
The Art of Transiently Consistent
Route Updates

Stefan Schmid

Aalborg University

Joint work mainly with:
Arne Ludwig, Jan Marcinkowski,

Szymon Dudycz, Matthias Rost

Confluence: innovation!

Programmability and
virtualization

Algorithms

Modern Networked Systems: Programmable and Virtualized
New flexibilities but also challenges: Great time to be a scientist!

”We are at an interesting inflection point!”
Keynote by George Varghese
at SIGCOMM 2014

Challenge 1: Predictable Performance with Resource Sharing
= Multi-Dimensional Performance Isolation

App 1: Mobile Service App 2: Big Data Analytics

Realization and Embedding

Virtualization and Isolation

Quality-of-Service

& Resource

Requirements

Computational

& Storage

Requirements

4

s1

t1
s2

t2

Start simple: exploit flexible
routing between given tasks/VMs

❏ Integer multi-commodity flow
problem with 2 flows?

❏ Oops: NP-hard

Forget about paths: exploit
tasks/VM placement flexibilities!

❏ Most simple: Minimum Linear
Arrangement without capacities

❏ NP-hard

?

Challenge 2: Exploiting Allocation Flexibilities Non-Trivial

5

s1

t1
s2

t2

Start simple: exploit flexible
routing between given tasks/VMs

❏ Integer multi-commodity flow
problem with 2 flows?

❏ Oops: NP-hard

Forget about paths: exploit
tasks/VM placement flexibilities!

❏ Most simple: Minimum Linear
Arrangement without capacities

❏ NP-hard

?

Challenge 2: Exploiting Allocation Flexibilities Non-Trivial

Beyond the Stars: Revisiting Virtual Cluster Embeddings

Matthias Rost, Carlo Fuerst, and Stefan Schmid.

ACM SIGCOMM Computer Communication Review (CCR), July 2015..

http://net.t-labs.tu-berlin.de/~stefan/ccr15emb.pdf

6

s1

t1
s2

t2

Start simple: exploit flexible
routing between given tasks/VMs

❏ Integer multi-commodity flow
problem with 2 flows?

❏ Oops: NP-hard

Forget about paths: exploit
tasks/VM placement flexibilities!

❏ Most simple: Minimum Linear
Arrangement without capacities

❏ NP-hard

?

Challenge 2: Exploiting Allocation Flexibilities Non-Trivial

Beyond the Stars: Revisiting Virtual Cluster Embeddings

Matthias Rost, Carlo Fuerst, and Stefan Schmid.

ACM SIGCOMM Computer Communication Review (CCR), July 2015..

Not only on Clos, but e.g., also on
Ankit’s Jellyfish etc.!

http://net.t-labs.tu-berlin.de/~stefan/ccr15emb.pdf

7

t1
s2

Challenge 3: Dealing with Uncertainty

❏ Hadoop and scale-out data bases
generate much network traffic

❏ Temporal resource patterns are
hard to predict

❏ Resource allocations must be
changed online

❏ Tradeoffs:
❏ overprovisiong vs efficiency

❏ benefit vs cost of reconfigurations!

Bandwidth utilization of 3 different runs of
the same TeraSort workload (without

interference)>20% variance

>50% variance
in killed tasks

8

t1
s2

Challenge 3: Dealing with Uncertainty

❏ Hadoop and scale-out data bases
generate much network traffic

❏ Temporal resource patterns are
hard to predict

❏ Resource allocations must be
changed online

❏ Tradeoffs:
❏ overprovisiong vs efficiency

❏ benefit vs cost of reconfigurations!

Bandwidth utilization of 3 different runs of
the same TeraSort workload (without

interference)>20% variance

>50% variance
in killed tasks

Kraken: Online and Elastic Resource Reservations for Multi-tenant Datacenters

Carlo Fuerst, Stefan Schmid, Lalith Suresh, and Paolo Costa.

35th IEEE Conference on Computer Communications (INFOCOM), San Francisco, California, USA, April 2016.

http://net.t-labs.tu-berlin.de/~stefan/infocom16.pdf

❏ Replica selection possible in cloud data stores (e.g., Cassandra)

❏ Idea: reduce tail latency
❏ Tail matters: requests have many read/writes, a single late one can delay!

❏ Stragglers even in well-provisioned systems

❏ Challenge 1: Heterogeneous and
time-varying service times
❏ shared resources, log compaction,

garbage collection, daemons, etc.

❏ Challenge 2: Distributed
coordination
❏ avoid herd-behavior!

❏ also a control-theoretic problem

Challenge 4: Exploiting Redundancy/Selection
Flexibilities Non-Trivial

❏ Replica selection possible in cloud data stores (e.g., Cassandra)

❏ Idea: reduce tail latency
❏ Tail matters: requests have many read/writes, a single late one can delay!

❏ Stragglers even in well-provisioned systems

❏ Challenge 1: Heterogeneous and
time-varying service times
❏ shared resources, log compaction,

garbage collection, deamons, etc.

❏ Challenge 2: Distributed
coordination
❏ avoid herd-behavior!

❏ also a control-theoretic problem

Challenge 4: Exploiting Redundancy/Selection
Flexibilities Non-Trivial

C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection

Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann.

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Oakland, California, USA, May 2015..

http://net.t-labs.tu-berlin.de/~stefan/c3-nsdi15.pdf

❏ Also one reason why I am here…

❏ German BSI project: How to make governmental
networks and datacenters more secure?

❏ Startup on incremental SDN deployment in Berlin
based on our USENIX ATC 2014 paper «Panopticon»

❏ Today: Network updates

Focus Today: Challenges Related to Programmability

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

12

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

SDN in a Nutshell

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

Benefit 1: Decoupling! Control plane can evolve
independently of data plane: innovation at
speed of software development. Software
trumps hardware for fast implementation and
deployment.

Benefit 2: Simpler network management
through logically centralized view. Many
network management tasks are inherently non-
local.

14

SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

Benefit 3: Standard API OpenFlow is about generalization
• Generalize devices (L2-L4: switches, routers, middleboxes)
• Generalize routing and traffic engineering (not only

destination-based)
• Generalize flow-installation: coarse-grained rules and

wildcards okay, proactive vs reactive installation
• Provide general and logical network views to the application
Also: match-action paradigm = formally verifiable policies.

15

SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

Careful! Some common
misunderstandings…

„SDN is about simplification!“
Really?

16

SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

Careful! Controller is only logically
centralized but actually distributed!

17

SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

But how to design and build such
a replicated, available and robust
control plane?

18

SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

But how to design and build such
a replicated control plane?

A Distributed and Robust SDN Control Plane for Transactional Network Updates

Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid.

34th IEEE Conference on Computer Communications (INFOCOM), Hong Kong, April 2015..

Can be seen as a transactional
memory problem, with classic goals
like safety (linearizability) and
liveness (waitfreedom). But also with
a twist…

http://net.t-labs.tu-berlin.de/~stefan/infocom15.pdf

19

SDN in a Nutshell

SDN outsources and
consolidates control
over multiple devices to
a software controller.

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller

It can also make sense to distribute
the controllers spatially!
Also an algorithmic problem…

20

For example: Handle
frequent events close to
data path, shield global
controllers.

lo
c

a
l

S
P

E
C

T
R

U
M e.

g.
, r

o
u

ti
n

g,
 s

p
an

n
in

g
tr

ee
e.

g.
, l

o
ca

l p
o

lic
y

en
fo

rc
er

,
el

ep
h

an
t

fl
o

w
 d

et
ec

ti
o

n

g
lo

b
a

l
A Distributed Computing Challenge:

What can and should be controlled locally?

Exploiting Locality in Distributed

SDN Control

Stefan Schmid and Jukka Suomela.

ACM SIGCOMM HotSDN 2013.

http://net.t-labs.tu-berlin.de/~stefan/hotsdn13loc.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotsdn13loc.pdf

Some Logic Should Even Remain in Data Plane!

21

Before failover:

After failover:

data plane

ctrl plane

Some Logic Should Even Remain in Data Plane!

22

Before failover:

After failover:

data plane

ctrl plane

Provable Data Plane Connectivity with Local Fast Failover: Introducing OpenFlow Graph Algorithms

Michael Borokhovich, Liron Schiff, and Stefan Schmid.

ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN), Chicago, Illinois, USA, August 2014.

Goal: Find routing path (inband) as
long as it exists! A classic algorithmic
problem (traversal with local
information) in a new flavor.
OpenFlow vs MPLS: Cannot
implement Ankit et al.‘s link reversal
algorithm?

http://net.t-labs.tu-berlin.de/~stefan/hotsdn14fail.pdf

SDN raises fundamental algorithmic
problems even for scenarios with a
single controller!*

* And sometimes even a single switch…

Jennifer Rexford’s Example:
SDN MAC Learning Done Wrong

❏ MAC learning: The «Hello World»

❏ a bug in early controller versions

h1

h2
h3

1

2
3

Controller

❏ In legacy networks simple

❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Pitfalls in SDN: learn sender => miss response

❏ Assume: low priority rule * (no match): send to controller

❏ h1->h2: Add rule h1@port1 (location learned)

❏ Controller misses h2->h1 (as h1 known, h2 stay unknown!)

❏ When h3->h2: flooding forever (learns h3, never learns h2)

OpenFlow

switch

Thanks to Jen Rexford for example!

Why Consistency Matters

Important, e.g., in Cloud

What if your traffic was not
isolated from other tenants during
periods of routine maintenance?

Thanks to Nate Foster for example!

Example: Outages
Even technically sophisticated companies are struggling to build
networks that provide reliable performance.

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed
incorrectly […] more “stuck” volumes and
added more requests to the re-mirroring
storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

Thanks to Nate Foster for examples (at DSDN 2014)!

insecure

Internet
secure

zone

Challenge: Multi-Switch Updates

insecure

Internet
secure

zone

Controller Platform

Challenge: Multi-Switch Updates

insecure

Internet
secure

zone

Controller Platform

asynchronous

Challenge: Multi-Switch Updates

An Asynchronous Distributed System

Measurement studies…

He et al., ACM SOSR 2015: without network latency
Jin et al., ACM SIGCOMM 2014: even higher variance

What Can Go Wrong?

insecure

Internet
secure

zone

Controller Platform

asynchronous

Example 1: Bypassed Waypoint

insecure

Internet
secure

zone

Controller Platform

Example 2: Transient Loop

insecure

Internet
secure

zone

Controller Platform

What kind and level of consistency is needed?

What kind and level of consistency is needed?

It depends

The Spectrum of Consistency

Strong

weak, transient
consistency

(loop-freedom,

waypoint enforced)
Ratul M. and Roger W., HotNets 2014

Ludwig et al., HotNets 2014

correct network

virtualization
Ghorbani and Godfrey, HotSDN 2014

per-packet consistency
Reitblatt et al., SIGCOMM 2012

Weak

The Spectrum of Consistency

Strong

weak, transient
consistency

(loop-freedom,

waypoint enforced)
Ratul M. and Roger W., HotNets 2014

Ludwig et al., HotNets 2014

correct network

virtualization
Ghorbani and Godfrey, HotSDN 2014

per-packet consistency
Reitblatt et al., SIGCOMM 2012

Weak

Almost everything can be solved with tagging…

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

The Case Against Tagging

❏ Correctness:

❏ Where to tag? Don’t interfere with existing protocols!

❏ Tagging in the presence of middleboxes?

❏ Overhead:

❏ Header space is limited

❏ Looking up special header fields and tagging: extra
latency?

❏ The approach requires extra rules on the switch (TCAM
memory is a scarce resource)

❏ Coordination problem for distributed controllers?

❏ Late updates:

❏ Updates start taking place late*

* Mahajan & Wattenhofer, ACM HotNets 2013

Transient Consistency: Model

Idea: Keep consistent by updating in multiple rounds

Controller Platform

Controller Platform

Round 1

Round 2

Transient Consistency: Model

Idea: Keep consistent by updating in multiple rounds

Controller Platform

Controller Platform

Round 1

Round 2

Careful: ACKs
not easy!

Kuzniar et al., PAM 2015

Kuzniar et al., ACM CONEXT 2014

Going Back to Our Examples: LF Update?

insecure

Internet

secure

zone

Going Back to Our Examples: LF Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Going Back to Our Examples: LF Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

LF ok! But:
- Q1: Does a LF schedule always exist? Ideas?

Going Back to Our Examples: LF Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

LF ok! But:
- Q1: Does a LF schedule always exist? Ideas?
- Q2: What about WPE?

Going Back to Our Examples: LF Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

LF ok! But:
- Q1: Does a LF schedule always exist? Ideas?
- Q2: What about WPE? Violated in Round 1!

Going Back to Our Examples: WPE Update?

insecure

Internet

secure

zone

Going Back to Our Examples: WPE Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Going Back to Our Examples: WPE Update!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2: … ok but may violate LF in Round 1!

Going Back to Our Examples: Both WPE+LF?

insecure

Internet

secure

zone

Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:

Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3: Is there always a WPE+LF schedule?

What about this one?

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!
Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los Angeles, California, USA, October 2014...

http://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf

What about this one?

What about this one?

1

❏ Forward edge after the waypoint: safe!

❏ No loop, no WPE violation

What about this one?

2

❏ Now this backward is safe too!

❏ No loop because exit through 1

1

What about this one?

1

2

3

❏ Now this is safe: ready back to WP!

❏ No waypoint violation

2

What about this one?

1

2

3

4

4

❏ Ok: loop-free and also not on the path (exit via)1

What about this one?

1

2

3

❏ Ok: loop-free and also not on the path (exit via)

4

4

1

What about this one?

1

2

3

4

4

5

Back to the start: What if….

1

Back to the start: What if…. also this one?!

1

1

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

❏ Update any of the 2 other forward edges? WPE

❏ What about a combination? Nope…

Back to the start: What if…. also this one?!

1

1

Back to the start: What if…. also this one?!

1

1

To update or not to update in the first round?

That is the question…

… which leads to NP-hardness!

What about loop-freedom only?

What about loop-freedom only?
Always works! How many rounds?

How to update LF?

…

s dv2 v3 vn-1
vn-2v4

LF Updates Can Take Many Rounds!

…

s dv2 v3 vn-1
vn-2

Invariant: need to update v2 before v3!

v4

LF Updates Can Take Many Rounds!

…

s dv2 v3 vn-1
vn-2

Invariant: need to update v3 before v4!

v4

LF Updates Can Take Many Rounds!

…

s dv2 v3 vn-1
vn-2v4

Induction: need to update vi-1 before vi (before vi+1 etc.)!

(n) rounds?! In principle, yes…:
Need a path back out before
updating backward edge!

1 1

2 3 n-3 n-2

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1 1

But: If s has been
updated, nodes not on
(s,d)-path!

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1 1

2 2 2

Could be updated
simultaneously!
Could be updated
simultaneously!
Could be updated
simultaneously!

But: If s has been
updated, nodes not on
(s,d)-path!

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1

2 2 2

Could be updated
simultaneously!
Could be updated
simultaneously!
Could be updated
simultaneously!

3

1

Finally put back on
path!

But: If s has been
updated, nodes not on
(s,d)-path!

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1

2 2 2

Could be updated
simultaneously!
Could be updated
simultaneously!
Could be updated
simultaneously!

3

1

Finally put back on
path!

3 rounds only!

But: If s has been
updated, nodes not on
(s,d)-path!

Questions

Takeaways so far

❏ Strong (topological) loop-free update may take (n) rounds

❏ Relaxed loop-free schedules may be (n) times faster

❏ Strong loop-freedom: Can we compute optimal schedules?

❏ Relaxed loop-freedom: Are O(1) rounds always enough?

Questions

Takeaways so far

❏ Strong (topological) loop-free update may take (n) rounds

❏ Relaxed loop-free schedules may be (n) times faster

❏ Strong loop-freedom: Can we compute optimal schedules?

❏ Relaxed loop-freedom: Are O(1) rounds always enough?

Generally NP-hard and greedy is bad.

No, but log(n) rounds are sufficient.

Remark on the Model

Easy to update new
nodes which do not
appear in old policy.
And just keep nodes
which are not on new
path!

Good Algorithms to Schedule
(Strong) LF Updates?

Optimal Algorithm for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

Optimal Algorithm for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path? F F F B B B

Optimal Algorithm for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Old policy from left to right!

New policy from left to right!

Optimal Algorithm for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

F F F B B B

 F B B F B F

Optimal Algorithm for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

F F F B B B

 F B B F B F

Optimal Algorithm for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
read backward is a valid
schedule for new to old!

F F F B B B

 F B B F B F

Optimal Algorithm for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
read backward is a valid
schedule for new to old!

F F F B B B

 F B B F B F

Optimal Algorithm for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.

2-Round Schedule: If and only if
there are no BB edges! Then I can

update F edges in first round
and F edges in second round!

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
read backward is a valid
schedule for new to old!

Optimal Algorithm for 2-Round Instances

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.

2-Round Schedule: If and only if
there are no BB edges! Then I can

update F edges in first round
and F edges in second round!

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
read backward is a valid
schedule for new to old!

That is, FB must be in
first round, BF must be
in second round, and FF
are flexible!

What about 3 rounds?

What about 3 rounds?

❏ Structure of a 3-round schedule:

Round 1 Round 2 Round 3

F edges:

FF,FB

F edges:

FF,BF

all edges:

FF,FB,BF,BB

What about 3 rounds?

❏ Structure of a 3-round schedule:

Round 1 Round 2 Round 3

F edges:

FF,FB

F edges:

FF,BF

all edges:

FF,FB,BF,BB

Round 1 Round 2 Round 3

FB BFBB

WLOG

Boils
down to: FF

??

W.l.o.g., can do FB
in R1 and BF in R3.

Proof

Claim: If there exists 3-
round schedule, then also
one where FB are only
updated in Round 1.

Reason: Can move FB to
first round!

FF FB FB FB BB BF BF

S1: as early

as possible

S2: as late

as possible

R1 R2

R2 R3

Proof

Claim: If there exists 3-
round schedule, then also
one where FB are only
updated in Round 1.

Reason: Can move FB to
first round!

FF FB FB FB BB BF BF

S1: as early

as possible

S2: as late

as possible

R1 R2

R2 R3

Fowarding edges do not
introduce loops in G(t=1).

Proof

Claim: If there exists 3-
round schedule, then also
one where FB are only
updated in Round 1.

Reason: Can move FB to
first round!

FF FB FB FB BB BF BF

S1: as early

as possible

S2: as late

as possible

R1 R2

R2 R3

Updating edges earlier
makes G(t=2) only sparser,
so will still work in 3 rounds.

Fowarding edges do not
introduce loops in G(t=1).

Proof

Claim: If there exists 3-
round schedule, then also
one where FB are only
updated in Round 1.

Reason: Can move FB to
first round!

FF FB FB FB BB BF BF

S1: as early

as possible

S2: as late

as possible

R1 R2

R2 R3

Updating edges earlier
makes G(t=2) only sparser,
so will still work in 3 rounds.

Fowarding edges do not
introduce loops in G(t=1).

… but moving FF nodes across BB-
node-Round-2 is tricky! Why?

Similar argument for BF nodes (for R2 and R3)…

NP-hardness

A hard decision problem: when to update FF?

❏ We know: BB node v6 can only be updated in R2

BB

NP-hardness

A hard decision problem: when to update FF?

❏ We know: BB node v6 can only be updated in R2

❏ Updating FF-node v4 in R1 allows to update BB node v6 in R2

Exit from loop

BB

NP-hardness

A hard decision problem: when to update FF?

❏ We know: BB node v6 can only be updated in R2

❏ Updating FF-node v4 in R1 allows to update BB node v6 in R2

❏ Updating FF-node v3 as well in R1 would be bad: cannot update
v6 in next round: potential loop

No exit from loop!

BB

NP-hardness

A hard decision problem: when to update FF?

❏ We know: BB node v6 can only be updated in R2

❏ Updating FF-node v4 in R1 allows to update BB node v6 in R2

❏ Updating FF-node v3 as well in R1 would be bad: cannot update
v6 in next round: potential loop

No exit from loop!

BB

NP-hardness

A hard decision problem: when to update FF?

❏ We know: BB node v6 can only be updated in R2

❏ Updating FF-node v4 in R1 allows to update BB node v6 in R2

❏ Updating FF-node v3 as well in R1 would be bad: cannot update
v6 in next round: potential loop

❏ Node v5 is B and cannot be updated in R1

BB

NP-hardness

❏ Reduction from a 3-SAT version where
variables appear only a small number of times

❏ Variable x appearing px times positively and nx

times negatively is replaced by:

❏ Gives low-degree requirements!

❏ Types of clauses

❏ Assignment clause:

❏ Implication clause:

❏ Exclusive Clause:

NP-hardness

❏ Reduction from a 3-SAT version where
variables appear only a small number of times

❏ Variable x appearing px times positively and nx

times negatively is replaced by:

❏ Gives low-degree requirements!

❏ Types of clauses

❏ Assignment clause:

❏ Implication clause:

❏ Exclusive Clause:

We need a
low degree…

Connecting clones:
consistent value for
original variable.

Example: Gadget for Exclusive Clause

❏ Updating xl prevents Xl update and vice versa

❏ BB nodes v2 and v4 need to be updated in R2 and will
introduce a cycle otherwise

❏ So only one of the two can be updated in R1

Example: Gadget for Exclusive Clause

❏ Updating xl prevents Xl update and vice versa

❏ BB nodes v2 and v4 need to be updated in R2 and will
introduce a cycle otherwise

❏ So only one of the two can be updated in R1

Example: Gadget for Exclusive Clause

❏ Updating xl prevents Xl update and vice versa

❏ BB nodes v2 and v4 need to be updated in R2 and will
introduce a cycle otherwise

❏ So only one of the two can be updated in R1

Example: Gadget for Clause

❏ Need to update (satisfy)
at least one of the
literals in the clause…

❏ … so to escape the
potential loop

Example: Gadget for Clause

❏ Need to update (satisfy)
at least one of the
literals in the clause…

❏ … so to escape the
potential loop

NP-hardness

❏ Eventually everything has to be connected…

❏ … to form a valid path

Relaxed Loopfreedom

❏ Recall: relaxed loop-freedom can reduce number of
rounds by a factor O(n)

❏ But how many rounds are needed for relaxed loop-
free update in the worst case?

❏ We don’t know…

❏ … what we do know: next slide

Peacock: Relaxed Updates in O(log n) Rounds

Two observations / principles:

❏ Node merging: a node which is updated is irrelevant
for the future, so merge it with subsequent one

❏ Directed tree: while initial network consists of two
directed paths (in-degree=out-degree=2), during
update rounds, situation can become a directed tree

❏ in-degree can increase due to merging

❏ dashed in- and out-degree however stays one

Example

Initially: Two
valid paths!

After updating v4.

Example

Initially: Two
valid paths!

After updating v4.

v4 irrelevant,
can merge

Example

Initially: Two
valid paths!

After updating v4.

In-degree
now 2: to v4

and v9.

Example

Initially: Two
valid paths!

After updating v4.

Forward and
backward edges
now defined wrt

tree!

Example

Initially: Two
valid paths!

After updating v4.

New type of edge:

horizontal edge!

Ideas of Peacock Algorithm

❏ Rounds come in pairs: Try to update (and hence
merge) as much as possible in every other round

❏ Round 1 (odd rounds): Shortcut

❏ Move source close to destination

❏ Generate many «independent subtrees» which are easy to
update!

❏ Round 2 (even rounds): Prune

❏ Update independent subtrees

❏ Brings us back to a chain!

Ideas of Peacock Algorithm

❏ Rounds come in pairs: Try to update (and hence
merge) as much as possible in every other round

❏ Round 1 (odd rounds): Shortcut

❏ Move source close to destination

❏ Generate many «independent subtrees» which are easy to
update!

❏ Round 2 (even rounds): Prune

❏ Update independent subtrees

❏ Brings us back to a chain!

Don‘t be greedy!
Don‘t update all FF edges!

Peacock in Action

123

Shortcut Prune PruneShortcut

Peacock in Action

124

Shortcut Prune PruneShortcut

Greedily choose
far-reaching
(independent)
forward edges.

update

Peacock in Action

125

Shortcut Prune PruneShortcut
R1 generated
many nodes in
branches which
can be updated
simultaneously!

update

Peacock in Action

126

Shortcut Prune PruneShortcut

Line re-established!
(all merged with a
node on the s-d-path)

Peacock in Action

127

Shortcut Prune PruneShortcutPeacock orders nodes wrt to distance: edge
of length x can block at most 2 edges of

length x, so distance 2x.

Peacock in Action

128

Shortcut Prune PruneShortcut

At least 1/3 of nodes merged in each round
pair (shorter s-d path): logarithmic runtime!

Peacock in Action

129

Shortcut Prune PruneShortcut

Peacock in Action

130

Shortcut Prune PruneShortcut

Classroom Assessment:
When does Peacock terminate?

Peacock in Action

131

Shortcut Prune PruneShortcut

Classroom Assessment:
When does Peacock terminate?

Answer:
Only in odd rounds: then s-d merged

Why not update two non-independent edges?

…

s

short edge looooong edge

❏ Don’t update all FF edges: A short edge may not
reduce distance to source if it jumps over a long edge

…

s not on s-d
path

independent edge

❏ Can update all fwd edges starting in interval

Conclusion

• Programmable and virtualized networks offer fundamental
algorithmic problems

• Regarding network updates, so far we know:

• Strong LF:

•Greedy arbitrarily bad (up to n rounds) and NP-hard

• 2 rounds easy

• 3 rounds hard

• Relaxed LF:

• Peacock solves any scenario in O(log n) rounds

• Computational results indicate that # rounds grows

• LF and WPE may conflict

Thank you!

And thanks to co-authors: Arne Ludwig, Jan Marcinkowski

as well as Marco Canini, Damien Foucard, Petr Kuznetsov, Dan Levin, Matthias Rost, Jukka Suomela

and more recently Saeed Amiri, Szymon Dudycz, Felix Widmaier

Own References

Scheduling Loop-free Network Updates: It's Good to Relax!

Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.

ACM Symposium on Principles of Distributed Computing (PODC), Donostia-San Sebastian, Spain, July 2015.

Medieval: Towards A Self-Stabilizing, Plug & Play, In-Band SDN Control Network (Demo Paper)

Liron Schiff, Stefan Schmid, and Marco Canini.

ACM Sigcomm Symposium on SDN Research (SOSR), Santa Clara, California, USA, June 2015.

A Distributed and Robust SDN Control Plane for Transactional Network Updates

Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid.

34th IEEE Conference on Computer Communications (INFOCOM), Hong Kong, April 2015.

Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los Angeles, California, USA, October 2014.

Provable Data Plane Connectivity with Local Fast Failover: Introducing OpenFlow Graph Algorithms

Michael Borokhovich, Liron Schiff, and Stefan Schmid.

ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN), Chicago, Illinois, USA,

August 2014.

Panopticon: Reaping the Benefits of Incremental SDN Deployment in Enterprise Networks

Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja Feldmann.

USENIX Annual Technical Conference (ATC), Philadelphia, Pennsylvania, USA, June 2014.

http://net.t-labs.tu-berlin.de/~stefan/podc15.pdf
http://net.t-labs.tu-berlin.de/~stefan/sosr15medieval.pdf
http://net.t-labs.tu-berlin.de/~stefan/infocom15.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotsdn14fail.pdf
http://net.t-labs.tu-berlin.de/~stefan/atc14.pdf

The SDN Hello World:
MAC Learning

(Even a single switch scenario is non-trivial!)

Distributed Computing Fail: Updating a Single Switch

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

❏ h3 sends to h1:

❏ h1 sends to h3:

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

❏ h1 sends to h3:

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2

Distributed Computing Fail: Updating a Single Switch

3

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

❏ h1 sends to h3:

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Distributed Computing Fail: Updating a Single Switch

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

❏ h1 sends to h3:

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Distributed Computing Fail: Updating a Single Switch

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental networking task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ h1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

❏ h1 sends to h3:

forward to p3

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Distributed Computing Fail: Updating a Single Switch

Already updating a single switch from a single controller
is non-trivial!

❏ Fundamental task: MAC learning
❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets

❏ Example
❏ H1 sends to h2:

flood, learn (h1,p1)

❏ h3 sends to h1:

forward to p1, learn (h3,p3)

❏ h1 sends to h3:

forward to p3

h1

h2
h3

Thanks to Jennifer Rexford for example!

1

2
3

Controller

OpenFlow
switch

Now: how to do via controller?
Install rules as you learn!
And match on host address and port.

Distributed Computing Fail: Updating a Single Switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1

h2
h3

1

2
3

Controller

OpenFlow

switch

❏ What happens when h1 sends to h2?

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1

h2
h3

1

2
3

Controller

❏ What happens when h1 sends to h2?

❏ Controller learns that h1@p1 and installs rule on switch!

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h1 sends to h2?

❏ Controller learns that h1@p1 and installs rule on switch!

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ No controller interaction, no new rule for h2

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

❏ Flooded! Controller did not put the rule to h2.

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

❏ Flooded! Controller did not put the rule to h2!

Controller however does learn about h3.
Then answer from h2 missed by
controller too: all future requests to h2
flooded?!?

OpenFlow

switch

Example: SDN MAC Learning
Done Wrong

❏ Initial rule *: Send
everything to controller

h1 sends to h2

h1

h2
h3

1

2
3

Controller

❏ What happens when h2 sends to h1?

❏ Switch knows destination: message forwarded to h1

❏ No controller interaction, no new rule for h2

❏ What happens when h3 sends to h2?

❏ Flooded! Controller did not put the rule to h2!

A bug in early controller software.
Hard to catch! A performance issue, not a consistency one

(arguably a key strength of SDN?).

OpenFlow

switch

