
Macchiato: Importing Cache Side Channels to SDNs
Amir Sabzi1, Liron Schiff2, Kashyap Thimmaraju3, Andreas Blenk4,6, Stefan Schmid5,6,7

1 University of British Columbia, 2 Guardicore Labs 3 Humboldt Universität zu Berlin 4 TU Munich
5 TU Berlin 6 Faculty of Computer Science, University of Vienna 7 Fraunhofer SIT

ABSTRACT
Since caches are shared and coherent, a memory access of
one process may evict from the cache another process’ mem-
ory block with an address mapped to the same cache line.
This property is exploited by several attacks to form side
channels. We show that MAC learning in Software Defined
Networks (SDNs) has a similar property in the sense that a
MAC address discovered by one network device may be re-
voked by the discovery of the same address at another switch.
This allows us to implement Macchiato, a covert channel for
SDNs between any two network devices (including hosts);
prior SDN covert channels required at least one malicious
switch. We evaluate a prototype implementation of Macchi-
ato and discuss how methods to improve the performance
of cache side channels (such as deep neural networks) can
also be used in Macchiato.
CCS Concepts • Security and privacy → Network security; •
Networks → Programmable networks;

1 INTRODUCTION
Modern data-driven and distributed network applications
operate at an unprecedented scale [5]. To operate and man-
age such warehouse-scale distributed systems, academia and
industry have gravitated towards a network architecture that
outsources control over the network data plane to a logically
centralized control plane [4, 5, 18]. The centralized control
plane simplifies network management and also enables au-
tomation. For example, the basic L2 switching functionality
found in (cloud, campus, or enterprise) networks can be im-
plemented in SDNs by a central MAC learning application
(also known asmobility) which, upon the discovery of a new
MAC address, installs complete paths, also supporting VM
migrations and reaction to network failures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANCS ’21, December 13–16, 2021, Layfette, IN, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9168-9/21/12. . . $15.00
https://doi.org/10.1145/3493425.3502758

101011...

RTT measuring Source Spoofing

101011...

SDN Controller

Figure 1: Macchiato covert channel between two iso-
lated hosts. The (red) sender modulates confidential
data (e.g., a private key) by triggering SDN reconfigu-
rations of flows with source MAC address of the (blue)
receiver host. The receiver identifies the reconfigura-
tions byRTTmeasurements and extracts the sent data.

Thimmaraju et al. [30] described how this feature can be
exploited by malicious switches as a rendezvous protocol.
Malicious switches can fabricate (Packet-In) messages to the
controller which triggers the mobility feature in the con-
troller, resulting in deletion/addition events at the respective
switches. If the switches have agreed upon specific identi-
fiers (e.g., MAC or IP addresses) to trigger mobility events,
the identifier of the deletion/addition operation can be used
as a signaling mechanism to coordinate or synchronize an
attack. In a similar vein, Krösche et al. [14] introduced a
covert channel wherein malicious switches exploit the Open-
Flow handshake for secret communication (the P4Runtime
protocol prevents such a channel by design [7]).
However, these techniques make strong assumptions on

the data plane. In particular, they require an exploitable vul-
nerability in the switch [29]. Inserting hardware trojans may
also be expensive and unrealistic for attackers with low re-
sources. Hence, we in this paper ask: is it possible for hosts to
exploit the control plane for covert communication without a
malicious switch?
This paper shows that in the same way as cache address

collisions allow one process to extract information from
another (a side channel), an SDN host can learn about another
host network activity by using the same source MAC address.
This host ability translates into a covert channel which we
name MAC-macchiato ("MAC marked" in Italian) or simply

https://doi.org/10.1145/3493425.3502758

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Amir Sabzi, Liron Schiff, Kashyap Thimmaraju, Andreas Blenk, Stefan Schmid

Macchiato as it is based on the mobility application that
clears the old rules associated with the MAC address when
it is marked in a new location.
Macchiato allows two hosts that are isolated (e.g., using

VLANs) from each other, but connected to switches managed
by the same controller, to secretly communicate with each
other. As a result, hosts can violate fundamental network
security policies and/or mechanisms, e.g., to leak secret keys,
exfiltrate intellectual property, etc.

As illustrated in Fig. 1, the red host on the isolated network
on the right sends a message (to arbitrary destination) while
spoofing the blue host’s MAC address. The switch connected
to the red host will contact the controller to report a new
MAC address discovery. The controller, running a mobility
application, addresses this report as if the blue host migrated
to a new location and perform flow reconfiguration - deleting
flow rules used by the blue host to communicate with it
local peers at the old location and installing required new
flow rules at the new location. The flow reconfiguration
introduces measurable forwarding delays to the blue host
that can be used repeatedly by the red host to modulate and
transmit confidential data.

Since our covert channel exploits measurable differences
in packet responses (see Fig. 2) introduced by the mobility
application in the controller, it is independent of the SDN
protocol (OpenFlow, P4Runtime, etc.) between the switches
and controller. This not only makes our attack novel but also
increases the potential threat it poses in software defined
networks. In an extreme scenario, the covert channel could
be used by amalware residing in awell segmented zone in the
network without Internet connectivity, to affect legitimate
Internet facing services in a DMZ segment of the network
and thereby leak critical information to the Internet [1, 27].
Contributions. In summary, this paper makes the following
contributions.
• We describe Macchiato, a covert communication channel
between end hosts that exploits MAC learning applications
in SDNs, and which is inspired by cache side channels.
• We discuss how methods to improve the performance of
cache side channels (such as deep neural networks) can be
used in Macchiato.
• We evaluate the throughput of Macchiato theoretically
and experimentally.
• We initiate the discussion of the countermeasures and rec-
ommend guidelines for network operators and developers
to guard against the described attack.
• We make our code and experimental artefacts open-access
together with this paper.

Related work. Our work is inspired by the side channels
arising in caching systems. These side channels have been
studied intensively in the literature [9, 16, 23, 25, 32], and

0 5 10 15 20 25
0.0

0.5

1.0

Pr
ob

ab
ilit

y
De

ns
ity

P4 - No Load

0 5 10 15 20 25
0.0

0.5

1.0

OpenFlow - No Load

0 5 10 15 20 25
RTT (ms)

0.0

0.5

1.0

Pr
ob

ab
ilit

y
De

ns
ity

P4 - With Load

0 5 10 15 20 25
RTT (ms)

0.0

0.5

1.0

OpenFlow - With Load

Figure 2: Distribution of RTTs with (orange) and with-
out (blue) flow reconfiguration, and for P4 and Open-
Flowwith andwithout external load on the controller.

also used for covert communication. However, there is lim-
ited research on covert channels in SDNs. Covert channels in
SDNwere first introduced by Thimmaraju et al. [30] followed
by Krösche et al. [14]. Tahir et al. [27], designed and devel-
oped Sneak-Peek, a high speed covert channel in data center
networks that also utilizes a delay mechanism. The sender’s
flow introduces a delay into the receivers flow over the same
network link thereby covertly communicating information
based on the delay measured by the receiver. Although simi-
lar to Macchiato, Macchiato requires less resources for the
attacker compared to Sneak-Peek.
Le et al. [15] designed a covert channel in SDNs that ex-

ploits rules conflicts in the control plane to establish host to
host and switch to switch covert channels. However, in their
threat model the adversary can install applications in the
controller that causes rule conflicts, or third party controller
applications create conflicting rules unintentionally. How-
ever, we assume the controller and all its applications as a
trusted entity which works properly. Cao et al. [2] designed
an SDN-based covert channel that involves a malicious con-
troller application to covertly exfiltrate data from the con-
troller to the hosts in the network. However, in this paper,
we assume the controller applications are benign and the
attacker’s goal is to exfiltrate data from one host to another.
Organization. In Section 2 we introduce the high level con-
cepts of Macchiato, followed by technical details in Section 3.
Next, we evaluate Macchiato in Section 4, discuss counter-
measures in Section 5 and close with a discussion in Section 6.

2 ATTACK OVERVIEW
Here, we define the threat model and explain the core idea
behind our covert channel.

2.1 Threat Model
We consider the SDN setting where two network hosts are
compromised by an adversary with an objective to transmit
information, e.g., private keys or confidential data covertly

Macchiato: Importing Cache Side Channels to SDNs ANCS ’21, December 13–16, 2021, Layfette, IN, USA

between them. We assume that the adversary code running
at each side of the covert channel has privileged access over
the host network stack. For example, the adversary can send
packets with arbitrary (spoofed) source Ethernet and IP ad-
dresses, use an incorrect gateway, and send ARP requests
and responses maliciously. We note that some variants of our
covert channel can operate even when running privileged
code only at one side of the channel given that it obtains
knowledge of the other side’s MAC address.

The position of compromised hosts in the network cannot
be determined by the adversary. For instance, compromised
hosts can be physically disconnected or separated by a fire-
wall in the data plane. However, the compromised hosts
should be connected to switches that are managed by the
same logically centralized controller. These switches can be
managed by the controller usingOpenFlow[20], P4runtime[28],
or any similar protocol. The controller should support the
path update functionality, which is implemented in several
forms by different control applications including Mobility,
Learning switch, and MAC learning. We assume the network
is agile, allowing host creation and migration so control ap-
plications are not restricted by static switch configurations.

Other than malicious hosts, all other hosts are considered
trustworthy, and cannot be compromised by the adversary
but may respond to network requests such as pings and ARP
packets. All network infrastructure components are trusted
as well, including switches, routers, firewalls, intrusion de-
tection system, controller and its applications.
To maintain data plane consistency, control applications,

such as intent routing, MAC learning and mobility, update
paths when events are reported by the switches, indicating
that the network has changed. Such network changes may
include host migration, flow rule timeouts and link failures.
The update procedure, to which we refer as flow reconfig-
uration, can vary depending on the types of switches or
controllers, but essentially always consists of configuring
new flow rules and deleting old ones in all affected switches.
A first approach for exploiting flow reconfigurations for es-
tablishing a covert channel was suggested by Thimmaraju
et al. [30], by making one switch trigger the reconfiguration
of rules in another switch; however their approach required
at least one compromised switch.

2.2 Analogy to Caching
We observe that flow reconfiguration due to reported events
in SDNs are similar to cache miss and eviction processes
in operating systems and computer architecture. Several
works [33],[10] have demonstrated how this cache miss and
evictionwhenmeasured by one side and inflicted by the other
can be used for covert and side channels across processes.
For instance, in the Prime+Probe [21],[22],[23] to transmit
a ‘1’, the sender accesses cache lines mapped to a particular

TX Switch1 Controller Switch2 RX

Phase 1
ARP Request with RX

MAC address

Path-Update request

Add-Flow command

Del-Flow command

Phase 2

ARP-Request

Path-Update request

Add-Flow command

Del-Flow command

ARP-Response

Measure ARP
Request to Response time

Figure 3: The messages sequence pattern of the 2-
phase Macchiato covert channel.

last-level cache set that contains receiver’s cache lines. This
will result in eviction of the receiver’s cache lines from the
last-level cache. Due to the inclusive property, these cache
lines will be also evicted from L1 cache. Therefore, when the
receiver tries to access its lines, it will observe a long probing
time because the evicted lines have moved to memory. To
transmit a ‘0’, in the Prime+Probe attack, the sender does
not have to do anything. As a result, the receiver can probe
its cache lines in a short time because they are present in the
L1 cache sets of the receiver.

2.3 Macchiato Core Idea
Macchiato is based on the observation that while hosts can-
not send events and receive flow reconfiguration messages
to/from the controller like switches, they still can trigger and
detect flow reconfiguration indirectly by time measurements
similarly to the processes performing Prime+Probe. Figure 3
illustrates the message sequence. The host on the sender
side of the covert channel can trigger flow reconfiguration by
faking host migration and the host on the receiver side can
use RTT measurements for detection. We elaborate on these
procedures in the next section and show that by performing
the RTT measurements repeatedly and synchronously the
hosts can covertly transmit long bit streams.

3 CHANNEL MODULATION
In this section, we elaborate on the algorithms used by the
hosts to modulate their traffic covertly. Moreover, we discuss
possible sources of error/noise and suggest ways to improve
the effective bandwidth of the channel.

3.1 Sender and Receiver Algorithms
We focus on MAC learning and mobility applications which
install MAC-based path rules between any two communi-
cating hosts, based on their discovered (learned) locations.

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Amir Sabzi, Liron Schiff, Kashyap Thimmaraju, Andreas Blenk, Stefan Schmid

When a host is rediscovered on another location, the imme-
diately connected switch does not have an appropriate flow
rule and the packet from the relocated host is forwarded
to the controller. As a response the controller issues Flow-
mod messages (OpenFlow parlance) to delete the old rules
associated with that host as well as Flow-mod messages
to configure new flow rules along the path from the new
host location to the destination of the packet. Finally, the
controller instructs the immediate switch to forward the re-
ported packet according to the new path. In contrast when a
host sends a packet from its last known location to a destina-
tion it already communicated, the relevant path is configured
and the packet is immediately forwarded along it.

The difference between the packet forwarding time having
a rule installed and having no rule installed is unavoidable,
but may vary based on the processing power of the con-
troller, the control protocol, and control plane RTT. As can
be seen in Figure 2 this time difference is high enough for
both P4runtime and OpenFlow and allows two compromised
hosts to covertly communicate with each other using Algo-
rithms 1 and 2 for sender and receiver respectively.
The sender and receiver algorithms use one round per

sent bit. Each round consists of two phases. In the first phase,
configured to last 𝛿1 seconds, the sender tests the to be sent
bit; if the bit is 1 then it sends an ARP request to any arbitrary
host (configured by parameter 𝑠_𝑑𝑠𝑡), even itself, using the
Ethernet source address used by the receiver (configured
by parameter 𝑠𝑟𝑐). During this phase the receiver waits to
allow a possible reconfiguration, triggered by sender ARP
request, to complete. In the second phase, configured to
last 𝛿2 seconds, the receiver sends an ARP request to any
reachable host (configured by parameter 𝑟_𝑑𝑠𝑡), including
itself, using its own Ethernet address as source address or any
other source address used also by the sender (configured by
parameter 𝑠𝑟𝑐). Note that at least one of the endpoints need
to use a source address different than its own and therefore
needs to run in privileged mode.
After sending the ARP request, the receiver waits for a

response and measures the RTT. The RTT is then compared
to a threshold (parameter 𝑡ℎ𝑟𝑒𝑠ℎ) to identify if a reconfigura-
tion was triggered by the receiver’s ARP request indicating
that another reconfiguration was previously triggered by
the sender. Therefore, if the RTT is higher than the thresh-
old, it is considered as receiving 1, otherwise as receiving
0. Both endpoints wait till the (second) phase is over to be
synchronized for the next round.

Next we elaborate on how the modulation parameters 𝛿1,
𝛿2 and 𝑡ℎ𝑟𝑒𝑠ℎ are configured and calibrated.

3.2 The Decision Threshold
From the receiver point of view, the observed RTT of an ARP
request, 𝑟 ∈ R, can be resulted from two different conditional

Algorithm 1: Sender
Input: 𝑠𝑒𝑛𝑑_𝑏𝑢𝑓 , 𝑙𝑒𝑛, 𝛿1 , 𝛿2 , 𝑠𝑟𝑐 , 𝑠_𝑑𝑠𝑡

1 for 𝑖 ∈ [𝑙𝑒𝑛] do
2 if 𝑠𝑒𝑛𝑑_𝑏𝑢𝑓 [𝑖] == "1" then
3 Send ARP request 𝑠𝑟𝑐 → 𝑠_𝑑𝑠𝑡 ;
4 end
5 Wait 𝛿1 + 𝛿2 ;
6 end

Algorithm 2: Receiver
Input: 𝑟𝑐𝑣_𝑏𝑢𝑓 , 𝑙𝑒𝑛, 𝛿1 , 𝛿2 , 𝑡ℎ𝑟𝑒𝑠ℎ, 𝑠𝑟𝑐 , 𝑟_𝑑𝑠𝑡

1 for 𝑖 ∈ [𝑙𝑒𝑛] do
2 Wait 𝛿1 ;
3 Send ARP request 𝑠𝑟𝑐 → 𝑟_𝑑𝑠𝑡 ;
4 RTT←Wait ARP response;
5 if RTT ≥ thresh then
6 𝑟𝑐𝑣_𝑏𝑢𝑓 [𝑖] = "1";
7 else
8 𝑟𝑐𝑣_𝑏𝑢𝑓 [𝑖] = "0";
9 end

10 Wait 𝛿2 − 𝑅𝑇𝑇 ;
11 end

RTT distributions, given the sender sent 0 or given it sent
1, i.e., 𝑃 (𝑅 = 𝑟 |𝑆 = 𝑠) where 𝑠 is 0 or 1 respectively. Such
distributions are depicted in Fig. 2, where the orange samples
come from the distribution 𝑃 (𝑟 |𝑆 = 1), and the blue ones
come from the 𝑃 (𝑟 |𝑆 = 0).
The receiver decision is based on a threshold (𝑇), i.e. if

𝑟 is greater than 𝑇 , it is considered as 1, otherwise as 0.
Therefore, the error probability can be defined as a function
of the threshold:
𝑃𝑒 (𝑇) = 𝑃 (𝑟 ≥ 𝑇 |𝑆 = 0)𝑃 (𝑆 = 0) + 𝑃 (𝑟 ≤ 𝑇 |𝑆 = 1)𝑃 (𝑆 = 1)
In order to minimize the error the receiver first learns the

distributions of 𝑃 (𝑟 |𝑆 = 1) and 𝑃 (𝑟 |𝑆 = 0) using a calibration
phase. In this phase, the sender will send a predefined se-
quence of ones and zeros, which the receiver is aware of, and
the receiver will record the round trip time of the request
that corresponds to each bit. Based on the aggregated data,
the receiver can either fit a normal distribution to the data
or use kernel density estimation to estimate the probability
density function of the data.

Assuming the RTT distributions are Gaussian, the receiver
can approximate them using the means 𝜇0 and 𝜇1 and vari-
ances 𝜎2

0 and 𝜎2
1 of the RTT samples for the 0 and 1 bits

respectively. Considering an equal probability for sending
ones and zeros, we get that that the receiver can minimize
the error by using the following threshold:

𝑇 ∗ = argmin
𝑇

𝑄 (𝑇 − 𝜇0
𝜎0
) +𝑄 (−𝑇 − 𝜇1

𝜎1
) (1)

where Q is the tail distribution function of the standard
normal distribution, i.e., 𝑄 (𝑥) = 1√

2𝜋

∫ ∞
𝑥

𝑒−
𝑡2
2 𝑑𝑡 . We will

evaluate this method in Section 4.

Macchiato: Importing Cache Side Channels to SDNs ANCS ’21, December 13–16, 2021, Layfette, IN, USA

3.3 Optimizing the Channel Using Deep Neural
Networks

While using a constant threshold to discriminate network
behavior is a straightforward method to implement a covert
channel, it can be an oversimplification. Due to the dynamic
behavior of the computer networks, the distribution of 𝑃 (𝑟 |𝑆 =

1) and 𝑃 (𝑟 |𝑆 = 0) can change during the communication for
a variety of factors (e.g. controller load, users’ traffic pattern,
available resources of malicious hosts, etc.) and the calculated
threshold will not be valid for the whole communication pro-
cedure. This phenomenon can introduce a significant error
to the covert channel.
However, while the RTTs can change, an observable dif-

ference remains between ARP requests that include flow
reconfiguration to those without. This difference provides
an opportunity to reduce error by encoding each bit by two
transmission rounds, following the Manchester coding[6].
We defined a transition from a lower RTT in the first round
to a higher RTT in the next round as a 0, and changing from
a higher RTT in the first round to a lower RTT in the next
round as a 1. This method decreases the error ratio signifi-
cantly but it reduces the throughput by a factor of 2.

As amore effective and generalized approach, that was suc-
cessfully used in cache-based side channels [8, 31], we con-
sider to use machine learning to decode sent bits based on re-
cent communication network conditions. Each training sam-
ple is defined by < 𝑦𝑖 , 𝑋𝑖 >, where 𝑦𝑖 ∈ {0, 1} is the transmit-
ted bit (the label), and𝑋𝑖 = {𝑥𝑖−𝑘 , 𝑥𝑖−𝑘+1, . . . , 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑖+𝑘 }
are the RTT measurements (the features). Note that 𝑥𝑖 is the
RTT for the round when bit 𝑖 was sent, and 𝑥𝑖−𝑗 or 𝑥𝑖+𝑗
are the RTT of the 𝑗th round before or after the 𝑖th round
respectively.
To classify the RTT features as one or zero, we used a

deep neural network (DNN) consisting of 4 layers: three
fully connected hidden layers and one soft-max layer at the
output. We used dropout regularization after each layer to
reduce over-fitting. The receiver trains its network at the
calibration phase with a predefined sequence, and then uses
this model to classify the features of each sample. The results
in Section 4 show that this method can enhance the accuracy
of the covert channel remarkably.

3.4 Parallelization
A relatively simple way to improve the bandwidth is to use
multiple Macchiato instances in parallel, each is based on a
different source MAC address. However, using of multiple
MAC addresses by sender and receiver requires them both
to run in privileged mode. Moreover, generating high rate of
path updates increases the load of the switches and controller
and may affect the response time and in turn also the error
rate and the actual bandwidth.

30 35 40 45 50 18
6

32
1

45
7

59
3

72
9

86
4

10
00

δ2(ms)

60

90

120

150

194

329

463

597

731

866

1000

δ 1
(m

s)

0

1

2

3

4

5

6

7

Figure 4: Heatmap for Effective Throughput (bps) w.r.t
timing intervals (𝛿1,𝛿2).

4 EVALUATION
We evaluate Macchiato performance considering different
time parameters for the rounds, modulation schemes and
controller load conditions. The evaluation is based on one
server running mininet for simulating a data plane with 20
switches and hosts, and second server running the controller
managing the (virtual) switches. We implemented the sender
and receiver algorithms using Python scripts that execute
the ping and nping programs according to pre-configured
phase time intervals and source MAC address.

4.1 Timing Intervals Analysis
As described in Section 3, each modulation round consists
of a sending phase and a receiving phase, which last 𝛿1 and
𝛿2 seconds respectively. Clearly, reducing these phase time
intervals will increase the rate of rounds, but it also inflicts
errors when the intervals are shorter than flow reconfigura-
tion and forwarding times. Therefore, we define the effective
throughput of the channel by 𝑇 := 𝐶𝜖0,𝜖1

𝛿1+𝛿2 , where 𝐶𝜖0,𝜖1 is
the capacity of binary asymmetric channel (BAC) with bit
flipping errors 𝜖0 and 𝜖1 [19].

We evaluated the effect of the timing intervals by testing
multiple 𝛿1,𝛿2 pairs. For each pair we transmitted predefined
128 bits, measured the error rate and calculated the effective
throughput. The results are illustrated in Fig 4. We can see
that the maximal effective throughput (5.9 bits per second)
is achieved by the pair 𝛿1 = 120𝑚𝑠, 𝛿2 = 50𝑚𝑠 .

4.2 Control Plane Considerations
We explored the impact of controller load on Macchiato
error. For the experiment we used ofcprobe [12], which is
a platform-independent controller analysis tool, to inflict

ANCS ’21, December 13–16, 2021, Layfette, IN, USA Amir Sabzi, Liron Schiff, Kashyap Thimmaraju, Andreas Blenk, Stefan Schmid

No Load Light Load Medium Load Heavy Load
0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r P
ro

ba
bi

lit
y

Figure 5: Estimated error per bit in different controller
load conditions.

Table 1: Comparison of the error rate for different en-
coding and detection methods.

Encoding
Method

Detection
Mechanism

Bit Rate
(bps)

Probability of
Error

Effective Output
(bps)

No load Load No load Load

PAM Threshold 5.9 0.004 0.135 5.7 2.5
DNN 5.9 0.0 0.049 5.9 4.2

Manchester Edge-Sensitive 2.9 0.0 0.02 2.9 2.5

load on the controller. We defined four scenarios based on
the average packet-in message rate sent by each switch to
the controller (on top of Macchiato related traffic): No Load,
Light Load - 2 packet-ins/sec, Medium Load - 5 packet-ins/sec
and Heavy Load - 20 packet-ins/sec.

In Fig. 5 we can see that the higher load on the controller
the higher the error. Moreover, we compared RTT histograms
between P4 and OpenFlow and considered the no load and
the medium load scenarios. We can see in Fig. 2 that as
expected, the load increases the RTT average and variance.

4.3 Robustness
As we described in Section 3.3, network changes after the
covert channel calibrationmay impact the error (and throuput).
In order to evaluate the robustness of the different methods
we performed an experiment where we calibrate (train) the
channels in no load conditions and test their performance
(effective throughput) in load conditions (equivalent to the
medium load scenario described before). Testing consisted
of sending 1024 bits and measuring the errors. Note that the
Manchester methods has no learning and the test results are
independent of train results.

As we can see in Table 1, DNN is the most robust modula-
tion, keeping high throughput in load conditions even when
trained in no load conditions. The Manchester modulation,
while having lower error rate, has half the nominal rate as it
uses two rounds per bit.

5 COUNTERMEASURES
Since our covert channel is based on control plane activity of
the mobility application, it can be impacted by control plane
security techniques such as Topoguard [11] or Sphinx [3]

that can block or delay handling such activity. However
blocking mobility messages will prevent the core benefit
of mobility which is network ability to adapt to moving
hosts. On the other hand, adding delay and prioritization to
specific messages will just slow down our covert channel
but will not mitigate it. Other security techniques provided
by SDN hypervisors such as CoVisor [13], Flowvisor [26],
FortNOX [24] can be used to bound the impact of mobility
within network segmentation boundaries. However they
require to maintain a dedicated policy in the hypervisor and
do not apply to all controllers.

We suggest a mitigation technique that breaks the strong
coherency imposed by the mobility application: the MAC
forwarding at all switches are consistent with the last known
location of that MAC address. As explained in Section 2,
our channel sender exploits this coherency to revoke rules
at another switch which the receiver can identify. We can
break this coherency by replacing the rules revocation by a
predefined rules idle-timeout, making irrelevant rules to be
self-deleted by the switches without controller intervention.

6 DISCUSSION
The analogy between memory hierarchy in computer sys-
tems and network layers in the software-defined networks
provides us with the opportunity to benefit from the efforts
of researchers in that area. For instance, Maurice et al. [17]
explored two major sources of error in cache-based covert
channels. The first one is eviction of the receiver’s cache
sets by other programs thereby increasing the receiver prob
time and inflicting bit substitution errors. The second source
of error are hardware and scheduling interrupts that can
reschedule either one of the sender or receiver processes
inflicting burst errors.
Similar error sources applies to Macchiato; Other hosts

may temporarily increase data plane and control plane load
and even evict receiver flow rules in case of switch table
depletion thereby affecting the RTT measurement and in-
flicting bit substitution errors. Moreover, data plane and
control plane failures may prevent or introduce new flow
reconfigurations thereby inflicting burst errors.

As a future research direction, the study of access-driven
cache covert channels, and subsequently, applying them to
SDN-based covert channels, can help improve the security of
software-defined networks, by either discovering potential
attack vectors or finding new countermeasures.
Acknowledgements. Supported by the Austrian Science
Fund (FWF), project DELTA (I 5025-N), a joint project with
the Hungarian National Research, Development and Innova-
tion Office (NKFIH), as well as by the Deutsche Forschungsge-
meinschaft (DFG), project ADVISE (438892507). The authors
alone are responsible for the content of the paper.

Macchiato: Importing Cache Side Channels to SDNs ANCS ’21, December 13–16, 2021, Layfette, IN, USA

REFERENCES
[1] Adam Bates, Benjamin Mood, Joe Pletcher, Hannah Pruse, Masoud

Valafar, and Kevin Butler. 2014. On detecting co-resident cloud in-
stances using network flow watermarking techniques. International
Journal of Information Security 13, 2 (2014), 171–189.

[2] Jiahao Cao, Kun Sun, Qi Li, Mingwei Xu, Zijie Yang, Kyung Joon Kwak,
and Jason Li. 2019. Covert Channels in SDN: Leaking Out Information
from Controllers to End Hosts. In International Conference on Security
and Privacy in Communication Systems. Springer, 429–449.

[3] Mohan Dhawan, Rishabh Poddar, Kshiteej Mahajan, and Vijay Mann.
2015. SPHINX: Detecting Security Attacks in Software-Defined Net-
works.. In Proc. NDSS.

[4] Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian,
Waqar Mohsin, Henrik Muehe, Joon Ong, Leon Poutievski, Arjun
Singh, Lorenzo Vicisano, Richard Alimi, Shawn Shuoshuo Chen, Mike
Conley, Subhasree Mandal, Karthik Nagaraj, Kondapa Naidu Bollineni,
Amr Sabaa, Shidong Zhang, Min Zhu, and Amin Vahdat. 2021. Orion:
Google’s Software-Defined Networking Control Plane. In Proc. NSDI.
83–98.

[5] Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN in
the Public Cloud. In 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17). 315–328.

[6] R. Forster. 2001. Manchester encoding: Opposing definitions resolved.
Engineering Science and Education Journal 9 (01 2001), 278 – 280. https:
//doi.org/10.1049/esej:20000609

[7] Yuri Gbur. 2018. A Feasibility Study of SDN Teleportation in P4Runtime.
Bachelor’s Thesis. Technische Universität Berlin. https://github.com/
yurigbur/publications/blob/master/Bachelorthesis.pdf.

[8] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018.
Translation Leak-aside Buffer: Defeating Cache Side-channel Protec-
tions with TLB Attacks. In 27th USENIX Security Symposium (USENIX
Security 18). USENIX Association, Baltimore, MD, 955–972. https:
//www.usenix.org/conference/usenixsecurity18/presentation/gras

[9] Daniel Gruss, Clémentine Maurice, KlausWagner, and Stefan Mangard.
2016. Flush+ Flush: a fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 279–299.

[10] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache
Template Attacks: Automating Attacks on Inclusive Last-Level Caches.
In 24th USENIX Security Symposium (USENIX Security 15). USENIX
Association, Washington, D.C., 897–912. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/gruss

[11] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. 2015. Poisoning
Network Visibility in Software-Defined Networks: New Attacks and
Countermeasures. In Proc. NDSS.

[12] Michael Jarschel et al. 2014. OFCProbe: A platform-independent tool
for OpenFlow controller analysis. In Proc. IEEE International Conference
on Communications and Electronics. IEEE, 182–187.

[13] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. 2015.
CoVisor: A Compositional Hypervisor for Software-Defined Networks.
In Proc. NSDI.

[14] Robert Krösche, Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
2018. I DPID ItMyWay! ACovert Timing Channel in Software-Defined
Networks. In 2018 IFIP Networking Conference (IFIP Networking) and
Workshops. 217–225. https://doi.org/10.23919/IFIPNetworking.2018.
8696597

[15] Qi Li, Yanyu Chen, Patrick PC Lee, Mingwei Xu, and Kui Ren. 2018.
Security policy violations in SDN data plane. IEEE/ACM Trans. Net-
working 26, 4 (2018), 1715–1727.

[16] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. 2015. C5: cross-cores cache covert channel. In International

Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 46–64.

[17] Clementine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
2017. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In Proc. NDSS. https://doi.org/10.14722/ndss.
2017.23294

[18] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: enabling innovation in campus networks. SIGCOMM
Comput. Commun. Rev. 38, 2 (2008), 69–74.

[19] Stefan M. Moser, Po-Ning Chen, and Hsuan-Yin Lin. 2012. Error Prob-
ability Analysis of Binary Asymmetric Channels. Technical Report.
National Chiao Tung University, Department of Electrical Engineering.
https://moser-isi.ethz.ch/docs/papers/smos-2012-4.pdf

[20] OpenFlow Spec. 2013. openflow.org (2013). http://www.openflow.org/
documents/openflow-spec-v1.1.0.pdf

[21] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and An-
gelos D. Keromytis. 2015. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and Their Implications (CCS ’15). 1406–1418.

[22] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks
and Countermeasures: The Case of AES. In Proceedings of the 2006 The
Cryptographers’ Track at the RSA Conference on Topics in Cryptology
(San Jose, CA) (CT-RSA’06). Springer-Verlag, Berlin, Heidelberg, 1–20.
https://doi.org/10.1007/11605805_1

[23] Colin Percival. 2005. Cache Missing for Fun and Profit. In In Proc. of
BSDCan 2005.

[24] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong,
Mabry Tyson, and Guofei Gu. 2012. A Security Enforcement Ker-
nel for OpenFlow Networks. In Proc. ACM Workshop on Hot Topics in
Software Defined Networking (HotSDN). 121–126.

[25] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
2009. Hey, you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proc. ACM Conference on Computer and
Communications Security (CCS). 199–212.

[26] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin
Casado, Nick McKeown, and Guru Parulkar. 2009. Flowvisor: A network
virtualization layer. Technical Report. OpenFlow.

[27] Rashid Tahir et al. 2016. Sneak-Peek: High speed covert channels in
data center networks. In Proc. IEEE INFOCOM. 1–9.

[28] The P4.org API Working Group. 20201. P4runtime. https://p4.org/
p4-spec/p4runtime/main/P4Runtime-Spec.html. Accessed: 01-07-
2021.

[29] Kashyap Thimmaraju et al. 2018. Taking Control of SDN-based Cloud
Systems via the Data Plane. In Proc. ACM Symposium on Software
Defined Networking Research (SOSR).

[30] Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid. 2017. Outsmart-
ing Network Security with SDN Teleportation. In Proc. IEEE European
Security & Privacy (S&P).

[31] Shin-Yeh Tsai, Mathias Payer, and Yiying Zhang. 2019. Pythia: Remote
Oracles for the Masses. In 28th USENIX Security Symposium (USENIX
Security 19). USENIX Association, Santa Clara, CA, 693–710. https:
//www.usenix.org/conference/usenixsecurity19/presentation/tsai

[32] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti
Hiltunen, and Richard Schlichting. 2011. An exploration of L2 cache
covert channels in virtualized environments. In Proceedings of the 3rd
ACM workshop on Cloud computing security workshop. 29–40.

[33] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In 23rd
USENIX Security Symposium (USENIX Security 14). USENIX Associa-
tion, San Diego, CA, 719–732. https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/yarom

https://doi.org/10.1049/esej:20000609
https://doi.org/10.1049/esej:20000609
https://github.com/yurigbur/publications/blob/master/Bachelorthesis.pdf
https://github.com/yurigbur/publications/blob/master/Bachelorthesis.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/gruss
https://doi.org/10.23919/IFIPNetworking.2018.8696597
https://doi.org/10.23919/IFIPNetworking.2018.8696597
https://doi.org/10.14722/ndss.2017.23294
https://doi.org/10.14722/ndss.2017.23294
https://moser-isi.ethz.ch/docs/papers/smos-2012-4.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
https://doi.org/10.1007/11605805_1
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://www.usenix.org/conference/usenixsecurity19/presentation/tsai
https://www.usenix.org/conference/usenixsecurity19/presentation/tsai
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	Abstract
	1 Introduction
	2 Attack Overview
	2.1 Threat Model
	2.2 Analogy to Caching
	2.3 Macchiato Core Idea

	3 Channel Modulation
	3.1 Sender and Receiver Algorithms
	3.2 The Decision Threshold
	3.3 Optimizing the Channel Using Deep Neural Networks
	3.4 Parallelization

	4 Evaluation
	4.1 Timing Intervals Analysis
	4.2 Control Plane Considerations
	4.3 Robustness

	5 Countermeasures
	6 Discussion
	References

