
Principles of self-* communication networks:
Data-driven optimization and verification
Stefan Schmid (TU Berlin)

Flexibilities: Along 3 Dimensions

AI in Networking
Summer School 2022

Self-* Networks: Why?

Self-* Networks: Why?

… where *={configuring, repairing, optimizing, “driving”, …}

Self-* Networks: Why?

… where *={configuring, repairing, optimizing, “driving”, …}

Networks Are Complex:
Even Tech-Savvy Companies Struggle

We discovered a misconfiguration on this pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed incorrectly […] more “stuck” volumes
and added more requests to the re-mirroring storm.

Service outage was due to a series of internal network events that corrupted
router data tables.

Experienced a network connectivity issue […] interrupted the airline's
flight departures, airport processing and reservations systems

1

Networks Are Complex:
Even Tech-Savvy Companies Struggle

We discovered a misconfiguration on this pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed incorrectly […] more “stuck” volumes
and added more requests to the re-mirroring storm.

Service outage was due to a series of internal network events that corrupted
router data tables.

Experienced a network connectivity issue […] interrupted the airline's
flight departures, airport processing and reservations systems

Most of them: due to human errors.

1

Example: BGP in
Datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
at

ac
e

n
te

r

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

2

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

Internet

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 2

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Cluster with services that
should be globally reachable.

Cluster with services that should
be accessible only internally.

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to
Internet what is from

G* (prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 2

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to
Internet what is from

G* (prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 2

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

What can go wrong?

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to
Internet what is from

G* (prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 2

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

If link (G,X) fails and traffic from G is rerouted via Y
and C to X: X announces (does not block) G and H

as it comes from C. (Note: BGP.)

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and

conditional failover rules.

3

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C

3

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

No loops?

3

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A
to B never goes via C?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via
Iceland (expensive!). Or no traffic

through route reflectors. 3

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C?

A

B

C

Waypoint?

E.g. IDS, firewall

3

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C?

A

B

C

… and everything even under multiple failures?!

k failures =

(
𝑛
𝑘

) possibilities

E.g. IDS, firewall

3

Can we automate such tests
or even self-repair?

Another Reason:

Flexibilities and Optimization Opportunities

Another Reason:

Flexibilities and Optimization Opportunities

… where *={configuring, repairing, optimizing, “driving”, …}

Flexibilities: Along 3 Dimensions

Somewhere in beautiful Germany…

6

Flexibilities: Along 3 Dimensions

Somewhere in beautiful Germany…

6

Somewhere in beautiful Germany…

Flexibilities: Along 3 Dimensions

Enabler:
SDN

Enabler:
Virtualization

Enabler:
Optics

6

Example: ProjecToR

t=1

• Based on free-
space optics

• in ~10 μs:

7

Example: ProjecToR

t=2

• Based on free-
space optics

7

Example: ProjecToR

t=2

• Based on free-
space optics

• Reconfiguration
in ~10 μs:

Digital Micromirror Devices (DMDs)

7

Example: ProjecToR

t=2

• Based on free-
space optics

• Reconfiguration
in ~10 μs:

Digital Micromirror Devices (DMDs)

Faster than
moving

antennas!

7

ProjecToR in More Details:
Technological Enabler

28

Laser Photodetector

ProjecToR in More Details:
DMDs

Array of
micromirrors

Memory cell

• Each micromirror can be turned on/off
• Essentially a 0/1-image: e.g., array size 768 x 1024
• Direction of the diffracted light can be finely tuned

9

ProjecToR in More Details:
DMDs to Redirect Light Fast

0 0 0

0 1 0

0 0 0

1 1 1

1 0 1

1 1 1
10

ProjecToR in More Details:
DMDs to Redirect Light Fast

0 0 0

0 1 0

0 0 0

1 1 1

1 0 1

1 1 1

Challenge:
limited angular

range +/- 3°

10

ProjecToR in More Details:
Coupling DMDs with angled mirrors

32

Coupling: point the DMDs toward
a “disco-ball” mirror assembly
installed overhead.

Assembly’s angled facets magnify
the DMD’s reach to the entire DC.

11

ProjecToR in More Details:
Coupling DMDs with angled mirrors

33

60x higher fan-out (can directly connect all pairs)
and 2500x faster switching time

than optical circuit switches

11

Empirical Motivation

Empirical Motivation: Structure

“less than 1% of the rack pairs account for 80% of
the total traffic”

“only a few ToRs switches are hot and most
of their traffic goes to a few other ToRs”

“over 90% bytes
flow in elephant flows”

13

Spatial and Temporal Locality
s
o
u
r
c
e
s

destinations

Facebook

s
o
u
r
c
e
s

destinations

Microsoft

traffic bursty over time

M
b
p
s

Facebook

Time (seconds)

traffic matrices sparse and skewed

14

The Vision

Flexibility

Structure

Efficiency

Self-Adjusting

Networks

16

Roadmap

• How much structure is there in the data? A systematic approach.

• Exploiting structure in data: an example

• Self-repairing networks

5

Roadmap

• How much structure is there in the data? A systematic approach.

• Exploiting structure in data: an example

• Self-repairing networks

5

Non-temporal Structure:
It‘s Intuitive!

Traffic matrix of two different distributed ML applications (GPU-to-GPU):

Which one has more structure?

vs

Color =
comm. pair

18

Traffic matrix of two different distributed ML applications (GPU-to-GPU):

Which one has more structure?

vs

Color =
comm. pair

More
uniform

More
skewed

Non-temporal Structure:
It‘s Intuitive!

18

Two different ways to generate same traffic matrix (same non-temporal structure):

Which one has more structure?

vs

Temporal Structure

19

Two different ways to generate same traffic matrix (same non-temporal structure):

Which one has more structure?

vs

Temporal Structure
More
bursty

More
random

19

Two different ways to generate same traffic matrix (same non-temporal structure):

Which one has more structure?

vs

Temporal Structure
More
bursty

More
randomQuite intuitive: but how to define and

measure structure systematically?

19

A Principled Approach:
The Trace Complexity

• An information-theoretic approach: how can we measure the entropy
(rate) of a traffic trace?

• Henceforth called the trace complexity

• Simple approximation: „shuffle&compress“
– Remove structure by iterative randomization

– Difference of compression before and after randomization: structure

20

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Increasing complexity (systematically randomized)

More structure (compresses better)

21

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Remove
temporal locality

Break src-dst
pairs

Remove non-
temporal locality

21

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Compress Compress Compress

21

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

difference? difference? difference?

21

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

spatial

structure

temporal

structure 21

The Complexity Map

Complexity Map: Entropy
(„complexity“) of traffic traces.

!

!

More complexity

More structure

22

Complexity Map: Entropy
(„complexity“) of traffic traces.

!

!

M
o

re
 c

o
m

p
le

xi
ty

M
o

re
 s

tr
u

ct
u

re

The Complexity Map

22

Complexity Map: Entropy
(„complexity“) of traffic traces.

Size = product
of entropy

!

!

The Complexity Map

M
o

re
 c

o
m

p
le

xi
ty

M
o

re
 s

tr
u

ct
u

re

22

• Facebook clusters: DB, WEB, HAD

• HPC workloads: CNS, Multigrid

• Distributed Machine Learning (ML)

• Synthetic traces like pFabric

Observation: different applications
feature quite significant (and
different!) temporal and non-

temporal structures.

The Complexity Map

22

Roadmap

• How much structure is there in the data? A systematic approach.

• Exploiting structure in data: an example

• Self-repairing networks

5

A Simple Example

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.

31st International Symposium on Distributed
Computing (DISC), Vienna, Austria, October 2017.

1 2 3 4 5 6 7 8

demand

matrix:

e.g.,

mirrors

new flexible

interconnect

26

1 2 3 4 5 6 7 8

Matches demand

demand

matrix:

e.g.,

mirrors

new flexible

interconnect

26

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

new

demand:

26

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

new

demand:
Matches demand

26

More Formally

So
u

rc
es

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7

D N
27

So
u

rc
es

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7

Makes sense
to add link!

Much from 4 to 5.

D N
27

So
u

rc
es

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7
1 communicates

to many. Bounded degree: route
to 7 indirectly.

D N
27

So
u

rc
es

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7

4 and 6 don’t
communicate…

… but “extra” link still
makes sense: not a

subgraph.

D N
27

ERL D,N =

(u,v)∈D

p u, v ∙ dN(u, v)

Objective: Expected Route Length

path length on N

frequencyD[𝐩 𝐢, 𝐣]: joint distribution

DAN N of degree Δ

28

Remark

• Can represent demand matrix as a demand graph

sparse distribution D sparse graph G(D)

3 4

So
u

rc
es

Destinations
1 2

29

Some Examples

• DANs of Δ = 3:
– E.g., complete binary tree

– dN(u,v) ≤ 2 log n

– Can we do better than log n?

• DANs of Δ = 2:
– E.g., set of lines and cycles

30

Rewinding the clock of the
Internet to a decade ago...

Rewinding the Clock:
Degree-Diameter Tradeoff

Each network with n nodes and max degree Δ >2
must have a diameter of at least log(n)/log(Δ-1)-1.

Example: constant Δ, log(n) diameter

Kudos to: Pedro Casas

Proof Idea

In k steps, reach at
most 1+ Σ Δ(Δ -1)k

nodes

Kudos to: Pedro Casas

1 Δ Δ(Δ -1) …

Is there a better tradeoff in DANs?

Sometimes, DANs can be much better!

Example 1: low-degree demand

If demand graph is of degree Δ, it is trivial
to design a DAN of degree Δ which achieves

an expected route length of 1.

Just take DAN =
demand graph!

34

Sometimes, DANs can be much better!

Example 2: skewed demand

If demand is highly skewed, it is also
possible to achieve an expected route

length of O(1) in a constant-degree DAN.

?

34

Sometimes, DANs can be much better!

Example 2: skewed demand

If demand is highly skewed, it is also
possible to achieve an expected route

length of O(1) in a constant-degree DAN.

E.g., arrange neighbors of node 1
in a Huffman tree!

Toward Demand-Aware Networking: A Theory for Self-
Adjusting Networks. Chen Avin and Stefan Schmid. ACM

SIGCOMM CCR, October 2018 34

So on what does it depend?

So on what does it depend?

We argue (but still don‘t fully know!): on the

“entropy” of the demand!

?

Intuition: Entropy Lower Bound
?

Lower Bound Idea:
Leverage Coding or Datastructure

So
u

rc
es

Destinations

• DAN just for a single (source) node 3

• How good can this tree be? Cannot do better
than Δ-ary Huffman tree for its destinations

• Entropy lower bound on ERL known for binary
trees, e.g. Mehlhorn 1975

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

37

Lower Bound Idea:
Leverage Coding or Datastructure

So
u

rc
es

Destinations

• DAN just for a single (source) node 3

• How good can this tree be? Cannot do better
than Δ-ary Huffman tree for its destinations

• Entropy lower bound on ERL known for binary
trees, e.g. Mehlhorn 1975

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

An optimal “ego-tree“
for this source!

37

So: Entropy of the Entire Demand

• Proof idea (EPL=Ω(HΔ(Y|X))):

• Compute ego-tree for each source
node

• Take union of all ego-trees

• Violates degree restriction but valid
lower bound

sources destinations

entropy degree

38

Do this in both dimensions:

Ω(HΔ(X|Y))

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)})
Ω(HΔ(Y|X))

Entropy of the Entire Demand:
Sources and Destinations

39

Do this in both dimensions:

Ω(HΔ(X|Y))

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)})
Ω(HΔ(Y|X))

Entropy of the Entire Demand:
Sources and Destinations

Demand-Aware Network Designs of Bounded Degree. Chen
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017. 39

Achieving Entropy Limit: Algorithms

Ego-Trees Revisited

• ego-tree: optimal tree for
a row (= given source)

D[i]
ego-tree

41

Ego-Trees Revisited

D[i] Can we merge the trees without
distortion and keep degree low?

• ego-tree: optimal tree for
a row (= given source)

ego-tree

41

Ego-Trees Revisited

D[i] Can we merge the trees without
distortion and keep degree low?

For sparse demands yes:
enough low-degree nodes which can

serve as “helper nodes“!

• ego-tree: optimal tree for
a row (= given source)

ego-tree

41

An Analogy

Static vs dynamic demand-
aware networks!?

DANs vs SANs?

00110101…

if demand arbitrary and unknown

log diameter

log # bits / symbol

An Analogy to Coding
„Coming to the Summer school?“

43

01011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

entropy / symbol

entropy?

DAN!

An Analogy to Coding

if demand known and fixed

„Coming to the Summer school?“

43

011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

if demand known and fixed

entropy / symbol

entropy?

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

An Analogy to Coding

if demand unknown but reconfigurable

„Coming to the Summer school?“

43

An Analogy to Coding 011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable

„Coming to the Summer school?“

43

An Analogy to Coding 011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable

„Coming to the Summer school?“

43

Analogous to Datastructures: Oblivious…

• Traditional, fixed BSTs do not rely on any
assumptions on the demand

• Optimize for the worst-case

• Example demand:

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root,
uniformly and independently of their
frequency

many many many many
Many requests

for leaf 1…
… then for

leaf 3…

many

Corresponds to
max possible demand!

44

• Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

• E.g.: place frequently accessed elements
close to the root

• E.g., Knuth/Mehlhorn/Tarjan trees

• Recall example demand:
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)
– Amortized cost O(loglog n)

Amortized cost corresponds
to empirical entropy of demand!

loglog n

… Demand-Aware …

45

• Demand-aware reconfigurable BSTs
can additionally take advantage of
temporal locality

• By moving accessed element to the
root: amortized cost is constant, i.e.,
O(1)
– Recall example demand:

1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

… Self-Adjusting!

46

Datastructures

Oblivious Demand-Aware Self-Adjusting

Lookup

O(log n)

Exploit spatial locality:
empirical entropy O(loglog n)

Exploit temporal locality as well:

O(1)

47

Analogously for Networks

Oblivious DAN SAN

Const degree

(e.g., expander):

route lengths O(log n)

Exploit spatial locality Exploit temporal locality as well

000
Avin, S.: Toward Demand-Aware Networking: A Theory

for Self-Adjusting Networks. SIGCOMM CCR 2018.

Roadmap

• How much structure is there in the data? A systematic approach.

• Exploiting structure in data: an example

• Self-repairing networks

5

Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C?

A

B

C

… and everything even under multiple failures?!

k failures =

(
𝑛
𝑘

) possibilities

49

E.g. IDS, firewall

Can we automate such tests
or even self-repair?

Can we automate such tests
or even self-repair?

Yes! Sometimes even fast:
with formal methods
(enhanced with AI…).

How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

50

How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

flow 2

50

How (MPLS) Networks Work

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

Default routing of
two flows

• Forwarding based on top label of label stack
push swap swap pop

pop

50

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

• For failover: push and pop label

12

22

10
20

11
21

31|11
31|21

10
20

50

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

12

22

10
20

11
21

Pop

Normal
swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21 50

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

12

22

10
20

11
21

Pop

Normal
swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21

What about multiple link failures?

50

2 Failures: Push Recursively

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

Push 30

Push 40

10
20

11
21

pop pop 51

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

51

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!

51

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size
may grow arbitrarily!

51

MPLS configurations,
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Leveraging Automata-Theoretic Approach

52

Leveraging Automata-Theoretic Approach

MPLS configurations,
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

52

• Network: a 7-tuple

Network Model

Nodes

Links

Incoming
interfaces

Outgoing
interfaces

Set of labels in
packet header

53

Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is: and

Network Model

Interface
function

• Network: a 7-tuple

53

• Network: a 7-tuple

Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers,
outgoing interfaces together with modified headers.

Network Model

Routing
function

53

out2out1

Packet routing sequence can be represented using sequence of tuples:

Routing

• Example: routing (in)finite sequence of tuples

Node
receives…

… on interface…

… packet with
header…

… forwards it to
live next hop…

… with new header..

… given that these
links are down.

v1

h1

v2

h2 h3

in1 in2

54

MPLS Network Model
• MPLS supports three specific operations on header sequences:

• The local routing table can then be defined as

• Local link protection function defines backup interface

protected backup typically:
push

Interface +
label

Maps to next hop
and operation

55

Pop:

Push:

Swap:

Example Rules:
Regular Forwarding on Top-Most Label

Push label on
stack

Swap top of
stack

Pop top of
stack

58

A Complex and Big Formal Language:
Why Polynomial Time?

Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
) many options?!

k failures =

(
𝑛
𝑘

) possibilities

60

Classic Result in Automata Theory

Julius Richard Büchi

1924-1984

Swiss logician

• Classic result by Büchi 1964: the set of all reachable
configurations of a pushdown automaton a is regular set

• Hence, we can operate only on Nondeterministic Finite
Automata (NFAs) when reasoning about the pushdown
automata

• The resulting regular operations are all polynomial time

• Important result of model checking

61

Tool and Query Language

Part 1: Parses query
and constructs Push-
Down System (PDS)

• In Python 3

query processing flow

Part 2: Reachability
analysis of
constructed PDS

• Using Moped tool

Regular query language

k <a> b <c>
failures

header
header

path

62

YES!
(Gives witness!)

2 failures

Example: Traversal Testing With 2 Failures

Traversal test with k=2: Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: k=2 [] s1 >> s5 >> s7 []

63

Speeding things up with Deep Learning?
And synthesis.

DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning. Fabien Geyer
and Stefan Schmid. IFIP Networking, Warsaw, Poland, May 2019.

Deep Learning for MPLS: DeepMPLS
(s. talk by Fabien Geyer)

• Yes sometimes without losing guarantees

• Extend graph-based neural networks

• Predict counter-examples and fixes
Network topologies and MPLS rules

Network topologies and query 65

Challenges of Self-* Networks

• Can a self-* network realize its limits?

• E.g., when quality of input data is not good enough?

• When to hand over to human? Or fall back to „safe/oblivious mode“?

• Can we learn from self-driving cars?

66

Thank you! Questions?

Fu
rt

h
er

 R
ea

d
in

g
Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid.
SIGACT News, June 2019.
Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.
Measuring the Complexity of Network Traffic Traces
Chen Griner, Chen Avin, Manya Ghobadi, and Stefan Schmid.
arXiv, 2019.
Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Distributed Self-Adjusting Tree Networks
Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks
Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu.
IFIP Networking, Warsaw, Poland, May 2019.
DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks
Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu.
IEEE/ACM International Symposium on Quality of Service (IWQoS), Phoenix, Arizona, USA, June 2019.
Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.

Demand-aware networks

https://www.univie.ac.at/ct/stefan/sigact19.pdf
https://www.univie.ac.at/ct/stefan/ccr18san.pdf
https://www.univie.ac.at/ct/stefan/Poster-khen.pdf
https://www.univie.ac.at/ct/stefan/infocom2019a.pdf
https://www.univie.ac.at/ct/stefan/infocom2019b.pdf
https://www.univie.ac.at/ct/stefan/ifip19dan.pdf
https://www.univie.ac.at/ct/stefan/iwqos19.pdf
https://net.t-labs.tu-berlin.de/~stefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/~stefan/ancs18.pdf

Fu
rt

h
er

 R
ea

d
in

g
P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion/Crete, Greece,
December 2018.
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.

What-if analysis

Preacher: Network Policy Checker for Adversarial Environments
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
38th International Symposium on Reliable Distributed Systems (SRDS), Lyon, France, October 2019.
MTS: Bringing Multi-Tenancy to Virtual Switches
Kashyap Thimmaraju, Saad Hermak, Gabor Retvari, and Stefan Schmid.
USENIX Annual Technical Conference (ATC), Renton, Washington, USA, July 2019.
Taking Control of SDN-based Cloud Systems via the Data Plane (Best Paper Award)
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.
ACM Symposium on SDN Research (SOSR), Los Angeles, California, USA, March 2018.

Secure sampling and dataplane

https://www.univie.ac.at/ct/stefan/conext18.pdf
https://www.univie.ac.at/ct/stefan/infocom18prefixnet.pdf
https://www.univie.ac.at/ct/stefan/srds19sats.pdf
https://www.univie.ac.at/ct/stefan/atc19mswitch.pdf
https://www.univie.ac.at/ct/stefan/sosr18.pdf

Backup Slides

How Predictable is Traffic?

Even if reconfiguration fast, control plane
(e.g., data collection) can become a
bottleneck. However, many good examples:

• Machine learning applications

• Trend to disaggregation (specialized
racks)

• Datacenter communication dominated
by elephant flows

• Etc.

ML workload (GPU to GPU):

deep convolutional neural network

Predictable from their dataflow graph

