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Abstract—To meet their increasingly stringent dependability
requirements, communication networks need to be predictable,
both in terms of correctness and performance. In principle,
Software-Defined Networks (SDN) enable such more predictable
networks, however, these networks still depend the underlying
switches. This paper presents an empirical study of the pre-
dictability of SDN switches. Our extensive benchmarking of seven
hardware OpenFlow switches from four different manufacturers
raises several concerns regarding the dependability of these
switches.

We uncover several incorrect and unpredictable behaviors
and performance issues. In particular, we identify unpredictable
behaviors related to the management of flows and buffers,
and observe that existing quality-of-service mechanisms, such
as priority queuing, introduce unexpected overheads. The latter,
in turn, can lead to violations of latency guarantees. Based on
our insights, we discuss first solutions toward more predictable
architectures.

Index Terms—predictability, latency, guarantees, measure-
ments, software-defined networking, programmable switches

I. INTRODUCTION

Communication networks are a critical backbone of our
digital society, and many emerging applications, e.g., related to
entertainment, business, or health, introduce increasingly strin-
gent dependability requirements. In particular, it is required
that communication networks become highly predictable, both
in terms of correctness as well as in terms of performance
(e.g., end-to-end latency). In turn, predictability of network-
ing devices enables operators to provide strict performance
guarantees (e.g., latency guarantees) to their tenants — an
indispensable feature in data centers or 5G networks [1], [2]. In
this paper, we define predictability as the ability of a network
device or a complete network to perform its operations with
strict performance guarantees that can be predicted in advance.

Motivated by these requirements, over the last years, much
progress has been made toward enabling more predictable
communication networks. In particular, Software-Defined Net-
works (SDNs), with their principled approach to specify and
operate networks, as well as the introduced direct control over
network devices and the resulting management flexibilities [3],

have the potential to greatly improve dependability and effi-
ciency, at least from a control plane logic point of view. How-
ever, while these trends are promising, the dependability of a
network, whether software-defined or not, is at most as good
as the dependability of its data plane. In fact, even seemingly
simple tasks, such as forwarding, involve many complex com-
ponents, such as link buffers, hardware memory units, switch
CPUs, queuing disciplines, etc. A deep understanding of the
behavior of all these components is necessary for guaranteeing
predictable network operations. Not surprisingly, already much
research went into the study of solutions for predictable
networks, e.g., related to latency issues: researchers derived
many end-to-end mathematical models for per-packet latency
guarantees [4]–[7]. However, these approaches still rely on
an expected standard behavior, i.e., model, of forwarding
hardware, whose correctness cannot be verified by the packet-
level simulations or end-to-end measurements performed in
these studies.

This paper is motivated by the following fact: the pre-
dictability of communication networks, both in terms of cor-
rectness and performance, critically depends on the underlying
hardware, and especially the network devices used to process
and forward packets. In order to shed light on the predictability
of these network devices, we present an extensive measure-
ment study of the behavior of SDN switches. In particular, we
systematically benchmark seven state-of-the-art SDN switches
from four vendors in order to analyze the predictability of their
behavior with respect to important metrics such as processing
time and throughput, as well as with respect to the mechanisms
used to ensure quality-of-service (such as priority queuing).
We also examine management aspects, e.g., related to flow
tables and queues (packet buffers).

Our findings are rather negative: none of the examined
switches can directly be used with the aforementioned models
in order to provide predictable latency (Tab. I). In particular,
we show that basic, indispensible and most light-weight QoS
mechanisms, such as priority queueing, already introduce sig-
nificant overheads. When determining the behavior of switches
in terms of their flow table and buffer management, we



Switch PT II-A PQ II-B TP II-C FM III-A BM III-B

HP E3800 + - - -
HP 2920 + - - -

Dell S3048-ON + ∼ + - -
Dell S4048-ON + ∼ + - -

Pica8 P3290 + ∼ + - -
Pica8 P3297 + ∼ + - -
NEC PF5240 + ∼ + - ∼

TABLE I: Five predictability dimensions (here: regarding latency) of for-
warding devices and whether they are verified for the seven switches. Green
means a switch behaves as expected/predicted, orange means a switch partially
behaves as expected, red means a switch does not behave as expected and
gray means that it is not applicable because of another unmet requirement.
None of the switches are predictable along all the five selected metrics.

find that most operations are not predictable or too slow for
production deployments. At the same time, we show that once
aware of these issues, solutions may exist, and hope that our
study can help contribute toward more predictable network
architectures.

Our contributions. The main contribution of this paper is
an extensive measurement study of different SDN switches
and their impact on network predictability. We examine dif-
ferent dimensions, including throughput, buffering architec-
tures, control-plane-data-plane interference and consistency,
and identify several shortcomings which render predictable be-
havior challenging: for example, we find that not all switches
support line rate forwarding as promised, we identify aging ef-
fects (some switches suffer from reduced table size over time),
we observe that some switches blindly drop forwarding rules,
that priority queuing comes with a so far neglected processing
time overhead, or that packet buffers are not isolated per-port
or -queue, as assumed by traditional mathematical models
(e.g., network calculus) for buffer dimensioning. We also
contribute a new measurement methodology for determining
the throughput of programmable devices, and initiate the
discussion of architectural modifications that can overcome
the observed shortcomings.

As a contribution to the research community and to ensure
reproducibility, all the data sets, source code and configuration
files associated to the results presented in this article are
publicly available online [8].

Organization. The remainder of this paper is organized
as follows. The performance and management predictability
measurements and results are presented in Sec. II and Sec. III,
respectively. We give some insights and discussions over these
results in Sec. IV. Thereafter, we present the related work in
Sec. V, followed by concluding remarks in Sec. VI.

II. PERFORMANCE PREDICTABILITY

This section (Sec. II) and the next section (Sec. III) report on
our predictability analysis of different switches. Whereas this
section focuses on forwarding performance, the correctness of
assumptions with respect to management tasks is analyzed in
Sec. III.

Tab. II lists the seven investigated switches, representing a
wide range of devices: 4 different vendors, different switches
per vendors; both SDN-tailored (e.g., Pica8) and general (e.g.,
HP) switches; both 1G and 10G devices and both high-end
(e.g., Dell) and lower-end switches (e.g., NEC and Pica8).
The challenge in benchmarking switches is that information
about their internal functioning, i.e., what exact components
are traversed by packets when they are forwarded, is not
publicly available. Manufacturers are reluctant to open their
architecture, as illustrated by the fact that we sometimes do
not even know the ASIC or CPU model of a switch (Tab. II).
Besides, when manufacturers actually describe internals, we
will see that such documentation can be erroneous or outdated
(Sec. III-B). This suggests that switches have to be considered
blackboxes for our study.

The results of the empirical predictability study of this paper
are summarized in Tab. I, structured into the different require-
ments and assumptions made: whereas some switches like
the NEC support more assumptions, none of the investigated
switches exhibit predictable behavior along all the investigated
dimensions. The requirements, discussed and justified in sep-
arate subsections within this (Sec. II) and the next section
(Sec. III), are selected based on the assumptions made by
state-of-the-art end-to-end strict latency models regarding the
behavior of forwarding devices [4]–[7].

Throughout the paper, we use OpenFlow v1.0 for configur-
ing the switches because it supports all the features required
to deploy the state-of-the-art latency models [4]–[7], a major
focus of this paper.

A. PT — Processing Time

End-to-end delay is the sum of propagation, transmission,
processing, and queuing delay. The propagation and trans-
mission delays are physical values directly computed from
the physical link properties. The processing and queuing
delay are the critical components: they are determined by
switch-internal functions. While queuing delay is computed
using mathematical models (see Sec. II-B), state-of-the-art
approaches assume that the processing time of the switches
is deterministically bounded by a constant value [5], [7].

We evaluate the processing time of our switches in different
settings to assess whether it is indeed bounded by a predictable
value for different modes of operation. We vary the matching
and actions properties of rules, their number, their priority,
the matching rule, the rate of (data plane) packets and the
packet size. These considered dimensions and their respective
values are shown in Tab. III. For the matching values, combi-
nation of fields are also considered: five-tuple includes L3/L4
source/destination and L3 protocol; all includes L2/L3/L4
source/destination, L3 ToS and L3 protocol. For each action
type, an additional output action is included. The all action
consists of output, set-dl-src, push-vlan, set-vlan-id, set-vlan-
pcp, and set-nw-tos (as shown later, L3/L4 modifications are
never realized in hardware).

1) Measurement Setup: A Ryu-based [9] controller gener-
ates a flow table according to the selected dimension values



TABLE II: Specifications of the investigated switches: names, ASIC, CPU, firmware and ports.

Switch ASIC CPU Firmware (release date) Ports
HP E3800 HPE ProVision Freescale P2020 KA.16.04.0016 (2018-06-22) 48×1G-RJ45 + 4×10G-SFP+
HP 2920 HPE ProVision Tri Core ARM1176 WB.16.08.0001 (2018-11-28) 24×1G-RJ45

Dell S3048-ON Broadcom StrataXGS undisclosed DellOS 9.14 (2018-07-13) 48×1G-RJ45 + 4×10G-SFP+
Dell S4048-ON undisclosed undisclosed DellOS 9.14 (2018-07-13) 48×10G-SFP+ + 6×40G-QSFP+

Pica8 P3290 Broadcom Firebolt 3 Freescale MPC8541CDS PicOS 2.10.2 (2018-01-19) 48×1G-RJ45 + 4×10G-SFP+
Pica8 P3297 Broadcom Triumph 2 Freescale P2020 PicOS 2.11.19 (2019-02-27) 48×1G-RJ45 + 4×10G-SFP+
NEC PF5240 undisclosed undisclosed OS-F3PA 6.0.0.0 (2014-06) 48×1G-RJ45 + 4×10G-SFP+

DAG
2 31 4

Switch
2M 1

Ryu MoonGen
2 1

Tap Tap

(a) PT measurement setup.

→ →

→ →

MG1 DAG Switch DAG MG2

MDP pp
tP+SFD

tp

(b) PT sequence diagram.

Fig. 1: (a) Switch processing time measurement setup and (b) corresponding
sequence diagram.

(Fig. 1). The matching flow entry is configured to be forwarded
to port 2 of the switch. We use MoonGen [10] to generate
packets with the appropriate header fields, packet size and rate.
Packets arriving (port 1) and leaving (port 2) the switch are
mirrored using network taps to a nanosecond-precise Endace
DAG 7.5G4 measurement card. The card timestamps packets
upon arrival of the start frame delimiter (SFD) [11]. The
processing time pp of a packet p can be obtained by

pp = MDP − tp − tP+SFD, (1)

where MDP is the measured latency, tp is the computed packet
transmission time, and tP+SFD is the computed transmission
time of the Ethernet preamble and SFD (8 bytes) (Fig. 1b).

2) Results: While investigating a specific dimension, the
other dimensions are kept constant with the default values in
Tab. III. The boxplots in Fig. 2 show the measured processing
times pp for 100,000 packets per scenario. Note that, because
of its lower processing time, a different scale is used for the
Dell S4048-ON switch. We first consider only hardware rules
and cover software rules later.

a) General: Fig. 2 shows that switches have similar
processing times (around 4 µs), except the Dell S4048-ON
(around 2 µs). Also, for a given case, the variance in process-
ing time exhibited by the switches is always the same (around
0.2 µs for the Dell S4048-ON and 0.6 µs for the others).

b) Matching: In Fig. 2a, it can be seen that the complex-
ity of the matching structure does not affect the processing
time of the switches. The HP 2920 does not support matching
in hardware for all and dl-dst. Also, the HP E3800 does not
support dl-dst in hardware, and interestingly, does not support

Dimension Values
num. of entries 1, 100, 200, 300, 400, 500

match type port, dl-dst, dl-vlan, dl-vlan-pcp, masked-nw-dst,
tp-dst, five-tuple, all

action
output, enqueue, set-dl-src, set-vlan-id, set-vlan-
pcp, strip-vlan, push-vlan, set-nw-src, set-nw-tos,
set-tp-src, all

matching rule first, last
priorities increasing, decreasing, same

packet size [bytes] 64, 306, 548, 790, 1032, 1274, 1516

rate [Mbps] 5, 100, 500, 750, 900, 950, 1000

TABLE III: Dimensions (and their values) considered for the processing time
measurements. Bold values correspond to the default values.

dl-vlan-pcp and dl-vlan matchings at all1.
c) Actions: Similar to the matching, the action types do

not affect the processing time of the switches (see Fig. 2b).
This behavior remains true, even when packet rewriting and
checksum recomputations are involved. Again, we omit the
unsupported actions (i.e., strip-vlan, set-vlan-pcp and set-vlan-
id for the HP E3800 and set-nw-src and set-tp-src for all
switches). For the push-vlan action case, though the processing
time minimum, average and median values are the same as
for the other actions, we observe that its maximum processing
time is slightly higher. Similarly, this behavior is observed for
the all action (as it includes push-vlan).

d) Number, Priority, and Order of Rules: Fig. 2c and 2d
show that the number, priority and order of rules do not impact
the switch processing time.

e) Packet Size: As it can be seen in Fig. 2e, the Pica8
P3290, Pica8 P3297, Dell S3048-ON, and NEC PF5240
switches show almost the same behavior: the switch processing
time increases with the packet size up to a certain threshold
(e.g., 790 bytes for the Dell S3048-ON), thereafter, it starts
to decrease (e.g., from 1032–1516 for the Dell S3048-ON).
This is surprising when compared to existing literature results,
that additionally consider transmission latency [12] when mea-
suring processing time. Due to missing insights on the exact
details of the switch architecture and its used ASICs, we can
only speculate on the reasons which looked most reasonable
to us. As these switches mainly use Broadcom chips, we

1We note that the HP E3800 documentation states that dl-vlan and dl-vlan-
pcp matchings are supported. However, with a configuration identical to the
one used for HP 2920, the switch never successfully matched on these fields.
We tried to contact the HP support, unfortunately, without any reply.
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Fig. 2: Impact of the different considered dimensions on the hardware processing time of the different switches. The number of rules, their priority, the
matching rule and its matching structure do not impact the processing time. The packet size is the main influential factor, while rate and action type impact
only a subset of the investigated switches. Overall, the processing time of switches is predictable and can be deterministically bounded by a constant.

guess that this is indeed an ASIC dependent behavior2. Such
a behavior can be due to the traffic manager implementation,
since this ASIC module is usually responsible for buffering
packets before sending them. Specifically, to achieve high
utilization and efficiency, the traffic manager typically waits
until a certain number of cells of data are filled to continue
processing. While this can present some explanations for the
increasing trend, the decreasing trend remains unclear. The
two HP switches show a mostly (actually piecewise) linear
behavior. We suspect this is because of the specific way bytes
are buffered in the HPE ASIC. In contrast, the processing time
of the Dell S4048-ON is mostly constant except for smaller
packets, where it is smaller.

f) Rate: Fig. 2f indicates that the rate also does not
influence processing time of the switches, except for very
high rates. In these cases, both HP switches see their overall
processing time increasing, while other switches only see their

2We have tried to contact Broadcom to obtain explanations on this behavior,
however without any success.

minimum processing time increased.

g) Software Rules: In this part, we present the results
of measuring the processing time of software rules (excluding
Dell, because they do not support any software processing
capabilities). Because packet loss is observed for higher rates,
we use a rate of 0.1 Mbps for this experiment. We point out
three main observations (Fig. 3). First, none of the switches
support L3/L4 rewriting in hardware. The HP switches ad-
ditionally do not support L2 matching in hardware. More
surprisingly, the HP switches cannot forward 64 bytes packets
in hardware: even if the rule is stored in hardware and operates
properly for bigger packets, we observed that 64 and 65 bytes
packets are always processed in software. Interestingly, this
does not happen when the switch runs in legacy mode or
with OpenFlow rules matching on the physical input port.
We suspect that this is due to the fact that the HP switches
use a different TCAM table for OpenFlow processing with
complex matching, which might not be able to process packets
of these sizes. Second, software processing time is up to 5
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Fig. 3: Processing time of software rules for different vendors. Note that Dell does not support any software rules. We observe that software processing is
much less predictable than hardware processing. Software processing is also orders of magnitude slower.
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Fig. 4: Measurement setup for priority queuing investigation.

orders of magnitude higher than in hardware. Third, processing
time in software is much less predictable: it varies by nearly
two orders of magnitude comparing to the hardware case (see
Fig. 2). This is due to the fact that the switch CPU is also
performing other interfering tasks (e.g., running its OS and
the OpenFlow agent).

3) Outcomes: The processing time of switches mostly
depends on packet size. Moreover, the action, matching, prior-
ities, and the number of rules do not influence processing time.
The processing time of switches can be considered predictable
and bounded only for hardware rules.

B. PQ — Priority Queuing Overhead

Predictable latency works consider the availability of pri-
ority queuing [4]–[7]. Queuing delay is then computed using
mathematical models, e.g., network calculus [13], [14].

We explore whether our switches support priority queuing
and if their behavior can be verified by network calculus
models. Regarding the first question, we found that only the
two HP switches do not support priority queuing in OpenFlow
mode (i.e., the enqueue action).

1) Measurement Setup: Two MoonGen instances send low
and high priority flows to the switch through ports 1 and
3, respectively (Fig. 4). The flows are forwarded to port 2.
We start a high priority flow sending bursts of 100 bytes
packets. Then, in order to quantify the overhead of priority
queuing, we subsequently send three low priority flows with
different packet sizes (1000, 500, and 100 bytes) also at line

rate. The switch processing time is then measured using the
measurement card and a setup identical to Sec. II-A.

2) Network Calculus Prediction: Network calculus states
that processing of a high priority (H) packet can be delayed by
a lower priority (L) packet by at most the transmission time of
the largest packet in lower priority queues (thereby considering
the non-preemptive property of priority schedulers). Therefore,
network calculus calculates the worst-case delay bound DH
experienced by a high priority flow as

DH = pp + ∆lL = pp + lL/R, (2)

where pp is the pure processing time of packet p (as measured
in Sec. II-A), the parameter ∆lL is the transmission time of the
largest packet in lower priority queues, lL is the size of this
packet, and R is the link rate [13], [14]. In the following, we
will show that surprisingly, in practice, processing time can
be higher than this mathematical prediction.

3) Results: In the worst-case, we observe a total delay
increase of ∆lL + ε (Fig. 5). That is, there is a delay increase
of ε in addition to the increase predicted by network calculus,
independent of the size of the interfering packets. In fact, ε
is the overhead of the priority queuing implementation. The
reason is that the switch is not able to determine the next queue
without spending a minor processing overhead. We confirmed
this observation by reducing the rate of the interfering flows.
In this case (not shown in this paper due to lack of space),
the maximum processing time of the high priority flow looks
exactly the same but we observe all the intermediate values.
This is because, when the rate is lower, it can happen that a
high priority packet arrives just before the next check of the
switch, hence not having to wait. In our plots, these values
are not visible because cross-traffic is sent at line rate; hence,
the scheduler always switches back to low priority flows.
All switches exhibit this behavior. Further measurements, not
shown here, show that the ε value depends on the switch
model but stays constant for different scenarios (different
high priority packet sizes, additional concurrent lower priority
flows). From our measurements, we have 9 µs for both Pica8
switches and the NEC PF5240, 6 µs for the Dell S3048-ON,
and 27 µs for the Dell S4048-ON. The relatively low overhead
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Fig. 5: Processing time of a high priority flow (bursts of 100 bytes packets)
with 3 subsequent interfering low priority flows of, respectively, 1000, 500
and 100 bytes packets. We observe that the processing time increases more
(by ε) than what network calculus predicts. We note that the behavior of Pica8
3297 switch is very similar to Pica8 3290 and hence not shown.

and its stability tells us that the scheduling operation is not
performed by the central CPU of the switch but by a specific
component responsible for this, e.g., a micro-controller.

4) Outcomes: While the two HP switches do not support
priority queuing, all the other switches implement priority
queuing by updating the queue to send from only every ε sec-
onds. This invalidates network calculus predictions (Eqn. 2).
However, once the modeling correction is done, the perfor-
mance of the switches is stable and predictable.

C. TP — Line Rate Throughput

Queuing models used by state-of-the-art approaches [4]–
[7] assume that queuing does not happen at the ingress of
switches but at their egress. Accordingly, switches need to be
fast enough to process packets at line rate.

We verify that switches indeed can process packets at line
rate in both directions on all their ports simultaneously without
any loss. Interestingly, most existing work measure only the
throughput of a single port of a switch [12], [15]–[19]; the
complete saturation of a switch backplane has not yet been
targeted in the literature.

1) Setup: The Shoelace Measurement: The traditional ap-
proach to measure throughput is quite simple: send a high load
to a switch and measure the output load from it. In practice,
however, to saturate the switch is a challenging task: a 48-port
switch demands producing a rate of up to 48 Gbps, which, with
a simple approach of connecting each port to a traffic source,
would require 48 servers or networking cards. As a result,
researchers then simply fallback to measuring the throughput
of a single pair of ports [12], [15]–[19]. However, such a
measurement does not verify that a switch is able to process
packets at line rate if several ports are used simultaneously,
hence not guaranteeing predictability.

Rtx
1

Rrx
1

Rtx
2

Rrx
2

Fig. 6: The shoelace measurement setup for the measurement of the throughput
of a programmable switch. Black thick lines represent cables and red thick
dashed lines represent internal forwarding rules. This setup allows to saturate
all the ports of a switch with only two traffic sources.

To circumvent this issue, we propose the shoelace measure-
ment3 setup (Fig. 6), a methodology that makes use of the
programmability of switches to saturate a switch with only
two traffic sources — only two physical network connections
instead of, e.g., 48, are needed.

The first source saturates the first port of the switch. The
switch is configured to forward all traffic entering this first
port to its second one. The second port of the switch is then
connected back to its third port. This port configuration and
connection then goes on until it reaches the last port of the
switch. In this way, all the traffic sent to the first port has
to be processed n times, where n is the number of ports
of the switch. Further, by having the second source sending
traffic to the last port of the switch, and configuring backward
forwarding rules, we effectively saturate the n ports of the
switch in both directions. We then can compute the (minimum)
throughput of the switch as n×(Rrx

1 +Rrx
2 ), where Rrx

1 and Rrx
2

are the rates received at the first and last ports, respectively.
If these values are equal to Rtx

2 and Rtx
1 , we could not reach

the throughput limit of the switch and the switch is able to
process bi-directional line rate on all its ports simultaneously.
For a given input rate Rtx

1 = Rtx
2 , we run the experiment five

seconds and consider that a switch is able to handle a given
rate only if no single packet is lost.

We use the shoelace measurement setup to investigate the
throughput of all our switches for all the packet sizes in
Tab. III. Using MoonGen [10], we generate line rate traffic on
both the first and last port of the switch. We use the statistics
of the two interfaces to detect packet loss. We consider rates
from 8 to 1000 Mbps by steps of 32 Mbps. For the Dell S4048-
ON, we also run the experiment with 10 Gbps links, ranging
from 80 Mbps to 10 Gbps by steps of 320 Mbps.

2) Results: Among all the switches, only the HP switches
lost packets. For the smallest packet size (64 bytes), sending
1 Gbps (resp. 10 Gbps) corresponds to 1.5 Mpps (resp. 15
Mpps). That is, for our 48-port switches all but the HP
switches can process at least 48 × 1.5 = 72 Mpps (resp. 720
Mpps) simultaneously. This is confirmed by the datasheets of
the switches, which all announce values higher than this.

For the HP switches, the datasheets also announce that the
switches can process line rate on all their ports. However, this
is not the case (see Fig. 7). We observe that, independently
of the packet size, the switches can process up to 2.32 Mpps
and 7.91 Mpps. Depending on the packet size, this leads to
different data rates. The HP 2920 can process line rate for

3Taking its name from how the cabling of the switch looks like in this
setup.
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Fig. 7: Throughput of the HP switches. Lower (resp. left) axes correspond to
the traffic sent (resp. received) on the first and last ports, i.e., Rtx

1 and Rtx
2

(resp. Rrx
1 and Rrx

2 ). The upper (resp. right) axes correspond to the values
scaled by the number n of ports to represent the total data rate actually
processed by the switch.

packets of at least 1274 bytes and the HP 3800 for packets
of at least 790 bytes. This stands in contradiction to the
datasheets of the switches. In order to investigate this further,
we conduct a measurement run with the HP E3800 in legacy
mode. As the shoelace measurement setup cannot be used for
legacy switches, we only measure the throughput on two ports.
We use the 10G SFP+ ports to be able to reach more than
7.91 Mpps. In such a setup, the HP E3800 switch processes
correctly 10 Gbps at line rate, i.e., from 0.8 Mpps to 14.8
Mpps depending on the packet size. Using a bidirectional
measurement, the switch is also able to process all packets,
but the network card (Intel 82599ES) used was only able to
generate up to 9.2 × 2 = 18.4 Mpps for 64 bytes packets.
We conclude that the throughput that the switch can handle
depends on whether it operates in OpenFlow or legacy mode.

Our explanation here is as follows: the L2/L3 TCAM
tables used for legacy switching/routing cannot store arbitrary
matching fields, which means they cannot support the Open-
Flow features. To support OpenFlow, the HP switches use
their traditional so-called “ACL” TCAM tables, which provide
higher flexibility. Hence, in OpenFlow mode, we measure the
throughput of the “ACL” table, while in legacy mode we
measure the throughput of the L2/L3 tables. It turns out that
the “ACL” table of the switches was not dimensioned for
handling line rate, which hence impacts the performance of
the switch when used in the OpenFlow mode4.

3) Outcomes: Using our proposed shoelace setup, we ob-
served that only the HP switches do not behave as expected

4Note that, here, 64 byte packets are still processed in hardware, while they
were processed in software in Sec. II-A. This is because we are here matching
on physical port while we used five-tuple matching in Sec. II-A.

TABLE IV: Measured throughput for the different switches. Values in bps are
given for the smallest and biggest packets. line rate means that the switch
handles line rate on all its ports simultaneously.
∗measured at 10 Gbps.

Switch [pps] [bps] (64 – 1516 bytes)

HP E3800 7.91 Mpps 5.31 Gbps – line rate
HP 2920 2.32 Mpps 1.56 Gbps – line rate

Dell S3048-ON ≥ 72 Mpps line rate – line rate
Dell S4048-ON∗ ≥ 720 Mpps line rate – line rate

Pica8 P3290 ≥ 72 Mpps line rate – line rate
Pica8 P3297 ≥ 72 Mpps line rate – line rate
NEC PF5240 ≥ 72 Mpps line rate – line rate

and are hence not predictable, as they occasionally can lose
packets. They cannot process packets at line rate (Tab. IV),
even though they can in legacy mode: the TCAM table used for
OpenFlow and legacy modes are different and exhibit different
throughput.

III. MANAGEMENT PREDICTABILITY

Next, we consider the management predictability. We an-
alyze two aspects which are relevant for state-of-the-art ap-
proaches concerning predictable latency: the flow management
(FM), in Sec. III-A, and the buffer management (BM), in
Sec. III-B, of switches.

A. FM — Flow Management

State-of-the-art approaches rely on fine-grained traffic en-
gineering (one rule per single flow) in order to provide their
strict guarantees, e.g., deterministic latency [6], [7].

Therefore, the number of flow rules on a single switch in a
network can grow up to several thousands of flows [7]. Hence,
the first requirement is a sufficient flow table capacity. As flow
requests arrive during runtime, they have to be inserted live
in the corresponding hardware tables by the controller. Hence,
each switch should have synchronized data and control planes,
e.g., it should not state that certain flow rules are embedded if
they are actually not. Note that it is known that adding a rule
into the hardware table of a switch can cause a wide variety of
issues [20], [21]. For instance, the state of the data plane can
lag behind the state of the control plane for a certain amount
of time [21]. However, we here only require the switch to add
the rule in its hardware table at some moment, and we do not
consider delay as an issue.

Note that in this section, the OpenFlow version in use may
have an impact. We, however, stick to OpenFlow 1.0 as it
provides the necessary features for the state-of-the-art end-to-
end latency models and it is fully supported by all switches.

1) Measurement Setup: We connect the target switch to
a Ryu-based controller and connect a dual-port data plane
host running MoonGen [10] to the switch. First, we install
rules at a given rate on the switch until the latter returns
an OpenFlow Error message indicating that its flow table
is full. We consider the same match and action parameters
as listed in Tab. III. The rules’ output actions direct to the
second MoonGen interface. Second, the controller queries the



state of the switch with TableStatsRequest/FlowStatsRequest
messages. Finally, the MoonGen host generates one packet
per each rule on its first interface and checks if it is received
on the second interface, i.e., if it is correctly forwarded.

2) Results: Generally, the results per switch vary; hence,
we report on each manufacturer separately.

a) Pica8 switches: We consider five-tuple/output flow
rules. The following behavior is the same for other combina-
tions of matching and actions. Fig. 8 shows the total number
of sent rules before receiving the first Error message for
different FlowModAdd rates and different runs per rate (one
bar corresponds to one run). The different colors identify rules
that were correctly added in the hardware table, those that were
only in the stats reply of the switch (and hence are reported to
be added but are actually not) and those that were simply
ignored. The total number of rules in hardware is always
the same: the Pica8 P3290 stores 2046 rules and the P3297
stores 4094. However, for increasing FlowModAdd rates, we
observe that the number of ignored and incorrectly added rules
increase. While ignored rules are not too problematic, as the
controller can react to it, rules that are reported to be added
but are not are critical: the controller assumes that packets will
be forwarded, while they will not be.

Although both switches can store enough rules, they fail
to report a correct state to the controller, which can be
dramatic for predictability: packets of a theoretically accepted
flow can never be forwarded. We believe that the reason
for this is due to synchronization issues between the Open
vSwich (OVS) [22] instance, which realizes OpenFlow on
both switches, and the ASIC managing the hardware table.
OVS might not be fast enough to insert all the rules, although
it previously confirmed them to the controller. This leads to
an inconsistency between OVS and what is actually inserted
into the hardware table. It is important here to make sense
of two aspects. First, the considered rates: inconsistencies
appear already for as low as four new flows per second.
Second, the correctly installed rules are not the first ones
and vary depending on the run. That means that the switches
show here an completely unpredictable behavior: we cannot
know in advance which rules will be correctly added, except
if we reduce the addition rate to a single flow per second,
which is not feasible. We believe that such observations are
not only relevant for operators, but also researchers when
experimenting with these switches.

b) HP switches: Fig. 10a shows the hardware table
size of the HP E3800 switch for the different match/action
combinations. A size of zero (white) indicates that a certain
match and action combination is not supported. Depending on
the match and action type of the embedded rules, the table
size varies from 372 to 4085. Due to space reasons, we omit
showing the detailed results for the HP 2920; however, it
exhibits a similar trend as the HP E3800 but supports only
around 100 to 500 flows.

We additionally observed a remarkable behavior: the
switches showed aging effects during our measurements.
Fig. 9a shows the total number of rules in the FlowStats
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Fig. 8: Divergence of the flow table state of the Pica8 (a) P3290 and (b)
P3297 switches for different FlowModAdd rates. For each rate, each stacked
bar corresponds to a distinct run. Rules that are only in the FlowStats response
of the switch are critical: while the controller thinks the packets will be
forwarded, they will actually not be. The switch is then unpredictable.

answer of the HP E3800 switch and its hardware table over
five consecutive runs with 85 FlowModAdd messages per
second (five-tuple/output flow rules). For the first set (red lines)
of runs, the data plane test is done directly after receiving
the FlowStats response. For the second set (blue lines), we
introduce an additional waiting time of 120 seconds before
the start of the date plane test. We notice that sending the
FlowModAdd messages with a high rate triggers the switch to
send the Error message earlier, i.e., before the hardware table
is actually full. Indeed, the table size for five-tuple/output with
lower rate was 4085 (see Fig. 10a) while it is now around 3000
(run 1 in Fig. 9a). Furthermore, we observe that the amount
of forwarded packets is lower (around 2100 packets) than the
number of rules in the logical table. Doing other consecutive
runs without waiting, we observe that the switch then rejects
any new rule. On the other hand, we observe that, if we
wait 120 seconds before the data plane tests, the switch does
not show some aging effects (blue lines). This aging leads to
an unpredictable behavior from the switch: the controller can
never be sure whether it is able to use the complete hardware
table space.

c) Dell switches: Similar to the HP switches, the number
of rules which can be stored in the hardware flow table of the
Dell switches varies based on the match/action combination:
from 510 rules to the maximum of 1000 rules. Fig. 10b shows
this for the Dell S4048-ON, the Dell S3048-ON behaving
exactly the same. While the Dell devices are able to handle
higher FlowModAdd rates (e.g., more than 85 FlowModAdd
messages per second) than the other switches, their hardware
tables are the smallest.

However, we noticed again flow table aging effects (shown
for the Dell S3048-ON in Fig. 9b). We perform 140 consec-
utive runs measuring the available flow table size. All even
runs have five-tuple matchings and set-dl-src actions, while
the odd runs have five-tuple matchings and set-dl-dst actions.
We observe that, for each new iteration, the number of flows
that can be added with five-tuple/set-dl-src combinations stays
the same, while it reduces for the runs with five-tuple/set-dl-dst
combinations. The reduction is non-negligible, as the capacity
of the flow table reduces from 1000 to 739 rules.



1 2 3 4 5
run num.

0

1

2

3
in

se
rt

ed
nu

m
.r

ul
es

[1
03 ]

in hardware, wait=0s
in logical, wait=0s
in hardware, wait=120s
in logical, wait=120s

(a) HP E3800.

0 50 100
run num.

0.6

0.8

1.0

in
se

rt
ed

nu
m

.r
ul

es
[1

03 ]

set-dl-dst
set-dl-src

(b) Dell S3048-ON.

0 2000 4000 6000 8000
time [s]

0

1

2

in
se

rt
ed

nu
m

.r
ul

es
[1

03 ]

16.66 min.

66.14 min.

(c) NEC PF5240.

Fig. 9: (a) HP E3800 switch, five-tuple-output as the match-action, with rate of 85 messages per second. (b) Aging of the Dell switches. The measurement
procedure is as follows, we use five-tuple matching and we perform 200 runs, 100 runs with set-dl-src and 100 runs with set-dl-dst actions. The runs are
performed consecutively, first one runs with set-dl-src and then with set-dl-dst. We notice that the maximum number of rules for set-dl-dst reduces at each
iteration. (c) The addition of rules to the NEC PF5240 switch takes a big amount of time.
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Fig. 10: Flow table size of the (a) HP E3800 and (b) Dell S4048-ON
switches for the different match/action combinations. A size of 0 identifies
a combination not supported in hardware. We observe that the table size
depends on both the matching type and the action and can heavily influence
the number of rules that can be inserted.

d) NEC PF5240: The NEC PF5240 switch is the only
switch that controls the control plane message rate by throt-
tling the TCP connection. As we cannot control the TCP
behavior with Ryu, we modify our procedure. Instead of send-
ing FlowModAdd messages with a certain rate, we now send
a BarrierRequest message after each FlowModAdd and wait
for the response from the switch. Upon the reception of the
BarrierResponse, a new FlowModAdd message is dispatched
after 10 milliseconds. Fig. 9c shows the number of inserted
rules by the switch during one measurement run. By using the
modified procedure, adding the rules to NEC PF5240 switch
takes a very large amount of time. For instance, adding 1000
rules takes around 16 minutes, and adding 2000 rules takes
more than one hour. In total, the switch accepts 2809 rules.
Although the size of the table is acceptable, the rules are not
inserted in a timely manner.

3) Outcomes: Unfortunately, based on our analysis, none
of the switches exhibit a predictable behavior with a suffi-
ciently sized hardware flow table. Both Dell and HP switches
suffer from unpredictable aging, i.e., the flow table size can
reduce with each consecutive run. The Pica8 switches can
unpredictably and silently ignore rules. For the NEC switch,
reaching a high number of rules requires too much time.

B. BM — Buffer Management

In order to ensure no packet loss, state-of-the-art approaches
for predictable latency rely on mathematical models, e.g., net-
work calculus, to bound the amount of backlog flows generate
at each individual queue on their way to their destination [4]–
[7]. To this end, all these approaches assume that each queue
of each port of each switch is equipped with its own physical
buffer, and that these buffers are managed independently. To
which extent this assumption is true is still an open question.
More precisely, there are several challenges that are still open
to be tackled: i) how do existing switches actually manage
their buffers? and ii) are these buffers actually isolated? In this
part, we intend to study these questions in detail by measuring
the buffer capacity of a particular queue in different overload
scenarios and assess whether the way the switches manage
their buffer is predictable, and, more importantly, as predicted
by state-of-the-art models.

1) Measurement Setup: We have already seen that the
output of switches is not always trustworthy (Sec. III-A).
Therefore, we design a setup relying only on data plane
measurements to measure buffer capacities. Similar to [12],
we infer the buffer size N of a particular queue based on
observed packet delays. The total delay observed (through a
measurement setup identical to Fig. 1a) by a packet from a
high priority queue is given by

DH = pp + ε+ qp, (3)

where, in addition to the processing time pp (measured in
Sec. II-A), ε corresponds to the priority queuing overhead
(measured in Sec. II-B), and qp corresponds to queuing delay.
We note that both ε and qp parameters were not present in
Sec. II-A. This is because these parameters are larger than
zero only when queuing happens, which we made sure is not
the case for our measurements in Sec. II-A. The values of
pp and ε in Eqn. 3 are known from previous sections. The
queuing delay qp can then be obtained by measuring the total
delay DH and used to calculate N . Indeed, the queuing delay
qp of a given high priority packet can be decomposed as

qp =
∑
i∈P

li/R, (4)
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Fig. 11: Setup for evaluating buffer size with 2 congested ports and 2
congested queues per port. The congested ports are marked with a red cross.

where P is the set of packets scheduled before the considered
packet and R is the link rate. If all packets have the same size
l, we have

qp = |P |l/R, (5)

where |P | is the number of packets in the high priority
queue when the considered packet arrived. If a port or queue
is overloaded5, it will start queuing packets and eventually
drop some of them. When we observe a packet loss, we can
compute the queuing delay dp of the previous non-dropped
packet, from which we can obtain |P |. As this packet was
the last one to be buffered before dropping packets, we have
N = |P | + 1, i.e., the buffer capacity corresponds to the
number of packets queued before p plus one for p itself. This
measurement procedure allows us to monitor only the buffer
size available to high priority queues.

We use up to six different ports sending flows to each
other at line rate. Each port sends and receives one flow.
These flows are forwarded to the highest priority queues. We
then use an additional port to send “overload” traffic. For
each sending port, the overload port sends additional packets
with the same headers, hence overloading the corresponding
receiving queue. In order to overload low priority queues,
the overload port simply sends additional flows which are
forwarded to the corresponding low priority queues. This is
sufficient to overload them, as they will never be served, since
we send line rate of high priority flows at the same time. We
use this setup to overload from 1 to 6 ports and from 1 to 4
or 8 priority queues per port (depending on how many queues
the switch under test supports). An example setup to congest
2 ports and 2 queues per port is shown in Fig. 11. We monitor
packet loss and packet delays of one of the high priority
flows using our measurement card. We configure forwarding
rules on the switch matching on IP destination and enqueuing
in a specific queue. Further, we use different source MAC
addresses for each packet to uniquely identify them and easily
detect packet loss and compute qp.

2) Measurement Results: We detail our results for the
different manufacturers separately.

a) HP switches: As the two HP switches do not support
priority queuing (no separate queues), this measurement does
not apply to them.

5overloaded and congested terms are used interchangeably.
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Fig. 12: Buffer capacity made available to a given queue of the Dell S3048-
ON switch for different numbers of congested ports and queues (1516 bytes
packets): the more ports and queues are overloaded, the less buffer is made
available to a given queue.
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Fig. 13: Median buffer capacity made available to a given queue of the Dell
S4048-ON switch for different numbers of congested ports and queues for
different packet sizes. The Dell S4048-ON can store more packets than the
Dell S3048-ON and the number of packets that can be buffered, as expected,
increases with smaller packets.

b) Dell switches: The Dell S3048-ON and S4048-ON
switches support up to 4 priority queues. Fig. 12 shows
the inferred buffer sizes over runs of at least three seconds
with 1516 bytes packets with the Dell S3048-ON switch, for
different number of congested ports and priorities. In contrast
to what other related works such as QJump [5], Silo [4]
and DetServ [7] assume, we observe that the buffer made
available to our monitored flow depends on the buffer needed
by other ports and queues. More specifically, the more ports
and queues are congested, the less buffer is made available
to our monitored flow. We note that the available buffer size
ranges from around 420 packets to around 50 packets.

Fig. 12 shows that for each run, the inferred buffer size
(one value per packet lost) is stable. Hence, in Fig. 13, we
plot heatmaps of the observed median values for the Dell
S4048-ON switch. The results indicate that the available buffer
for the S3048-ON switch is bigger than for the S4048-ON
switch: from around 10 times bigger for a single congested
queue to around 5 times bigger for 6 ports with 4 congested
queues. Fig. 13b shows that, as expected, reducing the size
of transferred packets allows to increase the total number of
packets in the queue. The overall behavior however stays the
same.

c) Pica8 switches: Both Pica8 switches presented the
exact same behavior, we here show only results for the Pica8
P3297 switch. Fig. 14a shows that the behavior is comparable
to the Dell switches: the more queues and ports are congested,
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(b) NEC PF5240.

Fig. 14: Pica8 and NEC behave similarly to the Dell switches: buffers are not
isolated per-queue (1516 bytes packets).

the less buffer becomes available to the monitored queue.
Interestingly, our results invalidate the Pica8 documentation
regarding buffer management. Indeed, while they indeed say
the queues are based on a shared buffer, the numbers they
provide do not correspond to our results.

d) NEC PF5240: The NEC switch supports up to 8
priority queues. The same experiment with the NEC PF5240
switch exhibits a constant buffer size for each scenario:
63 packets. Hence, the NEC switch seems to have isolated
buffers for each queue. However, the NEC switch provides a
global limit-queue-length option, 64 by default, that limits the
maximum packets a queue can buffer. We set this option to its
maximum value and rerun the experiment. Unfortunately, this
option applies only to the two lower priority queues. As our
setup can only measure the buffer size available for the highest
priority, we reduce the maximum number of priority levels that
can be congested to 2, the two lowest priority queues. Fig. 14b
shows that the buffer size made available to a queue then
depends on the number of congested ports. On the contrary to
the Dell and Pica8 switches, it does not seem to depend on the
number of congested priorities. Note however that the results
here are much less stable than those from Dell in Fig. 12.
Hence, the numbers should not be taken as exact, but as giving
insights on the buffer management strategy of the switch.

3) Outcomes: We observe that, while predictable latency
solutions do assume that switches provide isolated per-buffer
queues, the reality is the opposite: all our switches are based
on a shared memory for implementing queue buffers. This
does actually make sense: sharing buffers among all queues
and ports enable work-conservation: if a queue does not use
its space, it can be used by another one. However, from a
predictability point of view, there is a major issue: a burst in
a low priority queue, or even on another port, can suddenly
reduce the buffer space available to a given queue and hence
potentially lead to unpredicted packet loss.

IV. INSIGHTS AND DISCUSSIONS

Let us recap some of our insights on the predictability
of SDN switches so far. On the bright side, the observed
processing times of the switches, at least when done in
hardware, is fairly predictable. We also observed that most
switches successfully process packets at line rate.
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Fig. 15: Processing time of the different switches for matching on the
outermost VLAN tag, popping it and forwarding to a particular queue based
on different VLAN tag stacks heights. We observe that the switches can
predictably support source routing solutions based on VLAN tags.

On the dark side, we identified several challenges. First,
we found that priority queuing adds non-negligible overhead
to processing time. While this is not what is predicted by
state-of-the-art models (e.g., network calculus), we observe
that this overhead is actually predictable: the observed ε
values, which are static values for each switch, can simply
be added as constants to the modeling formulas of network
calculus. Second, we observed that switches have some very
unpredictable behavior regarding their flow management. For
example, the Pica8 switches can unpredictably drop rules
without leaving any means to the controller to be aware of
it. Would there be a way to avoid sending new rules to the
switches at runtime? That would prevent such unpredictable
artifacts to happen.

A potential solution is to use source routing, e.g., based
on stack of VLAN tags. In this way, the forwarding table of
the switches has to be programmed only once and embedding
additional flows does not require to interact with the flow table
of switches but only requires to implement the tagging on the
source end host. As a small prototype, Fig. 15 shows that
all our switches (but the HP switches) indeed support such as
setup: forwarding to a particular queue based on the outermost
VLAN tag and pop it.

Finally, we observe that the switches are based on a shared
buffer infrastructure, in opposition to what traditional latency
models assume [4]–[7]. We indeed observe that a given queue
gets a different buffer capacity based on the current congestion
state of the switch. While it may seem like that the buffer
capacity made available to a queue is unpredictable, thereby
making packet loss prevention complicated, our measurements
give some hope. Indeed, we observe that the buffer capacity
of a port, though variable, depends only on the number of
congested ports and queues. Usually, one does not use all the
ports of a switch: for example, in a k = 4 fat-tree topology,
one only needs 4 ports. We can then use the values resulting
from our measurements as worst-case buffer capacity, instead
of the very pessimistic strategy of dividing the total buffer
memory by the total number of queues (number of priority
queues times the number of ports).

Generally, while our results refer to the investigated spe-
cific SDN switches, we expect that many of our results to



also be valid for P4 programmable devices. Indeed, in both
cases, forwarding is done by TCAM tables and a firmware
(independent of the P4 code) which implements buffer and
flow management. The need for predictability for P4 devices
might, however, be even more stringent, as a P4 programmer
expects to have full control over its device, and hence expects
a strictly predictable behavior based on its implemented logic.

V. RELATED WORK

Our work builds on a rich literature on switch performance
measurements. From the management and control plane point
of view, studies in the recent years [20], [21], [23]–[29] have
already shown that the states of control and data plane of
certain switches can diverge. For instance, inserting a rule
is not atomic, i.e., it might still take time for a rule to be
inserted in hardware, even after having received a confirmation
of the insertion from the switch. Other studies have shown
that the flow table capacity of switches varies drastically
among vendors [12]. Although we also cover similar flow
management aspects, we provide new insights with a focus
on predictability. For instance we show that besides not being
atomic, rule insertion can even be ignored by some switches,
thereby leaving the data plane configuration permanently
inconsistent with the control plane. We further show that
certain switches exhibit aging effects reducing their table size
over time and thereby making it unpredictable. Similarly,
while some studies have measured switch buffer sizes [12] or
revealed the importance of buffer management strategies for
latency-sensitive applications, our work sheds light on how
switches actually manage their buffer: most architectures are
based on a shared buffer dynamically allocated to queues or
ports.

Numerous works have also provided insights into the data
plane performance of programmable switches [12], [15]–[17],
[19], [27], [30]–[33]. For instance, [12], [27], [33] revealed
important latency, throughput and buffer size metrics in par-
ticular scenarios. Our work focuses more on predictability
by investigating the same metrics but evaluating them in
variable scenarios. Loko [19] also focuses on predictability
but derives a completely new model for a low-cost switch
for which the state-of-the-art models investigated here are
not valid [4]–[7]. Software implementations have also been
investigated [26], [34]–[37]. However, as suggested by these
works, our measurements confirm that software processing
using OS-based CPUs is not a viable solution for predictable
performance.

Regarding priority queuing, Durner et al. [38] conducted
an interesting measurement study on its impact on network
performance, however, with a focus on flow-level aspects
while our analysis focuses on per-packet delays for assessing
the predictability of priority schedulers with respect to the
latency of individual data plane packets. Some of our presented
results also show that previous studies [12] contain even
incorrect data, mostly due to device misconfiguration.

VI. CONCLUSION

This paper was motivated by the increasingly stringent
dependability requirements of communication networks and
the observation that a predictable network behavior critically
depends on the underlying hardware. We presented a method-
ology and reported on our measurement study using differ-
ent switches from different vendors, and identified several
shortcomings, in terms of performance but also in terms of
correctness.

We understand our work as a first step and believe that it
opens several interesting avenues for future research. In par-
ticular, we only initiated the discussion of possible solutions,
and more research is needed on how to design and model
network components toward more predictable and determin-
istic network architectures meeting the requirements of future
applications. We additionally hope that our results can serve
as a motivation for manufacturers to avoid such unpredictable
behaviors, especially for P4 devices, where the programmer
expects to have complete control over its device.
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