
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)

Demand-Aware Networks:
Metrics and Algorithms
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Acknowledgements:



Today’s Datacenters
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fixed and 
oblivious to 
actual demand.
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Sounds Crazy? 
Emerging Enabling
Technology.

H2020: 
“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council: 
“Photons are the new
Electrons.”

Photonics



Enabler:
Novel Reconfigurable Optical Switches

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 
⇀ From our last ACM SIGCOMM OptSys’19 workshop

Prototype 1

Prototype 2

Prototype 3
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Flexibility

Demand Structure

Efficiency

Metrics

Now is the time!

But how much does it 
help? As usual in 
computer science: it 
depends! We need metrics 
for demand structure and 
for possible efficiency.

Putting Things Together
Demand-Aware Networks

Metrics

Demand-Aware
Networks

Algorithms



Our Perspective
Information Theory and Entropy

Demand entropy: 
Spatial and temporal 
structure of traffic

&

Entropy: A tight metric for 
the achievable route lengths 
in demand-aware networks



Question 1:

How to Quantify 
such “Structure” 
in the Demand?
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Intuition
Spatial vs Temporal Structure

⇢ Two different ways to generate same traffic matrix:
⇀ same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs



Trace Complexity
Information-Theoretic Approach 
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Time

Original
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Trace Complexity
Information-Theoretic Approach 
“Shuffle&Compress”

Difference in size 
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size 
(entropy)?

Can be used to define 
2-dimensional 

complexity map! 
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Further Reading

ACM SIGMETRICS 2020



Question 2:

How to Exploit Structure 
Algorithmically? Metrics 
for Achievable Efficiency?

Insight: Information-theoretic perspective 
useful here as well!

Case Study “Route Lengths”
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Models and Connection to 
Datastructures & Coding

Traditional networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

More structure: lower routing cost

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

More than 
an analogy!entropy

rate
entropylog n

Generalize methodology:
... and transfer 
entropy bounds and 
algorithms of data-
structures to networks. 

First result: 
Demand-aware networks 
of asymptotically 
optimal route lengths. 

entropy
rate

entropylog n
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ERL=Ω(HΔ(Y|X))

Entropy Lower Bound



⇢ Idea for algorithm:
⇀ union of trees
⇀ reduce degree
⇀ but keep distances

What about dynamic case?

Static

Entropy Upper Bound



⇢ Idea for algorithm:
⇀ union of trees
⇀ reduce degree
⇀ but keep distances

⇢ Ok for sparse demands
⇀ not everyone gets tree 
⇀ helper nodes

What about dynamic case?

Static

Entropy Upper Bound



⇢ Dynamic the same:
⇀ union of dynamic ego-trees

⇢ E.g., SplayNets

⇢ Online algorithms

Dynamic Setting

Dynamic



Dynamic Objectives

Demand-Aware

Reconfigurable

Offline Online

OFF ON

Static
Optimality

Dynamic
Optimality

Working Set



Requires knowledge in networking, distributed systems, algorithms, performance evaluation.

Notion of self-adjusting networks opens a 
large uncharted field with many questions:
⇀ Metrics and algorithms: by how much can  
load be lowered, energy reduced, quality-
of-service improved, etc. in demand-aware 
networks? Even for route length not clear!

⇀ How to model reconfiguration costs? 
⇀ Impact on other layers?

so far

to do 

scratched 
surface

Future Work:
Models, Metrics, Algos



Websites

http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website



Further Reading

Static DAN Static OptimalityOverview: Models

Dynamic DAN
Robust DAN

Concurrent DANs
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