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Actually, Opportunities Have Even More Dimensions!

Passau, Germany

Inn, Donau, Ilz

Example: 
IoT

• Converging 
technologies

• Traditional 
fields become 
“in” again: 
control 
systems, 
automation
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IoT History or: Finnish for Beginners!

• Network of smart devices discussed 
already 1982: Coke machine @ CMU 
connected to the Internet (reports 
inventory and whether drinks were cold)

The first IoT device

• First paper mentioning the term “IoT” 
published 2002 in Finnish at Helsinki 
University of Technology

Source: Wikipedia

The first IoT paper



New Types of Sensor Networks

• Sensor networks based on laptops

• E.g., early warning of disasters such as 
earthquakes (e.g., to stop high-speed trains)

– Using integrated accelerometer (originally 
to protect harddrive when falling) 

– Fill the „gaps“ between seismometers 
already in place in California

– E.g., Apple laptops since 2005 
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New Types of Applications:
Smart Devices Move…

• E.g., smart devices/things move with their 
owners: (social) mobile network

• May have intermittent connectivity and 
must hence be delay-tolerant
– E.g., student (“data mule”) commuting between 

hotspots

“data mule”

*MULE = Mobile Ubiquitous LAN Extension

5



Case Study: “Data Mules” in Amazon Riverine
• By Richa et al., with Brazilian collaborators

• Challenge: providing health care to the remote 
communities in the Brazilian Amazon

• Constraint: Lack of modern communication 
infrastructure in these communities

• Solution: delay-tolerant network
– Local nurses perform routine clinical examinations, 

such as ultrasounds on pregnant women

– Records sent to the doctors in Belem (city) for 
evaluation

– Idea: use of regularly scheduled boats as data mules

Source: Liu et al. Robust data mule networks with remote healthcare
applications in the Amazon region. HealthCom 2015: 546-551

Enjoy: last river in 
this presentation!
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… Fly …

• E.g., 1000+ high-tech drones at Winter olympics
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… Collect Lots of Data While Flying …: 
The “Internet of Aircraft Things”

• Geared Turbo Fan (GTF) engines fitted with 5000 sensors
that generate 10 GB of data per second
– I.e., twin-engine aircraft with 12 h flight time: >800 TB of data

• Usage, e.g. AI for prediction of engine demands to
adjust thrust levels

Source: aviationweek.com



Dagstuhl Seminar “Programmable Matter”

Hey, Robots!
Last Week’s Dagstuhl Seminar on Programmable Matter and Swarm Robotics

• Emergence of
large number
simple and small 
robots that, when
combined, can
perform complex 
tasks

• Often inspired by
nature: What can
we learn from
natural swarms?

9
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Example: Smart Natural Swarms
• Army ants (Eciton) can solve non-trivial 

optimization problems, e.g., build “ant-
bridges” as shortcut along supply chain

• Bridge location depends on angle of gap

• Tradeoff: longer bridges make the total 
path shorter, but need to sacrifice more 
workers

RLPKCG 2015: “Army ants dynamically 
adjust living bridges…”

Dagstuhl Seminar “Programmable Matter”
Thanks to Andrea Richa, ASU 10

http://www.pnas.org/content/112/49/15113.abstract


From: University of Amsterdam

Example: Exploit Brazil Nut Effect

Dagstuhl Seminar “Programmable Matter”
© Roderich Gross, Natural Robotics Lab

• Task: separate different robots

• Inspiration: exploit nuts effect and gravity: shaking / 
random move of nuts: big nuts up, small nuts down

Big nut: large 
collision radius

Small nut: small
collision radius

E-puck

• Solution: robots with
distance sensors:

11



• Very simple things: smarticle (alone: “random flapping”)
• One smarticle: no locomotion

• But when interaction with multiple smarticles confined in a 
ring, with one inactive smarticle: 
• Brownian motion w/ drift (toward inactive smarticle)

A ring-robot made of robots

[Cannon, Daymude, Goldman, Li, Randall, Richa, Savoie, SWARM’17]

smarticle

Locomotion by Combining Very Simple Robots

Discovered by accident: 
one smarticle died!

supersmarticle



Further Applications

Reconfigurable robots 
(“transformers”) 

“Helpful” robots 

Dagstuhl Seminar “Programmable Matter”
© Roderich Gross, Natural Robotics Lab

© Julien Bourgeois, FEMTO-ST
© Heiko Hamann, Service Robotics 13

Flora Robotica: e.g., 
robots to grow houses



“IoT trend” also for robots: Many
becoming smaller in size but larger scale

Dagstuhl Seminar “Programmable Matter”
Thanks to Andrea Richa, ASU

Kilobots, Harvard

Monitor health and assist
in surgeries

We still lack models (first attempts such 
as Amoeba model, name depricated)!
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Common Theme: Bigger

In terms of size:

E.g., 8.4 billion IoT devices 
in 2017, 30 billion devices 
expected by 2020

But also in terms of data:

„Data generated by
aerospace industry alone
could be in the order of the
consumer Internet.“ 
AviationWeek.com

New challenges, new solutions required!
15



“Large scale and big data”:
Babyphone Attack (Fall 2016)

• First big IoT device attack

• Attackers exploited household devices: IP-
cameras, printers, babyphones, tv recorders, ...

• DoS attack of more than 500 Gbps!

• Twitter, Netflix, Spotify, … unreachable for 
several hours

“Cyber-attack from the 
babyphone” – Spiegel, 2016

16



Reduce peak load: 
Exploiting delay-tolerance, 

e.g. mule networks

Distribute load (decentralize):
(edge-)cloud, SDN, …

Preprocess:
Set up robust infrastructure

before disaster

Data-aware, e.g. 
topology control

Flexibility of networks 

Dealing With These Challenges:
Exploiting Algorithmic Flexibilities

In general: make algorithms „aware“ of network
flexibilities and specific properties of the workload!

17



Emerging applications and large-scale sensor networks 
processing big data require new models and algorithms!

Some (early) examples.



General Remark: 
CS = “The Science of the Machine”

• Technological enablers are there, but emerging
machines hardly understood today!

• Models? Practical constraints? Objectives? Etc.

• Algorithmic opportunities?

Credits: Marcos K. Aguilera

PODC 2018

“data mule”



Opportunity: Choose Level of 
Decentralization

20



Centralized vs Decentralized:
Example “Edge Cloud / Distributed Cloud”

• Big scale and big data: central cloud is not always the best solution

• Motivation for applying scale out to the datacener: distributed cloud

• Lower latency, less bandwidth

• E.g. airplane example

Cloud

high latency

low bandwidth

low latency

high bandwidth

Many more levels of edges:
e.g., routers/switches

800 TB of data

21



Centralized vs Decentralized:
A Tradeoff

Global 
Cloud

Better visibility, more power

Edge
Cloud

Lower latency, efficient
22



Centralized vs Decentralized:
A Tradeoff

Global 
Cloud

Better visibility, more power

Edge
Cloud

Lower latency, efficient

1. Train neural network here

2. Deploy (less resources)

22



Centralized vs Decentralized:
A Tradeoff

Global 
Cloud

Better visibility, more power

Edge
Cloud

Lower latency, efficient

Learning“with the brain”…

… reflexes go to the spine.

22



Centralized vs Decentralized:
Example “Software-Defined Networks (SDN)”

• Interesting new technology for Algosensors: 
(Wireless) networks become programmable („
software-defined“)

• Easy to deploy your own algorithm for: 
routing, rate/power control, interference/ 
mobility management, load-balancing, etc. : 
– Opportunity for research & innovation: „the

linux of networking“

Interesting dimension: distributed control plane
• Global controller for coarse-grained control

– Services that require global visibility (e.g. 
spanning tree or shortest path)

• Near-sighted controller for fine grained control

– Latency-critical transmission control or load-
intensive tasks 23

Programmable: 
Your algorithm 

goes here! 



• Example: SENTINEL Australian bushfire monitoring system

• Centralized, based on satellites

• However, satellites may miss certain heat sources, e.g., if
there is smoke!

• Distributed sensor nodes (in addition) can be a good
alternative

Going back to Distaster Detection“Bushfire
Monitoring”: Centralized vs Decentralized?

24



So what can be computed locally, what should be global comes in many new
flavors:

• E.g., in distributed / edge cloud: Trend of moving away from client-server: 
How does „client-edge-server“ change consistency, fault-tolerance etc. 
compare to „user-cloud/server“? New distributed computing challenges!

• E.g., in software-defined wireless networks

• Etc.

Research Challenges

25

The clue: Unlike classic distributed graph algorithms, 
there is a choice! Hybrid distributed-centralized networks



Opportunity: Precomputation

Precomputed logarithms
(20th century book)



Example: Classic Distributed Graph Algorithms



• Example: Distributed graph algorithms

• Traditional model (LOCAL and CONGEST):
– Start from scratch
– Each node first needs to explore ist 

neighborhood, break symmetries, etc.

• Sometimes, some pre-computation is possible:
• E.g., (rough) idea how network looks like (node

locations or links «before failures»)! 
– Just don’t know, e.g., failures or demand

• So: 
– Which information is useful to precompute so 

that later distributed algorithms are faster?
– How to exploit it in algorithms?

The Power of Precomputation?

?

28



• A simple model: bush fire breaks out, 
smoke detected by local nodes

• Goal: efficiently detect size of disaster, 
i.e., of connected «event component»
– at least 1 node should know

• Ideally, don’t waste energy for small
events: algorithm should be output 
sensitive. In case of „small disasters“, only
a small number of messages is transmitted

• Different model flavors: 
– On-duty: non-affected nodes can help too
– Off-duty: they cannot help

Going Back to Bushfire: Estimate the Disaster Size

29



Example: Disaster Estimation on Trees

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d

How to achieve this?

s=5

d=3

30



Example: Disaster Estimation on Trees

Preprocess: make tree 

rooted and directed!

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d

30



Example: Disaster Estimation on Trees

Round 1

1. each node v immediately informs its parent in case of an event «sensed»

smoke@me!

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d

30



Example: Disaster Estimation on Trees

Round 2

1. each node v immediately informs its parent in case of an event «sensed»
2. wait until all event-children counted the total number of event nodes in their subtrees

1

1

30

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d



Example: Disaster Estimation on Trees

Round 3
2

1. each node v immediately informs its parent in case of an event «sensed»
2. wait until all event-children counted the total number of event nodes in their subtrees
3. propagate up

30

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d



Example: Disaster Estimation on Trees

Round 4

4

1. each node v immediately informs its parent in case of an event «sensed»
2. wait until all event-children counted the total number of event nodes in their subtrees
3. propagate up

30

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d



Example: Disaster Estimation on Trees

Round 4

5!

1. each node v immediately informs its parent in case of an event «sensed»
2. wait until all event-children counted the total number of event nodes in their subtrees
3. propagate up

30

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d



Preprocessing For Neighborhood Discovery

• How to do this on general graphs?

• Even more basic problem: How to efficiently find out which of my neighbors also 
sensed an event? Neighborhood discovery! Goal again: «output-sensitive»

• Idea: «Just inform all neighbors!»

31



Problem: 
disaster size
1, but cost n 

• How to do this on general graphs?

• Even more basic problem: How to efficiently find out which of my neighbors also 
sensed an event? Neighborhood discovery! Goal: «output-sensitive»! 

• Idea: «Just inform all neighbors!»

Preprocessing For Neighborhood Discovery

31



• Another idea: «Low-degree nodes inform
high-degree neighbors!»

Efficient here! 

(Note: on-duty only)

• How to do this on general graphs?

• Even more basic problem: How to efficiently find out which of my neighbors also 
sensed an event? Neighborhood discovery! Goal: «output-sensitive»! 

• Idea: «Just inform all neighbors!»

Preprocessing For Neighborhood Discovery

Problem: 
disaster size
1, but cost n 

31



But what about symmetric graphs like clique? 
Again neighborhood discovery only: how to know which
neighbors sensed the event with O(s) messages in total only?
Can we avoid cost n for small components?

Preprocessing For Neighborhood Discovery

32
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Useful Preprocessing For Neighborhood Discovery: 
Neighborhood Cover

Yes we still can leverage
preprocessing: graph
decompositions! (On-duty only.)

E.g., pre-process sparse (k,t)- neighborhood 
cover, clustering ensures that:

• Each t-neighborhood included entirely in at 
least one cluster

• Diameter of cluster at most O(kt)
• Sparse: node part of at most kn1/k clusters

Idea:
• Preprocess neighborhood cover k=log n, t=1
• Assign one node per cluster («cluster head») 

collects «who sensed event» information
• Since low diameter: nodes can send to cluster

head in log n hops
• Since sparse: Nodes need to send to at most log 

n cluster heads

Time O(log n), Message complexity O(polylog n)
33



Yes we still can leverage
preprocessing: graph
decompositions! (On-duty only.)

E.g., pre-process sparse (k,t)- neighborhood 
cover, clustering ensures that:

• Each t-neighborhood included entirely in at 
least one cluster

• Diameter of cluster at most O(kt)
• Sparse: node part of at most kn1/k clusters

Idea:
• Preprocess neighborhood cover k=log n, t=1
• Assign one node per cluster («cluster head») 

collects «who sensed event» information
• Since low diameter: nodes can send to cluster

head in log n hops
• Since sparse: Nodes need to send to at most log 

n cluster heads

Time O(log n), Message complexity O(polylog n)

For each node exists a cluster which 
covers entire 1-hop neighborhood!
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E.g., pre-process sparse (k,t)- neighborhood 
cover, clustering ensures that:

• Each t-neighborhood included entirely in at 
least one cluster

• Diameter of cluster at most O(kt)
• Sparse: node part of at most kn1/k clusters

Idea:
• Preprocess neighborhood cover k=log n, t=1
• Assign one node per cluster («cluster head») 

collects «who sensed event» information
• Since low diameter: nodes can send to cluster

head in log n hops
• Since sparse: Nodes need to send to at most log 

n cluster heads

Time O(log n), Message complexity O(polylog n)

Yes we still can leverage
preprocessing: graph
decompositions! (On-duty only.)

< log n 
far

< log n 
many

Each node v only needs to inform
“relevant” cluster heads (covering v)

in time and msg complexity polylog(n).
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E.g., pre-process sparse (k,t)- neighborhood 
cover, clustering ensures that:

• Each t-neighborhood included entirely in at 
least one cluster

• Diameter of cluster at most O(kt)
• Sparse: node part of at most kn1/k clusters

Idea:
• Preprocess neighborhood cover k=log n, t=1
• Assign one node per cluster («cluster head») 

collects «who sensed event» information
• Since low diameter: nodes can send to cluster

head in log n hops
• Since sparse: Nodes need to send to at most log 

n cluster heads

Time O(log n), Message complexity O(polylog n)

Yes we still can leverage
preprocessing: graph
decompositions! (On-duty only.)

< log n 
far

< log n 
many

Cluster heads can communicate neighborhood.
Total message complexity in O(s polylogn)

(for neighborhood discovery alone). 33

Useful Preprocessing For Neighborhood Discovery: 
Neighborhood Cover

Each node v only needs to inform
“relevant” cluster heads (covering v)

in time and msg complexity polylog(n).



But what if we cannot use “event nodes”
(e.g., due to smoke/heat)?! Off-duty model!

Preprocessing useful at all?
E.g. sparse neighborhood cover loses properties:

without relay, cluster head may be far away!

Now far away!



Precomputation in Off-Duty Model: Covering Forests

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests 
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my 
neighbors detected event as well?) efficiently:

Minimum number of forests
into which graph edges

can be partitioned.

35



Forest F1 (a tree)

Precomputation in Off-Duty Model: Covering Forests

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests 
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my 
neighbors detected event as well?) efficiently:

35

Minimum number of forests
into which graph edges

can be partitioned.



Precomputation in Off-Duty Model: Covering Forests

Forest F2

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests 
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my 
neighbors detected event as well?) efficiently:

35

Minimum number of forests
into which graph edges

can be partitioned.



Forest F3

Precomputation in Off-Duty Model: Covering Forests

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests 
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my 
neighbors detected event as well?) efficiently:

Edge partition!

35

Minimum number of forests
into which graph edges

can be partitioned.



Forest F3

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests 
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my 
neighbors detected event as well?) efficiently:

Solution to  “neighborhood problem”: Preprocess forests 
by making them rooted and directed. Then, at runtime:

Precomputation in Off-Duty Model: Covering Forests

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my neighbors 
detected event as well?) efficiently:

35

Minimum number of forests
into which graph edges

can be partitioned.



Forest F3

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests 
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my 
neighbors detected event as well?) efficiently:

Solution to  “neighborhood problem”: Preprocess forests 
by making them rooted and directed. Then, at runtime:

Precomputation in Off-Duty Model: Covering Forests

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my 
neighbors detected event as well?) efficiently:The clue: degree may be high, but number of parents not!

35

Minimum number of forests
into which graph edges

can be partitioned.
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Forest F3

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests 
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my 
neighbors detected event as well?) efficiently:

Solution to  “neighborhood problem”: Preprocess forests 
by making them rooted and directed. Then, at runtime:

Precomputation in Off-Duty Model: Covering Forests

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my 
neighbors detected event as well?) efficiently:The clue: degree may be high, but number of parents not!

1. Each “event node” v sends a hello message to all its neighbors in Pv (at most |Pv| ≤ α many)

2. Those “event nodes” that receive hello messages reply in the second round (at most |Pv| ≤ α many)

Since it is a cover: each event node either receives a hello message or a reply from all neighbors that are 
event nodes, and thus may effectively learn their neighborhood. 

At runtime:

Minimum number of forests
into which graph edges

can be partitioned.



Many Open Problems

• For distributed disaster size detection alone: On-duty, Off-duty, randomized

• … but many other problems!

? ?

?
36



Another Use of Preprocessing: Preparing for Link 
Failures and “Fast Fixing” (aka. SUPPORTED Model)

• What can we precompute to quickly fix 
a solution (e.g., coloring, DS, MIS, …) 
under link failures?

• Problem has two phases and there are
two graphs: 
– Support graph H: on which one can do 

precomputation

– Input graph G ⊆ H: on which solution
should be computed fast

• Motivation: Fast fixing
– After failures (induce subgraph), want

to fix solution quickly

• Two flavors again: 

Support graph H:

Input graph G ⊆ H:



Idea: Exploit Properties That Are Preserved!

• As input graph is subgraph, some properties remain:
– E.g., if it was sparse/planar/bounded-genus… it remains

• Consequence: Legal coloring stays legal coloring
– Can precompute it!

• Case study: Czygrinow et al. algorithm to compute 
(1+ɛ)-approx. MIS in non-constant time in planar 
graphs
– First computes pseudo-forest in O(1) time

– Then performs 3-coloring: allows to find “heavy-stars” of 
constant diameter

Support graph H:

Input graph G ⊆ H:

Planar, 
colored

Still planar, 
colored



SUPPORTED Model: Some Observations
Support graph H:

Input graph G ⊆ H:

Planar, 
colored

Still planar, 
coloredOnly non-constant time part. But planar graph 4-colorable (precomputed), 

and can reduce from 4 to 3 colors in constant time!

• As input graph is subgraph, some properties remain:
– E.g., if it was sparse/planar/bounded-genus… it remains

• Consequence: Legal coloring stays legal coloring
– Can precompute it!

• Case study: Czygrinow et al. algorithm to compute 
(1+ɛ)-approx. MIS in non-constant time in planar 
graphs
– First computes pseudo-forest in O(1) time

– Then performs 3-coloring: allows to find “heavy-stars” of 
constant diameter



Distributed Disaster Detection and SUPPORT:
Many Open Questions

• Some positive results for SUPPORT, e.g., 

– See above: MIS, MaxMatching, MDS can be computed in constant time in 
bounded-genus graphs in SUPPORTED. 

– Many other examples: Dominating Set algorithm by Friedman and Kogan 
consists of two phases: symmetry breaking (distance-2 coloring) and 
optimization (greedy). In supported model, both phases in O(1). 

• Some lower bounds can be generalized: (maybe suprising) limits on what can be 
achieved with precomputation

• Everything else pretty much open

38



Further Reading

• Online Aggregation of the Forwarding Information Base: Accounting for Locality
and Churn
Marcin Bienkowski, Nadi Sarrar, Stefan Schmid, and Steve Uhlig.
IEEE/ACM Transactions on Networking (TON), 2018. 

• Exploiting Locality in Distributed SDN Control
Stefan Schmid and Jukka Suomela.
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking 
(HotSDN), Hong Kong, China, August 2013.
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Opportunity: Topology Control for Data-
Intensive Networks?



Traditional Networks

• Usually optimized for the “worst-case” (all-to-all 
communication)

• Typical criteria: 
– Classic network design: small degree, small diameter, 

high mincut

– Topology control: short routes, contains min energy path

• Lower bounds and hard trade-offs, e.g., degree 
vs diameter

40



Traditional Networks

Demand-Oblivious

Fixed

40

• Usually optimized for the “worst-case” (all-to-all 
communication)

• Typical criteria: 
– Classic network design: small degree, small diameter, 

high mincut

– Topology control: short routes, contains min energy path

• Lower bounds and hard trade-offs, e.g., degree 
vs diameter



Data-Intensive Networks
• Recall: not only size of networks grows

but also amount of data

• At the same time, traffic often has
specific patterns and is far from all-to-all
– E.g., all-to-one: sink node collects results

– Also in datacenter: sparse

Can we make networks more 
data/demand-aware?

41



Demand-Aware Networks:
2 Flavors

Demand-Aware

Fixed Reconfigurable

• DAN: Demand-Aware Network

– Statically optimized toward the 
demand

• SAN: Self-Adjusting Network

– Dynamically optimized toward the 
(time-varying) demand

42



An Analogy to Coding
‚Coming to ALGOSENSORS?‘

00110101…
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An Analogy to Coding 00110101…

Requires statistics!

‚Coming to ALGOSENSORS?‘

43



An Analogy to Coding 01011…

DAN!

Requires statistics!

‚Coming to ALGOSENSORS?‘

43



An Analogy to Coding 101…

Better or worse?

‚Coming to ALGOSENSORS?‘
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An Analogy to Coding 101…

Better or worse?

It depends:

Can exploit
temporal locality!

No statistics: 
online!But:

‚Coming to ALGOSENSORS?‘

43



An Analogy to Coding 101…

DAN! SAN!
Can exploit
spatial locality!

Additionally exploit
temporal locality!

‚Coming to ALGOSENSORS?‘



Spectrum of Flexible Networks

Oblivious DAN SAN

Const degree

(e.g., expander): 

route lengths O(log n)

Exploit spatial locality: Route 
lengths depend on demand

Exploit temporal locality as well

44
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Good metric? 44



Spectrum of Flexible Networks

Oblivious DAN SAN

Const degree

(e.g., expander): 

route lengths O(log n)

Exploit spatial locality: Route 
lengths depend on demand

Exploit temporal locality as well

Good metric? e.g., entropy! 44



Demand matrix: joint distribution

So
u

rc
es

Destinations

… of constant degree (scalability)

design

Example of A DAN Design Problem
Input: Workload Output: DAN
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So
u

rc
es

Destinations

design

Makes sense to add link!

Demand matrix: joint distribution … of constant degree (scalability)

Much from 4 to 5.

Input: Workload Output: DAN

Example of A DAN Design Problem

45



So
u

rc
es

Destinations

design

Demand matrix: joint distribution … of constant degree (scalability)

1 communicates to many.

Input: Workload Output: DAN
Bounded degree: route 

to 7 indirectly.

Example of A DAN Design Problem
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Demand matrix: joint distribution

So
u

rc
es

Destinations

design

4 and 6 don’t 
communicate…

… but “extra” link still
makes sense: not a 

subgraph.

… of constant degree (scalability)

Input: Workload Output: DAN

Example of A DAN Design Problem

45



Bounded degree Δ

D[p i, j ]: joint distribution, Δ
N: DAN

Expected Path Length (EPL): Basic measure of efficiency

EPL D,N = ED[dN(∙, ∙)]=  

(u,v)∈D
p u, v ∙ dN(u, v)

=3X

Y

More Formally: DAN Design Problem
Input: Output:

Path length on DAN.

Frequency 45



Good Metrics for DANs?

• Clique communication (all-to-all) is hard: 
nothing to exploit

• But what about such traffic patterns:

or

Spatial locality!

Structure!

Skewed!
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Good Metrics for DANs?

• Clique communication (all-to-all) is hard: 
nothing to exploit

• But what about such traffic patterns:

or

Spatial locality!

Structure!

Skewed!

These traffic matrices have low entropy: allows
for excellent demand-aware networks! 

46



Indeed: Entropy is a Lower Bound (Sources)

• Proof  idea (EPL=Ω(HΔ(Y|X))): 

• Consider union of all ego-
trees

• Violates degree restriction 
but valid lower bound

sources destinations

ego-tree

47



Do this in both dimensions:

Ω(HΔ(X|Y)) 

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)}) 

Ω(HΔ(Y|X)) 

Lower Bound: Sources + Destinations

48



Problem Related To…:

• Sparse, distance-preserving (low-distortion) spanners

• But:

– Spanners aim at low distortion among all pairs; in our case, we are only 
interested in the local distortion, 1-hop communication neighbors

– We allow auxiliary edges (not a subgraph): similar to geometric spanners

– We require constant degree

• Nevertheless: we can sometimes leverage the connection to spanners!

49



Leveraging The Connection to Spanners 

Theorem: If request distribution D is regular and uniform, and if we can find a constant 
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: can design a 
constant degree DAN providing an optimal expected path length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and uniform 
request:

Sparse, irregular 
(constant) spanner:

Constant degree optimal
DAN (EPL at most log r):

subgraph! auxiliiary edges
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Leveraging The Connection to Spanners 

Theorem: If request distribution D is regular and uniform, and if we can find a constant 
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: can design a 
constant degree DAN providing an optimal expected path length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and uniform 
request:

Sparse, irregular 
(constant) spanner:

Constant degree optimal
DAN (EPL at most log r):

subgraph! auxiliiary edges

50

By taking the union of “ego-trees” 
and balance degrees.



Proof Intuition: How to Balance Degrees
Example: Tree Distributions

94

Reduce Degree
Preserve Distances

directed
comm.

• Basic idea to get from irregular spanner to constant-degree tree of low distortion:



Proof Idea: Construct Huffman Trees

95

• Make tree rooted and directed: gives 
parent-child relationship 

• Arrange the outgoing edges (to children) of 
each node in a binary (Huffman) tree

• Repeat for the incoming edges: make 
another another binary (Huffman) tree 
with incoming edges from children

• Analysis

– Can appear in at most 4 trees: in&out own 
tree and in&out tree of parent (parent-child 
helps to avoid many “children trees”)

– Degree at most 4*3=12

– Huffman trees maintain distortion: 
proportional to conditional entropy

out-tree:

in-tree:



Example: Constant-Sparse Spanner for Demands of 
Locally-Bounded Doubling Dimension

• LDD: GD has a Locally-bounded Doubling 
Dimension (LDD) iff all 2-hop neighbors
are covered by 1-hop neighbors of just
𝝀 nodes
– Note: care only about 2-neighborhood

• Formally, B(u, 2)⊆  i=1
λ B(vi, 1)

• Note: LDD graph can still be of high 
degree!

102

We only consider 2 hops!

Nodes 1,2,3 cover 2-hop
neighborhood of u.



Lemma: There exists a sparse 9-(subgraph)spanner for LDD. 

Def. (ε-net): A subset V’ of V is a ε-net for a graph G = (V,E) if 
– V’ sufficiently “independent”: for every  u, v ∈ V’, dG(u, v) > ε

– “dominating” V: for each w ∈ V , ∃ at least one u ∈ V’ such that, dG(u,w) ≤ ε

DAN for Locally-Bounded Doubling Dimension

103

This implies optimal DAN: still 
focus on regular and uniform!
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Simple algorithm:  

1. Find a 2-net 

104

9-Spanner for LDD (= optimal DAN)

Easy: Select nodes into 2-net 
one-by-one in decreasing 

(remaining) degrees, remove
2-neighborhood. Iterate.

2-net (clusterhead)

2-net (clusterhead)

52



Simple algorithm:  

1. Find a 2-net 

2. Assign nodes to one of the 
closest 2-net nodes

105

9-Spanner for LDD (= optimal DAN)

Assign: at most 2 hops.

Union of these shortest paths:
a forest. Add to spanner.
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Simple algorithm:  

1. Find a 2-net 

2. Assign nodes to one of the 
closest 2-net nodes

3. Join two clusters if there are 
edges in between

106

9-Spanner for LDD (= optimal DAN)

Connect forest (single „connecting 
edge“ per pair): add to spanner.

52



Simple algorithm:  

1. Find a 2-net 

2. Assign nodes to one of the 
closest 2-net nodes

3. Join two clusters if there are 
edges in between

107

9-Spanner for LDD (= optimal DAN)

Sparse: Spanner only includes forest (sparse) plus
“connecting edges”: but since in a locally doubling 
dimension graph the number of cluster heads at 
distance 5 is bounded, only a small number of 
neighboring clusters will communicate.

Distortion 9: Detour via clusterheads and bridge: 
from u to v via u,ch(u),x,y,ch(v),v

52



Flexibility: How Often to Reconfigure?

Fully leverage temporal locality, 
but high reconfiguration cost

Spatial locality only, 
no reconfiguration cost

dynamicstatic

Oblivious design:
proportional to 
joint entropy

DAN: proportional to 
conditional entropy

SAN: proportional to 
conditional entropy in 

time windows W

Benefit of 
DAN

Benefit of SAN 
(if we change every 

100k requests)

53



• What about geometric demand-aware graphs to connect robots 
in a plane?

• What about distributed algorithms for self-adjusting networks?

• Can we additionally provide self-stabilizing properties?

• A (general?) technique: each node repeatedly computes 
“correct graph” on neighbors only: seems to be powerful but 
open question…

109

What About Distributed Algos?

54



110

Example: Delaunay Graph

10
2

34

10
2

34

10
2

34

10
2

34

(0) (1)

(2) (3)

Converges to global 
Delaunay graph!

Distributed Algo

1. Compute local 
Delaunay

2. Goto 1.

Slightly simplified:

How to generalize to DANs?



Demand-Oblivious

Fixed

Unknown

Bisection

Demand-Aware

Fixed Reconfigurable

Sequence Generator Offline Online

Awareness

Topology

Input

Static
Optimality

AlgorithmOFF ON

PropertyDiameter

Resiliency

Dynamic
Optimality

Learning
Optimality

STAT GENOBL

Taxonomy 000
Toward Demand-Aware Networking: A Theory for 

Self-Adjusting Networks. ArXiv 2018.
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Further Reading

• Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks
Chen Avin and Stefan Schmid.
ArXiv Technical Report, July 2018.

• Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.

• SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.

• Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, 
New York, USA, July 2018.

https://net.t-labs.tu-berlin.de/~stefan/dan-san.pdf
https://net.t-labs.tu-berlin.de/~stefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/~stefan/ancs18.pdf


Opportunity: Scheduling



Many Networks Are Delay-Tolerant: 
Introduces Flexibility “Wait or Proceed”?

more up to datemore aggregation

e.g., online 
aggregation:

wait longer wait less

59



Many Networks Are Delay-Tolerant: 
Introduces Flexibility “Wait or Proceed”?

more up to datemore aggregation

e.g., online 
aggregation:

wait longer wait less

Little known today about
scheduling in delay
tolerant networks.

59



Scheduling in DTNs: 
Back to Amazon Delta!

• Recall: mobile smart devices with limited 
opportunities for transfer

• E.g., Amazon delta riverine:

A

B

B

C

Source

Destination

Store

Carry

Forward

“data mule”

60© Mengxue Liu



A Simple Model: Time-Schedule Networks
• Assume: boats have a fixed time schedule

(Time Scheduled Networks)

• Idea: transmit packets to nearby boats
(according to schedule):

Original Message

Encoded packets

Encoded 

into 

packets 

at source

Transmitted to boats that stop by source

Belem 

(Final 

Destination)

Continue 

forwarding the 

packets only 

when they are 

closer to Belem
Goal (e.g.): 
maximize 

throughput over 
DTN

e.g., 

ultrasound 

photos

61© Mengxue Liu



Model can be transformed…
• m moving nodes : has schedule Pi

• n stationary nodes

• k commodities                 between (possibly
different sources and destinations)

• Vertices:

– moving and stationary nodes plus commodity
sources plus connection nodes

• Directed edges: 

– From connection node Cx to connection node Cy if
they share a common object and Upx≤ Downy

<up,

down>

<up,

down>
≤

Capacity depends on life-time of 
connection and capacity.

Connect while distance smaller than
x at time t (up@t1 ≤ t ≤ down@t2)

… into a connection graph and MCF problem:

© Mengxue Liu



Connection Graph Example
Share stationary node 2 and 

boat 1 before boat 4.

max flow

capacity/used
(depends on time to transmit)

© Mengxue Liu



All-or-Nothing (Splittable) Multicommodity Flow (ANF)

• Observation: 

valid multicommodity flow in the connection graph 

feasible routing schedule in the DTN network

• Maximum throughput corresponds to All-or-Nothing (Splittable) 
Multicommodity Flow (ADF)

Relaxed version of Maximum Edge Disjoint Path (MEDP) problem: fractional.
Find max subset of commodities that can be simultaneously routed.



ANF: Still not well understood!

• Problem NP-hard

• Goal (𝛼, 𝛽)- approximation: 𝛼 factor from optimum and 
capacity violation at most factor 𝛽

• Challenge 1: Randomized rounding with low 
augmentation: so far 𝜶 = O(1), 𝜷 = √n

• Can we do better?!

Liu, Richa, Rost, Schmid, 2018.
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Challenge 2 - Decomposable ILP Formulations:
Randomized Rounding based on MCF Can Fail!

u1

u6 u2

u4

u5 u3

VNet/Slice
Host

em
b

ed
d

in
g?

i

k j
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Challenge 2 - Decomposable ILP Formulations:
Randomized Rounding based on MCF Can Fail!

u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

u1

u6 u2

u4

u5 u3

Relaxations of classic MCF formulation cannot be decomposed into convex
combinations of valid mappings (so we need different formulations!)

Valid LP solution: virtual node 
mappings sum to 1 and each virtual 
node connects to its neighboring 
node with half a unit of flow…
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Challenge 2 - Decomposable ILP Formulations:
Randomized Rounding based on MCF Can Fail!

u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

u1

u6 u2

u4

u5 u3

Relaxations of classic MCF formulation cannot be decomposed into convex
combinations of valid mappings (so we need different formulations!)

Partial 
Decomposition

Impossible to decompose and extract any single valid mapping. 
Intuition: Node i is mapped to u1 and the only neighboring node that
hosts j is u2, so i must be fully mapped on u1 and j on u2. Similarly, k 
must be mapped on u3. But flow of virtual edge (k,i) leaving u3 only
leads to u4, so i must be mapped on both u1 and u4. This is impossible.
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Further Reading

• Robust data mule networks with remote healthcare applications in the Amazon region: A 
fountain code approach Mengxue Liu, Thienne Johnson, Rachit Agarwal, Alon Efrat, Andrea 
Richa, Mauro Margalho Coutinho.  HealthCom 2015.

• Charting the Complexity Landscape of Virtual Network Embeddings
Matthias Rost and Stefan Schmid. IFIP Networking, Zurich, Switzerland, May 2018.

https://www.net.t-labs.tu-berlin.de/~stefan/ifip18landscape.pdf


Conclusion
• Much work ahead: sensor and wireless networks become larger and carry more data

• An opportunity to make networks data-/demand-aware? 

• Or to exploit flexibilities to precompute, to schedule, to find new tradeoffs between
distributed and centralized?

• Sometimes boils down to classic problems (e.g., DTN scheduling): a great time to
reconsider!

• Technology is evolving quickly (e.g., drone-to-drone communication): what are the
right models? 

Thank you! Question?
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