We will only consider directed graphs. The in-degree of a node is the number of incoming edges, the out-
degree of a node is the number of outgoing edges, and the degree of a node is the number of incoming and
outgoing edges. Given two nodes v and w, let d(v, w) denote the length of a shortest directed path from v

to w in G. G is strongly connected if d(v,w) is finite for every pair v,w € V. In this case,

D = max d(v,w)
v,weV

is the diameter of G. The expansion of G is defined as

_ - TSI
o = min .
scv,|s[<ivi/z |S|

where I'(S) = {v € V\S | Ju € S: (u,v) € E} is the neighbor set of S. The following relationship between
the expansion and diameter of a graph is easy to show.

Fact 1.1 For any graph G with expansion «, the diameter of G is in O(a~!logn).

The vast majority of overlay networks for peer-to-peer systems suggested in the literature is based on
the concept of virtual space . That is, every site is associated with a point in some space U and connections
between sites are established based on rules how to interconnect points in that space. In this case, the

following operations need to be implemented:
e JOIN(p): add new peer p to the network by choosing a point in U for it
e LEAVE(p): remove peer p from the network
e ROUTE(m, x): route message m to point z in U

Several virtual space approaches are known. The most influential techniques are the hierarchical decompo-
sition technique, the continuous-discrete technique, and the prefix technique. We will give a general outline
of each technique in this section. At the end of this section, we present two important families of graphs

that we will use later in this chapter to construct dynamic overlay networks.

2 BASIC NOTATION AND TECHNIQUES 4

2.1 The hierarchical decomposition technique

Consider the space U = [0,1]? for some fixed d > 1. The decomposition tree T(U) of U is an infinite binary
tree, whose root represents U. In general, every node v in the tree represents a subcube U’ in U, and the
children of v represent two subcubes U” and U"’: U” and U"" are the result of cutting U’ in the middle at
the smallest dimension in which U’ has a maximum side length. The subcubes U” and U’ are closed, i.e.,
their intersection defines the cut. Let every edge to a left child in T'(U) be labeled with 0 and every edge to
a right child in T(U) be labeled with 1. Then the label of a node v, ¢(v), is the sequence of all edge labels
encountered when moving along the unique path from the root of T'(U) downwards to v. For d = 2, the

result of this decomposition is shown in Figure 1.1.

TN

Figure 1.1: The decomposition tree for d = 2.

The goal is to map the peers to nodes in T'(U) so that the following conditions are met:
Condition 1.1
(1) The interiors of the subcubes associated with the (nodes assigned to the) peers are disjoint,
(2) the union of the subcubes of the peers gives the entire set U, and

(8) every peer p with subcube U, is connected to all peers p’ with subcubes Uy that are adjacent to U, (i.e.,

U, NUp is a d — 1-dimensional subcube).

In the 2-dimensional case, for example, condition (3) means that p and p’ share a part of the cut line

through their first common ancestor in T(U). It is not difficult to see that the following result is true.

2 BASIC NOTATION AND TECHNIQUES 5

Fact 1.2 Consider the space U = [0,1]? for some fized d and suppose we have n peers. If the peers are
associated with nodes that are within k levels of T(U) and Condition 1.1 is satisfied, then the mazimum

degree of a peer is at most (2d) - 281 and the diameter of the graph is at most d -n'/¢ 4 2(k — 1).

The diameter of the graph can be as large as d - n'/% and therefore too large for a scalable graph if d is
fixed, but its degree is small as long as k = O(loglogn).

An example of a peer-to-peer system based on hierarchical decomposition technique is CAN [30]. In
the original CAN construction, a small degree is achieved by giving each peer p a label ¢(p) consisting of
a (sufficiently long) random bit string when it joins the system. This bit string is used to route p to the
unique peer p’ that is reached when traversing the tree T'(U) according to ¢(p) (a 0 bit means “go left” and
a 1 bit means “go right”) until a node v is reached that is associated with a peer. (Such a node must always
exist if there is at least one peer in the system and the two rules of assigning peers to nodes in Condition 1.1
are satisfied.) Ome of p and p’ is then placed in the left child of v and the other in the right child of v.
Leave operations basically reverse join operations so that Condition 1.1 is maintained. Due to the use of a
random bit sequence, one can show that the number of levels the peers are apart is indeed O(loglogn), as
desired. However, it can also be as bad as that. Strategies that achieve a more even level balancing were

subsequently proposed in several papers (see, e.g., [37] and the references therein).

2.2 The continuous-discrete technique

The basic idea underlying the continuous-discrete approach [26] is to define a continuous model of graphs
and to apply this continuous model to the discrete setting of a finite set of peers. A well-known peer-to-peer
system that uses an approach closely related to the continuous-discrete approach is Chord [35].

Consider the d-dimensional space U = [0,1)%, and suppose that we have a set F of continuous functions
fi : U — U. Then we define Er as the set of all pairs (z,y) € U? with y = f;(z) for some i. Given any
subset S C U, let T'(S) ={y e U\S|Ix € S: (v,y) € Er}. UT(S) # 0 for every S C U, then F is said
to be mizing. If F' does not mix, then there are disconnected areas in U.

Consider now any set of peers V, and let S(v) be the subset in U that has been assigned to peer v. Then

the following conditions have to be met:

2 BASIC NOTATION AND TECHNIQUES 6

Condition 1.2
(1) U,S(w) =U and

(2) for every pair of peers v and w it holds that v is connected to w if and only if there are two points

x,y € U with x € S(v), y € S(w) and (z,y) € Ep.
Let Gr(V) be the graph resulting from the conditions above. Then the following fact is easy to see.
Fact 1.3 If F is mizing and U,S(v) = U, then Gr(V) is strongly connected.

To bound the diameter of Gg(V'), we introduce some further notation. For any point « and any € € [0,1),
let B(z,€) denote the d-dimensional ball of volume € centered at . For any two points z and y in U, let
dp(z,y) denote the shortest sequence (sisyss...s;) € IN¥ so that there are two points ' € B(z,1/n) and

y' € B(y,1/n) with fy, o fs, 0... fs. (') =¢'. Then we define the diameter of F' as

D = n{L,
(n) Jnax d (z,y)

Using this definition, it holds:

Fact 1.4 IfU,S(v) = U and every S(v) contains a ball of volume at least 1/n, then Gg(V) has a diameter

of at most D(n).

Also the expansion of Gg(V') can be bounded with a suitable parameter for F'. However, it is easier to

consider explicit examples here, and therefore we defer a further discussion to Section 4.1.

2.3 The prefix technique

The prefix technique was first presented in [27, 28] and first used in the peer-to-peer world by Pastry [13]
and Tapestry [38]. Given a label ¢ = (¢10205...), let prefix;(¢) = (€142 ...¢;) for all i > 1 and prefixy(¢) = e,
the empty label.

In the prefix technique, every peer node v is associated with a unique label £(v) = £(v)1 ... £(v), where
each £(v); € {0,...,b— 1}, for some constant b > 2 and sufficiently large k. The following condition has to

be met concerning connections between the nodes.

2 BASIC NOTATION AND TECHNIQUES 7

Condition 1.3 For every peer v, every digit o € {0,...,b—1}, and every i > 0, v has a link to a peer node

w with prefix; (£(v)) = prefix;(¢(w)) and l(w);+1 = «, if such a node w exists.

Since for some values of ¢ and « there can be many nodes w satisfying the condition above, a rule has to
be specified which of these nodes w to pick. For example, a peer may connect to the geographically closest

peer w, or a peer may connect to a peer w it has the best connection to. The following fact is easy to show:

Fact 1.5 If the maximum length of a node label is L and the node labels are unique, then any rule of choosing
a node w as in Condition 1.3 guarantees strong connectivity. Moreover, the mazimum out-degree of a node

and the diameter of the network are at most L.

However, the in-degree, i.e., the number of incoming connections, can be quite high, depending on the
rule. A simple strategy guaranteeing polylogarithmic in- and out-degree and logarithmic diameter is that
every node chooses a random binary sequence as its label, and a node v connects to the node w among the
eligible candidates with the closest distance to v, i.e., |¢(v) — £(w)| is minimized. This rule also achieves a
good expansion but not a good stretch factor. In order to address the stretch factor, other rules are necessary.

We will discuss them in Section 4.2.

2.4 Basic classes of graphs

We will apply our basic techniques above to two important classes of graphs: the hypercube and the de

Bruijn graph. They are defined as follows.

Definition 1.1 For any d € IN, the d-dimensional hypercube is an undirected graph G = (V,E) with

V =1{0,1}¢ and E = {{v,w} | H(v,w) = 1} where H(v,w) is the Hamming distance between v and w.

Definition 1.2 For any d € IN, the d-dimensional de Bruijn graph is an undirected graph G = (V, E)
with node set V = {v € {0,1}¢} and edge set E. It contains all edges {v,w} with the property that w €

{(z,vg-1,...,v1) : ®€{0,1}}, where v = (vg_1,...,v0).

3 SUPERVISED OVERLAY NETWORKS 8
3 Supervised overlay networks

A supervised overlay network is a network formed by a supervisor but in which all other activities can
be performed in a peer-to-peer fashion involving the supervisor. Supervised overlays therefore lie between
server-based overlay networks and pure peer-to-peer overlay networks. In order for a supervised network to

be highly scalable, two central requirements have to be satisfied:

1. The supervisor needs to store at most a polylogarithmic amount of information about the system at
any time. For example, if there are n peers in the system, storing contact information about O(log2 n)

of these peers would be fine.

2. The supervisor needs at most a constant number of messages to include a new peer into or exclude an

old peer from the network.

The second condition makes sure that the work of the supervisor to include or exclude peers from the system
is kept at a minimum. First, we present a general strategy of constructing supervised overlay networks,
which combines the hierarchical decomposition technique with the continuous-discrete technique and the
recursive labeling technique below. Subsequently, we give some explicit examples that achieve near-optimal
results for the cost of the join, leave and route operations as well as the degree, diameter and expansion of

the network.

3.1 The recursive labeling technique

In the recursive labeling approach, the supervisor assigns a label to every peer that wants to join the system.

The labels are represented as binary strings and are generated in the following order:
0,1,01,11,001,011,101,111,0001,0011,0101,0111, 1001, 1011, . ..

Basically, when stripping off the least significant bit, then the supervisor first creates all binary numbers of
length 0, then length 1, then length 2, and so on. More formally, consider the mapping ¢ : INg — {0, 1}* with

the property that for every x € INg with binary representation (z4...xo)2 (where d is minimum possible),

l(x) = (xg1 ... Toxzq) .

3 SUPERVISED OVERLAY NETWORKS 9

Then ¢ generates the sequence of labels displayed above. In the following, it will also be helpful to view

labels as real numbers in [0,1). Let the function r : {0,1}* — [0,1) be defined so that for every label

0= (l1ly.. . Ly) € {0,1}*, r(€) = Zle £:. Then the sequence of labels above translates into

0, 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, 7/16, 9/16, ...

Thus, the more labels are used, the more densely the [0, 1) interval will be populated. When employing the

recursive approach, the supervisor aims to maintain the following condition at any time:

Condition 1.4 The set of labels used by the peers is {€(0),£(1),...,¢(n—1)}, where n is the current number

of peers in the system.

This condition is preserved with the following simple strategy:

e Whenever a new peer v joins the system and the current number of peers is n, the supervisor assigns

the label £(n) to v and increases n by 1.

e Whenever a peer w with label ¢ wants to leave the system, the supervisor asks the peer with currently

highest label £(n — 1) to take over the role of w (and thereby change its label to ¢) and reduces n by 1.

3.2 Putting the pieces together

We assume that we have a single supervisor for maintaining the overlay network. In the following, the label
assigned to some peer v will be denoted by £,. Given n peers with unique labels, we define the predecessor
pred(v) of peer v as the peer w for which r(£,,) is closest from below to r(¢,), and we define the successor
succ(v) of peer v as the peer w for which r(£,,) is closest from above to r(¢,) (viewing [0,1) as a ring in both

cases). Given two peers v and w, we define their distance as
d(v,w) = min{(1 + r(¢,) — r(£y)) mod 1, (1 +r(¢,) —r(¢,)) mod 1} .

In order to maintain a doubly linked cycle among the peers, we simply have to maintain the following

condition:

Condition 1.5 Every peer v in the system is connected to pred(v) and succ(v).

3 SUPERVISED OVERLAY NETWORKS 10

Now, suppose that the labels of the peers are generated via the recursive strategy above. Then we have

the following properties:

Lemma 1.1 Let n be the current number of peers in the system, and let i = 2U°87) . Then for every peer

veV, b, <logn] and 6(v,pred(v)) € {1/(2n),1/n}.

So the peers are approximately evenly distributed in [0,1) and the number of bits for storing a label is
almost as low as it can be without violating the uniqueness requirement.

Recall the hierarchical decomposition approach. The supervisor will assign every peer p to the unique
node v in T'(U) at level log(1/6(p, pred(p))) with £, being equal to ¢, (padded with 0’s to the right so that
|¢y] = |¢,]). As an example, if we currently have 4 peers in the system, then the mapping of peer labels to
node labels is

0—00,1—10, 01 =01, 11 — 11

With this strategy, it follows from Lemma 1.1 that Fact 1.2 applies with k& = 2.
Consider now any family F of functions acting on some space U = [0,1)? and let C(p) be the subcube of
the node in T'(U) that p has been assigned to. Then the goal of the supervisor is to maintain the following

condition at any time.
Condition 1.6 For the current set V of peers in the system it holds that
1. the set of labels used by the peers is {£(0),£(1),...,4(n — 1)}, where n = |V|,
2. every peer v in the system is connected to pred(v) and succ(v), and
3. there is an edge (v,w) for every pair of peers v and w for which there is an edge (xz,y) € Ep with

z € C(v) and y € C(w).

3.3 DMaintaining Condition 1.6

Next we describe the actions that the supervisor has to perform in order to maintain Condition 1.6 during

a join or leave operation. We start with the following important fact.

3 SUPERVISED OVERLAY NETWORKS 11

Fact 1.6 Whenever a new peer v enters the system, then pred(v) has all the connectivity information v
needs to satisfy Condition 1.6(3). Moreover, to maintain Condition 1.6(3), whenever an old peer w leaves

the system, it suffices that w transfers all of its connectivity information to pred(w).

The first part of the fact follows from the observation that when v enters the system, then the subcube
of pred(v) splits into two subcubes where one resides at pred(v) and the other is taken over by v. Hence, if
pred(v) passes all of its connectivity information to v, then v can establish all edges relevant for it according
to the continuous-discrete approach. The second part of the fact follows from the observation that the
departure of a peer is the reverse of the insertion of a peer.

Thus, if the peers take care of the connections in Condition 1.6(3), the only part that the supervisor has

to take care of is maintaining the cycle. For this we require the following condition.

Condition 1.7 At any time, the supervisor stores the contact information of pred(v), v, succ(v), and

succ(succ(v)) where v is the peer with label £(n — 1).

In order to satisfy Condition 1.7, the supervisor performs the following actions. If a new peer w joins,
then the supervisor:

e informs w that ¢(n) is its label, succ(v) is its predecessor, and succ(succ(v)) is its successor,

e informs succ(v) that w is its new successor,

e informs succ(succ(v)) that w is its new predecessor,

e asks succ(succ(v)) to send its successor information to the supervisor, and

o setsn=mn+1.

If an old node w leaves and reports £,,, pred(w), and succ(w) to the supervisor (recall that we are

assuming graceful departures), then the supervisor

e informs v (the node with label ¢(n — 1)) that £, is its new label, pred(w) is its new predecessor, and
succ(w) is its new successor,

e informs pred(w) that its new successor is v and succ(w) that its new predecessor is v,

e informs pred(v) that succ(v) is its new successor and succ(v) that pred(v) is its new predecessor,

4 DECENTRALIZED OVERLAY NETWORKS 12

e asks pred(v) to send its predecessor information to the supervisor and to ask pred(pred(v)) to send its

predecessor information to the supervisor, and

e setsn=n—1.

Thus, the supervisor only needs to handle a small constant number of messages for each arrival or
departure of a peer, as desired. Next we look at two examples resulting in scalable supervised overlay

networks.

3.4 Examples

For a supervised hypercubic network, simply select F' as the family of functions on [0,1) with f;(z) =
x4+ 1/2% (mod 1) for every i > 1. Using our framework, this gives an overlay network with degree O(logn),
diameter O(logn), and expansion O(1/+/logn), which matches the properties of ordinary hypercubes.

For a supervised de Bruijn network, simply select F' as the family of functions on [0, 1) with fo(x) = /2
and fi(z) = (1 + x)/2. Using our framework, this gives an overlay network with degree O(1), diameter
O(logn), and expansion O(1/logn). This matches the properties of ordinary de Bruijn graphs.

In both networks, routing with logarithmic work can be achieved by using the bit adjustment strategy.

4 Decentralized overlay networks

Next we show that scalable overlay networks can also be maintained without involving a supervisor. Since
the hierarchical decomposition technique cannot yield networks of polylogarithmic diameter, in the following,

we will only discuss examples for the latter two basic techniques in Section 2.

4.1 Overlay networks based on the continuous-discrete approach

Similar to the supervised approach, we first show how to maintain a hypercubic overlay network. Subse-

quently, we show how to maintain a de Bruijn-based overlay network.

4 DECENTRALIZED OVERLAY NETWORKS 13

Maintaining a dynamic hypercube

Let U = [0,1) and consider the family F of functions on [0,1) with f;(z) = x + 1/2% (mod 1) for every
i > 1. Given a set of points V' C [0,1), we define the region S(v) associated with point v as the interval
(pred(v),v) where pred(v) is the closest predecessor of v in V and U is seen as a ring. The following result

follows from [6]:

Theorem 1.1 If every peer is given a random point in [0,1), then the graph G (V) with |V | = n resulting
from the continuous-discrete approach has a degree of O(log2 n), a diameter of O(logn), and an expansion

of Q(1/logn), with high probability.

Suppose that Condition 1.2 is satisfied for our family of hypercubic functions. Then it is fairly easy to
route a message from any point € [0,1) to any point y € [0,1) along edges in Gg(V):

Consider the path P in the continuous space that results from using a bit adjustment strategy in order
to get from z to y. That is, given that x1xx3 ... is the bit sequence for x and y1y2ys3 . .. is the bit sequence
for y, P is the sequence of points zop = T1ToT3...,21 = Y1T2T3...,29 = Y1Y2L3 -+, Y1Y2Yy3 ... = y. Of
course, P may have an infinite length, but simulating P in Gr(V) only requires traversing a finite sequence
of edges:

We start with the region S(v) containing z = zy. Then we move along the edge (v, w) in Gr(V) to the
region S(w) containing z;. This edge must exist because we assume that Condition 1.2 is satisfied. Then we
move along the edge (w,w’) simulating (21, 22), and so on, until we reach the node whose region contains y.

Using this strategy, it holds:

Theorem 1.2 Given a random node set V. C [0,1) with |V| = n, it takes at most O(logn) hops, with high

probability, to route in Gg(V) from any node v € V to any node w € V.

Next we explain how nodes can join and leave. Suppose that a new node v contacts some node already
in the system to join the system. Then v’s request is first sent to the node w in V' with u = succ(v), which
only takes O(logn) hops according to Theorem 1.2. Node u forwards information about all of its incoming
and outgoing edges to v, deletes all edges that it does not need any more, and informs the corresponding

endpoints about this. Because S(v) C S(u) for the old S(u), the edges reported to v are a superset of the

4 DECENTRALIZED OVERLAY NETWORKS 14

edges that it needs to establish. Node v checks which of the edges are relevant for it, informs the other
endpoint for each relevant edge, and removes the others.

If a node v wants to leave the network, it simply forwards all of its incoming and outgoing edges to
succ(v). Node succ(v) will then merge these edges with its existing edges and notifies the endpoints of these
edges about the changes.

Combining Theorem 1.1 and Theorem 1.2 we obtain:

Theorem 1.3 It takes a routing effort of O(logn) hops and an update work of O(log2 n) messages that can

be processed in O(logn) communication rounds in order to execute a join or leave operation.

Maintaining a dynamic deBruijn graph

Next we show how to dynamically maintain a deBruijn graph. Let U = [0, 1) and F consist of two functions,

fo and f1, where f;(z) = (¢ + x)/2 for each ¢ € {0,1}. Then one can show the following result:

Theorem 1.4 If the peers are mapped to random points in [0,1), then the graph Gp(V) resulting from
the continuous-discrete approach has a degree of O(logn), diameter of O(logn) and node expansion of

Q(1/logmn), with high probability.

Next we show how to route in the de Bruijn network. Suppose that Condition 1.2 is satisfied. Then we
use the following trick to route a message from any point « € [0,1) to any point y € [0,1) along edges in
Gr((V).

Let z be a randomly chosen point in [0,1). Let zyzox3 ... be the binary representation of z, let y1y2ys . . .
be the binary representation of y, and let z; 2223 be the binary representation of z. Let P be the path along
the points © = z1x923...,2121T2...,2221Z1 ...,... and let P’ be the path along the points ¥ = y 293 . . .,
Z1Y1Y2 - - -5 2221Y1 - - -, - - . Then we simulate moving along the points in P by moving along the corresponding
edges in Gp(V). We stop when we hit a node w € V' with the property that S(w) contains a point in P and
a point in P’. At that point, we follow the points in P’ backwards until we arrive at the node w’ € W that

contains y in S(w’). Using this strategy, it holds:

Theorem 1.5 Given a random node set V C [0,1) with |V| = n, it takes at most O(logn) hops, with high

probability, to route in Gg(V) from any point x € [0,1) to any point y € [0,1).

4 DECENTRALIZED OVERLAY NETWORKS 15

Figure 1.2: An example of a dynamic de Bruijn network (only some short-cut pointers for two nodes are

given).

Joining and leaving the network is done in basically the same way as in the hypercube, giving the following

result:

Theorem 1.6 It takes a routing effort of O(logn) hops and an update work of O(logn) messages that can
be processed in a logarithmic number of communication rounds in order to execute a join or leave operation

in the dynamic de Bruijn graph.

4.2 Overlay networks based on prefix connections

The efficiency of routing on an overlay network is quite often measured in terms of the number of hops
(neighbor links) followed by a message. While this measure indicates the latency of a message in the overlay
network, it fails to convey the complexity of the given operation with respect to the original underlying
network. In other words, while in the overlay network all overlay links may have the same cost, this is not
true when those overlay links are translated back into paths in the underlying network. Hence, in practice,
in order to evaluate the routing performance of an overlay network, one should not only study the cost of
following a path in the overlay network, but also take into account the different internode communication

costs in the underlying network. For example, a hop from a peer in the USA to a peer in Europe costs a

4 DECENTRALIZED OVERLAY NETWORKS 16

lot more (in terms of reliability, speed, cost of deploying and maintaining the link, etc.) than a hop going
between two peers in a local area network. In brief, keeping routing local is important: It may make sense
to route a message originated in Phoenix for a destination peer in San Francisco through Los Angeles, but
not through a peer in Europe.

In this section, we present peer-to-peer overlay network design schemes which take locality into account
and which are able to achieve constant stretch factors, while keeping polylogarithmic degree and diameter,
and polylogarithmic complexity for join and leave operations. All of the work in this section assumes that
the underlying peer-to-peer system is a growth-bounded network, which we define a few paragraphs later.

Peers communicate with one another by means of messages; each message consists of at least one word. We
assume that the underlying network provides reliable communication. We define the cost of communication
by a function ¢ : V2 — R. This function c is assumed to reflect the combined effect of the relevant network
parameter values, such as latency, throughput, congestion, etc. In other words, for any two peers u and v
in V, ¢(u,v) is the cost of transmitting a single-word message from u to v. We assume that ¢ is symmetric
and satisfies the triangle inequality. The cost of transmitting a message of length [from peer u to peer v is
given by f(I)e(u,v), where f: N — R is any nondecreasing function such that f(1) = 1.

A growth-bounded network satisfies the following property: Given any u in V and any real r, let B(u,r)
denote the set of peers v such that c(u,v) < r. We refer to B(u,r) as the ball of radius r around u. We

assume that there exist a real constant A such that for any peer w in V' and any real r > 1, we have

|B(u,2r)] < A|B(u,r)|. (1.1)

In other words, the number of peers within radius r from u grows polynomially with r. This network
model has been validated by both theoreticians and practitioners as to model well existing internetworking
topologies [38, 13, 2, 22].

Plaxton, Rajaraman and Richa (PRR) in [28, 27] pioneered the work on locality-aware routing schemes
in dynamic environments. Their work actually addresses a more general problem — namely the object
location problem — than that of designing efficient overlay networks with respect to the parameters outlined
in Section 1. In that early work, Plaxton, et al. formalize the problem of object location in a peer-to-

peer environment, pinpointing the issue of locality and developing a formal framework under which object

4 DECENTRALIZED OVERLAY NETWORKS 17

location schemes have been rigorously analyzed. In the object location problem, peers seek to find objects in
a dynamic and fully distributed environment, where multiple (identical) copies of an object may exist in the
ne