
Emerging Communication Networks:
A Case for Automation – and Formal Methods?
Stefan Schmid and Klaus-Tycho Förster (Uni Vienna)

Emerging Communication Networks:
A Case for Automation – and Formal Methods?
Stefan Schmid and Klaus-Tycho Förster (Uni Vienna)

Emerging Communication Networks:
A Case for Automation – and Formal Methods?
Stefan Schmid and Klaus-Tycho Förster (Uni Vienna)

Emerging Communication Networks:
A Case for Automation – and Formal Methods?
Stefan Schmid and Klaus-Tycho Förster (Uni Vienna)

Flexibilities: Great Time for Networking Research!

2
Passau, Germany

Inn, Donau, Ilz

Passau, Germany

Inn, Donau, Ilz 2

Flexibilities: Great Time for Networking Research!

Passau, Germany

Inn, Donau, Ilz 2

Enabler:
SDN

Enabler:
Virtualization

Enabler:
Optics

Flexibilities: Great Time for Networking Research!

Remember? SDN
(„The Linux of Networking“)

Ctrl

Control

Programs

Control

Programs

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Traditionally: Proprietary SDN: Programmable

Open
API

Your
Algo

Virtualization
(Flexible Placement and

New Services) Ctrl

Control

Programs

Control

Programs

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Traditionally: Proprietary SDN: Programmable

Waypointing

Remember? Topology Programming

5

Toward Demand-Aware Networking: A
Theory for Self-Adjusting Networks.
Avin et al. ACM SIGCOMM CCR, 2018.

• Reconfigure networks
towards needs

Enabler: Free-
space optics

Remember? Topology Programming

5

Toward Demand-Aware Networking: A
Theory for Self-Adjusting Networks.
Avin et al. ACM SIGCOMM CCR, 2018.

• Reconfigure networks
towards needs

Enabler: Free-
space optics

Opportunity Challenge

• Additional dimensions for
optimization: can be
exploited to improve
performance, utilization, …

• New network services (e.g.,
service chaining)

6

• But: optimizations become
harder and are somtimes
not yet well-understood
(e.g., embedding, topology
programming)

Another Challenge: Complexity

Manual, device-centric
network configuration

(CLI, LANmanager)

Un-evolved Best Practices
(tcpdump, traceroute - from the 1990s)

Complex, leaky, low-level interfaces
(VLANs, Spanning Tree, Routing)

Operating networks today: manual and error-prone task.

Complexity is Problematic

We discovered a misconfiguration on this pair of switches that caused what's
called a “bridge loop” in the network.

A network change was […] executed incorrectly […] more “stuck”
volumes and added more requests to the re-mirroring storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […] interrupted the airline's flight
departures, airport processing and reservations systems

Datacenter, enterprise, carrier networks have become mission-critical infrastructure!
But even techsavvy companies struggle to provide reliable operations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
at

ac
e

n
te

r

Reasoning About Failures is Particularly Hard

Example: BGP in
Datacenter (!)

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 31

D
at

ac
e

n
te

r

Internet

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Cluster with services that
should be globally reachable.

Cluster with services that should
be accessible only internally.

3

Example: BGP in
Datacenter (!)

Reasoning About Failures is Particularly Hard

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to
Internet what is from

G* (prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

31

Reasoning About Failures is Particularly Hard

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to
Internet what is from

G* (prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

What can go wrong?

31

Reasoning About Failures is Particularly Hard

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to
Internet what is from

G* (prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

FIf link (G,X) fails and traffic from G is rerouted via Y
and C to X: X announces (does not block) G and H

as it comes from C. (Note: BGP.)

31

Reasoning About Failures is Particularly Hard

Let’s give up control:
self-* networks!

Self-repairing, self-optimizing,
“self-driving”, …

It’s about
automation!

Roadmap

• 1st Use Case for Automation: What-if Analysis

• 2nd Use Case for Automation: Consistent Rerouting

5

Example: Self-Repairing MPLS Networks

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

32

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

flow 2

Example: Self-Repairing MPLS Networks

32

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

Default routing of
two flows

• MPLS: forwarding based on top label of label stack
push swap swap pop

pop

Example: Self-Repairing MPLS Networks

32

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

• For failover: push and pop label

12

22

10
20

11
21

31|11
31|21

10
20

32

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

12

22

10
20

11
21

Pop

Normal
swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21 32

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

12

22

10
20

11
21

Pop

Normal
swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21

What about multiple link failures?

32

2 Failures: Push Recursively

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

Push 30

Push 40

10
20

11
21

pop pop 33

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

10
20

11
21

2 Failures: Push Recursively

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

33

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

10
20

11
21

2 Failures: Push Recursively

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size
may grow arbitrarily!

33

Failover Tables

Flow Table

Protected
link Alternative

link
Label

Forwarding Tables for Our Example

Version which does not
mask links individually!

34

MPLS Tunnels in
Today‘s ISP Networks

35

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and

conditional failover rules.

36

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C

36

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

No loops?

36

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A
to B never goes via C?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via
Iceland (expensive!).

36

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

Waypoint?

E.g. IDS

36

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

E.g. IDS

… and everything even under multiple failures?!

k failures =

(
𝑛
𝑘
) possibilities

36

Can we automate such tests
or even self-repair?

Can we automate such tests
or even self-repair?

Yes! Automated What-if Analysis Tool for
MPLS and SR in polynomial time.

(INFOCOM 2018, CoNEXT 2018)

MPLS configurations,
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Leveraging Automata-Theoretic Approach

38

Leveraging Automata-Theoretic Approach

MPLS configurations,
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

38

• Network: a 7-tuple

Mini-Tutorial: A Network Model

Nodes

Links

Incoming
interfaces

Outgoing
interfaces

Set of labels in
packet header

39

Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is: and

Interface
function

• Network: a 7-tuple

Mini-Tutorial: A Network Model

39

• Network: a 7-tuple

Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers,
outgoing interfaces together with modified headers.

Routing
function

Mini-Tutorial: A Network Model

39

out2out1

Packet routing sequence can be represented using sequence of tuples:

Routing in Network

• Example: routing (in)finite sequence of tuples

Node
receives…

… on interface…

… packet with
header…

… forwards it to
live next hop…

… with new header..

… given that these
links are down.

v1

h1

v2

h2 h3

in1 in2

40

Pop:

Push:

Swap:

Example Rules:
Regular Forwarding on Top-Most Label

Push label on
stack

Swap top of
stack

Pop top of
stack

41

Failover-Push:

Example Failover Rules

Emumerate all
rerouting options

Failover-Swap:

Failover-Pop:

Example rewriting sequence:

Try default Try first backup Try second backup

A Complex and Big Formal Language!
Why Polynomial Time?!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
)many options?!

• Even if we reduce to push-down automaton:
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures =

(
𝑛
𝑘
) possibilities

43

This is not how we will
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
)many options?!

• Even if we reduce to push-down automaton:
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures =

(
𝑛
𝑘
) possibilities

A Complex and Big Formal Language!
Why Polynomial Time?!

43

This is not how we will
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
)many options?!

• Even if we reduce to push-down automaton:
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

The words in our language are sequences of pushdown
stack symbols, not the labels of transitions.

k failures =

(
𝑛
𝑘
) possibilities

A Complex and Big Formal Language!
Why Polynomial Time?!

43

Time for Automata Theory!
(Or: Swiss to the Rescue!)

Julius Richard Büchi

1924-1984

Swiss logician

• Classic result by Büchi 1964: the set of all reachable
configurations of a pushdown automaton a is regular set

• Hence, we can operate only on Nondeterministic Finite
Automata (NFAs) when reasoning about the pushdown
automata

• The resulting regular operations are all polynomial time

• Important result of model checking

44

Tool and Query Language

Part 1: Parses query
and constructs Push-
Down System (PDS)

• In Python 3

query processing flow

Part 2: Reachability
analysis of
constructed PDS

• Using Moped tool

Regular query language

k <a> b <c>
failures

header
header

path

45

YES!
(Gives witness!)

2 failures

Example: Traversal Testing With 2 Failures

Traversal test with k=2: Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: k=2 [] s1 >> s5 >> s7 []

46

Case Study: NORDUnet (thanks, Henrik)

• Small but complex network

• 24 MPLS routers

• Between 20-90min, ca. ~GB memory

Related Work

Roadmap

• 1st Use Case for Automation: What-if Analysis

• 2nd Use Case for Automation: Consistent Rerouting

5

Ctrl

Control

Programs

Control

Programs

Challenge: Decoupling

Consistent Rerouting

Ctrl

Control

Programs

Control

Programs

Challenge: Decoupling
Asynchronous!

Consistent Rerouting

Ctrl

Control

Programs

Control

Programs

Challenge: Decoupling

Credits: He et al., ACM SOSR 2015:

without network latency

Despite centralization: SDN stays
a distributed system!

Consistent Rerouting

untrusted
hosts

trusted
hosts

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

What could go wrong…?

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted
hosts

trusted
hosts

Problem 1: Bypassed Waypoint

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted
hosts

trusted
hosts

Problem 2: Transient Loop

Loop-Free Update Schedule

insecure
Internet

secure
zone

Loop-Free Update Schedule

insecure
Internet

secure
zone

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

Loop-Free Update Schedule

insecure
Internet

secure
zone

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Loop-Free Update Schedule

insecure
Internet

secure
zone

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:
LF ok! But: WPE violated in Round 1!

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Waypoint Respecting Schedule

insecure
Internet

secure
zone

Waypoint Respecting Schedule

insecure
Internet

secure
zone

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

Don’t cross the
waypoint: safe!

Waypoint Respecting Schedule

insecure
Internet

secure
zone

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:
… ok but may violate LF in Round 1!

Don’t cross the
waypoint: safe!

Can we have both LF and WPE?

insecure
Internet

secure
zone

Yes: but it takes 3 rounds!

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

insecure
Internet

secure
zoneR3:

Yes: but it takes 3 rounds!

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

insecure
Internet

secure
zoneR3:

Is there always a WPE+LF schedule?

What about this one?

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!

What about this one?

Complexity overview for LF & WPE
• LF & WPE may conflict

– Deciding: NP-complete

• LF: Always possible in n rounds (relaxed version: O(log n) rounds)

– Fastest schedule: NP-complete
– Approximations? Unknown

• LF: Maximizing simultaneous updates: NP-complete
– Can be approximated well (Feedback Arc Set / Max. Acyc. Subg.)
– But: Can turn O(1) instances into Ω(n) schedules

Complexity overview for LF & WPE
• LF & WPE may conflict

– Deciding: NP-complete

• LF: Always possible in n rounds (relaxed version: O(log n) rounds)

– Fastest schedule: NP-complete
– Approximations? Unknown

• LF: Maximizing simultaneous updates: NP-complete
– Can be approximated well (Feedback Arc Set / Max. Acyc. Subg.)
– But: Can turn O(1) instances into Ω(n) schedules

Some synthesis results already exist for LF & WPE
(McClurg et al. PLDI’15, Zhou et al. NSDI’15)

Complexity overview for LF & WPE
• LF & WPE may conflict

– Deciding: NP-complete

• LF: Always possible in n rounds (relaxed version: O(log n) rounds)

– Fastest schedule: NP-complete
– Approximations? Unknown

• LF: Maximizing simultaneous updates: NP-complete
– Can be approximated well (Feedback Arc Set / Max. Acyc. Subg.)
– But: Can turn O(1) instances into Ω(n) schedules

Some synthesis results already exist for LF & WPE
(McClurg et al. PLDI’15, Zhou et al. NSDI’15)

None for congestion
(bandwith/capacities)

Complexity overview for LF & WPE
• LF & WPE may conflict

– Deciding: NP-complete

• LF: Always possible in n rounds (relaxed version: O(log n) rounds)

– Fastest schedule: NP-complete
– Approximations? Unknown

• LF: Maximizing simultaneous updates: NP-complete
– Can be approximated well (Feedback Arc Set / Max. Acyc. Subg.)
– But: Can turn O(1) instances into Ω(n) schedules

Some synthesis results already exist for LF & WPE
(McClurg et al. PLDI’15, Zhou et al. NSDI’15)

None for congestion
(bandwith/capacities)

What about
congestion?

A Small Sample Network

Green wants to send as well

Congestion!

This would work

So lets go back

But Red is a bit Slow..

Congestion Again!

So lets go Back …

First, Red switches

Then, Blue …

And then, Green …

Done

Consistent Migration of Flows
Introduced in SWAN (Hong et al., SIGCOMM 2013)
Idea: Flows can be on the old or new route

For all edges: ∀𝐹max 𝐨𝐥𝐝, 𝐧𝐞𝐰 ≤ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

For unsplittable flows:
• Feasibility hardness: NP-hard
• Feasibility algorithm: EXPTIME

For splittable flows:
• Feasibility algorithm: P

– Even for super-polynomial schedules
– For shared destination flows*: schedule length in O(#flows * #edges)

Consistent Migration = Lossless Migration? What are the effects of time?

Open question:
Max schedule length polynomial?

Already for 2 flows

Moving Flows with High Latency

ping of new
path

ping of old path

Moving Flows with High Latency

ping of new
path

ping of old path

Moving Flows with High Latency

Moving Flows with High Latency

UDP TCP

Moving Flows with High Latency

packet loss equivalent to latency-Δ

Consistent Flow Migration & Time

• Fixed latencies & single splittable flow: NP-hard
– Relax: account for all imaginable latencies: Situation without Time

• What if we could enforce synchronous* updates?
– Introduced recently in Open Flow by Mizrahi et al. (TimedSDN project)

– Still NP-hard in general

– But e.g. for 1 flow and unit latencies:

• Feasibility in P

– Using Time-extended graphs

Open Question:
How to synthesize Congestion and/or Time constraints?

Conclusion

• Networks are critical infrastructures of our digital society

• But complex to manage and operate today

• Opportunities for automation and formal methods?

• Challenges, e.g.,
– Can self-* networks notice their limits? Or fall back to „safe/oblivious mode“?

– Can we learn from self-driving cars?

51

Fu
rt

h
er

 R
ea

d
in

g

Demand-Aware and Self-Adjusting Networks

P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion, Greece, December 2018.
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.

Automated What-if Analysis

Automated Network Updates

Survey of Consistent Software-Defined Network Updates
Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio.
IEEE Communications Surveys and Tutorials (COMST), to appear.

https://net.t-labs.tu-berlin.de/~stefan/conext18.pdf
https://net.t-labs.tu-berlin.de/~stefan/infocom18prefixnet.pdf
https://www.univie.ac.at/ct/stefan/survey-network-update-sdn.pdf

