
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)
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Today’s Datacenters
Fixed and Demand-Oblivious Topology

Many flavors, 
but in common: 
fixed and 
oblivious to 
actual demand.
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Our Vision
Flexible and Demand-Aware Topologies
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Sounds Crazy? 
Emerging Enabling
Technology.

H2020: 
“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council: 
“Photons are the new
Electrons.”

Photonics



Enabler
Novel Reconfigurable Optical Switches

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 
⇀ From our recent ACM SIGCOMM OptSys’19 workshop

Prototype 1

Prototype 2

Prototype 3



Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses Fixed
Mirror

Mirrors on Motors

Rotate Mirror
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Empirical Motivation
Temporal and Spatial Structure

Source: Avin et al., On the 
Complexity of Traffic Traces and 
Implications, SIGMETRICS 2020



The Potential
Example: Expected Route Length

Demand 1: Low Degree Demand 2: Skewed

Expected route length in 
demand-aware network
is constant in these cases 
(while diameter is Ω(log n)).

⇢ Expected path length: number of hops times demand

⇢ Consider design of constant degree topologies (e.g., 4)

⇢ Note: diameter is at least logarithmic



⇢ Achievable expected route length is proportional 
to conditional entropy of the demand matrix

⇢ Similar to coding and data structures:

Connection to Entropy

Traditional BST /
worst-case coding

Demand-aware BST /
Huffman coding

entropylog n

Traditional networks /
worst-case traffic

Demand-aware BST /
Huffman coding

Avin et al.
DISC 2017

log n entropy
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But how to achieve short 
routes if the demand is 
not known ahead of time 
and we have to account for 
reconfiguration costs?



Example
Facebook’s Datacenter Traces

Max 
entropy

Conditional 
entropy



Our Contribution:
ReNet, A Statically Optimal Demand-Aware Network

fixed

reconfigurable

⇢ Model: hybrid architecture
⇀ Fixed network of diameter log n

plus reconfigurable network 
(constant number of direct links) 

⇀ Segregated routing
⇀ Online sequence of requests:

σ = (σ1, σ2, σ3, ...)
⇀ Global controller

⇢ Objective: Minimize route length 
plus reconfigurations
⇀ More specifically: 

be statically optimal
⇀ Compared to a fixed algorithm

which knows σ ahead of time 



Our Contribution:
ReNet, A Statically Optimal Demand-Aware Network

fixed

reconfigurable

Bonus:
⇀ Compact routing (constant tables)
⇀ Local routing (greedy)
⇀ Arbitrary addressing
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The ReNet Algorithm (1)

Algorithmic building blocks:

1. Working Set (WS)
⇀ Nodes keep track of recent communication partners in σ.

2. Small/large nodes and Ego-Tree
⇀ Nodes with small WS connect to WS directly, nodes with large WS via a   

self-adjusting binary search tree  (e.g., a splay tree)
3. Helper nodes to reduce the degree

⇀ Large nodes may appear in many ego-trees, so get help of small nodes 

Demand graph ReNet design

Ego-trees for 
large nodes



The ReNet Algorithm (2)

Continued:

4. Self adjustments
⇀ Keep track of WS; when too large: flush-when-full

5. Centralized coordination
⇀ Fairly decentralized: coordinator only needs to keep track 

of which nodes are large and which small 
⇀ Nodes inform coordinator when adding node to working set
⇀ Coordinator then assigns helper node on demand 



Analytical Results (1)

Theorem 1:

For any sparse communication sequence of a 
certain length, ReNets are statically optimal 
while ensuring a bounded degree. 

⇢ Sparse: subsequences of only involve a linear number of nodes
⇢ Required to ensure availability of helper nodes (DISC 2017)



Analytical Results (2)

Under certain communication patterns, the 
amortized cost of ReNet can be significantly
lower than the static optimum, i.e., Ω(log n).

⇢ Example: consider sequence of σ = (σ(1), σ(2), σ(3), ...)
where each σ(i) is of length n log n, sparse and corresponds to 
different 2-dimensional grid. 

⇢ In this example, the cost of ReNet is constant for each σ(i). 
⇢ Overall, the union of the grids form a uniform pattern, so the  

cost of the static algorithm is log n (for constant degree).

Theorem 2:



Conclusion

A Self-Adjusting Search Tree 
by Jorge Stolfi (1987)

⇢ ReNet: statically optimal and 
⇀ compact routing
⇀ local routing
⇀ arbitrary addressing

⇢ Avenues for future work 
⇀ dense communication 
⇀ dynamic optimality

Thank you!



http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites
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