
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)

Self-Adjusting Networks
Stefan Schmid
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Trend
Data-Centric Applications
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Datacenters (“hyper-scale”)

Traffic
Growth
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Interconnecting networks:  

a critical infrastructure

of our digital society.

+network



The Problem
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking” [1]

⇢ Hence: more equipment, 

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers
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Root Cause
Fixed and Demand-Oblivious Topology
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How to interconnect?



Root Cause
Fixed and Demand-Oblivious Topology

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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Root Cause
Fixed and Demand-Oblivious Topology

Highway which ignores 

actual traffic: 

frustrating!

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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Our Vision
Flexible and Demand-Aware Topologies
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Our Vision
Flexible and Demand-Aware Topologies
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Self-Adjusting

Networks

new
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Our Motivation
Much Structure in the Demand
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My hypothesis: can be 

exploited.

Empirical studies: 
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Microsoft

traffic bursty over time
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Facebook

Time (seconds)

traffic matrices sparse and skewed



Sounds Crazy? 
Emerging Enabling
Technology.
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H2020: 

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council: 

“Photons are the new

Electrons.”
Photonics



Enabler
Novel Reconfigurable Optical Switches
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⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 

⇀ From our last year’s ACM SIGCOMM workshop OptSys

Prototype 1

Prototype 2

Prototype 3



Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror



The Big Picture
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The Big Picture
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Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

Our goal: Develop the 

theoretical foundations

of demand-aware, self-

adjusting networks.



Unique Position
Demand-Aware, Self-Adjusting Systems
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Everywhere, but mainly 
in software

Our focus: 
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems



Question 1:

How to Quantify 
such “Structure” 
in the Demand?
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Intuition
Which demand has more structure?
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Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed 

ML applications

⇀ GPU-to-GPU

More uniform More structure

vs
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Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

vsvs
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Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs



Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Randomize rows Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Difference in size 
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size 
(entropy)?

Can be used to define 
2-dimensional 

complexity map! 
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Our Methodology

Complexity Map

14

No structure

bursty & skewed
skewed

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.
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temporal complexity

14

Potential 

gain!

bursty & skewed
skewed

bursty uniform

NN

Different 

structures!

Our Methodology

Complexity Map

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.



Further Reading

ACM SIGMETRICS 2020



Question 2:

Given This Structure, 
What Can Be Achieved? 
Metrics and Algorithms?

15

A first insight: entropy of the demand.
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Models and Connection to 
Datastructures & Coding

More structure: lower routing cost
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(Huffman coding)
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(Dynamic Huffman coding)

More structure: improved access cost / shorter codes
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Traditional BST
(Worst-case coding)

Models and Connection to 
Datastructures & Coding

Traditional networks
(worst-case traffic)

Demand-aware networks
(spatial structure)

Self-adjusting networks
(temporal structure)

More structure: lower routing cost

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

More than 

an analogy!entropy
rate

entropylog n

Generalize methodology:

... and transfer 

entropy bounds and 

algorithms of data-

structures to networks. 

First result: 

Demand-aware networks 

of asymptotically 

optimal route lengths. 

entropy
rate

entropylog n
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Examples

⇢ DAN for △=3

⇀ E.g., complete binary

´ tree would be log n

⇀ Can we do better? 

⇢ DAN for △=2

⇀ Set of lines and cycles



Examples

⇢ DAN for △=3

⇀ E.g., complete binary

´ tree would be log n

⇀ Can we do better? 

⇢ DAN for △=2

⇀ Set of lines and cycles

How
hard?



Related Problem

Virtual Network 
Embedding Problem (VNEP)

Embedding?

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges
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Related Problem

Virtual Network 
Embedding Problem (VNEP)

Example △=2: A Minium Linear 

Arrangement (MLA) Problem

⇀ Minimizes sum of virtual  

edges

MLA is NP-hard

⇀ … and so is our problem!

But what about △>2?

⇀ Embedding problem still hard

⇀ But we have a new degree of

freedom!

Simplifies problem?!
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ERL=Ω(HΔ(Y|X))

Entropy Lower Bound



⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

Static

Entropy Upper Bound



⇢ Idea for algorithm:
⇀ union of trees

⇀ reduce degree

⇀ but keep distances

⇢ Ok for sparse demands
⇀ not everyone gets tree 

⇀ helper nodes

Static

Entropy Upper Bound



Intuition of Algorithm

Demand graph: Demand-aware network:

Ego-trees for 

large nodes



⇢ For regular and uniform demands

which admit constant distortion

linear spanner

⇢ Graphs of bounded doubling 

dimension

More Optimal Graphs



⇢ Still use ego-trees

⇢ But balance for load

Load

Accounting for Load



Further Reading

TON 2016, DISC 2017, 

CCR 2019, INFOCOM 2019 



⇢ Dynamic the same:
⇀ union of dynamic ego-trees

⇢ E.g., SplayNets

⇢ Online algorithms

Dynamic Setting

Dynamic



⇢ Dynamic the same:
⇀ union of dynamic&distributed ego-trees

⇢ E.g., SplayNets or CB trees

⇢ Online algorithms

Dynamic Setting
& distributed

Dynamic



Dynamic Objectives

Demand-Aware

Reconfigurable

Offline Online

OFF ON

Static

Optimality

Dynamic

Optimality

Working Set

Figure 5: Detai led taxonomy of network optimization

3.3 Additional Properties

Besides theproperties that arespeci c to demand-awarenet-

works, it is usually desirable that demand-aware networks

additionally still ful ll the traditional properties of demand-

oblivious networks, for example the requirement to provide

redundant connectivity. Furthermore, some static properties

become more useful in the dynamic context, for example,

compact and local routing: As dynamic demand-aware net-

works may change frequently over time, it may be highly

undesirable to recompute routing paths each time for each

topological modi cation; rather, it would beideal if thetopol-

ogy allows to forward packets greedily, at any time, and

modi cations only entail local changes to the forwarding

tables.

4 A FORMAL MODEL

This section presents a general algorithmic model for self-

adjusting networks. We consider a set of n nodes V =

{1, . . . ,n} (e.g., the top-of-rack switches). The communi-

cation demand among these nodes is a sequence σ =

(σ1,σ2, . . .) of communication requests whereσt = (u,v ) 2

V ⇥V , is a source-destination pair. The communication de-

mand can either be nite or in nite.

In order to serve this demand, the nodesV must be inter-

connected by a network N , de ned over the same set of

nodes. In case of a demand-aware network, N can be op-

timized towardsσ, either statically or dynamically: a self-

adjusting network N can change over time, and we denote

by Nt the network at time t , i.e., the network evolves: N0,

N1, N2, . . .

4.1 Constraints

In addition to the dynamic properties related to optimiza-

tions over time, described shortly, a network Nt may have

to adhere to some physical constraints (e.g., the number of

lasers which can be installed on a top-of-the-rack switch

may be limited) and ful ll invariants at any time. Thiscan be

modeled by requiring that all networks Nt belong to some

network family N : Nt 2 N . Examples for families N may

include, bounded degreenetworks (e.g., for ahigh scalability),

networks of full bisection bandwidth or expanders (e.g., to en-

sure congestion-free shu e phases), k-connected networks

(for resiliency), etc.

4.2 Recon guration

The crux of designing smart self-adjusting networks is to

nd an optimal tradeo between the bene ts and the costs

of recon guration: while by recon guring the network, we

may be able to serve requests more e ciently in the future,

recon guration itself can come at a cost.

Theinputs to theself-adjusting network design problem is

a set of allowed network topologies N , the request sequence

σ = (σ0,σ1, . . . ,σm−1), and two types of costs:

• An adjustment cost adj : N ⇥N ! R which de nes

thecost of recon guring anetwork N to anetwork N 0.

Adjustment costs may include mechanical costs (e.g.,

energy required to move lasers or abrasion) as well as

performance costs (e.g., recon guring a network may

entail control plane overheads or packet reorderings,

which can harm throughput). For example, the cost

could be given by the number of links which need to

be changed in order to transform the network.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018
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Dynamic Optimality:

Push-Down Trees

⇢ For unordered search trees, dynamic 

optimality is possible: Push-Down Trees

⇢ Useful property: most recently used (MRU)

⇢ Idea: balanced pushdown (random vs deterministic?)

s

u

v

Random walk preservers MRU: 

constant competitive. 

Deterministic does not, 

but still constant competitive!



An Alternative:

SplayNets

⇢ Idea: generalize splay trees to networks

Splay Tree

1 4

2

5

7

1 4

2

5

7comm.

SplayNet

vs

BST is nice for networks:
local (greedy) search!



SplayNets: A Simple Idea

Splay Tree SplayNet

x

@t: access x

x
@t+1

x

@t: comm (x,y)

@t+1

y

LCA

y

x
splay

double-
splay



Properties of SplayNets

⇢ Statically optimal if demand comes 

from a product distribution
– Product distribution: entropy equals 

conditional entropy, i.e., 
H(X)+H(Y)=H(X|Y)+H(X|Y)

⇢ Converges to optimal static topology in
– Multicast scenario: requests come from a 

binary tree as well

– Cluster scenario: communication only within
interval

– Laminated scenario : communication is „non-
crossing matching“

Multicast 
Scenario

Cluster

Scenario

Laminated

Scenario

I

I



More Specifically

Cluster scenario: SplayNet

will converge to state where 

paths between cluster 

nodes only includes cluster 

nodes

Non-crossing matching 

scenario: SplayNet will 

converge to state where all 

communication pairs are 

adjacent



Further Reading

TON 2016, LATIN 2020, 

IPDPS 2021



Hybrid Networks

78



Hybrid Networks

fixed

reconfigurable
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ReNet
A Statically Optimal Demand-Aware Network

fixed

reconfigurable

Bonus:

⇀ Compact routing (constant tables)

⇀ Local routing (greedy)

⇀ Arbitrary addressing

⇢ Model: hybrid architecture

⇀ Fixed network of diameter log n

plus reconfigurable network 

(constant number of direct links) 

⇀ Segregated routing

⇀ Online sequence of requests:

σ = (σ1, σ2, σ3, ...)

⇀ Global controller

⇢ Objective: Minimize route length 

plus reconfigurations

⇀ More specifically: 

be statically optimal

⇀ Compared to a fixed algorithm

which knows σ ahead of time 



The ReNet Algorithm (1)

Algorithmic building blocks:

1. Working Set (WS)

⇀ Nodes keep track of recent communication partners in σ.

2. Small/large nodes and Ego-Tree

⇀ Nodes with small WS connect to WS directly, nodes with large WS via a   

self-adjusting binary search tree  (e.g., a splay tree)

3. Helper nodes to reduce the degree

⇀ Large nodes may appear in many ego-trees, so get help of small nodes 

Demand graph ReNet design

Ego-trees for 

large nodes



The ReNet Algorithm (2)

Continued:

4. Self adjustments

⇀ Keep track of WS; when too large: flush-when-full

5. Centralized coordination

⇀ Fairly decentralized: coordinator only needs to keep track 

of which nodes are large and which small 

⇀ Nodes inform coordinator when adding node to working set

⇀ Coordinator then assigns helper node on demand 



Analytical Results (1)

Theorem 1:

For any sparse communication sequence of a 

certain length, ReNets are statically optimal 

while ensuring a bounded degree. 

⇢ Sparse: subsequences of only involve a linear number of nodes

⇢ Required to ensure availability of helper nodes (DISC 2017)



Analytical Results (2)

Under certain communication patterns, the 

amortized cost of ReNet can be significantly

lower than the static optimum, i.e., Ω(log n).

⇢ Example: consider sequence of σ = (σ(1), σ(2), σ(3), ...)

where each σ(i) is of length n log n, sparse and corresponds to 

different 2-dimensional grid. 

⇢ In this example, the cost of ReNet is constant for each σ(i). 

⇢ Overall, the union of the grids form a uniform pattern, so the  

cost of the static algorithm is log n (for constant degree).

Theorem 2:



Further Reading

PERFORMANCE 2020, 

SPAA 2021, APOCS 2021 



Requires knowledge in networking, distributed systems, algorithms, performance evaluation.

Notion of self-adjusting networks opens a 

large uncharted field with many questions:

⇀ Metrics and algorithms: by how much can  

load be lowered, energy reduced, quality-

of-service improved, etc. in demand-aware 

networks? Even for route length not clear!

⇀ How to model reconfiguration costs? 

⇀ Impact on other layers?

so far

to do ☺

scratched 

surface

Future Work:

Models, Metrics, Algos



Conclusion

A Self-Adjusting Search Tree 

by Jorge Stolfi (1987)

⇢ Demand-aware networks
⇀ Much potential…

⇀ … if demand has structure

⇀ Metrics? E.g., entropy

⇢ Avenues for future work 
⇀ Dense communication

⇀ Dynamic optimality

⇀ Distributed control plane

Thank you!



http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites



Static DAN Static OptimalityOverview: Models

Dynamic DAN
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A 2-Tiered Architecture

Reconfigurable network of ProjecToR relies on a 

2-tiered architecture:

⇢ Traffic demands (modelled as packets) arise between ToR switches

⇢ Opportunitstic links are between lasers and photodetectors

Many laser-photodetector combinations can serve traffic 

between a pair of ToRs

How to optimally transmit packets over 

reconfigurable links (a matching)?
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The Model

Round Packet Path Latency
1st S1 → D2 (T2,R3) 1
1st S2 → D2 (T3,R3) 2
2nd S2 → D2 (T3,R3) 2
2nd S1 → D2 (T1,R2) 1
2nd S1 → D1 (T1,R1) 2

Matchings:
1st round: (T2,R3)
2nd round: (T3,R3), (T1,R2)
3rd round: (T3,R3), (T1,R1)

ALG = 8
OPT = 6 
use (T1,R2) and (T3,R3) in 1st round

Packets between ToRs arrive in an 
online fashion (adversarial).
Online matching schedule minimizing latency? 

96



The Model

Round Packet Path Latency
1st S1 → D2 (T2,R3) 1
1st S2 → D2 (T3,R3) 2
2nd S2 → D2 (T3,R3) 2
2nd S1 → D2 (T1,R2) 1
2nd S1 → D1 (T1,R1) 2

Matchings:
1st round: (T2,R3)
2nd round: (T3,R3), (T1,R2)
3rd round: (T3,R3), (T1,R1)

ALG = 8
OPT = 6 
use (T1,R2) and (T3,R3) in 1st round

Packets between ToRs arrive in an 
online fashion (adversarial).
Online matching schedule minimizing latency? 

Related to online switch 

scheduling but 2 tiers!
97



Algorithm

Scheduler (“transmit stable matchings”):

⇢ Based on a generalization of the stable-matching algorithm for 

two-tier networks

⇢ Each transmitter maintains a queue of packets that are not    

scheduled yet

⇢ In each time step, find a stable matching between transmitters 

and receivers

Dispatcher (greedy):

⇢ Incoming packet assigned to (transmitter, receiver) pair based   

on estimated worst case latency increase, taking into account 

set of queued packets in the system
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Impact

Name Path Weight
A (T1,R1) 2
B (T1,R2) 8
C (T1,R2) 9
D (T3,R3) 4
E (T3,R3) 7

What is the worst-case impact of S1 → D2 packet of weight 5?

Use (T1,R2): 5 + 5 + 2
Transmitted after BC, before A

Use (T2,R3): 5 + 4
Transmitted after E, before D
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Result and Analysis

Alg is 𝑂(𝜀−2)-competitive in a resource 

augmentation model with speedup (2+𝜀).

⇢ Our algorithm is competitive in the speed augmentation model: 

online algorithm can transmit the packets at twice the rate    

of the optimal offline algorithm 

⇢ Dinitz and Moseley: otherwise no competitive online algorithm

⇢ Analysis via dual fitting fitting inspired by scheduling for 

unrelated machines: take LP and dual-LP, assuming entire input  

(ok as only for analysis)

⇢ The crux of the dual-fitting analysis: how to relate the cost of 

our algorithm to a feasible dual solution
100



High-Level Overview

⇢ Find LP relaxation (primal) of the resource-augmented

problem (OPT has limited transmission speed)

⇢ Write its dual linear program

⇢ Construct a solution D to dual program

⇢ Charge ALG's cost to D

⇢ Use weak duality to relate cost of D and OPT
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Primal Program

Variables:

XpeT for packet p, compatible edge e, time T

(fraction of p sent through e at time T)

Objective:

ΣpΣeΣT weight(p) * (T – release(p)) * XpeT

Constraints:

ΣpΣeΣT XpeT ≥ 1

ΣeΣp XpeT ≤ 1/(2+ε) matching for transmitters

ΣeΣp XpeT ≤ 1/(2+ε) matching for receivers
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Dual Program

Variables:

Ap for packet p

BtT, BrT for time T, transmitter t or receiver r

Objective:

Σp Ap – 1/(2+ε)*(ΣtΣT BtT + ΣtΣT BtT)

Constraints:

Ap – BtT - BrT ≤ weight(p) * (T – release(p))

For packet p, compatible edge e = (t,r), time t
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Dual Assignment

Variables:

Ap = worst-case impact of p

BtT = weight of packets assigned to t, pending at time T

BrT = weight of packets assigned to t, pending at time T

ALG-to-DUAL ratio:

Σp Ap = ALG

ΣtΣT BtT = ΣtΣT BtT = ALG

DUAL = Σp Ap – 1/(2+ε)*(ΣtΣT BtT + ΣtΣT BtT)

= ALG – ALG * 2/(2+ε)

= ALG * ε/(2+ε)
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Dual Assignment

Variables:

Ap = worst-case impact of p

BtT = weight of packets assigned to t, pending at time T

BrT = weight of packets assigned to t, pending at time T

ALG-to-DUAL ratio:

Σp Ap = ALG

ΣtΣT BtT = ΣtΣT BtT = ALG

DUAL = Σp Ap – 1/(2+ε)*(ΣtΣT BtT + ΣtΣT BtT)

= ALG – ALG * 2/(2+ε)

= ALG * ε/(2+ε)

It remains to bound DUAL-to-OPT ratio…105



Analysis: DUAL-to-OPT

At time T = release(p) constraint

Ap - BtT - BrT ≤ weight(p) * (T – release(p))

holds with equality.

In one time step

LHS increases by 2 * weight(p)

(each B decreases by weight(p)

RHS increases by weight(p)

Halving each variable yields a feasible solution to 

dual program.
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The Competitive Ratio

We have ALG = (2+ε)/ε * DUAL

It remains to bound DUAL-to-OPT ratio

Halving each variable yields a feasible solution 
to dual program.

DUAL/2 ≤ OPT by weak duality

We obtain:

ALG ≤ 2 * (2+ε)/ε * OPT
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Supported Extensions

⇢ Different edge lengths in the network

⇢ Packets sizes

⇢ Hybrid fixed and reconfigurable networks
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Low-Distortion Spanners

⇢ Classic problem: find sparse, distance-preserving 

(low-distortion) spanner (the “DAN”) of a graph  

(the demand)

⇢ But:

⇢ Spanners aim at low distortion among all pairs; in 

our case, we are only interested in the local

distortion, 1-hop communication neighbors

⇢ We allow auxiliary edges (not a subgraph): similar to 

geometric spanners

⇢ We require constant degree
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Still Exploitable!

⇢ Yet: Can sometimes leverage connection to spanners 

111

Theorem: If request distribution D is regular and uniform, and if 

we can find a constant distortion, linear sized (i.e., constant 

sparse) spanner for this request graph: then we can design a 

constant degree DAN providing an optimal ERL (i.e.,O(H(X|Y)+H(Y|X)).

r-regular and uniform
demand:

Sparse, irregular 
(constant) spanner:

Constant degree optimal
DAN (ERL at most log r):

subgraph!

auxiliary edge: 
degree reduction trick!



Still Exploitable!

⇢ Yet: Can sometimes leverage connection to spanners 

112

Theorem: If request distribution D is regular and uniform, and if 

we can find a constant distortion, linear sized (i.e., constant 

sparse) spanner for this request graph: then we can design a 

constant degree DAN providing an optimal ERL (i.e.,O(H(X|Y)+H(Y|X)).

r-regular and uniform
demand:

Sparse, irregular 
(constant) spanner:

Constant degree optimal
DAN (ERL at most log r):

⇢ Optimality: r-regular graphs have entropy log r.



Corollaries

Optimal DAN designs for

⇢ Hypercubes (with n log n edges)

⇢ Chordal graphs

⇢ Trivial: graphs with polynomial degree 

(dense graphs)

⇢ Graphs of locally bounded doubling dimension
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Example

⇢ Definition: Demand graph has a Locally-bounded 

Doubling Dimension (LDD) iff all 2-hop neighbors 

are covered by 1-hop neighbors of just 𝝀 nodes

⇢ Note: care only about 2-neighborhood

⇢ Challenge: can be of 

high degree!

114

114Nodes 1,2,3 cover 2-hop
neighborhood of u.



Example

Lemma: There exists a sparse 9-(subgraph)spanner for LDD. This 

implies optimal DAN: still focus on regular and uniform!

Def. (ε-net): A subset V’ of V is a ε-net for a graph 

G = (V,E) if 

⇢ V’ sufficiently “independent”: for every  u,v ∈ V’, 

dG(u, v) > ε

⇢ “dominating” V: for each w ∈ V , ∃ at least one 

u ∈ V’ such that, dG(u,w) ≤ ε



Example

2-net node (clusterhead)

2-net node (clusterhead)

Simple algorithm:  

1. Find a 2-net 

2. Assign nodes to one of the 

closest 2-net nodes: tree

3. Join two clusters if there 

are edges in between

Easy: Select nodes into 2-net 
one-by-one in decreasing 

(remaining) degrees, remove
2-neighborhood. Iterate.



Example

Simple algorithm:  

1. Find a 2-net 

2. Assign nodes to one of the 

closest 2-net nodes: tree

3. Join two clusters if there 

are edges in between

Assign: at most 2 hops.

Union of these shortest paths:
a forest. Add to spanner.



Example

Simple algorithm:  

1. Find a 2-net 

2. Assign nodes to one of the 

closest 2-net nodes: tree

3. Join two clusters if there 

are edges in between

Connect forests (single „connecting 
edge“): add to spanner.



Example

Simple algorithm:  

1. Find a 2-net 

2. Assign nodes to one of the 

closest 2-net nodes: tree

3. Join two clusters if there 

are edges in between

Sparse: Spanner only includes forest (sparse) plus           
“connecting edges”: but since in a locally doubling 
dimension graph the number of cluster heads at 
distance 5 is bounded, only a small number of 
neighboring clusters will communicate.

Distortion 9: Short detour via
clusterheads: u,ch(u),x,y,ch(v),v


