Klaus-Tycho Foerster Mahmoud Parham Stefa

Stefan Schmid

Department of Computer Science Aalborg University, Denmark

ALGOCLOUD, 2017

A Routing Problem

Motivation

A Routing Problem

A Routing Problem

• Middlebox: Firewall, NAT, proxies, DPI etc.

Motivation

A Routing Problem

• VNFs brings flexibility, are cheaper

A Routing Problem

- VNFs brings flexibility, are cheaper
- A lot of them, in clouds

A Routing Problem

- The task: find the shortest S-T walk through waypoints
- Capacities must be respected

A Routing Problem

• Real Networks Are Bidirected

A Routing Problem

- Real Networks Are Bidirected
- Two Flavors: Ordered vs Unordered

Model

Outline

Model

- Bidirected graph G(V, E): $\forall (x, y) \in E \implies (y, x) \in E$
- *n* nodes, *k* of which are waypoints
- Arbitrary capacities, unit demand for (S, T)

Model

- Bidirected graph G(V, E): $\forall (x, y) \in E \implies (y, x) \in E$
- *n* nodes, *k* of which are waypoints
- Arbitrary capacities, unit demand for (S, T)
- The shortest *feasible S-T* walk visiting *all* waypoints
- A feasible walk respects link capacities

Model

- Bidirected graph G(V, E): $\forall (x, y) \in E \implies (y, x) \in E$
- *n* nodes, *k* of which are waypoints
- Arbitrary capacities, unit demand for (S, T)
- The shortest feasible S-T walk visiting all waypoints
- A feasible walk respects link capacities
- Ordered and Unordered

Warm up

Outline

Warm up

One waypoint: greedy is optimal

Warm up

One waypoint: greedy is optimal

Warm up

One waypoint: greedy is optimal

Warm up

More waypoints

 \checkmark The optimal order + shortest paths \implies it works!

More waypoints

- \checkmark The optimal order + shortest paths \implies it works!
- \checkmark Try all permutations: SW_1W_2T or SW_2W_1T ?

More waypoints

- \checkmark The optimal order + shortest paths \implies it works!
- \checkmark Try all permutations: SW_1W_2T or SW_2W_1T ?

More waypoints

- \checkmark The optimal order + shortest paths \implies it works!
- \checkmark Try all permutations: SW_1W_2T or SW_2W_1T ?

More waypoints

- ✓ The optimal order + shortest paths \implies it works!
- \checkmark Try all permutations: SW_1W_2T or SW_2W_1T ?

✓ Polynomial time for $k = O\left(\frac{\log n}{\log \log n}\right)$

Hardness

Outline

Hardness

Hardness

• Feasibility via spanning tree \implies always feasible

Hardness

Hardness

Hardness

Hardness

Figure: Spanning Tree

Hardness

Hardness

Figure: Spanning Tree

Figure: Bidirected again

^{12/20}

Hardness

Hardness

Figure: Spanning Tree

Figure: S-T tour

Hardness

Hardness

- Feasibility via spanning tree \implies always feasible
- Approximation via metric TSP \implies L: $\approx 1.008^{1}$, U: $\approx 1.53^{2}$

¹Karpinski et al. J. Comput. Syst. Sci., 2015 ²Andr as Seb o and Anke van Zuylen, FOCS 2016

Hardness

Hardness

- Feasibility via spanning tree \implies always feasible
- Approximation via metric TSP \implies L: $\approx 1.008^{1}$, U: $\approx 1.53^{2}$
- FPT via subset TSP $\implies 2^k \cdot n^{\mathcal{O}(1)}$ (Klein and Marx, 2014)

¹Karpinski et al. J. Comput. Syst. Sci., 2015

²Andr as Seb o and Anke van Zuylen, FOCS 2016

Another Variant

Outline

- A permutation is given, e.g. $w_1 w_2 \dots w_k$
- Find the shortest route visiting every *w_i*, satisfying the permutation

- A permutation is given, e.g. $w_1 w_2 \dots w_k$
- Find the shortest route visiting every w_i , satisfying the permutation
- Not always feasible

- A permutation is given, e.g. $w_1 w_2 \dots w_k$
- Find the shortest route visiting every *w_i*, satisfying the permutation
- Not always feasible
- Related to Edge Disjoint Path Problem

- A permutation is given, e.g. $w_1 w_2 \dots w_k$
- Find the shortest route visiting every *w_i*, satisfying the permutation
- Not always feasible
- Related to Edge Disjoint Path Problem
- NP-Hardness and feasibility via EDPP

Edge Disjoint Path Problem

Edge Disjoint Path Problem \in NP-Complete

Find a set of pairwise edge-disjoint paths connecting every pair $(s_i, t_i), i = 1 \dots k$

Building the OWRP instance

The waypoints:

 $s_1, t_1...s_i, t_i, s_{i+1}, t_{i+1}...s_k, t_k$

...

Reduction

Building the OWRP instance

The waypoints:

$$S = s_1, t_1...s_i, t_i, s_{i+1}, t_{i+1}...s_k, t_k = T$$

...

Reduction

Building the OWRP instance

The waypoints:

. . .

 $S = s_1, t_1...s_i, t_i, s_{i+1}, t_{i+1}...s_k, t_k = T$

Reduction

Building the OWRP instance

$$S = s_1, t_1...s_i, t_i, w_i, s_{i+1}, t_{i+1}...s_k, t_k = T$$

Reduction

Building the OWRP instance

$$S = s_1, t_1...s_i, t_i, w_i, s_{i+1}, t_{i+1}...s_k, t_k = T$$

Reduction

Building the OWRP instance

$$S = s_1, t_1...s_i, t_i, w_i, s_{i+1}, t_{i+1}...s_k, t_k = T$$

Reduction

Building the OWRP instance

The waypoints:

$$S = s_1, t_1...s_i, t_i, w_i, s_{i+1}, t_{i+1}...s_k, t_k = T$$

• Set λ large enough

Reduction

Building the OWRP instance

$$S = s_1, t_1...s_i, t_i, w_i, s_{i+1}, t_{i+1}...s_k, t_k = T$$

- Set λ large enough
- OWRP chooses a backward edge \iff EDPP is not feasible 16 / 20

Ordered waypoint routing Results

• General graphs: $k \in \mathcal{O}(1) \implies$ feasibility $\in \mathsf{P}$, via EDPP (A. Jarry et al., 2009)

Ordered waypoint routing Results

- General graphs: $k \in \mathcal{O}(1) \implies$ feasibility $\in \mathsf{P}$, via EDPP (A. Jarry et al., 2009)
- Trivial on trees

Ordered waypoint routing Results

- General graphs: $k \in \mathcal{O}(1) \implies$ feasibility $\in \mathsf{P}$, via EDPP (A. Jarry et al., 2009)
- Trivial on trees
- On ring: $\min_e c_e \in \mathcal{O}(1) \implies$ dynamic programming $\in \mathsf{P}$

Ordered waypoint routing Results

- General graphs: $k \in \mathcal{O}(1) \implies$ feasibility $\in \mathsf{P}$, via EDPP (A. Jarry et al., 2009)
- Trivial on trees
- On ring: $\min_e c_e \in \mathcal{O}(1) \implies$ dynamic programming $\in \mathsf{P}$
- Cactus graph: tree of rings

Ordered waypoint routing Cactus: a tree of rings

Step 1: solve the tree contraction given $(S = R_1), R_2, R_3, W_7, (R_1 = T)$

Ordered waypoint routing Cactus: a tree of rings

Step 1: solve the tree contraction given $(S = R_1), R_2, R_3, W_7, (R_1 = T)$

18/20

Ordered waypoint routing Cactus: a tree of rings

 Step 2: mark the port nodes (shown in back) as new waypoints

- Step 2: mark the port nodes (shown in back) as new waypoints
- Step 3: solve OWRP on each ring separately

Another Variant

Summary

Table: Ordered WRP

	General	$k\in \mathcal{O}(1)$	Tree	$c_e \in \mathcal{O}(1)$
Feasibility	open	Р	P	Ring⊂ P
Optimality	NP-Hard	open		

Table: Unordered WRP

	General	$k \in \mathcal{O}(rac{\log n}{\log \log n})$	
Feasibility	Р		
Optimality	NPH,APX,FPT	Р	

- Other special graph classes, e.g.: bidirected planar graphs
- Feasibility hardness for the ordered variant (we gave the optimality hardness)