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ABSTRACT
In order to meet the increasingly stringent throughput and
latency requirements on datacenter networks, several inno-
vative network architectures based on reconfigurable optical
topologies have been proposed. Examples include demand-
oblivious reconfigurable topologies such as RotorNet (SIG-
COMM 2017), Opera (NSDI 2020), and Sirius (SIGCOMM
2021), as well as demand-aware topologies such as ProjecToR
(SIGCOMM 2016). All these architectures feature attractive
performance properties using specific prototypes. However,
reproducing these experiments is often difficult due to miss-
ing hardware and publicly available software. This paper
presents a flexible framework for reconfigurable networks
based on off-the-shelf hardware, which supports experimen-
tation and reproducibility at a small scale. We describe how
our framework, ExReC, can be instantiated with different
configurations, allowing us to emulate and study existing
architectures. Finally, we demonstrate the application of our
approach for different use cases and workloads, including
distributed machine learning training.
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1 INTRODUCTION
The popularity of data-centric applications and cloud-based
services in daily life has led to an explosive growth of datacen-
ter traffic. Accordingly, over the last years, significant efforts
have been made to improve the throughput of datacenter
networks. These efforts also include the physical datacen-
ter topology [11, 24]. A particularly innovative approach
revolves around reconfigurable optical topologies [12]: data-
center networks whose physical topology can be changed
dynamically over time. In particular, these networks improve
throughput by providing ”shortcuts”: the traffic between, e.g.,
two racks can be communicated directly, hence avoiding the
overheads of multi-hop forwarding (e.g., in terms of band-
width consumption). These networks are based on emerg-
ing optical technologies, such as optical circuit switches or
free-space optics. Reconfigurable optical topologies typically
rely on reconfigurable switches that provide dynamic match-
ings, e.g., between racks. They can be classified into two
types: demand-oblivious topologies such as RotorNet [19],
Opera [18] and Sirius [2] rely on periodic matchings whereas
the dynamic matchings of demand-aware topologies such as
ProjecToR [10, 16], Eclipse [26], and ReNets [1] are optimized
toward the (current) demand.

However, while promising performance results have been
demonstrated with various prototypes, the trade-offs be-
tween different reconfigurable topologies and their advan-
tages and disadvantages are still not well-understood. What
is more, today, it is often challenging to experiment with
these technologies, as they are usually based on custom-built
prototypes and rely on tailored hardware and software which
is not publicly available.

https://doi.org/10.1145/3493425.3502748
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Table 1: Overview of experimental platforms for reconfigurable networks: name, basic methodology, achieved scale, link rate,
if DO is available, if DA is available, if only OTS equipment is used, and if artifacts to reproduce measurements are available.

Name Basis Scale Link rate Demand-oblivious Demand-aware OTS Source
RotorNet [19] HW 8 emulated ToRs 10 Gbps ✓ Prototype ✗ ✗ n/a
Opera [18] HW 8 emulated ToRs 10 Gbps ✓ emulated (P4) ✗ ✓ n/a
Etalon [20] Emulation 8 emulated ToRs (128 hosts) 10 Gbps ✓ emulated (Click Router) ✗ ✓ ✓
Helios [9] HW 24 End-hosts 10 Gbps ✗ ✓ ✓ n/a
xWeaver[28] HW 10 emulated ToRs 10 Gbps ✗ ✓ ✓ n/a
OSA/WaveCube [4, 5] HW 8 emulated ToRs unclear ✗ ✓ ✓ n/a
Flat-Tree [29] HW 24 End-hosts 10 Gbps ✗ ✓ ✓ n/a
ProjecToR [10] HW 3 ToRs - ✗ ✓ Prototype ✗ n/a
MegaSwitch [6] HW 40 End-hosts 10 Gbps ✗ ✓ Prototype ✗ n/a
Mordia/ReacToR [17, 22] HW 23 End-hosts 10 Gbps ✗ ✓ Prototype ✗ n/a
c-Through [27] HW 4 emulated ToRs, 16 hosts 1 Gbps ✗ ✓ emulated (host-based) ✓ n/a
C-Share [25] Mininet 10 leaf switches 100 Mbps ✗ ✓ emulated (OpenVSwitch) ✓ n/a
This paper HW 8 emulated ToRs 10 Gbps ✓ emulated (DPDK, VLAN) ✓ ✓ ✓

Our contributions. This paper presents a flexible frame-
work for building reconfigurable networks that only rely on
commercially available off-the-shelf (OTS) hardware. Our
framework supports experimentation and reproducibility
and can be configured in different ways, allowing us to emu-
late different existing architectures. In particular, our frame-
work, ExReC, allows emulating hybrid topologies, consisting
of both demand-oblivious and demand-aware components,
as they typically appear in the literature [12].

ExReC uses emulation to reduce dependence on hardware
that is either expensive or not available. Therefore, it uses an
electrical packet switch and a label-based routing approach.
Moreover, since today’s programmable switches are usually
not suited for the packet scheduling logic as required by
TDMA-based demand-oblivious topologies, the logic is imple-
mented on generic servers. This increases the flexibility for
implementing forwarding logic. We demonstrate ExReC in
under various workloads, also considering a distributed ma-
chine learning (DML) training application.

As a contribution to the research community, as well as to
ensure reproducibility, we will make publicly available our
entire source code, the exact hardware specifications, and all
our experimental artifacts together with this paper.1

2 BACKGROUND
We consider a reconfigurable topology that embodies a two-
layer leaf-spine structure. The spine layer is constituted
by 𝑘𝑑𝑜 demand-oblivious (DO) and 𝑘𝑑𝑎 demand-aware (DA)
switches which connect to all leaf nodes. Table 1 summa-
rizes existing experimental evaluations of these two switch
types, the scales, and the availability of the components from
a hardware and software perspective.
Demand-oblivious switches: Traffic conditions do not
drive DO switch configurations. DO switches independently
cycle through a pre-determined set of configurations, specif-
ically matchings, in a round-robin manner. The matchings

1https://github.com/tum-lkn/exrec

are usually chosen so that all top-of-rack (ToR) switches, the
leaves, are provided direct connectivity to every other ToR
within one cycle of all matchings [19]. Each matching is ac-
tive for time 𝛿 , followed by a reconfiguration time of 𝑅𝑑𝑜 to
set up the subsequent matching. Thus, a slot lasts for 𝛿 +𝑅𝑑𝑜 .
Multiple DO switches can be used in parallel to reduce the
length of the cycles [19], hence, to circumvent large periods
without connection in the case of many ToRs.

In skewed traffic conditions, DO uses indirect forwarding,
i.e., packets are forwarded via intermediate ToRs, which
has been shown to yield significant efficiency gains in DO
topologies [2, 19]. The intermediate ToR, in turn, forwards
the packets to the final destination (“2-hop”-forwarding).

DO topologies have been assessed, for instance, in Rotor-
Net [19] and Opera [18]. While RotorNet relies on a specific
prototype, Opera is evaluated with a P4 switch-based emu-
lation using only OTS components. Etalon [20] provides an
emulation of DO topologies using only OTS components. It
emulates multiple ToRs (and racks) per physical server in
the testbed and uses time dilation to achieve higher rates.
However, it only relies on software-based forwarding solu-
tions and fully virtualizes the topology. The framework is
available but only considers a DO topology so far.
Demand-aware switches: DA switches can be configured to
create direct connections between ToRs according to the traf-
fic conditions. They have a high degree of freedom and can
realize any possible matching. When a circuit is established,
it provides constant datarate between ToRs. The reconfigu-
ration time 𝑅𝑑𝑎 is usually larger than for DO switches.

Here, a wider range of experimental evaluations has
been conducted. A group of studies relies on commer-
cially available OCSs, e.g., Helios [9], OSA/WaveCube [4, 5],
xWeaver [28] or Flat-Tree [29]. Other studies that explore
different interconnects, e.g., ProjecToR [10], MegaSwitch [6]
or Mordia [22], use prototype implementations that are not
available. Finally, DA topologies have also been evaluated
using emulations. For instance, c-Through [27] considers

https://github.com/tum-lkn/exrec
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Figure 1: Overview of ExReC framework.

host-based scheduling, i.e., the hosts know the active cir-
cuits and only send traffic accordingly. C-Share [25] use
Mininet [15] and OpenVSwitch for OCS emulation.

All the experimental evaluations of reconfigurable topolo-
gies consider either DO or DA switches. In addition, in all but
one case, the frameworks are not available.

3 THE ExReC FRAMEWORK
ExReC is a flexible framework for building and evaluating
different hybrid reconfigurable topologies. It uses OTS equip-
ment for realizing DO and DA switches.

3.1 Design Overview
Fig. 1 shows how ExReC emulates a setup with 𝑁 racks and
ToRs (leafs) and 𝑘 = 𝑘𝑑𝑜 +𝑘𝑑𝑎 spine switches. This is realized
with 𝑀 + 1 physical servers (blue boxes), an electric packet
switch (EPS), and an OTS optical circuit switch (OCS) (both
grey boxes). 𝑀 of the servers emulate the ToRs (red boxes),
such that each server emulates 𝑥 = 𝑁

𝑀
ToRs and racks. The

servers have enough physical ports to connect to the EPS
that emulates 𝑘𝑑𝑜 DO switches, and to the OCS that realizes
the DA topology part with up to 𝑘𝑑𝑎 switches. An additional
control server runs two controller processes: one for the DO
and one for the DA. The DA process controls the OCS; the DO
process sends messages to the ToRs to control the DO links.
The control server is connected via a dedicated network.

We use QEMU/KVM [3] to spawn VMs that represent the
racks (white boxes). Hosts inside the racks are abstracted:
the racks can run either traffic generators like MoonGen [8]
and iPerf [14] or applications such as the DML framework
Horovod [23] (yellow box “App”). All traffic leaving or en-
tering the VMs is dumped for later analysis. ExReC relies on
two design decisions: (1) emulating circuit switching using
labels. (2) scheduling traffic directly on the physical servers.
Label-based routing: OTS equipment for dynamic topolo-
gies is hard to obtain. Either it does not meet requirements

for reconfiguration times [30] or it is not available, e.g., in
case of demand-oblivious Rotor switches [19].

ExReC can emulate a flexible number of DO switches
among one or many EPS. The DO component is emulated
with a label-based forwarding approach to achieve correct
forwarding with low reconfiguration times. The servers add
a label that indicates the destination when sending a packet.
The EPS is not reconfigured, which reduces complexity.
Server-based scheduling: DO topologies rely on buffering
and scheduling logic. Implementing such logic is not possible
with today’s OTS (programmable) switches to the best of
our knowledge. Therefore, ExReC moves these tasks to the
servers: Each server runs a DPDK application emulating
the ToRs. The application fetches traffic from the VMs and
schedules it on the links to the DO and DA switches.

3.2 Implementation Details
Fig. 2 illustrates the structure of the DPDK application. Each
server runs 3 · 𝑥 + 1 threads (rounded rectangles) where 𝑥 is
the number of emulated ToRs per server. For every emulated
ToR, one TX1, one TX2 and one RX thread are created. One
Sync thread is shared by all ToRs on a physical server. We
use the DPDK vhost library to receive and send packets from
and to the VMs.
Emulating demand-oblivious switches: Transmission
via DO switches orients at the design of RotorNet [19], which
introduces two sets of destination-based queues per ToR.
Such queueing is not available in OTS switches, another rea-
son for emulation. The DPDK application buffers packets
leaving the rack in the “local” queues (TX1:2b). For indirect
forwarding, packets that are received but are not destined
for the ToR (RX:2b), i.e., for which the ToR is an intermediate
hop, are put to the “non-local” queues.

The label-based routing uses VLAN tags. When sending,
the DPDK application first reads per-queue and per-DO bud-
gets (TX2:1). The budgets indicate per DO link how many
packets of each queue can be sent. Then, the thread pulls
packets from the corresponding queues (TX2:2b) and adds
a VLAN tag that indicates the active matching (TX2:3b). On
the EPS, there are pre-installed, static rules that resemble the
matchings of the DO switches. The EPS matches the VLAN
tag and the incoming port and forwards the packet to the
corresponding outgoing port. This source routing-based ap-
proach eliminates the need for updating rules on the switch
and, thereby, reduces the achievable slot size of the DO emu-
lation. Upon packet reception (RX:1), the DPDK application
forwards the packets to the connected racks based on the
incoming port of the packet and the active matching (RX:2a).
If the packet is not destined to the rack, it is put into the
respective non-local queue (RX:2b).

The DO Controller is responsible for cycling through
the matchings. It is implemented on top of MoonGen [8];
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Figure 2: Overview of the DPDK-based ToR emulation.

this provides an easy adaptation of slot sizes and emulated
reconfiguration times. The DO Controller sends the next
active VLAN id to all servers. This way, all ToRs use the same
VLAN id for the to be sent packets during one slot.

The Sync thread reads VLAN ids from the DO
Controller’s packets (S:1) and updates the active
matchings of the ToRs. This, in turn, triggers a recalculation
of the budgets (S:2). Modifying the budget calculation can
realize different forwarding policies such as forwarding only
directly or valiant load balancing [19]. The current state
does not synchronize remaining capacities across the ToRs.

This VLAN-based approach results in negligible reconfigu-
ration time w.r.t. the achieved slot size. Therefore, a dedicated
VLAN id indicates reconfiguration of the DO switch. When
this VLAN id is received, the application sets all budgets to
0, i.e., stops sending until it receives a VLAN id for a valid
matching. Each server runs only one instance of DPDK appli-
cation which handles the traffic for all emulated ToRs with
separate queues and threads. This reduces the jitter of our
synchronization method.
Integrating demand-aware switches: While DO are not
yet commercially available, OCSs for realizing DA switches
are. Several ports on each NIC can connect via fiber to a
commercial, full crossbar OCS. Such an OCS can change
the connectivity between the ToRs at run-time: it provides
bidirectional links that are reconfigured on-demand in ap-
proximately 𝑅𝑑𝑎 ≈ 25 ms [21]. The DA Controller activates
the optical links at run-time and then updates the DA flows
inside the DPDK application via control plane messages (S:3).
DA flows are matched using Layer 3 (source and destination
IPs) and Layer 4 (source and destination ports) information.
Their packets are put into dedicated queues per DA switch
(TX1:2a). Dividing the queues between DA and DO switches
avoids head of line blocking in the queues of the DO links.

Once packets are enqueued for the DA switch, even if there
would be an upcoming matching on DO switches, they cannot
be sent to a DO anymore — using multiple paths is planned
for future work. TX2 fetches the packets from the queues
and forwards them accordingly (TX2:2a). All DA queues are
served in a round-robin fashion, i.e., TX2 fetches a limited
number of packets from each queue. Baseline measurements
using MoonGen confirm that this mechanism is enough to
saturate the DA switch. Moreover, ExReC assures that no
other bottlenecks besides the network occur, e.g., by CPU
shaping between links in the DPDK application.

Note that ExReC uses an OTS OCS since it is available.
Moreover, we think that using available components adds
credibility to the measurements. In principle however, the DA
switch could also be emulated similarly to the DO switches.

4 VALIDATION & EVALUATION
This section first gives details on our testbed and the con-
sidered settings. Then, we demonstrate (1) validation of our
control mechanism, (2) evaluation of different traffics, and
(3) an application example using DML training.

4.1 Testbed & Settings
Our testbed consists of four servers running Ubuntu 18.04
(5.15.0-47-generic kernel) with 128 GB of RAM and Intel Xeon
Silver 4114 @ 2.2 GHz (20 cores). All servers are equipped
with two Intel X710-DA4 4x10G NICs and two 1G Intel
onboard-NICs (eight 10G ports and two 1G ports). In princi-
ple, this allows exploring configurations from fully DO (four
DO switches) to fully DA (four DA switches). For DO emulation,
we use a Dell S4048-ON OpenFlow-capable switch [13] and
for DA switches a Polatis Series 6000n 32x32 OCS [21]. Based
on intensive measurements, the most stable achieved inter-
arrival time of control messages is ≈ 0.5 ms. Hence, to obtain
a duty cycle of 90%, all scenarios use a slot of 𝛿 = 4.5 ms
with an artificial reconfiguration time of 𝑅𝑟 = 0.5 ms for DO.2

4.2 Validation of Topology Components
We verify the behavior of DO and DA switches using four set-
tings: 1 DO switch, 2 DO switches, 1 DO, and 1 DA switch, and 1
DOwith indirect forwarding. In particular, for DO switches, we
demonstrate how flow rates behave over time when connec-
tions between ToRs exist only when matchings are available
(cf. §2). For applications that are constantly sending traffic,
packets might be buffered if the current matchings do not
connect the source and the destination of a flow. We consider
setups with 8 ToRs so that there are 7 matchings to be cy-
cled through. Two MoonGen instances generate two packet
2No cross traffic affects our separated management network; however, slight
variances in our clock due to hardware or software interference on the
controller machine or switch are possible.
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(c) 1 DO and 1 DA switches.
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Figure 3: Throughput over time for four configurations.

streams with constant rate of 1.25 Gbps. They originate at
two different ToRs but have the same destination ToR.

Fig. 3 shows the throughput of the flows for a period of
60 ms from the steady-state phase. White areas indicate the
slots for DO topology with matchings per DO switch at the top
(M1 - M7). Grey shaded areas are periods of reconfiguration.

With one DO (Fig. 3a), the matching M3 serves the red flow,
between 35 to 39.5 ms and 70 to 74.5 ms with 10 Gbps. The
flow saturates the link for roughly the whole duration of the
slot. During the other 6 matchings and the reconfiguration
times, packets sent by the source are buffered. The data
accumulates to 1.25 Gbps · (6 + 1) · 5 ms = 43.75 MBit. This
approximately matches the data that can be sent within one
slot (10 Gbps · 4.5 ms = 45 MBit). Thus, when M3 is active,
the slot is almost fully utilized at 10 Gbps.

After six slots, the red flow sends again with 10 Gbps for
the whole slot duration. This shows (1) that DO emulation
allows applications to send within the available slots and (2)
that while there is no connection available, traffic is buffered

— the desired behavior. The blue flow has the same behavior
as the red flow, however, sending when M1 is active.

With the second DO switch (Fig. 3b), the time until a pair of
ToRs has a direct connection again is approximately halved.
Again, M3 serves the red flow. During this time, all traffic is
sent at 10 Gbps until the buffers are empty. Then, the rate
drops to 1.25 Gbps, the rate of the traffic source. The red flow
is served from 35 to 39.5 ms via DO 1 (upper row), from 55 to
59.5 ms via DO 2 and from 70 to 74.5 ms via DO 1 again. From
39.5 to 55 ms, traffic is buffered during three slots (plus the
duration of reconfigurations). Between 59.5 and 70 ms, traffic
is buffered only during two slots. These different levels of
buffer occupancy reflect in the utilization. The rate of the
red flow is longer > 1.25 Gbps during the matching from 55
to 59.5 ms. The blue flow shows a similar, shifted behavior.

Fig. 3c illustrates the effect of having one DO and one
DA switch. The DO switch serves the blue flow as expected:
traffic is received only when a matching (M1) is established.
In contrast, the DA switch serves the red flow via a direct link
between source and destination. The flow constantly sends
at the configured rate of the source (1.25 Gbps).

Fig. 3d visualizes 1 DO switch with indirect forwarding.
Here, the flows are generated with 1.5 Gbps, and we use a
simple policy that dedicates 20% of the remaining volume
of a slot to send traffic indirectly. As a result, both flows
are served in all slots and use only 20% of the slots when
sent indirectly. We observe two behaviors while sending
indirect traffic. First, simultaneous sending (M1, M3) and
second, sequential sending (M2, M4, M5, M6, M7). The effect
comes from how packets are stored on the intermediate
ToRs. Overall, this demonstrates that the budget calculation
function can realize different forwarding policies. A full re-
implementation of RotorLB [19] is out-of-scope.

4.3 Measuring & Evaluating Traffic
The next evaluation focuses on more complex traffic sce-
narios with different traffic intensities and three topology
settings (2 DO, 3 DO, and 2 DO & 1 DA) with 8 ToRs. We gener-
ate two types of flows: small flows and large flows. The small
flows have a size of 6.25𝑀𝐵. Both source and destination of
flows are sampled uniformly from the 8 ToRs. These flows
should be sent via the DO switches since scheduling on a DA
switch does not amortize due to its larger reconfiguration
time. Besides, each experiment has 4 large flows with a size
of at least 250𝑀𝐵. With ideal traffic management, these flows
should be transmitted via DA switch connections. We vary
the arrival rate of all flows and the size of the large ones
to increase the load while keeping the ratio between the
volume of small and large flows at 2 : 1.

Fig. 4a shows the demand completion time (DCT: finishing
all flows) of each setting. The load is normalized by the
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maximum stable load. DCTs are relative to the result for 3 DO
and smallest load. For all settings, the DCT increases with
increasing load. The DCT decreases when using more DO
switches (3 instead of 2). 2 DO & 1 DA, where the DA switch
specifically serves the large flows, further reduces the DCT.

Fig. 4b shows the individual FCTs for a normalized net-
work load of 0.43. The CDFs are separated by flow size, i.e.,
small flows are the lines left in the figure, large flows on the
right. As expected, small flows finish all faster than large
flows. Using a DA switch improves the FCT of large flows.

Note the following detail when comparing 3 DO to 2 DO &
1 DA. The topology impacts both flow classes, but the effects
are different. For the large flows, 2 DO & 1 DA performs best
as it provides a constant rate for them. For the small flows,
3 DO performs best. Here, the waiting time between the slots
of a ToR pair is reduced from ≈ 17 ms (2 DO) to ≈ 12 ms, i.e.,
by one slot. This may be significant for delay-sensitive flows.

4.4 Real Application: Distributed ML
ExReC can run real applications, such as the industry-
standard DML framework Horovod [23]. Each server has
only one Nvidia Tesla T4 GPU [7]; hence, this setup con-
siders only 4 ToRs. We train four models of different sizes:
DenseNet121 (DN121), ResNet50 (RN50), VGG16 and VGG19
with different topology configurations for 50 batches (train-
ing steps) and report the batch completion time (BCT) in
Fig. 5. The values are normalized per trained model to the 3
DA case, which is a full-meshed network, i.e., optimal here.

The observations across the models are consistent. 3 DA
obtains the lowest BCT. It is closely followed by 1 DO, 2 DA
which uses the DA links to form a ring that matches the
mentioned traffic pattern of Horovod. All large flows are
forwarded via this ring of DA links and hence, efficiently
served. With 2 DO, 1 DA this ring cannot be formed. Here, the
BCT is ≈ 22% larger for the smallest model, DenseNet121,
compared to the ideal case. Finally, for 3 DO, the BCT is lower
again. With 3 DO, the full-meshed is created again in every
slot. However, interruptions due to reconfiguration lead to
higher batch durations. The average is increased by ≈ 5−10%.

5 DISCUSSION & CONCLUSION
This paper presented ExReC, a flexible framework for build-
ing reconfigurable networks, which only relies on OTS hard-
ware. We show that ExReC can assess the performance of
different topologies combining DO and DA switches. In the
following, we discuss the main features and limitations:
Flexibility. ExReC can run different combinations of DO
and DA topologies going from all DO to all DA with the same
testbed setup. Moving the flow scheduling complexity to
the physical servers allows the implementation of various
forwarding policies for the DO part. By modifying the budget
calculation, the forwarding policies can easily be varied. The
DA topology can be controlled by an external process, using
the API of the OCS and updating forwarding rules in ExReC.
Scalability. Due to the available hardware, our evaluation
is limited to 8 ToRs. By adding more physical servers, ExReC
can also realize larger settings. The size is ultimately limited
by the number of VLAN ids, which puts an upper bound
on the number of matchings. The size of the spine layer (𝑘)
depends on the ports per physical server and on the switches.
Higher link rates are constrained by the CPU’s performance.
OTS components. ExReC only uses OTS components,
generic servers, OpenFlow switches, and OCSs. A label
routing-based emulation replaces DO switches that are not
commercially available. In principle, this approach can also
be applied to the DA topology. However, using available com-
ponents as far as possible reduces the assumptions underly-
ing the measurements.

ACKNOWLEDGEMENTS
This work is part of a project that has received funding
from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program
(grant agreement No 864228 - AdjustNet). The work was also
funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) - 438892507. The authors alone
are responsible for the content of the paper. We also thank
Amaury van Bemten for the fruitful discussions.



ExRec: Exp. Framework for Reconf. Networks Based on OTS Hardware ANCS ’21, December 13–16, 2021, Layfette, IN, USA

REFERENCES
[1] Chen Avin and Stefan Schmid. 2021. ReNets: Statically-Optimal

Demand-Aware Networks. In Proc. SIAM Symposium on Algorithmic
Principles of Computer Systems (APOCS). 25–39.

[2] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan
Haller, Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn
Thomsen, et al. 2020. Sirius: A flat datacenter network with nanosecond
optical switching. In Proc. ACM SIGCOMM. 782–797.

[3] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.
In Proc. USENIX ATC. 1–6.

[4] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X.
Wen, and Y. Chen. 2014. OSA: An Optical Switching Architecture for
Data Center Networks With Unprecedented Flexibility. IEEE/ACM
Transactions on Networking 22, 2 (April 2014), 498–511.

[5] Kai Chen, Xitao Wen, Xingyu Ma, Yan Chen, Yong Xia, Chengchen Hu,
and Qunfeng Dong. 2015. WaveCube: A scalable, fault-tolerant, high-
performance optical data center architecture. In Proc. IEEE INFOCOM.
1903–1911.

[6] Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chun-
ming Qiao, and Shan Zhong. 2017. Enabling Wide-Spread Communi-
cations on Optical Fabric with Megaswitch. In Proc. 14th USENIX NSDI.
577–593.

[7] Nvidia Corporation. 2019. Nvidia Tesla T4 GPU Datasheet.
(2019). Retrieved November 26, 2021 from https://www.
nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/
t4-tensor-core-datasheet-951643.pdf

[8] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohl-
fart, and Georg Carle. 2015. MoonGen: A Scriptable High-Speed Packet
Generator. In Proc. ACM IMC. 275–287.

[9] Nathan Farrington, George Porter, Sivasankar Radhakrishnan,
Hamid Hajabdolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman,
George Papen, and Amin Vahdat. 2011. Helios: a hybrid electri-
cal/optical switch architecture for modular data centers. ACM SIG-
COMM CCR 41, 4 (2011), 339–350.

[10] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Ja-
nardhan Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman
Rastegarfar, Madeleine Glick, and Daniel Kilper. 2016. Projector: Ag-
ile reconfigurable data center interconnect. In Proc. ACM SIGCOMM.
216–229.

[11] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yun-
feng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. 2009. BCube:
a high performance, server-centric network architecture for modular
data centers. Proc. ACM SIGCOMM , 63–74.

[12] Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ra-
makrishnan Durairajan. 2021. A Survey of Reconfigurable Optical
Networks. Optical Switching and Networking (OSN), Elsevier 41 (2021),
100621.

[13] Dell Inc. 2020. Dell S4048-ON Datasheet. (2020). Re-
trieved November 26, 2021 from https://i.dell.com/sites/
doccontent/shared-content/data-sheets/en/Documents/
Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf

[14] iPerf [n. d.]. https://iperf.fr/. ([n. d.]).
[15] Karamjeet Kaur, Japinder Singh, and Navtej Singh Ghumman. 2014.

Mininet as software defined networking testing platform. In Proc.

International Conference on Communication, Computing & Systems
(ICCCS). 139–42.

[16] Janardhan Kulkarni, Stefan Schmid, and Pawel Schmidt. 2021. Sched-
uling Opportunistic Links in Two-Tiered Reconfigurable Datacenters.
In 33rd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). 318–327.

[17] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari,
Geoffrey M. Voelker, George Papen, Alex C. Snoeren, and George
Porter. 2014. Circuit Switching under the Radar with REACToR. In
Proc. 11th USENIX NSDI. 1–15.

[18] William M Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C
Snoeren, and George Porter. 2020. Expanding across time to deliver
bandwidth efficiency and low latency. In Proc. 17th USENIX NSDI. 1–18.

[19] William M Mellette, Rob McGuinness, Arjun Roy, Alex Forencich,
George Papen, Alex C Snoeren, and George Porter. 2017. Rotornet:
A scalable, low-complexity, optical datacenter network. In Proc. ACM
SIGCOMM. 267–280.

[20] Matthew K. Mukerjee, Christopher Canel, Weiyang Wang, Daehyeok
Kim, Srinivasan Seshan, and Alex C. Snoeren. 2020. Adapting TCP
for Reconfigurable Datacenter Networks. In Proc. 17th USENIX NSDI
(NSDI ’20). 651–666.

[21] Polatis Series 6000 [n. d.]. https://www.polatis.com/. ([n. d.]).
[22] George Porter, Richard Strong, Nathan Farrington, Alex Forencich,

Pang Chen-Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen,
and Amin Vahdat. 2013. Integrating Microsecond Circuit Switching
into the Data Center. In Proc. ACM SIGCOMM. 447–458.

[23] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast
and easy distributed deep learning in TensorFlow. (2018).
arXiv:cs.LG/1802.05799

[24] Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira.
2016. Xpander: Towards optimal-performance datacenters. In Proc.
ACM CoNEXT. 205–219.

[25] Shay Vargaftik, Cosmin Caba, Liran Schour, and Yaniv Ben-Itzhak.
2020. C-share: Optical circuits sharing for software-defined data-
centers. ACM SIGCOMM CCR 50, 1 (2020), 2–9.

[26] Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, and Pramod
Viswanath. 2018. Costly circuits, submodular schedules and approxi-
mate Carathéodory Theorems. Queueing Systems 88, 3-4 (2018), 311–
347.

[27] Guohui Wang, David G Andersen, Michael Kaminsky, Konstantina
Papagiannaki, TS Eugene Ng, Michael Kozuch, and Michael Ryan. 2010.
c-Through: Part-time optics in data centers. In Proc. ACM SIGCOMM.
327–338.

[28] Mowei Wang, Yong Cui, Shihan Xiao, Xin Wang, Dan Yang, Kai Chen,
and Jun Zhu. 2018. Neural network meets DCN: Traffic-driven topology
adaptation with deep learning. Proceedings of the ACM onMeasurement
and Analysis of Computing Systems 2, 2 (2018), 26.

[29] Yiting Xia, Xiaoye Steven Sun, Simbarashe Dzinamarira, Dingming Wu,
Xin Sunny Huang, and TS Eugene Ng. 2017. A tale of two topologies:
Exploring convertible data center network architectures with flat-tree.
In Proc. ACM SIGCOMM. 295–308.

[30] Johannes Zerwas, Wolfgang Kellerer, and Andreas Blenk. 2021. What
You Need to Know About Optical Circuit Reconfigurations in Data-
center Networks. In Proc. 33rd International Teletraffic Congress (ITC
33). 1–9.

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-EMC-Networking-S4048-ON-Spec-Sheet.pdf
https://iperf.fr/
https://www.polatis.com/
http://arxiv.org/abs/cs.LG/1802.05799

	Abstract
	1 Introduction
	2 Background
	3 The ExReC Framework
	3.1 Design Overview
	3.2 Implementation Details

	4 Validation & Evaluation
	4.1 Testbed & Settings
	4.2 Validation of Topology Components
	4.3 Measuring & Evaluating Traffic
	4.4 Real Application: Distributed ML

	5 Discussion & Conclusion
	References

