
“We cannot direct the wind,
but we can adjust the sails.”
(Folklore)

Self-Adjusting Networks
Stefan Schmid

Acknowledgements:

Trend
Data-Centric Applications

1

Datacenters (“hyper-scale”)

Traffic
Growth

S
o
u
r
c
e
:

F
a
c
e
b
o
o
k

Interconnecting networks:

a critical infrastructure

of our digital society.

+network

The Problem
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking” [1]

⇢ Hence: more equipment,

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers

[
1
]

S
o
u
r
c
e
:

M
i
c
r
o
s
o
f
t
,

2
0
1
9

G
b
p
s
/
€

Time

Root Cause
Fixed and Demand-Oblivious Topology

3

How to interconnect?

Root Cause
Fixed and Demand-Oblivious Topology

Many flavors,

but in common:

fixed and

oblivious to

actual demand.

3

Root Cause
Fixed and Demand-Oblivious Topology

Highway which ignores

actual traffic:

frustrating!

Many flavors,

but in common:

fixed and

oblivious to

actual demand.

3

Our Vision
Flexible and Demand-Aware Topologies

4

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

demand

matrix:

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

Matches demand

demand

matrix:

e.g.,

mirrors

new flexible

interconnect

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

new

demand:

e.g.,

mirrors

new flexible

interconnect

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

new

demand:

Matches demand

e.g.,

mirrors

new flexible

interconnect

Our Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

Self-Adjusting

Networks

new

demand:

e.g.,

mirrors

new flexible

interconnect

Our Motivation
Much Structure in the Demand

5

My hypothesis: can be

exploited.

Empirical studies:

s
o
u
r
c
e
s

destinations

Facebook

s
o
u
r
c
e
s

destinations

Microsoft

traffic bursty over time

M
b
p
s

Facebook

Time (seconds)

traffic matrices sparse and skewed

Sounds Crazy?
Emerging Enabling
Technology.

6

H2020:

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council:

“Photons are the new

Electrons.”
Photonics

Enabler
Novel Reconfigurable Optical Switches

7

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times

⇀ From our last year’s ACM SIGCOMM workshop OptSys

Prototype 1

Prototype 2

Prototype 3

Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror

The Big Picture

8

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

The Big Picture

8

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

Our goal: Develop the

theoretical foundations

of demand-aware, self-

adjusting networks.

Unique Position
Demand-Aware, Self-Adjusting Systems

9

Everywhere, but mainly
in software

Our focus:
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems

Question 1:

How to Quantify
such “Structure”
in the Demand?

10

11

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

vs

11

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

More uniform More structure

vs

12

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

vsvs

12

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

T
i
m
e

Original

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows UniformOriginal

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

Can be used to define
2-dimensional

complexity map!

bursty uniform

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

temporal complexity

Our Methodology

Complexity Map

14

No structure

bursty & skewed
skewed

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

14

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Different

structures!

bursty uniform

bursty & skewed
skewed

NN

No structure

Our Methodology

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

14

Potential

gain!

bursty & skewed
skewed

bursty uniform

NN

Different

structures!

Our Methodology

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

Further Reading

ACM SIGMETRICS 2020

Question 2:

Given This Structure,
What Can Be Achieved?
Metrics and Algorithms?

15

A first insight: entropy of the demand.

Models and Connection to
Datastructures & Coding

Oblivious networks
(worst-case traffic)

More structure: lower routing cost

Models and Connection to
Datastructures & Coding

Oblivious networks
(worst-case traffic)

More structure: lower routing cost

Models and Connection to
Datastructures & Coding

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

More structure: lower routing cost

Models and Connection to
Datastructures & Coding

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

More structure: lower routing cost

Models and Connection to
Datastructures & Coding

More structure: lower routing cost

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

Traditional BST
(Worst-case coding)

Models and Connection to
Datastructures & Coding

More structure: lower routing cost

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

entropy
rate

entropylog n

Oblivious networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

Traditional BST
(Worst-case coding)

Models and Connection to
Datastructures & Coding

Traditional networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

More structure: lower routing cost

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

More than

an analogy!entropy
rate

entropylog n

Generalize methodology:

... and transfer

entropy bounds and

algorithms of data-

structures to networks.

First result:

Demand-aware networks

of asymptotically

optimal route lengths.

entropy
rate

entropylog n

S
o
u
r
c
e
s

Destinations

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

2

1

3 4

5

6

7

ERL D,N = ෍

(u,v)∈D

p u, v ∙ dN(u, v)

Case Study “Route Lengths”

Constant-Degree
Demand-Aware Network

S
o
u
r
c
e
s

Destinations

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

ERL D,N = ෍

(u,v)∈D

p u, v ∙ dN(u, v)

Case Study “Route Lengths”

Constant-Degree
Demand-Aware Network

1

2

3 4

5

6

7

1

3 4

5

6

7

S
o
u
r
c
e
s

Destinations

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

ERL D,N = ෍

(u,v)∈D

p u, v ∙ dN(u, v)

Case Study “Route Lengths”

Constant-Degree
Demand-Aware Network

2

1

3 4

5

6

7

S
o
u
r
c
e
s

Destinations

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

ERL D,N = ෍

(u,v)∈D

p u, v ∙ dN(u, v)

Case Study “Route Lengths”

Constant-Degree
Demand-Aware Network

2

Examples

⇢ DAN for △=3

⇀ E.g., complete binary

´ tree would be log n

⇀ Can we do better?

⇢ DAN for △=2

⇀ Set of lines and cycles

Examples

⇢ DAN for △=3

⇀ E.g., complete binary

´ tree would be log n

⇀ Can we do better?

⇢ DAN for △=2

⇀ Set of lines and cycles

How
hard?

Related Problem

Virtual Network
Embedding Problem (VNEP)

Embedding?

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

Related Problem

Virtual Network
Embedding Problem (VNEP)

cost 5

Bad!

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

Related Problem

Virtual Network
Embedding Problem (VNEP)

cost 1

Good!

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

Related Problem

Virtual Network
Embedding Problem (VNEP)

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

MLA is NP-hard

⇀ … and so is our problem!

Related Problem

Virtual Network
Embedding Problem (VNEP)

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

Related Problem

Virtual Network
Embedding Problem (VNEP)

Example △=2: A Minium Linear

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

Simplifies problem?!

S
o
u
r
c
e
s

Destinations

0 2

65

1

13

1

65

1

65

2

65

3

65

2

65
0 1

65
0 0 0 2

65

1

13

1

65
0 2

65
0 0 1

13

1

65
0 2

65
0 4

65
0 0

1

65
0 3

65

4

65
0 0 0

2

65
0 0 0 0 0 3

65

3

65

2

65

1

13
0 0 3

65
0

1

2

3

4

5

6

1 2 3 4 5 6 7

Huffman tree:
“ego-tree”

Entropy Lower Bound

ERL=Ω(HΔ(Y|X))

Entropy Lower Bound

⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

Static

Entropy Upper Bound

⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

⇢ Ok for sparse demands
⇀ not everyone gets tree

⇀ helper nodes

Static

Entropy Upper Bound

Intuition of Algorithm

Demand graph: Demand-aware network:

Ego-trees for

large nodes

⇢ For regular and uniform demands

which admit constant distortion

linear spanner

⇢ Graphs of bounded doubling

dimension

More Optimal Graphs

⇢ Still use ego-trees

⇢ But balance for load

Load

Accounting for Load

Further Reading

TON 2016, DISC 2017,

CCR 2019, INFOCOM 2019

⇢ Dynamic the same:
⇀ union of dynamic ego-trees

⇢ E.g., SplayNets

⇢ Online algorithms

Dynamic Setting

Dynamic

⇢ Dynamic the same:
⇀ union of dynamic&distributed ego-trees

⇢ E.g., SplayNets or CB trees

⇢ Online algorithms

Dynamic Setting
& distributed

Dynamic

Dynamic Objectives

Demand-Aware

Reconfigurable

Offline Online

OFF ON

Static

Optimality

Dynamic

Optimality

Working Set

Figure 5: Detai led taxonomy of network optimization

3.3 Additional Properties

Besides theproperties that arespeci c to demand-awarenet-

works, it is usually desirable that demand-aware networks

additionally still ful ll the traditional properties of demand-

oblivious networks, for example the requirement to provide

redundant connectivity. Furthermore, some static properties

become more useful in the dynamic context, for example,

compact and local routing: As dynamic demand-aware net-

works may change frequently over time, it may be highly

undesirable to recompute routing paths each time for each

topological modi cation; rather, it would beideal if thetopol-

ogy allows to forward packets greedily, at any time, and

modi cations only entail local changes to the forwarding

tables.

4 A FORMAL MODEL

This section presents a general algorithmic model for self-

adjusting networks. We consider a set of n nodes V =

{1, . . . ,n} (e.g., the top-of-rack switches). The communi-

cation demand among these nodes is a sequence σ =

(σ1,σ2, . . .) of communication requests whereσt = (u,v) 2

V ⇥V , is a source-destination pair. The communication de-

mand can either be nite or in nite.

In order to serve this demand, the nodesV must be inter-

connected by a network N , de ned over the same set of

nodes. In case of a demand-aware network, N can be op-

timized towardsσ, either statically or dynamically: a self-

adjusting network N can change over time, and we denote

by Nt the network at time t , i.e., the network evolves: N0,

N1, N2, . . .

4.1 Constraints

In addition to the dynamic properties related to optimiza-

tions over time, described shortly, a network Nt may have

to adhere to some physical constraints (e.g., the number of

lasers which can be installed on a top-of-the-rack switch

may be limited) and ful ll invariants at any time. Thiscan be

modeled by requiring that all networks Nt belong to some

network family N : Nt 2 N . Examples for families N may

include, bounded degreenetworks (e.g., for ahigh scalability),

networks of full bisection bandwidth or expanders (e.g., to en-

sure congestion-free shu e phases), k-connected networks

(for resiliency), etc.

4.2 Recon guration

The crux of designing smart self-adjusting networks is to

nd an optimal tradeo between the bene ts and the costs

of recon guration: while by recon guring the network, we

may be able to serve requests more e ciently in the future,

recon guration itself can come at a cost.

Theinputs to theself-adjusting network design problem is

a set of allowed network topologies N , the request sequence

σ = (σ0,σ1, . . . ,σm−1), and two types of costs:

• An adjustment cost adj : N ⇥N ! R which de nes

thecost of recon guring anetwork N to anetwork N 0.

Adjustment costs may include mechanical costs (e.g.,

energy required to move lasers or abrasion) as well as

performance costs (e.g., recon guring a network may

entail control plane overheads or packet reorderings,

which can harm throughput). For example, the cost

could be given by the number of links which need to

be changed in order to transform the network.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018

Dynamic Optimality:

Push-Down Trees

⇢ For unordered search trees, dynamic

optimality is possible: Push-Down Trees

⇢ Useful property: most recently used (MRU)

s

u

v

Dynamic Optimality:

Push-Down Trees

⇢ For unordered search trees, dynamic

optimality is possible: Push-Down Trees

⇢ Useful property: most recently used (MRU)

s

u

v

Dynamic Optimality:

Push-Down Trees

⇢ For unordered search trees, dynamic

optimality is possible: Push-Down Trees

⇢ Useful property: most recently used (MRU)

s

u

v

How to maintain MRU?

Swap u,v: breaks MRU!

Dynamic Optimality:

Push-Down Trees

⇢ For unordered search trees, dynamic

optimality is possible: Push-Down Trees

⇢ Useful property: most recently used (MRU)

s

u

v

How to maintain MRU?

Idea: pushdown along

path? Not competitive!

Dynamic Optimality:

Push-Down Trees

⇢ For unordered search trees, dynamic

optimality is possible: Push-Down Trees

⇢ Useful property: most recently used (MRU)

⇢ Idea: balanced pushdown (random vs deterministic?)

s

u

v

Dynamic Optimality:

Push-Down Trees

⇢ For unordered search trees, dynamic

optimality is possible: Push-Down Trees

⇢ Useful property: most recently used (MRU)

⇢ Idea: balanced pushdown (random vs deterministic?)

s

u

v

Random walk preservers MRU:

constant competitive.

Deterministic does not,

but still constant competitive!

An Alternative:

SplayNets

⇢ Idea: generalize splay trees to networks

Splay Tree

1 4

2

5

7

1 4

2

5

7comm.

SplayNet

vs

BST is nice for networks:
local (greedy) search!

SplayNets: A Simple Idea

Splay Tree SplayNet

x

@t: access x

x
@t+1

x

@t: comm (x,y)

@t+1

y

LCA

y

x
splay

double-
splay

Properties of SplayNets

⇢ Statically optimal if demand comes

from a product distribution
– Product distribution: entropy equals

conditional entropy, i.e.,
H(X)+H(Y)=H(X|Y)+H(X|Y)

⇢ Converges to optimal static topology in
– Multicast scenario: requests come from a

binary tree as well

– Cluster scenario: communication only within
interval

– Laminated scenario : communication is „non-
crossing matching“

Multicast
Scenario

Cluster

Scenario

Laminated

Scenario

I

I

More Specifically

Cluster scenario: SplayNet

will converge to state where

paths between cluster

nodes only includes cluster

nodes

Non-crossing matching

scenario: SplayNet will

converge to state where all

communication pairs are

adjacent

Further Reading

TON 2016, LATIN 2020,

IPDPS 2021

Hybrid Networks

78

Hybrid Networks

fixed

reconfigurable

79

ReNet
A Statically Optimal Demand-Aware Network

fixed

reconfigurable

Bonus:

⇀ Compact routing (constant tables)

⇀ Local routing (greedy)

⇀ Arbitrary addressing

⇢ Model: hybrid architecture

⇀ Fixed network of diameter log n

plus reconfigurable network

(constant number of direct links)

⇀ Segregated routing

⇀ Online sequence of requests:

σ = (σ1, σ2, σ3, ...)

⇀ Global controller

⇢ Objective: Minimize route length

plus reconfigurations

⇀ More specifically:

be statically optimal

⇀ Compared to a fixed algorithm

which knows σ ahead of time

The ReNet Algorithm (1)

Algorithmic building blocks:

1. Working Set (WS)

⇀ Nodes keep track of recent communication partners in σ.

2. Small/large nodes and Ego-Tree

⇀ Nodes with small WS connect to WS directly, nodes with large WS via a

self-adjusting binary search tree (e.g., a splay tree)

3. Helper nodes to reduce the degree

⇀ Large nodes may appear in many ego-trees, so get help of small nodes

Demand graph ReNet design

Ego-trees for

large nodes

The ReNet Algorithm (2)

Continued:

4. Self adjustments

⇀ Keep track of WS; when too large: flush-when-full

5. Centralized coordination

⇀ Fairly decentralized: coordinator only needs to keep track

of which nodes are large and which small

⇀ Nodes inform coordinator when adding node to working set

⇀ Coordinator then assigns helper node on demand

Analytical Results (1)

Theorem 1:

For any sparse communication sequence of a

certain length, ReNets are statically optimal

while ensuring a bounded degree.

⇢ Sparse: subsequences of only involve a linear number of nodes

⇢ Required to ensure availability of helper nodes (DISC 2017)

Analytical Results (2)

Under certain communication patterns, the

amortized cost of ReNet can be significantly

lower than the static optimum, i.e., Ω(log n).

⇢ Example: consider sequence of σ = (σ(1), σ(2), σ(3), ...)

where each σ(i) is of length n log n, sparse and corresponds to

different 2-dimensional grid.

⇢ In this example, the cost of ReNet is constant for each σ(i).

⇢ Overall, the union of the grids form a uniform pattern, so the

cost of the static algorithm is log n (for constant degree).

Theorem 2:

Further Reading

PERFORMANCE 2020,

SPAA 2021, APOCS 2021

Requires knowledge in networking, distributed systems, algorithms, performance evaluation.

Notion of self-adjusting networks opens a

large uncharted field with many questions:

⇀ Metrics and algorithms: by how much can

load be lowered, energy reduced, quality-

of-service improved, etc. in demand-aware

networks? Even for route length not clear!

⇀ How to model reconfiguration costs?

⇀ Impact on other layers?

so far

to do ☺

scratched

surface

Future Work:

Models, Metrics, Algos

Conclusion

A Self-Adjusting Search Tree

by Jorge Stolfi (1987)

⇢ Demand-aware networks
⇀ Much potential…

⇀ … if demand has structure

⇀ Metrics? E.g., entropy

⇢ Avenues for future work
⇀ Dense communication

⇀ Dynamic optimality

⇀ Distributed control plane

Thank you!

http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites

Static DAN Static OptimalityOverview: Models

Dynamic DAN
Robust DAN

Concurrent DANs

Further Reading

On the Complexity of Traffic Traces and Implications
Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.
ACM SIGMETRICS, Boston, Massachusetts, USA, June 2020.

Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid.
SIGACT News, June 2019.

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.

Dynamically Optimal Self-Adjusting Single-Source Tree Networks
Chen Avin, Kaushik Mondal, and Stefan Schmid.
14th Latin American Theoretical Informatics Symposium (LATIN), University of Sao Paulo, Sao Paulo, Brazil, May 2020.

Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

Distributed Self-Adjusting Tree Networks
Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.

Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks
Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu.
IFIP Networking, Warsaw, Poland, May 2019.

DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks
Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu.
IEEE/ACM International Symposium on Quality of Service (IWQoS), Phoenix, Arizona, USA, June 2019.

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.

SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.

Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.

Selected

References

Bonus Material

Hogwarts Stair

Bonus Material

Golden Gate Zipper

Bonus Material

In HPC

Focus Topic:

Analysis of ProjecToR

ACM SPAA 2021

A 2-Tiered Architecture

Reconfigurable network of ProjecToR relies on a

2-tiered architecture:

⇢ Traffic demands (modelled as packets) arise between ToR switches

⇢ Opportunitstic links are between lasers and photodetectors

Many laser-photodetector combinations can serve traffic

between a pair of ToRs

How to optimally transmit packets over

reconfigurable links (a matching)?

95

The Model

Round Packet Path Latency
1st S1 → D2 (T2,R3) 1
1st S2 → D2 (T3,R3) 2
2nd S2 → D2 (T3,R3) 2
2nd S1 → D2 (T1,R2) 1
2nd S1 → D1 (T1,R1) 2

Matchings:
1st round: (T2,R3)
2nd round: (T3,R3), (T1,R2)
3rd round: (T3,R3), (T1,R1)

ALG = 8
OPT = 6
use (T1,R2) and (T3,R3) in 1st round

Packets between ToRs arrive in an
online fashion (adversarial).
Online matching schedule minimizing latency?

96

The Model

Round Packet Path Latency
1st S1 → D2 (T2,R3) 1
1st S2 → D2 (T3,R3) 2
2nd S2 → D2 (T3,R3) 2
2nd S1 → D2 (T1,R2) 1
2nd S1 → D1 (T1,R1) 2

Matchings:
1st round: (T2,R3)
2nd round: (T3,R3), (T1,R2)
3rd round: (T3,R3), (T1,R1)

ALG = 8
OPT = 6
use (T1,R2) and (T3,R3) in 1st round

Packets between ToRs arrive in an
online fashion (adversarial).
Online matching schedule minimizing latency?

Related to online switch

scheduling but 2 tiers!
97

Algorithm

Scheduler (“transmit stable matchings”):

⇢ Based on a generalization of the stable-matching algorithm for

two-tier networks

⇢ Each transmitter maintains a queue of packets that are not

scheduled yet

⇢ In each time step, find a stable matching between transmitters

and receivers

Dispatcher (greedy):

⇢ Incoming packet assigned to (transmitter, receiver) pair based

on estimated worst case latency increase, taking into account

set of queued packets in the system

98

Impact

Name Path Weight
A (T1,R1) 2
B (T1,R2) 8
C (T1,R2) 9
D (T3,R3) 4
E (T3,R3) 7

What is the worst-case impact of S1 → D2 packet of weight 5?

Use (T1,R2): 5 + 5 + 2
Transmitted after BC, before A

Use (T2,R3): 5 + 4
Transmitted after E, before D

99

Result and Analysis

Alg is 𝑂(𝜀−2)-competitive in a resource

augmentation model with speedup (2+𝜀).

⇢ Our algorithm is competitive in the speed augmentation model:

online algorithm can transmit the packets at twice the rate

of the optimal offline algorithm

⇢ Dinitz and Moseley: otherwise no competitive online algorithm

⇢ Analysis via dual fitting fitting inspired by scheduling for

unrelated machines: take LP and dual-LP, assuming entire input

(ok as only for analysis)

⇢ The crux of the dual-fitting analysis: how to relate the cost of

our algorithm to a feasible dual solution
100

High-Level Overview

⇢ Find LP relaxation (primal) of the resource-augmented

problem (OPT has limited transmission speed)

⇢ Write its dual linear program

⇢ Construct a solution D to dual program

⇢ Charge ALG's cost to D

⇢ Use weak duality to relate cost of D and OPT

101

Primal Program

Variables:

XpeT for packet p, compatible edge e, time T

(fraction of p sent through e at time T)

Objective:

ΣpΣeΣT weight(p) * (T – release(p)) * XpeT

Constraints:

ΣpΣeΣT XpeT ≥ 1

ΣeΣp XpeT ≤ 1/(2+ε) matching for transmitters

ΣeΣp XpeT ≤ 1/(2+ε) matching for receivers

102

Dual Program

Variables:

Ap for packet p

BtT, BrT for time T, transmitter t or receiver r

Objective:

Σp Ap – 1/(2+ε)*(ΣtΣT BtT + ΣtΣT BtT)

Constraints:

Ap – BtT - BrT ≤ weight(p) * (T – release(p))

For packet p, compatible edge e = (t,r), time t

103

Dual Assignment

Variables:

Ap = worst-case impact of p

BtT = weight of packets assigned to t, pending at time T

BrT = weight of packets assigned to t, pending at time T

ALG-to-DUAL ratio:

Σp Ap = ALG

ΣtΣT BtT = ΣtΣT BtT = ALG

DUAL = Σp Ap – 1/(2+ε)*(ΣtΣT BtT + ΣtΣT BtT)

= ALG – ALG * 2/(2+ε)

= ALG * ε/(2+ε)

104

Dual Assignment

Variables:

Ap = worst-case impact of p

BtT = weight of packets assigned to t, pending at time T

BrT = weight of packets assigned to t, pending at time T

ALG-to-DUAL ratio:

Σp Ap = ALG

ΣtΣT BtT = ΣtΣT BtT = ALG

DUAL = Σp Ap – 1/(2+ε)*(ΣtΣT BtT + ΣtΣT BtT)

= ALG – ALG * 2/(2+ε)

= ALG * ε/(2+ε)

It remains to bound DUAL-to-OPT ratio…105

Analysis: DUAL-to-OPT

At time T = release(p) constraint

Ap - BtT - BrT ≤ weight(p) * (T – release(p))

holds with equality.

In one time step

LHS increases by 2 * weight(p)

(each B decreases by weight(p)

RHS increases by weight(p)

Halving each variable yields a feasible solution to

dual program.

106

The Competitive Ratio

We have ALG = (2+ε)/ε * DUAL

It remains to bound DUAL-to-OPT ratio

Halving each variable yields a feasible solution
to dual program.

DUAL/2 ≤ OPT by weak duality

We obtain:

ALG ≤ 2 * (2+ε)/ε * OPT

107

Supported Extensions

⇢ Different edge lengths in the network

⇢ Packets sizes

⇢ Hybrid fixed and reconfigurable networks

108

Focus Topic:

Relationship to Spanners

DISC 2017

Low-Distortion Spanners

⇢ Classic problem: find sparse, distance-preserving

(low-distortion) spanner (the “DAN”) of a graph

(the demand)

⇢ But:

⇢ Spanners aim at low distortion among all pairs; in

our case, we are only interested in the local

distortion, 1-hop communication neighbors

⇢ We allow auxiliary edges (not a subgraph): similar to

geometric spanners

⇢ We require constant degree

110

Still Exploitable!

⇢ Yet: Can sometimes leverage connection to spanners

111

Theorem: If request distribution D is regular and uniform, and if

we can find a constant distortion, linear sized (i.e., constant

sparse) spanner for this request graph: then we can design a

constant degree DAN providing an optimal ERL (i.e.,O(H(X|Y)+H(Y|X)).

r-regular and uniform
demand:

Sparse, irregular
(constant) spanner:

Constant degree optimal
DAN (ERL at most log r):

subgraph!

auxiliary edge:
degree reduction trick!

Still Exploitable!

⇢ Yet: Can sometimes leverage connection to spanners

112

Theorem: If request distribution D is regular and uniform, and if

we can find a constant distortion, linear sized (i.e., constant

sparse) spanner for this request graph: then we can design a

constant degree DAN providing an optimal ERL (i.e.,O(H(X|Y)+H(Y|X)).

r-regular and uniform
demand:

Sparse, irregular
(constant) spanner:

Constant degree optimal
DAN (ERL at most log r):

⇢ Optimality: r-regular graphs have entropy log r.

Corollaries

Optimal DAN designs for

⇢ Hypercubes (with n log n edges)

⇢ Chordal graphs

⇢ Trivial: graphs with polynomial degree

(dense graphs)

⇢ Graphs of locally bounded doubling dimension

113

Example

⇢ Definition: Demand graph has a Locally-bounded

Doubling Dimension (LDD) iff all 2-hop neighbors

are covered by 1-hop neighbors of just 𝝀 nodes

⇢ Note: care only about 2-neighborhood

⇢ Challenge: can be of

high degree!

114

114Nodes 1,2,3 cover 2-hop
neighborhood of u.

Example

Lemma: There exists a sparse 9-(subgraph)spanner for LDD. This

implies optimal DAN: still focus on regular and uniform!

Def. (ε-net): A subset V’ of V is a ε-net for a graph

G = (V,E) if

⇢ V’ sufficiently “independent”: for every u,v ∈ V’,

dG(u, v) > ε

⇢ “dominating” V: for each w ∈ V , ∃ at least one

u ∈ V’ such that, dG(u,w) ≤ ε

Example

2-net node (clusterhead)

2-net node (clusterhead)

Simple algorithm:

1. Find a 2-net

2. Assign nodes to one of the

closest 2-net nodes: tree

3. Join two clusters if there

are edges in between

Easy: Select nodes into 2-net
one-by-one in decreasing

(remaining) degrees, remove
2-neighborhood. Iterate.

Example

Simple algorithm:

1. Find a 2-net

2. Assign nodes to one of the

closest 2-net nodes: tree

3. Join two clusters if there

are edges in between

Assign: at most 2 hops.

Union of these shortest paths:
a forest. Add to spanner.

Example

Simple algorithm:

1. Find a 2-net

2. Assign nodes to one of the

closest 2-net nodes: tree

3. Join two clusters if there

are edges in between

Connect forests (single „connecting
edge“): add to spanner.

Example

Simple algorithm:

1. Find a 2-net

2. Assign nodes to one of the

closest 2-net nodes: tree

3. Join two clusters if there

are edges in between

Sparse: Spanner only includes forest (sparse) plus
“connecting edges”: but since in a locally doubling
dimension graph the number of cluster heads at
distance 5 is bounded, only a small number of
neighboring clusters will communicate.

Distortion 9: Short detour via
clusterheads: u,ch(u),x,y,ch(v),v

