
Schedule, Support, Adjust, and Fix: Topology Control Revolutions
for Data-Aware Networks

Stefan Schmid (University of Vienna, Austria)

Great Time to be An ALGOSENSORS Researcher!

Rhone and Arve Rivers

Switzerland 1

Sensor and wireless
networks evolving
quickly: in terms of

applications, technology
(e.g. SDN) and scale
(#devices and data).

Great Time to be An ALGOSENSORS Researcher!

Rhone and Arve Rivers

Switzerland 1

Great Time to be An ALGOSENSORS Researcher!

Rhone and Arve Rivers

Switzerland 1

Sensor and wireless
networks evolving
quickly: in terms of

applications, technology
(e.g. SDN) and scale
(#devices and data).

Rhone and Arve Rivers

Switzerland

Research &
innovation

Great Time to be An ALGOSENSORS Researcher!

1

Sensor and wireless
networks evolving
quickly: in terms of

applications, technology
(e.g. SDN) and scale
(#devices and data).

Actually, Opportunities Have Even More Dimensions!

Passau, Germany

Inn, Donau, Ilz 2

Actually, Opportunities Have Even More Dimensions!

Passau, Germany

Inn, Donau, Ilz

Example:
IoT

• Converging
technologies

• Traditional
fields become
“in” again:
control
systems,
automation

2

IoT History or: Finnish for Beginners!

• Network of smart devices discussed
already 1982: Coke machine @ CMU
connected to the Internet (reports
inventory and whether drinks were cold)

The first IoT device

• First paper mentioning the term “IoT”
published 2002 in Finnish at Helsinki
University of Technology

Source: Wikipedia

The first IoT paper

New Types of Sensor Networks

• Sensor networks based on laptops

• E.g., early warning of disasters such as
earthquakes (e.g., to stop high-speed trains)

– Using integrated accelerometer (originally
to protect harddrive when falling)

– Fill the „gaps“ between seismometers
already in place in California

– E.g., Apple laptops since 2005

4

New Types of Applications:
Smart Devices Move…

• E.g., smart devices/things move with their
owners: (social) mobile network

• May have intermittent connectivity and
must hence be delay-tolerant
– E.g., student (“data mule”) commuting between

hotspots

“data mule”

*MULE = Mobile Ubiquitous LAN Extension

5

Case Study: “Data Mules” in Amazon Riverine
• By Richa et al., with Brazilian collaborators

• Challenge: providing health care to the remote
communities in the Brazilian Amazon

• Constraint: Lack of modern communication
infrastructure in these communities

• Solution: delay-tolerant network
– Local nurses perform routine clinical examinations,

such as ultrasounds on pregnant women

– Records sent to the doctors in Belem (city) for
evaluation

– Idea: use of regularly scheduled boats as data mules

Source: Liu et al. Robust data mule networks with remote healthcare
applications in the Amazon region. HealthCom 2015: 546-551

Enjoy: last river in
this presentation!

6

… Fly …

• E.g., 1000+ high-tech drones at Winter olympics

7

… Collect Lots of Data While Flying …:
The “Internet of Aircraft Things”

• Geared Turbo Fan (GTF) engines fitted with 5000 sensors
that generate 10 GB of data per second
– I.e., twin-engine aircraft with 12 h flight time: >800 TB of data

• Usage, e.g. AI for prediction of engine demands to
adjust thrust levels

Source: aviationweek.com

Dagstuhl Seminar “Programmable Matter”

Hey, Robots!
Last Week’s Dagstuhl Seminar on Programmable Matter and Swarm Robotics

• Emergence of
large number
simple and small
robots that, when
combined, can
perform complex
tasks

• Often inspired by
nature: What can
we learn from
natural swarms?

9

../movies/biology/Starlings.avi
../movies/biology/Starlings.avi

Example: Smart Natural Swarms
• Army ants (Eciton) can solve non-trivial

optimization problems, e.g., build “ant-
bridges” as shortcut along supply chain

• Bridge location depends on angle of gap

• Tradeoff: longer bridges make the total
path shorter, but need to sacrifice more
workers

RLPKCG 2015: “Army ants dynamically
adjust living bridges…”

Dagstuhl Seminar “Programmable Matter”
Thanks to Andrea Richa, ASU 10

http://www.pnas.org/content/112/49/15113.abstract

From: University of Amsterdam

Example: Exploit Brazil Nut Effect

Dagstuhl Seminar “Programmable Matter”
© Roderich Gross, Natural Robotics Lab

• Task: separate different robots

• Inspiration: exploit nuts effect and gravity: shaking /
random move of nuts: big nuts up, small nuts down

Big nut: large
collision radius

Small nut: small
collision radius

E-puck

• Solution: robots with
distance sensors:

11

• Very simple things: smarticle (alone: “random flapping”)
• One smarticle: no locomotion

• But when interaction with multiple smarticles confined in a
ring, with one inactive smarticle:
• Brownian motion w/ drift (toward inactive smarticle)

A ring-robot made of robots

[Cannon, Daymude, Goldman, Li, Randall, Richa, Savoie, SWARM’17]

smarticle

Locomotion by Combining Very Simple Robots

Discovered by accident:
one smarticle died!

supersmarticle

Further Applications

Reconfigurable robots
(“transformers”)

“Helpful” robots

Dagstuhl Seminar “Programmable Matter”
© Roderich Gross, Natural Robotics Lab

© Julien Bourgeois, FEMTO-ST
© Heiko Hamann, Service Robotics 13

Flora Robotica: e.g.,
robots to grow houses

“IoT trend” also for robots: Many
becoming smaller in size but larger scale

Dagstuhl Seminar “Programmable Matter”
Thanks to Andrea Richa, ASU

Kilobots, Harvard

Monitor health and assist
in surgeries

We still lack models (first attempts such
as Amoeba model, name depricated)!

14

Common Theme: Bigger

In terms of size:

E.g., 8.4 billion IoT devices
in 2017, 30 billion devices
expected by 2020

But also in terms of data:

„Data generated by
aerospace industry alone
could be in the order of the
consumer Internet.“
AviationWeek.com

New challenges, new solutions required!
15

“Large scale and big data”:
Babyphone Attack (Fall 2016)

• First big IoT device attack

• Attackers exploited household devices: IP-
cameras, printers, babyphones, tv recorders, ...

• DoS attack of more than 500 Gbps!

• Twitter, Netflix, Spotify, … unreachable for
several hours

“Cyber-attack from the
babyphone” – Spiegel, 2016

16

Reduce peak load:
Exploiting delay-tolerance,

e.g. mule networks

Distribute load (decentralize):
(edge-)cloud, SDN, …

Preprocess:
Set up robust infrastructure

before disaster

Data-aware, e.g.
topology control

Flexibility of networks

Dealing With These Challenges:
Exploiting Algorithmic Flexibilities

In general: make algorithms „aware“ of network
flexibilities and specific properties of the workload!

17

Emerging applications and large-scale sensor networks
processing big data require new models and algorithms!

Some (early) examples.

General Remark:
CS = “The Science of the Machine”

• Technological enablers are there, but emerging
machines hardly understood today!

• Models? Practical constraints? Objectives? Etc.

• Algorithmic opportunities?

Credits: Marcos K. Aguilera

PODC 2018

“data mule”

Opportunity: Choose Level of
Decentralization

20

Centralized vs Decentralized:
Example “Edge Cloud / Distributed Cloud”

• Big scale and big data: central cloud is not always the best solution

• Motivation for applying scale out to the datacener: distributed cloud

• Lower latency, less bandwidth

• E.g. airplane example

Cloud

high latency

low bandwidth

low latency

high bandwidth

Many more levels of edges:
e.g., routers/switches

800 TB of data

21

Centralized vs Decentralized:
A Tradeoff

Global
Cloud

Better visibility, more power

Edge
Cloud

Lower latency, efficient
22

Centralized vs Decentralized:
A Tradeoff

Global
Cloud

Better visibility, more power

Edge
Cloud

Lower latency, efficient

1. Train neural network here

2. Deploy (less resources)

22

Centralized vs Decentralized:
A Tradeoff

Global
Cloud

Better visibility, more power

Edge
Cloud

Lower latency, efficient

Learning“with the brain”…

… reflexes go to the spine.

22

Centralized vs Decentralized:
Example “Software-Defined Networks (SDN)”

• Interesting new technology for Algosensors:
(Wireless) networks become programmable („
software-defined“)

• Easy to deploy your own algorithm for:
routing, rate/power control, interference/
mobility management, load-balancing, etc. :
– Opportunity for research & innovation: „the

linux of networking“

Interesting dimension: distributed control plane
• Global controller for coarse-grained control

– Services that require global visibility (e.g.
spanning tree or shortest path)

• Near-sighted controller for fine grained control

– Latency-critical transmission control or load-
intensive tasks 23

Programmable:
Your algorithm

goes here!

• Example: SENTINEL Australian bushfire monitoring system

• Centralized, based on satellites

• However, satellites may miss certain heat sources, e.g., if
there is smoke!

• Distributed sensor nodes (in addition) can be a good
alternative

Going back to Distaster Detection“Bushfire
Monitoring”: Centralized vs Decentralized?

24

So what can be computed locally, what should be global comes in many new
flavors:

• E.g., in distributed / edge cloud: Trend of moving away from client-server:
How does „client-edge-server“ change consistency, fault-tolerance etc.
compare to „user-cloud/server“? New distributed computing challenges!

• E.g., in software-defined wireless networks

• Etc.

Research Challenges

25

The clue: Unlike classic distributed graph algorithms,
there is a choice! Hybrid distributed-centralized networks

Opportunity: Precomputation

Precomputed logarithms
(20th century book)

Example: Classic Distributed Graph Algorithms

• Example: Distributed graph algorithms

• Traditional model (LOCAL and CONGEST):
– Start from scratch
– Each node first needs to explore ist

neighborhood, break symmetries, etc.

• Sometimes, some pre-computation is possible:
• E.g., (rough) idea how network looks like (node

locations or links «before failures»)!
– Just don’t know, e.g., failures or demand

• So:
– Which information is useful to precompute so

that later distributed algorithms are faster?
– How to exploit it in algorithms?

The Power of Precomputation?

?

28

• A simple model: bush fire breaks out,
smoke detected by local nodes

• Goal: efficiently detect size of disaster,
i.e., of connected «event component»
– at least 1 node should know

• Ideally, don’t waste energy for small
events: algorithm should be output
sensitive. In case of „small disasters“, only
a small number of messages is transmitted

• Different model flavors:
– On-duty: non-affected nodes can help too
– Off-duty: they cannot help

Going Back to Bushfire: Estimate the Disaster Size

29

Example: Disaster Estimation on Trees

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d

How to achieve this?

s=5

d=3

30

Example: Disaster Estimation on Trees

Preprocess: make tree

rooted and directed!

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d

30

Example: Disaster Estimation on Trees

Round 1

1. each node v immediately informs its parent in case of an event «sensed»

smoke@me!

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d

30

Example: Disaster Estimation on Trees

Round 2

1. each node v immediately informs its parent in case of an event «sensed»
2. wait until all event-children counted the total number of event nodes in their subtrees

1

1

30

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d

Example: Disaster Estimation on Trees

Round 3
2

1. each node v immediately informs its parent in case of an event «sensed»
2. wait until all event-children counted the total number of event nodes in their subtrees
3. propagate up

30

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d

Example: Disaster Estimation on Trees

Round 4

4

1. each node v immediately informs its parent in case of an event «sensed»
2. wait until all event-children counted the total number of event nodes in their subtrees
3. propagate up

30

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d

Example: Disaster Estimation on Trees

Round 4

5!

1. each node v immediately informs its parent in case of an event «sensed»
2. wait until all event-children counted the total number of event nodes in their subtrees
3. propagate up

30

• Assume: disaster of size s of diameter d

• Ideally: message complexity s, time complexity d

Preprocessing For Neighborhood Discovery

• How to do this on general graphs?

• Even more basic problem: How to efficiently find out which of my neighbors also
sensed an event? Neighborhood discovery! Goal again: «output-sensitive»

• Idea: «Just inform all neighbors!»

31

Problem:
disaster size
1, but cost n

• How to do this on general graphs?

• Even more basic problem: How to efficiently find out which of my neighbors also
sensed an event? Neighborhood discovery! Goal: «output-sensitive»!

• Idea: «Just inform all neighbors!»

Preprocessing For Neighborhood Discovery

31

• Another idea: «Low-degree nodes inform
high-degree neighbors!»

Efficient here!

(Note: on-duty only)

• How to do this on general graphs?

• Even more basic problem: How to efficiently find out which of my neighbors also
sensed an event? Neighborhood discovery! Goal: «output-sensitive»!

• Idea: «Just inform all neighbors!»

Preprocessing For Neighborhood Discovery

Problem:
disaster size
1, but cost n

31

But what about symmetric graphs like clique?
Again neighborhood discovery only: how to know which
neighbors sensed the event with O(s) messages in total only?
Can we avoid cost n for small components?

Preprocessing For Neighborhood Discovery

32

?

?
?

Useful Preprocessing For Neighborhood Discovery:
Neighborhood Cover

Yes we still can leverage
preprocessing: graph
decompositions! (On-duty only.)

E.g., pre-process sparse (k,t)- neighborhood
cover, clustering ensures that:

• Each t-neighborhood included entirely in at
least one cluster

• Diameter of cluster at most O(kt)
• Sparse: node part of at most kn1/k clusters

Idea:
• Preprocess neighborhood cover k=log n, t=1
• Assign one node per cluster («cluster head»)

collects «who sensed event» information
• Since low diameter: nodes can send to cluster

head in log n hops
• Since sparse: Nodes need to send to at most log

n cluster heads

Time O(log n), Message complexity O(polylog n)
33

Yes we still can leverage
preprocessing: graph
decompositions! (On-duty only.)

E.g., pre-process sparse (k,t)- neighborhood
cover, clustering ensures that:

• Each t-neighborhood included entirely in at
least one cluster

• Diameter of cluster at most O(kt)
• Sparse: node part of at most kn1/k clusters

Idea:
• Preprocess neighborhood cover k=log n, t=1
• Assign one node per cluster («cluster head»)

collects «who sensed event» information
• Since low diameter: nodes can send to cluster

head in log n hops
• Since sparse: Nodes need to send to at most log

n cluster heads

Time O(log n), Message complexity O(polylog n)

For each node exists a cluster which
covers entire 1-hop neighborhood!

33

Useful Preprocessing For Neighborhood Discovery:
Neighborhood Cover

E.g., pre-process sparse (k,t)- neighborhood
cover, clustering ensures that:

• Each t-neighborhood included entirely in at
least one cluster

• Diameter of cluster at most O(kt)
• Sparse: node part of at most kn1/k clusters

Idea:
• Preprocess neighborhood cover k=log n, t=1
• Assign one node per cluster («cluster head»)

collects «who sensed event» information
• Since low diameter: nodes can send to cluster

head in log n hops
• Since sparse: Nodes need to send to at most log

n cluster heads

Time O(log n), Message complexity O(polylog n)

Yes we still can leverage
preprocessing: graph
decompositions! (On-duty only.)

< log n
far

< log n
many

Each node v only needs to inform
“relevant” cluster heads (covering v)

in time and msg complexity polylog(n).

33

Useful Preprocessing For Neighborhood Discovery:
Neighborhood Cover

E.g., pre-process sparse (k,t)- neighborhood
cover, clustering ensures that:

• Each t-neighborhood included entirely in at
least one cluster

• Diameter of cluster at most O(kt)
• Sparse: node part of at most kn1/k clusters

Idea:
• Preprocess neighborhood cover k=log n, t=1
• Assign one node per cluster («cluster head»)

collects «who sensed event» information
• Since low diameter: nodes can send to cluster

head in log n hops
• Since sparse: Nodes need to send to at most log

n cluster heads

Time O(log n), Message complexity O(polylog n)

Yes we still can leverage
preprocessing: graph
decompositions! (On-duty only.)

< log n
far

< log n
many

Cluster heads can communicate neighborhood.
Total message complexity in O(s polylogn)

(for neighborhood discovery alone). 33

Useful Preprocessing For Neighborhood Discovery:
Neighborhood Cover

Each node v only needs to inform
“relevant” cluster heads (covering v)

in time and msg complexity polylog(n).

But what if we cannot use “event nodes”
(e.g., due to smoke/heat)?! Off-duty model!

Preprocessing useful at all?
E.g. sparse neighborhood cover loses properties:

without relay, cluster head may be far away!

Now far away!

Precomputation in Off-Duty Model: Covering Forests

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my
neighbors detected event as well?) efficiently:

Minimum number of forests
into which graph edges

can be partitioned.

35

Forest F1 (a tree)

Precomputation in Off-Duty Model: Covering Forests

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my
neighbors detected event as well?) efficiently:

35

Minimum number of forests
into which graph edges

can be partitioned.

Precomputation in Off-Duty Model: Covering Forests

Forest F2

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my
neighbors detected event as well?) efficiently:

35

Minimum number of forests
into which graph edges

can be partitioned.

Forest F3

Precomputation in Off-Duty Model: Covering Forests

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my
neighbors detected event as well?) efficiently:

Edge partition!

35

Minimum number of forests
into which graph edges

can be partitioned.

Forest F3

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my
neighbors detected event as well?) efficiently:

Solution to “neighborhood problem”: Preprocess forests
by making them rooted and directed. Then, at runtime:

Precomputation in Off-Duty Model: Covering Forests

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my neighbors
detected event as well?) efficiently:

35

Minimum number of forests
into which graph edges

can be partitioned.

Forest F3

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my
neighbors detected event as well?) efficiently:

Solution to “neighborhood problem”: Preprocess forests
by making them rooted and directed. Then, at runtime:

Precomputation in Off-Duty Model: Covering Forests

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my
neighbors detected event as well?) efficiently:The clue: degree may be high, but number of parents not!

35

Minimum number of forests
into which graph edges

can be partitioned.

000

Forest F3

• Consider graph of arboricity α

• Pre-compute rooted and directed forests {F1,…,Fα}: α forests
covering the entire original network

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my
neighbors detected event as well?) efficiently:

Solution to “neighborhood problem”: Preprocess forests
by making them rooted and directed. Then, at runtime:

Precomputation in Off-Duty Model: Covering Forests

• Let Pv be set of all parents of a node in these forests: |Pv| ≤ α

• E.g., solve “neighborhood problem” (how many of my
neighbors detected event as well?) efficiently:The clue: degree may be high, but number of parents not!

1. Each “event node” v sends a hello message to all its neighbors in Pv (at most |Pv| ≤ α many)

2. Those “event nodes” that receive hello messages reply in the second round (at most |Pv| ≤ α many)

Since it is a cover: each event node either receives a hello message or a reply from all neighbors that are
event nodes, and thus may effectively learn their neighborhood.

At runtime:

Minimum number of forests
into which graph edges

can be partitioned.

Many Open Problems

• For distributed disaster size detection alone: On-duty, Off-duty, randomized

• … but many other problems!

? ?

?
36

Another Use of Preprocessing: Preparing for Link
Failures and “Fast Fixing” (aka. SUPPORTED Model)

• What can we precompute to quickly fix
a solution (e.g., coloring, DS, MIS, …)
under link failures?

• Problem has two phases and there are
two graphs:
– Support graph H: on which one can do

precomputation

– Input graph G ⊆ H: on which solution
should be computed fast

• Motivation: Fast fixing
– After failures (induce subgraph), want

to fix solution quickly

• Two flavors again:

Support graph H:

Input graph G ⊆ H:

Idea: Exploit Properties That Are Preserved!

• As input graph is subgraph, some properties remain:
– E.g., if it was sparse/planar/bounded-genus… it remains

• Consequence: Legal coloring stays legal coloring
– Can precompute it!

• Case study: Czygrinow et al. algorithm to compute
(1+ɛ)-approx. MIS in non-constant time in planar
graphs
– First computes pseudo-forest in O(1) time

– Then performs 3-coloring: allows to find “heavy-stars” of
constant diameter

Support graph H:

Input graph G ⊆ H:

Planar,
colored

Still planar,
colored

SUPPORTED Model: Some Observations
Support graph H:

Input graph G ⊆ H:

Planar,
colored

Still planar,
coloredOnly non-constant time part. But planar graph 4-colorable (precomputed),

and can reduce from 4 to 3 colors in constant time!

• As input graph is subgraph, some properties remain:
– E.g., if it was sparse/planar/bounded-genus… it remains

• Consequence: Legal coloring stays legal coloring
– Can precompute it!

• Case study: Czygrinow et al. algorithm to compute
(1+ɛ)-approx. MIS in non-constant time in planar
graphs
– First computes pseudo-forest in O(1) time

– Then performs 3-coloring: allows to find “heavy-stars” of
constant diameter

Distributed Disaster Detection and SUPPORT:
Many Open Questions

• Some positive results for SUPPORT, e.g.,

– See above: MIS, MaxMatching, MDS can be computed in constant time in
bounded-genus graphs in SUPPORTED.

– Many other examples: Dominating Set algorithm by Friedman and Kogan
consists of two phases: symmetry breaking (distance-2 coloring) and
optimization (greedy). In supported model, both phases in O(1).

• Some lower bounds can be generalized: (maybe suprising) limits on what can be
achieved with precomputation

• Everything else pretty much open

38

Further Reading

• Online Aggregation of the Forwarding Information Base: Accounting for Locality
and Churn
Marcin Bienkowski, Nadi Sarrar, Stefan Schmid, and Steve Uhlig.
IEEE/ACM Transactions on Networking (TON), 2018.

• Exploiting Locality in Distributed SDN Control
Stefan Schmid and Jukka Suomela.
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN), Hong Kong, China, August 2013.

38

http://ieeexplore.ieee.org/document/8252748/
https://net.t-labs.tu-berlin.de/~stefan/hotsdn13loc.pdf

Opportunity: Topology Control for Data-
Intensive Networks?

Traditional Networks

• Usually optimized for the “worst-case” (all-to-all
communication)

• Typical criteria:
– Classic network design: small degree, small diameter,

high mincut

– Topology control: short routes, contains min energy path

• Lower bounds and hard trade-offs, e.g., degree
vs diameter

40

Traditional Networks

Demand-Oblivious

Fixed

40

• Usually optimized for the “worst-case” (all-to-all
communication)

• Typical criteria:
– Classic network design: small degree, small diameter,

high mincut

– Topology control: short routes, contains min energy path

• Lower bounds and hard trade-offs, e.g., degree
vs diameter

Data-Intensive Networks
• Recall: not only size of networks grows

but also amount of data

• At the same time, traffic often has
specific patterns and is far from all-to-all
– E.g., all-to-one: sink node collects results

– Also in datacenter: sparse

Can we make networks more
data/demand-aware?

41

Demand-Aware Networks:
2 Flavors

Demand-Aware

Fixed Reconfigurable

• DAN: Demand-Aware Network

– Statically optimized toward the
demand

• SAN: Self-Adjusting Network

– Dynamically optimized toward the
(time-varying) demand

42

An Analogy to Coding
‚Coming to ALGOSENSORS?‘

00110101…

43

An Analogy to Coding 00110101…

Requires statistics!

‚Coming to ALGOSENSORS?‘

43

An Analogy to Coding 01011…

DAN!

Requires statistics!

‚Coming to ALGOSENSORS?‘

43

An Analogy to Coding 101…

Better or worse?

‚Coming to ALGOSENSORS?‘

43

An Analogy to Coding 101…

Better or worse?

It depends:

Can exploit
temporal locality!

No statistics:
online!But:

‚Coming to ALGOSENSORS?‘

43

An Analogy to Coding 101…

DAN! SAN!
Can exploit
spatial locality!

Additionally exploit
temporal locality!

‚Coming to ALGOSENSORS?‘

Spectrum of Flexible Networks

Oblivious DAN SAN

Const degree

(e.g., expander):

route lengths O(log n)

Exploit spatial locality: Route
lengths depend on demand

Exploit temporal locality as well

44

Spectrum of Flexible Networks

Oblivious DAN SAN

Const degree

(e.g., expander):

route lengths O(log n)

Exploit spatial locality: Route
lengths depend on demand

Exploit temporal locality as well

Good metric? 44

Spectrum of Flexible Networks

Oblivious DAN SAN

Const degree

(e.g., expander):

route lengths O(log n)

Exploit spatial locality: Route
lengths depend on demand

Exploit temporal locality as well

Good metric? e.g., entropy! 44

Demand matrix: joint distribution

So
u

rc
es

Destinations

… of constant degree (scalability)

design

Example of A DAN Design Problem
Input: Workload Output: DAN

45

So
u

rc
es

Destinations

design

Makes sense to add link!

Demand matrix: joint distribution … of constant degree (scalability)

Much from 4 to 5.

Input: Workload Output: DAN

Example of A DAN Design Problem

45

So
u

rc
es

Destinations

design

Demand matrix: joint distribution … of constant degree (scalability)

1 communicates to many.

Input: Workload Output: DAN
Bounded degree: route

to 7 indirectly.

Example of A DAN Design Problem

45

Demand matrix: joint distribution

So
u

rc
es

Destinations

design

4 and 6 don’t
communicate…

… but “extra” link still
makes sense: not a

subgraph.

… of constant degree (scalability)

Input: Workload Output: DAN

Example of A DAN Design Problem

45

Bounded degree Δ

D[p i, j]: joint distribution, Δ
N: DAN

Expected Path Length (EPL): Basic measure of efficiency

EPL D,N = ED[dN(∙, ∙)]=

(u,v)∈D
p u, v ∙ dN(u, v)

=3X

Y

More Formally: DAN Design Problem
Input: Output:

Path length on DAN.

Frequency 45

Good Metrics for DANs?

• Clique communication (all-to-all) is hard:
nothing to exploit

• But what about such traffic patterns:

or

Spatial locality!

Structure!

Skewed!

46

Good Metrics for DANs?

• Clique communication (all-to-all) is hard:
nothing to exploit

• But what about such traffic patterns:

or

Spatial locality!

Structure!

Skewed!

These traffic matrices have low entropy: allows
for excellent demand-aware networks!

46

Indeed: Entropy is a Lower Bound (Sources)

• Proof idea (EPL=Ω(HΔ(Y|X))):

• Consider union of all ego-
trees

• Violates degree restriction
but valid lower bound

sources destinations

ego-tree

47

Do this in both dimensions:

Ω(HΔ(X|Y))

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)})

Ω(HΔ(Y|X))

Lower Bound: Sources + Destinations

48

Problem Related To…:

• Sparse, distance-preserving (low-distortion) spanners

• But:

– Spanners aim at low distortion among all pairs; in our case, we are only
interested in the local distortion, 1-hop communication neighbors

– We allow auxiliary edges (not a subgraph): similar to geometric spanners

– We require constant degree

• Nevertheless: we can sometimes leverage the connection to spanners!

49

Leveraging The Connection to Spanners

Theorem: If request distribution D is regular and uniform, and if we can find a constant
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: can design a
constant degree DAN providing an optimal expected path length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and uniform
request:

Sparse, irregular
(constant) spanner:

Constant degree optimal
DAN (EPL at most log r):

subgraph! auxiliiary edges

50

Leveraging The Connection to Spanners

Theorem: If request distribution D is regular and uniform, and if we can find a constant
distortion, linear sized (i.e., constant, sparse) spanner for this request graph: can design a
constant degree DAN providing an optimal expected path length (i.e., O(H(X|Y)+H(Y|X)).

r-regular and uniform
request:

Sparse, irregular
(constant) spanner:

Constant degree optimal
DAN (EPL at most log r):

subgraph! auxiliiary edges

50

By taking the union of “ego-trees”
and balance degrees.

Proof Intuition: How to Balance Degrees
Example: Tree Distributions

94

Reduce Degree
Preserve Distances

directed
comm.

• Basic idea to get from irregular spanner to constant-degree tree of low distortion:

Proof Idea: Construct Huffman Trees

95

• Make tree rooted and directed: gives
parent-child relationship

• Arrange the outgoing edges (to children) of
each node in a binary (Huffman) tree

• Repeat for the incoming edges: make
another another binary (Huffman) tree
with incoming edges from children

• Analysis

– Can appear in at most 4 trees: in&out own
tree and in&out tree of parent (parent-child
helps to avoid many “children trees”)

– Degree at most 4*3=12

– Huffman trees maintain distortion:
proportional to conditional entropy

out-tree:

in-tree:

Example: Constant-Sparse Spanner for Demands of
Locally-Bounded Doubling Dimension

• LDD: GD has a Locally-bounded Doubling
Dimension (LDD) iff all 2-hop neighbors
are covered by 1-hop neighbors of just
𝝀 nodes
– Note: care only about 2-neighborhood

• Formally, B(u, 2)⊆ i=1
λ B(vi, 1)

• Note: LDD graph can still be of high
degree!

102

We only consider 2 hops!

Nodes 1,2,3 cover 2-hop
neighborhood of u.

Lemma: There exists a sparse 9-(subgraph)spanner for LDD.

Def. (ε-net): A subset V’ of V is a ε-net for a graph G = (V,E) if
– V’ sufficiently “independent”: for every u, v ∈ V’, dG(u, v) > ε

– “dominating” V: for each w ∈ V , ∃ at least one u ∈ V’ such that, dG(u,w) ≤ ε

DAN for Locally-Bounded Doubling Dimension

103

This implies optimal DAN: still
focus on regular and uniform!

52

Simple algorithm:

1. Find a 2-net

104

9-Spanner for LDD (= optimal DAN)

Easy: Select nodes into 2-net
one-by-one in decreasing

(remaining) degrees, remove
2-neighborhood. Iterate.

2-net (clusterhead)

2-net (clusterhead)

52

Simple algorithm:

1. Find a 2-net

2. Assign nodes to one of the
closest 2-net nodes

105

9-Spanner for LDD (= optimal DAN)

Assign: at most 2 hops.

Union of these shortest paths:
a forest. Add to spanner.

52

Simple algorithm:

1. Find a 2-net

2. Assign nodes to one of the
closest 2-net nodes

3. Join two clusters if there are
edges in between

106

9-Spanner for LDD (= optimal DAN)

Connect forest (single „connecting
edge“ per pair): add to spanner.

52

Simple algorithm:

1. Find a 2-net

2. Assign nodes to one of the
closest 2-net nodes

3. Join two clusters if there are
edges in between

107

9-Spanner for LDD (= optimal DAN)

Sparse: Spanner only includes forest (sparse) plus
“connecting edges”: but since in a locally doubling
dimension graph the number of cluster heads at
distance 5 is bounded, only a small number of
neighboring clusters will communicate.

Distortion 9: Detour via clusterheads and bridge:
from u to v via u,ch(u),x,y,ch(v),v

52

Flexibility: How Often to Reconfigure?

Fully leverage temporal locality,
but high reconfiguration cost

Spatial locality only,
no reconfiguration cost

dynamicstatic

Oblivious design:
proportional to
joint entropy

DAN: proportional to
conditional entropy

SAN: proportional to
conditional entropy in

time windows W

Benefit of
DAN

Benefit of SAN
(if we change every

100k requests)

53

• What about geometric demand-aware graphs to connect robots
in a plane?

• What about distributed algorithms for self-adjusting networks?

• Can we additionally provide self-stabilizing properties?

• A (general?) technique: each node repeatedly computes
“correct graph” on neighbors only: seems to be powerful but
open question…

109

What About Distributed Algos?

54

110

Example: Delaunay Graph

10
2

34

10
2

34

10
2

34

10
2

34

(0) (1)

(2) (3)

Converges to global
Delaunay graph!

Distributed Algo

1. Compute local
Delaunay

2. Goto 1.

Slightly simplified:

How to generalize to DANs?

Demand-Oblivious

Fixed

Unknown

Bisection

Demand-Aware

Fixed Reconfigurable

Sequence Generator Offline Online

Awareness

Topology

Input

Static
Optimality

AlgorithmOFF ON

PropertyDiameter

Resiliency

Dynamic
Optimality

Learning
Optimality

STAT GENOBL

Taxonomy 000
Toward Demand-Aware Networking: A Theory for

Self-Adjusting Networks. ArXiv 2018.

56

Further Reading

• Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks
Chen Avin and Stefan Schmid.
ArXiv Technical Report, July 2018.

• Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.

• SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.

• Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca,
New York, USA, July 2018.

https://net.t-labs.tu-berlin.de/~stefan/dan-san.pdf
https://net.t-labs.tu-berlin.de/~stefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/~stefan/ancs18.pdf

Opportunity: Scheduling

Many Networks Are Delay-Tolerant:
Introduces Flexibility “Wait or Proceed”?

more up to datemore aggregation

e.g., online
aggregation:

wait longer wait less

59

Many Networks Are Delay-Tolerant:
Introduces Flexibility “Wait or Proceed”?

more up to datemore aggregation

e.g., online
aggregation:

wait longer wait less

Little known today about
scheduling in delay
tolerant networks.

59

Scheduling in DTNs:
Back to Amazon Delta!

• Recall: mobile smart devices with limited
opportunities for transfer

• E.g., Amazon delta riverine:

A

B

B

C

Source

Destination

Store

Carry

Forward

“data mule”

60© Mengxue Liu

A Simple Model: Time-Schedule Networks
• Assume: boats have a fixed time schedule

(Time Scheduled Networks)

• Idea: transmit packets to nearby boats
(according to schedule):

Original Message

Encoded packets

Encoded

into

packets

at source

Transmitted to boats that stop by source

Belem

(Final

Destination)

Continue

forwarding the

packets only

when they are

closer to Belem
Goal (e.g.):
maximize

throughput over
DTN

e.g.,

ultrasound

photos

61© Mengxue Liu

Model can be transformed…
• m moving nodes : has schedule Pi

• n stationary nodes

• k commodities between (possibly
different sources and destinations)

• Vertices:

– moving and stationary nodes plus commodity
sources plus connection nodes

• Directed edges:

– From connection node Cx to connection node Cy if
they share a common object and Upx≤ Downy

<up,

down>

<up,

down>
≤

Capacity depends on life-time of
connection and capacity.

Connect while distance smaller than
x at time t (up@t1 ≤ t ≤ down@t2)

… into a connection graph and MCF problem:

© Mengxue Liu

Connection Graph Example
Share stationary node 2 and

boat 1 before boat 4.

max flow

capacity/used
(depends on time to transmit)

© Mengxue Liu

All-or-Nothing (Splittable) Multicommodity Flow (ANF)

• Observation:

valid multicommodity flow in the connection graph

feasible routing schedule in the DTN network

• Maximum throughput corresponds to All-or-Nothing (Splittable)
Multicommodity Flow (ADF)

Relaxed version of Maximum Edge Disjoint Path (MEDP) problem: fractional.
Find max subset of commodities that can be simultaneously routed.

ANF: Still not well understood!

• Problem NP-hard

• Goal (𝛼, 𝛽)- approximation: 𝛼 factor from optimum and
capacity violation at most factor 𝛽

• Challenge 1: Randomized rounding with low
augmentation: so far 𝜶 = O(1), 𝜷 = √n

• Can we do better?!

Liu, Richa, Rost, Schmid, 2018.

65

Challenge 2 - Decomposable ILP Formulations:
Randomized Rounding based on MCF Can Fail!

u1

u6 u2

u4

u5 u3

VNet/Slice
Host

em
b

ed
d

in
g?

i

k j

66

Challenge 2 - Decomposable ILP Formulations:
Randomized Rounding based on MCF Can Fail!

u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

u1

u6 u2

u4

u5 u3

Relaxations of classic MCF formulation cannot be decomposed into convex
combinations of valid mappings (so we need different formulations!)

Valid LP solution: virtual node
mappings sum to 1 and each virtual
node connects to its neighboring
node with half a unit of flow…

66

Challenge 2 - Decomposable ILP Formulations:
Randomized Rounding based on MCF Can Fail!

u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

u1

u6 u2

u4

u5 u3

Relaxations of classic MCF formulation cannot be decomposed into convex
combinations of valid mappings (so we need different formulations!)

Partial
Decomposition

Impossible to decompose and extract any single valid mapping.
Intuition: Node i is mapped to u1 and the only neighboring node that
hosts j is u2, so i must be fully mapped on u1 and j on u2. Similarly, k
must be mapped on u3. But flow of virtual edge (k,i) leaving u3 only
leads to u4, so i must be mapped on both u1 and u4. This is impossible.

66

Further Reading

• Robust data mule networks with remote healthcare applications in the Amazon region: A
fountain code approach Mengxue Liu, Thienne Johnson, Rachit Agarwal, Alon Efrat, Andrea
Richa, Mauro Margalho Coutinho. HealthCom 2015.

• Charting the Complexity Landscape of Virtual Network Embeddings
Matthias Rost and Stefan Schmid. IFIP Networking, Zurich, Switzerland, May 2018.

https://www.net.t-labs.tu-berlin.de/~stefan/ifip18landscape.pdf

Conclusion
• Much work ahead: sensor and wireless networks become larger and carry more data

• An opportunity to make networks data-/demand-aware?

• Or to exploit flexibilities to precompute, to schedule, to find new tradeoffs between
distributed and centralized?

• Sometimes boils down to classic problems (e.g., DTN scheduling): a great time to
reconsider!

• Technology is evolving quickly (e.g., drone-to-drone communication): what are the
right models?

Thank you! Question?

Fu
rt

h
er

 R
ea

d
in

g
Online Aggregation of the Forwarding Information Base: Accounting for Locality and Churn
Marcin Bienkowski, Nadi Sarrar, Stefan Schmid, and Steve Uhlig.
IEEE/ACM Transactions on Networking (TON), 2018.
Exploiting Locality in Distributed SDN Control
Stefan Schmid and Jukka Suomela.
ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN), Hong Kong, China, August 2013.
Tight Bounds for Delay-Sensitive Aggregation
Yvonne Anne Oswald, Stefan Schmid, and Roger Wattenhofer.
27th Annual ACM Symposium on Principles of Distributed Computing (PODC), Toronto, Canada, August 2008.
Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks
Chen Avin and Stefan Schmid.
ArXiv Technical Report, July 2018.
Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.
Charting the Complexity Landscape of Virtual Network Embeddings
Matthias Rost and Stefan Schmid. IFIP Networking, Zurich, Switzerland, May 2018.

http://ieeexplore.ieee.org/document/8252748/
https://net.t-labs.tu-berlin.de/~stefan/hotsdn13loc.pdf
https://net.t-labs.tu-berlin.de/~stefan/podc08OSW.pdf
https://net.t-labs.tu-berlin.de/~stefan/dan-san.pdf
https://net.t-labs.tu-berlin.de/~stefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/~stefan/ancs18.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/ifip18landscape.pdf

