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Abstract

This paper studies the design of self-adjusting datacenter

networks whose physical topology dynamically adapts to the

workload, in an online and demand-aware manner. We

propose ReNet, a self-adjusting network which does not

require any predictions about future demands and amortizes

reconfigurations: it performs as good as a hypothetical static

algorithm with perfect knowledge of the future demand. In

particular, we show that for arbitrary sparse communication

demands, ReNets achieve static optimality, a fundamental

property of learning algorithms, and that route lengths in

ReNets are proportional to existing lower bounds, which

are known to relate to an entropy metric of the demand.

ReNets provide additional desirable properties such as

compact and local routing and flat addressing therefore

ensuring scalability and further reducing the overhead of

reconfiguration. To achieve these properties, ReNets combine

multiple self-adjusting tree topologies which are optimized

toward individual sources, called ego-trees in this paper.

1 Introduction

Modern datacenter networks rely on efficient network
topologies to provide a high connectivity at low cost.
Most existing datacenter networks also have in common
that their topology is fixed and oblivious to the actual
demand (i.e., workload or communication pattern) they
currently serve. Rather, they are designed for all-to-
all, or uniform, communication patterns, by ensuring
properties such as (almost) full bisection bandwidth
or O(log n) route lengths between any node pair in a
constant-degree n-node network. However, empirical
studies show that traffic patterns in datacenters are far
from uniform, but rather skewed and bursty [1, 2, 3, 4, 5],
featuring much (spatial and temporal) locality. This
makes demand-oblivious networks inefficient compared
to optimal designs.

This paper investigates demand-aware networks
(DANs) designs: networks which optimize their physical
topology toward the demand they serve. In particular,
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we consider the design of DANs which provide short
average route lengths by accounting for locality in
the demand and by locating frequently communicating
node pairs (e.g., a pair of top-of-the-rack switches)
topologically closer. Shorter routes can improve network
performance (e.g., latency) and reduce costs (e.g., load,
energy consumption) [6].

DANs come in two flavors: fixed and self-adjusting.
Fixed DANs can exploit spatial locality in the demand.
It has recently been shown that a fixed DAN can provide
average route lengths in the order of the (conditional)
entropy of the demand [7,8,9], which can be, for specific
demands, much lower than the O(log n) route lengths
provided by demand-oblivious networks. However, fixed
DANs require a priori knowledge of the demand.

On the contrary, self-adjusting DANs do not require
such knowledge and can additionally exploit temporal
locality, by adapting the topology to the demand in
an online manner. The vision of such self-adjusting
networks is enabled by emerging optical technologies
which allow us to quickly reconfigure the topology over
time [1, 10,11,12,13,14,15,16,17].

For the upper networking layers, the advantages
of demand-aware vs. demand-oblivious algorithms are
already well-known and widely-used, for example CDNs
use demand-aware algorithms on the application layer,
TCP is demand-aware on the transport layer, and traffic
engineering provides demand-awareness on the network
layer. However, the design of self-adjusting physical-layer
topologies is still not well-understood and challenging:
while more frequent reconfigurations allow to adapt
the topology to the demand in a more fine-grained
manner, such reconfigurations also come at a cost (e.g.,
related to recomputations, delays, packet reorderings [6]).
Hence, an optimal tradeoff between the benefits and
the costs of such reconfigurations has to be found.
This tradeoff is not accounted for today: most existing
solutions in the literature, e.g., [1, 18, 19], recompute
demand-aware networks periodically and/or from scratch,
for a (predicted) new demand matrix. Depending on
the frequency of such reconfigurations, such periodic
adjustments introduce unnecessary overheads or result
in a poor reactivity in case of bursty demands.

Further challenges are introduced by the online
nature of the problem and the lack of a priori knowledge
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about the demand. Ideally, a self-adjusting network
provides an optimal performance even in hindsight :
despite the lack of information on the demand, the
performance is at least as good as the performance of a
hypothetical (fixed) demand-aware network with a priori
knowledge of the demand, for sufficiently long demands.
This property is called static optimality : static optimality
is a strong notion of optimality and frequently used
to evaluate algorithms based on limited information,
for example in the context of coding (e.g., dynamic
Huffman codes [20]), self-adjusting datastructures (e.g.,
splay trees [21]), or repeated games and machine
learning [22,23,24,25].

In order to ensure scalability, it is also important
that self-adjusting networks support compact routing,
i.e., small routing tables, and also limit the impact of
topological reconfigurations on the routing tables and the
routing algorithm, i.e., do not require the recomputation
of routes.

1.1 Our Contributions Our main contribution is
a self-adjusting demand-aware network called ReNet
which comes with several, theoretically proven, attractive
features: (1) ReNets provide route lengths which are
proportional to an entropy metric of the demand, while
keeping reconfiguration costs minimal. In particular, we
prove that ReNets are statically optimal under sparse
communication patterns. ReNets are based on online
algorithms and do not require any knowledge of future
demands. (2) ReNets are highly scalable in that they
only require a constant number of reconfigurable links
per switch or router, and in that they feature compact
routing, i.e., constant-size forwarding tables. (3) By
supporting local routing, ReNets further reduce the
reconfiguration costs: the effect of topological changes
on forwarding tables is minimal. (4) Last but not least,
ReNets do not require any specific addressing scheme,
addresses can be arbitrary, so routing can be based
on, e.g., flat, topology-independent MAC addresses or
hierarchical, location-dependent IP addresses.

The design of ReNets relies on concepts from self-
adjusting datastructures. In particular a ReNet is based
on a set of trees, called ego-trees. Each ego-tree is
(dynamically) optimized for an individual, highly active,
node which acts as the root of the tree. The ego-tree of
a given node stores the working set of that node (e.g.,
top-of-rack switches), its most recent communication
partners. A ReNet is then a union of all the ego-trees
of individual nodes, using algorithmic manoeuvres to
make sure that the degree (and routing tables) remain
constant at any time.

More specifically, the working set of each of these
nodes is organized as a self-adjusting binary search tree

(BST). While different types of such ego-trees can be
used (e.g., Huffman trees, tango trees [26], etc.), ReNet
are based on splay trees [21]. As we will see, this will
result in desirable properties, such as compact and local
routing as well as static optimality.

1.2 Scope and Limitations The main contribution
of this paper is a conceptual one, in that we show which
metrics and properties can be achieved theoretically
by self-adjusting networks, focusing on the algorithmic
foundations. In particular, we consider an online scenario
where communication requests arrive over time (as
it is usual in competitive analysis [27]), we do not
optimize constants in our algorithm, and we ignore the
impact of our algorithms on other networking layers
such as the transport layer. While these aspects are
important, they are left to a future dedicated study
which will require additional methodologies and a specific
application scenario.

1.3 Organization The remainder of this paper is
organized as follows. We introduce our model for self-
adjusting demand-aware networks in Section 2, and
present some empirical motivation in Section 3. In
Section 4 we describe the algorithms underlying ReNets,
and formally analyze them in Sections 5 and 6. After
reviewing related work in Section 7, we conclude and
discuss future work in Section 8.

2 Preliminaries and Model

We consider a set V of n nodes V = {1, . . . , n}
with unique but otherwise arbitrary addresses. The
communication demand among these nodes is described
as a (finite or infinite) sequence σ = (σ0, σ1 . . .) of
communication requests where σt = (u, v) ∈ V × V
is the source-destination pair that communicate at time
t1. The communication demand is revealed in an online
manner and can be adversarial.

In order to serve this demand, the nodes V must be
inter-connected by a demand-aware network (DAN), N ,
defined over the same set of nodes. In the case of a
self-adjusting DAN, N can also change over time, and
we denote by Nt the network at time t. For scalability
reasons and since reconfigurable links may be costly
and consume space, the DAN must be chosen from the
family of degree-bounded topologies: the networks Nt
are required to be of constant degree at most ∆ which
is predefined.

The cost to serve a communication request σt =
(u, v) on the DAN at time t, is considered to be the hop

1The result and model can be extended to the case where
several different sources can communicates at the same time.
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distance dNt
(u, v) from u to v over Nt, along the routing

path chosen by the algorithm. If not specified otherwise,
we assume shortest path routing. We are interested in
the fundamental tradeoff between the benefits of self-
adjusting algorithms (i.e., shorter routes) and their costs
(namely reconfiguration costs). Let A be an algorithm
that given the request σt and the network Nt at time t,
reconfigures the current network to Nt+1 at time t+ 1.
The cost of the network reconfiguration at time t is given
by the number of link changes performed to change Nt
to Nt+1; when A is clear from the context, we will simply
write this cost as adj(Nt, Nt+1).

We can now define the cost of an algorithm A for
self-adjusting network to serve a demand σ starting from
an initial network N0:
Average and Amortized Cost. Given an algo-
rithm A, an initial network N0, a distance function
dN (·), and a demand σ = (σ0, σ1, . . . , σm−1) of commu-
nication requests, we define the (average) cost incurred
by A as:

Cost(A, N0, σ) =
1

m

m−1∑
t=0

(dNt
(σt) + adj(Nt, Nt+1))

The amortized cost of A is defined as the worst possible
cost of A over all initial networks N0 and all sequences σ,
i.e., maxN0,σ Cost(A, N0, σ). 2

In addition to the DAN, nodes can also communi-
cate over a demand-oblivious network: reconfigurable
datacenter networks are usually hybrid [1, 6], connect-
ing fixed (electric) switches with reconfigurable (optical)
switches. The demand-oblivious network plays a minor
role in this paper, and is only used to exchange con-
trol information (e.g., discover new neighbors). Route
lengths on the demand-oblivious networks cost D per
request, where D is a parameter: e.g., D is the diame-
ter of the demand-oblivious network, D = Θ(log n) in
constant-degree networks.

Let σ′ = σ[t, t + `] be a consecutive subsequence
of length ` starting at time t. For a sequence σ,
or a subsequence σ′, let the demand graph G(σ′) =
(V (σ′), E(σ′)) be a directed and weighted graph as
follows. The node set V of G is given by the set of nodes
participating in σ′, i.e., V (σ′) = {v : v ∈ σ′}, and the set
of directed edges E is given by E(σ′) = {σ′t : σ′t ∈ σ′]}.
The weight w(e) of each directed edge e = (x, y) ∈ E
is the frequency f(x, y) of the request from source x to
destination y in σ′, where

∑
x,y∈V (σ′) f(x, y) = 1.

Next, we define the empirical entropy of the
demand σ = (σ1, σ2, . . . , σm). We will interpret σ
as a joint empirical frequency distribution f(X̂, Ŷ ),
where X̂ is a random variable (r.v.) describing the
empirical frequency of the sources and Ŷ is a r.w de-
scribing the empirical frequency of the destinations.

More formally, let f(x, ·) =
∑
y f(x, y) and f(·, y) =∑

x f(x, y) and X̂σ = {f(x1, ·), . . . , f(xn, ·)} be the
empirical frequency distribution of the communication
sources. We omit σ in X̂σ when it is clear from the
context. The empirical entropy H(X̂) is then defined
as H(X̂) = −

∑n
i=1 f(xi) log2 f(xi), where f(xi) is used

as a shorthand for f(xi, ·). Similarly, we define the
empirical entropy of the communication destinations,
H(Ŷ ), where Ŷσ = {f(·, y1), . . . , f(·, yn)}. We use
the normalization f(x|y) = f(x, y)/f(·, y). The em-
pirical joint entropy H(X̂, Ŷ ) is defined as H(X̂, Ŷ ) =
−
∑
i,j f(xi, yj) log2 f(xi, yj) and the empirical condi-

tional entropy H(X̂|Ŷ ) which measures spatial locality
as H(X̂|Ŷ ) = −

∑
j f(yj)

∑
i f(xi | yj) log2 f(xi | yj).

Note that H(X̂|Ŷ ) =
∑
j f(yj)H(X̂yj ) where X̂yj is the

frequency distribution of the sources for the destination
yj . We may simply write H for the entropy if the usage
is given by the context. By default, the entropy H is
computed using the binary logarithm; if a different loga-
rithmic basis ∆ is used to compute the entropy, we will
explicitly write H∆.

3 Intuition & Empirical Motivation

It was recently shown that the conditional entropy of the
demand, and in particular max(H∆(Ŷ |X̂), H∆(X̂|Ŷ ))
is a lower bound for the average route length in any
(constant) degree-∆ bounded, fixed network [7]2. This
bound can be (asymptotically) matched if the demand σ
is sparse and is known a priory, before designing the
network. In contrast, in this work, we are interested
in solutions that match the conditional entropy lower
bound, but for a demand σ that is unknown a priory.
This makes the task much more challenging.

This section provides intuition on the connection
between the entropy of the demand and route lengths in
fixed demand-aware networks, as well as on the benefits
of demand-aware networks in general (see also [9]), by
giving simple examples and initial empirical results on
real traces from Facebook.

Recall that the conditional entropy of a demand σ
is a lower bound for the average path length even in
demand-aware networks [7,8]. First, we demonstrate that
the route lengths in demand-oblivious networks (such
as state-of-the-art expander networks [28, 29]) cannot
be proportional to the lower bound of the conditional
entropy of the demand. Therefore, they cannot provide
the desired solution (even in the presence of traffic
engineering flexibilities [30]).

To give a simple example (for the sake of simplicity

2We note that the result in [7] is stated for the entropy and
not the empirical entropy, however, the claim follows directly.
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(a) (b)

Figure 1: Expander networks do not achieve
optimal average route lengths for sparse demand
graphs. (a) Oblivious embedding of a 2-dimensional
grid demand graph (upper graph) on a constant degree
expander network (lower graph) will result in average
route lengths of Ω(log n), while the conditional entropy
of the demand graph is less than two. (b) Oblivious
embedding of a weighted star-shaped demand graph on
a constant degree expander network will result in an
average route length of Ω(log n) while the conditional
entropy of the demand graph could be much lower

and clarity we leave some of the details out), consider a
workload describing a communication pattern σ whose
demand graph G(σ) forms a two-dimensional square
grid, of size

√
n ×

√
n, see Figure 1 (a). For this

sequence σ, H(X̂) and H(Ŷ ) are of order log n, since
the frequency of sources and destinations is uniform
which results in the maximum possible entropy. If we
serve this σ on a static expander in an demand-oblivious
way (i.e., node locations are random, or arbitrary in the
network) it will result in an average route length in the
order of log n, which is the diameter of a bounded degree
expander. However, since every node has at most four
neighbors, the conditional entropy of σ (both H(Ŷ |X̂)
and H(X̂|Ŷ )) is only 2 : a gap of Θ(log n). A demand-
aware network design (of the same bounded degree) could
potentially achieve the lower bound of the conditional
entropy.

Another simplified example introducing a large gap
of Θ(log n) between demand-oblivious and demand-
aware networks is a demand graph G(σ) which forms a
star (with unbounded degree), and where node pairs
communicate at different frequencies described by a
highly skewed distribution, see Figure 1 (b). For such a
skewed demand, the conditional entropy could be much
lower than log n which will be the cost of serving this
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Figure 2: Entropy measures in Facebook’s workload.

demand on an demand-oblivious expander.
More generally, one can see that every sparse

communication pattern which is embedded on a demand-
oblivious expander (e.g., via a random embedding on
an expander), will result in average route lengths in the
order of Ω(log n), the diameter, regardless of the entropy
or the conditional entropy of the demand.

So, the potential benefit of demand-aware networks
boil down to the structure of the demand, and in
particular its empirical entropies. In order to illustrate
the optimization potential, we can use the empirical
traces made available by Facebook for their datacenter [3]
as an example. In Figure 2 we plot the empirical and
the conditional entropy, H(X̂) and H(X̂|Ŷ ), respectively.
The demand σ here consists of n = 13748 communication
partners. Note that log n = 13.74 for this case (we
consider the binary logarithm). The figure considers
times t that use multiplicatives of 100K requests. For
each time t, the measures are presented both for the full
range σ[1, t] (labelled H) as well as for a time window
of the last 100K requests σ[t− 100K, t] (labelled HW ),
to shed light on the temporal locality. Clearly the
conditional entropy is lower than the entropy, and in
particular the conditional entropy of the window is much
less than the entropy of X and Y . This indicates that
demand-aware designs could reduce the average route
length in the network even for real-life communication
traces.

4 ReNet: A Statically-Optimal Online
Demand-Aware Network

This section presents ReNets a statically optimal algo-
rithms for self-adjusting networks of bounded degree
with a number of desirable properties. We first intro-
duce these properties, then present algorithmic building
blocks, and finally describe ReNets’ algorithms and for-
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warding tables in details.

4.1 Desirable Properties The main challenge faced
by self-adjusting DANs is that information about (future)
demand may not be available. Our goal is to design
algorithms for statically optimal networks:
Static Optimality. Let Stat be an optimal algorithm
to design a static network with a perfect knowledge
of the demand σ, and let On be an online algorithm
producing a dynamic degree-bounded network (i.e., the
maximum degree is at most ∆). We say that On is
statically optimal if, for sufficiently long communication
patterns σ:

ρ = max
σ

Cost(On, ∅, σ)

Cost(Stat, N∗, σ)

is constant. Here, N0 = ∅ is the empty network from
which On starts, and N∗ is the statically optimal degree-
bounded network for σ. In other words, On’s cost is at
most a constant factor higher than Stat’s in the worst
case. 2

Static optimality is a very strong property that
guarantees an (asymptotically) optimal performance
even in hindsight.

In order to be scalable and in order to minimize re-
configuration costs, self-adjusting networks must provide
some additional fundamental properties. In particular,
we require that each node in a self-adjusting network
not only needs at most a constant number of reconfig-
urable links, but we would like to have an even stronger
property, namely compact routing : that the forwarding
tables are small, i.e., of constant size [31,32].
Compact Routing. A network supports compact
routing if the sizes of the nodes’ forwarding tables are
constant, i.e., independent of the network size. 2

A key challenge in the design of self-adjusting net-
works is that topological reconfigurations may negatively
affect routing. A particularly attractive (but seemingly
difficult to achieve) property that enables efficient rout-
ing in dynamic networks is local routing :
Local Routing. A network provides local routing if
packets can be forwarded based on local knowledge only.
2

In particular, local routing provides an efficient
alternative to many existing routing schemes in that
topological changes can be reflected efficiently in the
forwarding tables, and do not entail the global re-
computation of routes.

Efficient reconfigurations are further enabled by a
topology and location independent addressing scheme:
Arbitrary Addressing. Nodes can have arbitrary (but
unique) addresses. 2

In fact, the results derived in this paper apply to any

addressing scheme, e.g., based on location-independent
MAC addresses or location-dependent IP addresses.

The main result of the paper regards the static
optimality of ReNets for sparse demand that we define
next.
(c, δ)-sparse Communication. We call a communi-
cation demand σ (c, δ)-sparse if and only if any sub-
sequence σ′ of σ of length |σ′| ≤ δ, involves no more
than c · n unique communication pairs where c is a con-
stant and δ is a function of n. That is, σ′ implies a
sparse demand graph G(σ′) = (V,E(σ′)) of average
degree 2|E(σ′)|/n ≤ 2c. 2

Note that for δ = ∞, the entire communication
pattern σ needs to be sparse. For δ ≤ cn, the constraint
is trivial.

4.2 Algorithmic Building Blocks We describe
ReNets using a top-down approach from concepts to de-
tails. We start with the main ideas and building blocks
of ReNets. Ideally, each node u ∈ V in ReNet connects
directly to all its communication partners in G(σ), achiev-
ing an ideal average route length of 1. However, this is
infeasible, as (1) the communication partners are not
known to u a priori and (2) a node u may have many
communication partners (even in an otherwise sparse
demand graph), which would result in a high degree
and large forwarding tables. To overcome this, ReNet
leverages several key concepts:
Concept 1 - Working Set. Each node u in ReNet
keeps track of it recent active communication partners,
i.e., the so-called working set W(u), hoping to exploit
temporal locality as they are also likely to be relevant
in the near future. The working set will be defined over
the recent subinterval of σ that will be defined later.
Concept 2 - Small and Large Nodes. A node u
in ReNet pursues one of two different approaches to
communicate with its recent communication partners,
depending on its working set size. Towards this end, we
define the size of a node u to be the cardinality |W(u)|
of u’s working set. We say that a node u is small if the
size of u is smaller than a parameter θ and otherwise,
a node is called large. For now assume θ is a constant
which depends on the sparsity of the communication
sequence, we will discuss the details later. A small node
will communicate to its communication partners directly ;
a large node indirectly, by forwarding the traffic along
its ego-tree, which we explain next.
Concept 3 - Ego-Tree/Ego-BST. For large nodes u,
establishing links or storing forwarding rules for each
communication partner in W(u) is infeasible as it would
result in forwarding tables of non-constant size. Thus,
in ReNet, a large node u organizes its communication
partners W(u) in a self-adjusting ego-tree: a (tree)
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Figure 3: Design principles of a (fixed and adaptive) ReNet : (a) The sparse demand graph G(σ). Nodes are
divided into large (gray, e.g., u, v, w) and small (white, e.g. h) nodes. (b) Hierarchical representation of the demand
graph. Problematic edges are edges between two large nodes (e.g., (u, v)). (c) ReNet : every large node x has
an ego-BST(x) connecting its working set W(x). Every large-large edge, is routed with the help of a small node
(acting as relay between ego-BSTs, black). E.g., h is the helping node for edge (u, v) and participates in ego-BST(u)
as a relay node toward v and in ego-BST(v) as a relay toward u. The resulting network has bounded degree. (d)
Forwarding table for a small node u, see text.

network optimized for just this source. In particular,
we propose to use a self-adjusting binary search tree
for the ego-tree of a large node u, short ego-BST(u).
An important property of BSTs (both fixed and self-
adjusting) is that they naturally support local and
compact routing for messages to/from the ( root) of
the tree. In particular, the (self-adjusting) ego-BST(u),
is used to efficiently store and lookup (i.e., forward to)
neighbors v ∈ W(u). Each node that belongs to such
an ego-BST(u) supports the following interface:

• ego-BST(u).insert(v): insert v to ego-BST(u)

• ego-BST(u).forward(v): forward packet toward v

• ego-BST(u).adjust(): local update of tree network
datastructure

ReNet uses splay trees [21] as their self-adjusting ego-
BSTs. An additional nice property of splay trees is that
they are known to be statically optimal.
Concept 4 - Self-Adjustments. ReNets perform
two types of self-adjustments. In order to update the
neighborhood structures and optimize the network after
a routing request, a node u makes use of the adjust()
operation of its tree. For example in splay trees, we
issue a splay operation on the tree network. Second,
ReNets keep track of the total size of the nodes’ working
sets. Once the total size,

∑
vW(v), exceeds n · θ/2, all

working sets are cleared (in the spirit of flush-when-full or
marking techniques known from competitive paging [33]).

Such reset operations are necessary to follow temporal
locality, allowing the nodes to update the working sets
and hence be able to adjust to changing demand patterns.
Concept 5 - Helper Nodes. The problem with the
approach described so far is that while nodes in a single
BST are of degree at most three (parent, left child, right
child), a large node v can still appear in multiple trees
beside its own tree if it has large nodes in its working
set. Combined, these trees can induce a large forwarding
table on v, and hence, an additional mechanism is needed
to bound the degree. To this end, ReNets leverage small
nodes to help two communicating large nodes keep the
forwarding table small. Concretely, as long as the average
node size is smaller than θ/2, a ReNet exploits small
nodes (of size below θ) as helper nodes. For example, if a
small node h serves as relay between two communicating
large nodes v and u, node h will appear in both trees
networks ego-BST(v) and ego-BST(u): in ego-BST(v),
h will serve as a forwarder toward u and in ego-BST(u),
as a forwarder toward v. See Figure 3 for an example.
As we will discuss later, this not only allows us to bound
the size of the forwarding table, but also to preserve
local routing.
Concept 6 - Centralized Bookkeeping and Coor-
dination. While reconfiguration is decentralized, book-
keeping and coordination is centralized in ReNet. This
avoids complexities due to possible inconsistencies and is
efficient: a network coordinator (e.g., an arbitrary node
in the network) only needs to keep track of which nodes
are large and which nodes are small. That is, nodes
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inform the coordinator when they need to add a new
partner to their working sets. Given this information,
the coordinator can assign helper nodes upon request, in
an event-driven manner. If no helper nodes are left, the
coordinator schedules a reset() operation that clears all
working sets for all nodes, and sets their size to small.
Such a reset can be done using a spanning tree, at linear
cost.

Figure 3 illustrates some of the concepts introduced
above, such as small and large nodes, working set, BST,
and helping nodes.

4.3 Details of Forwarding Table and Reconfigu-
ration Algorithm With these intuitions in mind, we
now present the network reconfiguration and forwarding
algorithms underlying ReNets in details.

4.3.1 Forwarding Table and Reconfigurable
Ports Each node u ∈ V maintains the following for-
warding table of given constant size 6θ (details on this
size will become clear later) whose content may change
over time. Each entry in the table leads to a reconfig-
urable link (port) that can connect to any other node
with available port. W.l.o.g. links are bidirectional and
messages can be sent both ways.

If u is small, u’s forwarding table contains (Figure 3
(d)):

• A set S(u) = {v1, v2, . . .} of small neighbors of u.
For each vi, u has a direct, physical link (port)
toward vi.

• A set L(u) = {ego-BST(w1), ego-BST(w2), . . .} of
ego-BSTs of large neighbors of u. In each of
these trees, say ego-BST(w), u will participate
and forward messages toward/from the root of
the tree, w, including messages where u is the
source/destination. Each such tree requires three
entries in the forwarding table, and three physical
ports (i.e., direct links): (1) a forward entry to the
parent of u in ego-BST(w), (2) a forward entry to
the left child of u in ego-BST(w), and (3) similarly
for the right child in ego-BST(w).

• A set H(u) = {(x1, y1), (x2, y2), . . .} of pairs of large
nodes xi, yi for which u acts as a helper. Helping
such a large-large connection, requires six entries in
the forwarding table and six ports: three entries and
ports for each tree, ego-BST(xi) and ego-BST(yi).

If u is large, u’s forwarding table is simpler and contains:

• A (physical) link to the current root of ego-BST(u).

• A set of at most 6θ− 1 virtual roots to improve the

Algorithm 1 Source u, upon request u→ v

1: if u is large then
2: forward to root of ego-BST(u)
3: else
4: (* small node *)
5: if v ∈ S(u) then
6: forward directly to v
7: else if ego-BST(v) ∈ L(u) then
8: ego-BST(v).forward(v) (to parent of u)
9: else

10: (* new partner *)
11: notify coordinator: addRoute(u→ v)

Algorithm 2 Destination v, upon request u→ v

1: process packet
2: if request received on some ego-BST(w) then
3: ego-BST(w).adjust()

performance of ego-BST(u).3

Note that for each node u, its forwarding table
contains its working set, W(u), among some additional
information.

4.3.2 Roles The algorithms underlying ReNets in-
volve four different node roles:

• The Source (Algorithm 1): Let u be the source of
a communication request (u, v). In case u is a large
node, it will simply forward the request to the root of
ego-BST(u) (or directly to v if it is one of the virtual
roots of ego-BST(u)). In case u is a small node then:
if v ∈ S(u) then it will forward it directly to v; else, if u
participates in ego-BST(v) then u will forward it to its
parent in ego-BST(v). Else, if v is not in the working
set of u, W(u), it is a new communication partner,
then u will notify the coordinator and request being
connected to v via the procedure addRoute(u → v),
and to add v to W(u).

• The Destination (Algorithm 2): The behavior of the
destination v of a given communication request (u, v)
is simple: it delivers the request to the upper layer
and if needed, triggers an adjust() operation on
the ego-BST(w), for which the packet was delivered:

3The use of virtual roots is a practical optimization. In
a traditional self-adjusting BST, the root changes over time,

depending on the demand: accessed elements are moved to the

root. In ReNet, a node u uses a set of virtual pointers to implement
the root of ego-BST(u): the root is implemented using a constant
set of nodes (all at distance 1), managed in a queue, evicting the

least-recently used (lru) root. However, this optimization does not
affect the asymptotic performance of our network.
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Algorithm 3 Forwarder x, for request u→ v

Require: by definition x ∈ ego-BST(u) and/or x ∈
ego-BST(v)

1: if x ∈ ego-BST(v) then
2: ego-BST(v).forward(v) (to parent of x)
3: if x ∈ ego-BST(u) then
4: (* x is an helper to (u, v) *)
5: ego-BST(u).adjust()
6: else
7: (* x ∈ ego-BST(u) *)
8: if ∃ child x toward v then
9: ego-BST(u).forward(v) (to child)

10: else
11: notify coordinator: addRoute(u→ v)

this optimizes the network to account for recent
communications. Note that a message can reach v
either directly, via BST(v) or via BST(u).

• The Forwarder (Algorithm 3): A forwarder x is a
node which is neither the source nor the destination
of a communication request (u, v), i.e., u 6= x 6= v. It
acts as an inner node in the ego-tree network and may
also be a helper (see below). By our construction,
node x must hence either be part of ego-BST(u)
or ego-BST(v), or both (if it is a helper). If x is
part of ego-BST(v) of the destination, it needs to
forward the request toward the root v; else if x is
part of the ego-BST(u) of the source, it needs to
forward the request to the correct child based on the
ID of v. If x is a helper, it belongs to both ego-BST(u)
and ego-BST(v), and additionally needs to initiate ego-
BST(u).adjust() to update the tree. If x has no child
toward v in ego-BST(u) then it notifies the coordinator
to addRoute(u→ v).

• The Coordinator (Algorithm 4): The coordinator
keeps track of which nodes are small, which nodes
are large, and which small nodes have room in their
forwarding table to help large-to-large edges. To serve
an addRoute(u→ v) request, the coordinator distin-
guishes between different cases, potentially resetting
the forwarding tables (using reset(), see below), adding
helper nodes where needed or rendering the source
and/or destination node large (using makeLarge(), see
below). In the simplest case, both u and v are small
and the coordinator can instruct the two nodes to
connect directly. If one node is large and one small,
the route request is served by inserting one node in
the other node’s ego-BST. Only if both nodes are
large, the coordinator finds a helper node, x, which is
used to relay between the two ego-BSTs, which must
already exist. x is then added to ego-BST(u) as v and

to ego-BST(v) as u.

When the coordinator learns that a node u needs to
become large, it invokes the makeLarge(u) method,
which instructs the creation of ego-BST(u). On this
occasion, the coordinator iterates over the working set
of u: in case of a small neighbor v, v is inserted into
the ego-BST(u) directly; otherwise, a new helper node
is used.

The coordinator also instructs the nodes to reset their
working sets and forwarding tables if no more helper
nodes are available, i.e., if the total sizes of the working
sets are

∑
uW(u) ≥ nθ/2 and the network is, what

we call, full. Concretely, using the reset() method, the
coordinator instructs all nodes to clear their forwarding
tables (i.e., working sets).

5 Analysis of Static Optimality

We now present a formal analysis of the properties and
performance of ReNets. To improve readability, some
lemmas and proofs are deferred to Section 6. We call a
communication sequences σ sparse if it is (c, δ)-sparse for
a constant c and δ = Ω(cnD), whereD is an upper bound
on a single request’s routing cost on the demand-oblivious
network (henceforth usually assumed to be Θ(log n),
the minimum possible diameter for a scalable, constant-
degree network).

We now show that forwarding in ReNets does not
require a global routing algorithm and can use arbitrary
addressing, and its size is bounded by a constant ∆ =
6θ = 24c.

Theorem 5.1. For any sequence σ, ReNets provide ∆-
compact and local routing, as well as arbitrary addressing.

Proof. Local routing. The proof of the local routing
property is by construction and the states of the source u
and the destination v. For routing a request from a
small node u to a small node v, the packet is directly
forwarded to the destination v. For routing a request
from a small node u to a large node, the packet is
forwarded to v by traversing ego-BST(v) from parent
to parent, until the root of ego-BST(v) is reached, and
from there directly to v. For routing a request from a
large node u to a small node v, the packet is forwarded
to v by traversing ego-BST(u) from the root of ego-
BST(u) downward to v, similar to a classic search on a
binary search tree which is local : no global information
is needed, only the information to which child to forward,
based on the destination ID. To maintain the BST tree
and its properties, we only need a total order on the ID
space (i.e., address) of the nodes. For routing a request
from a large node u to a large node v, the packet is
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Algorithm 4 Coordinator

addRoute(u → v):

1: if total size of all working sets is
∑
uW(u) ≥ θn/2

then
2: (* network is full *)
3: reset()
4: (* else: available helper x must exist *)
5: add v to the working set of u, W(u)
6: if u is small but |W(u)| = θ + 1 then
7: makeLarge(u)
8: add u to the working set of v, W(v)
9: if v is small but |W(v)| = θ + 1 then

10: makeLarge(v)
11: (* available room in both tables to add edge (u→ v)

*)
12: cases:
13: if u and v small:
14: u connects directly to v, update S(u), S(v)
15: if u small and v large:
16: ego-BST(v).insert(u), update L(u)
17: if u is large and v is small:
18: ego-BST(u).insert(v), update L(v)
19: if u is large and u is large:
20: find a helper node x
21: ego-BST(u).insert(x as v)
22: ego-BST(v).insert(x as u)

makeLarge(u):

1: create ego-BST(u)
2: for each v ∈ W(u) do
3: if v is small then
4: ego-BST(u).insert(v)
5: if u is large then
6: find a helper node x
7: ego-BST(u).insert(x as v)
8: ego-BST(v).insert(x as u)

reset():

1: for each u ∈ V do
2: inform to clear S(u), L(u), W(u)
3: set u to small

forwarded to v in two steps. By construction, there
must exist a helper node x that participates both in ego-
BST(u) and ego-BST(v). First the request is forwarded
on ego-BST(u) downward to x (which is stored in the
tree as v). Then, x notes that the destination is v and
forwards the packet upward to v, on ego-BST(v). Since
all binary search trees in the system are maintained
locally using the adjust() method, no global routing
algorithm is needed.
Compact routing. We set the threshold θ to be twice

the largest possible average degree in a window of size
at most δ. Since σ is (c, δ)-sparse we have θ = 4c, and
every node with working set size less than θ is small,
and otherwise, it is large. Let ∆ = 6θ (a constant)
and we set the forwarding table to size ∆, so a ReNet
supports compact routing. We need to show that the
forwarding table does not exceed the size ∆. As long as
the coordinator did not call reset(), for a large node the
forwarding table is by design at most ∆: it contains one
link to its ego-BST root and a set of links to at most
∆− 1 virtual roots. For a small node we prove this in
Lemma 6.3, that we will state later.
Arbitrary addressing. The support for arbitrary address-
ing follows by design, since the search operation in taken
from binary search trees and can support it naturally.

We can now prove our main result: that ReNet are
statically optimal.

Theorem 5.2. For any (c, δ)-sparse communication
sequence σ, where |σ| ≥ δ = Ω(nD), there is a constant
∆ for which ReNets are statically optimal for ∆-degree
bounded networks.

Proof. We again set the threshold to be twice the average
degree θ = 4c, let ∆ = 6θ (a constant), and set the
forwarding table to size ∆. Let N∗ be the optimal ∆-
degree bounded network used by the optimal static
algorithm Stat(σ). From [7] it follows that the average
cost of Stat is lower bounded by the conditional entropy:

Cost(Stat, N∗, σ) ≥ Ω
(

max(H∆(Ŷσ | X̂σ), H∆(X̂σ | Ŷσ))
)

We will prove static optimality of ReNets in two
steps. First, we will show that the routing cost of a ReNet
is optimal and proportional to its trees adjusting cost.
Second, we will bound the cost of the operations and
messages that are related to the coordinator in the ReNet.
Overall, we will show that the amortized cost of a ReNet
is

Cost(ReNet, ∅, σ) ≤ O
(
H(Ŷσ | X̂σ) +H(X̂σ | Ŷσ)

)
making it order optimal since ∆ is constant (recall
that N0 = ∅ is an empty initial network).

We divide σ into subsequences, σ(i), separated by
the i’th call to the reset() operations announced by
the coordinator. If no reset() is called then σ(1) = σ.
If reset() was called k times then the last (partial)
subsequence is denoted by σ(k+1). We start with
the analysis of a single “window”, σ(1), which is the
subsequence of σ from the start until the first reset()
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operation. The length of σ(1) is Ω(cnD) by assumption
on sparsity and it contains exactly cn unique requests
(see the Coordinator algorithm, Algorithm 4). We claim
the following:

Lemma 5.1. ReNet is statically optimal on σ(1).

Proof. Let

H(1)
con = max(H(Ŷσ(1) | X̂σ(1)), H(X̂σ(1) | Ŷσ(1)))

be the maximum of the conditional entropies. We need

to show that ReNet’s cost on σ(1) is O(H
(1)
con) to prove

its optimality. We separate the cost into two groups:
Routing and BST adjustment cost: For analyti-
cal reasons, we consider a symmetric version of σ(1),
named σ̄(1). σ̄(1) keeps the total number of requests
between each pair the same but divides them half-half:
for each (directed) request (u, v), we consider that half
of the requests went the other direction, (v, u), making
the number of requests for a pair u, v equal in both
directions. This makes the frequency matrix (a matrix
representation of the pair’s frequencies in the demand)
of σ̄(1) symmetric. Theorem 6.1, that we prove later,
states that

H̄ = H(Ŷσ̄(1) | X̂σ̄(1)) = H(X̂σ̄(1) | Ŷσ̄(1)) ≤ H(1)
con + 1,

so proving that ReNet’s cost on σ̄(1) is O(H̄) will prove

that ReNet’s cost on σ(1) is O(H
(1)
con).

We consider the cost by node type. For a small node,
if it connects to another small node, then the two nodes
have a direct connection that starts from the first request
and stays active for the whole σ(1) (unless the node
becomes large, which we address later). The amortized
cost for such a request is one. If a small node connects to
a large node, we charge the cost for routing and the cost
for adjusting the network to the large node, which we
discuss now. Each large node w maintains a ego-BST(w)
for its communication partners. Since ego-BST(w) is
assumed to be a statically optimal datastructure, in our
case splay trees [21], on all requests for which w is the
source or destination (recall that since σ̄(1) is symmetric,
the frequency distribution of destinations from w, Yw,
and sources to w, Xw, are the same), it follows that
the cost of these requests (routing plus adjustments)
is O(H(Yw)) = O(H(Xw)) (see Lemma 6.2). This cost
includes all ego-BST(w).forward(), ego-BST(w).insert()
and ego-BST(w).adjust() operations. Since each routing
request involves at most one forwarding operation by a
helping node between two trees (for large-large edges),
the (amortized) cost of routing and tree adjustment is
at most H(Ŷσ̄(1) | X̂σ̄(1)) +H(X̂σ̄(1) | Ŷσ̄(1)), as required.
Coordinator messages cost: We discuss the coordi-
nator functions one-by-one:

reset(): Happens once during the window σ(1). The
cost is n, to broadcast the reset message to all nodes
on the fixed network (using a broadcast tree).

makeLarge(): Happens at most once to each node
during the window. When makeLarge() is executed
at node u, first, we are guaranteed to have enough
helper nodes if needed (since the network is not full
yet, see Lemma 6.3). Second, the cost is constant
since we do not add new edges to u, we only replace
a constant number of existing edges (u, v) (direct
or via ego-BST(v)), with a new connection via the
newly created ego-BST(u) of constant size. In each
call of makeLarge, ego-BST(u).insert() is amortized
(accounting for the adjustment cost above). The
only additional cost is to notify helpers, but the
number of helpers is bounded by cn and sending
a message is at most O(D), so the total cost
is O(cnD).

addRoute(): Happens exactly cn times during the
window σ(1). The cost of ego-BST(u).insert()
and/or ego-BST(v).insert() are amortized. The
only cost is to notify the helper node which is
at most O(D). The cost during the window is
therefore O(cnD).

Summing up the total cost of the coordinator messages
gives O(cnD). Since the number of requests in the
window is δ = Ω(cnD), the amorized cost per coordinator
request is O(c′), for a constant c′. To this we need to
add for each ego-BST(w) its amortized cost for routing
and adjusting, but this as mention is proportional to
O(H(Yw)) = O(H(Xw)). Therefore the total amorized
cost for the window (including routing, adjusting and

coordinator messages) is O(H
(1)
con).

To conclude the proof of Theorem 5.2, we divide σ
into subsequences σ(i), separated by reset() operations.
Let

Hcon = max(H(Ŷσ | X̂σ), H(X̂σ | Ŷσ))

and

H(i)
con = max(H(Ŷσ(i) | X̂σ(i)), H(X̂σ(i) | Ŷσ(i)))

A lower bound for Stat(σ) is:

Cost(Stat, N∗, σ) ≥ Ω(Hcon) ≥ 1

k

k∑
i=1

Ω(H(i)
con)

While the cost for ReNet is:

Cost(ReNet, ∅, σ) ≤ 1

k

k∑
i=1

O(H(i)
con) ≤ O(Hcon)

which makes ReNet statically optimal.
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Note that the coordination cost of the last subsequence
(which may be shorter than δ), can be amortized by the
coordination cost of σ(1) (which must exist since σ ≥ δ),
so the amortized cost is also constant.

Observe that the cost of ReNet could be much lower
than the cost of Stat, since Stat is also lower bounded
by the conditional entropy of the whole demand σ, and
not only the sum of entropies of the windows.

Theorem 5.3. The amortized cost of ReNet can be up
to log n times lower than the cost of Stat.

Proof. Consider for example a demand σ that is the con-
catenation of n demand subsequences σ(1), σ(2), . . . , σ(n).
Each demand σ(i) is of length Θ(n log n), is sparse
and has a demand graph which is a (different) two-
dimensional grid. Therefore the amortized cost of ReNet
for each σ(i) is constant. But if the σ(i) is different each
time (e.g., selected round robin), then σ could be made
to be uniform, where overall each source communicates
to all destinations with equal frequency (over the en-
tire σ). This will force a lower bound of Hcon = Ω(log n),
the entropy of the uniform distribution, for Stat,.

6 Deferred Proofs

6.1 Deferred Analysis of Symmetric Matrix
Let M = M(σ) be a joint (non-symmetric) frequency
matrix resulting from σ. Let HM (Y | X) denote
the conditional entropy of Y given X under the joint
probability distribution M . By definition, HM (Y | X) =
H(Ŷσ | X̂σ). Let H∗con = max(H(Ŷσ | X̂σ), H(X̂σ | Ŷσ)),
the maximum of both possible conditional entropies.
Let M̄ = (M +MT )/2 be the symmetric version of M .
The conditional entropies of the symmetric and non-
symmetric distributions are related as stated in the
following theorem:

Theorem 6.1. The conditional entropy of the symmet-
ric matrix M̄ cannot be much larger than the maximal
conditional entropy of M .

H̄ = HM̄ (Y | X) = HM̄ (X | Y ) ≤ H∗con + 1(6.1)

The proof of the theorem mainly follows from the
follwoing Lemma that is based on the concavity of
entropy [34] and simple entropies algebra.

Lemma 6.1. Let p̃ and q̃ be two probability (fre-
quency) distributions for the same set. Let H∗ =
max(H(p̃), H(q̃)). Then

1

2
H∗ ≤ 1

2
H(p̃) +

1

2
H(q̃) ≤ H(

p̃+ q̃

2
) ≤ H∗ + 1(6.2)

6.2 Other Deferred Lemmas and Proofs

Lemma 6.2. Consider a node u connected directly to the
root of a statically optimal self-adjusting ego-BST(u),
serving only requests to and from u. If p̄ is the empirical
frequency distribution of destinations and p̄ is also the
empirical frequency distribution of sources, then the
amortized cost of routing and adjusting ego-BST(u)
is O(H(p̄)).

Proof. A self-adjusting ego-BST(u) is originally designed
to serve requests from the root to internal nodes. If
the empirical frequency distribution on destinations
(searched items) is p̄′, then the amortized cost of ego-
BST(u) is known to be O(H(p̄′), which is optimal [21]. In
our case, we also have routes from internal nodes in the
tree toward the root. But for the self-adjusting ego-
BST(u), it does not matter if the request is (u, v)
or (v, u): the adjustments are the same (i.e., splay to
root), hence we can assume that each route request (v, u)
is actually a (u, v) request, i.e., all requests are from
the root of the tree. The new empirical frequency
distribution on destinations (when all requests are from
root to destinations) is also p̄. Therefore the results
holds.

Lemma 6.3. (Helping Nodes) As long as the coordi-
nator did not call reset(), the size of the forwarding table
of small nodes is at most ∆ = 6θ and helping nodes are
available if needed.

Proof. Only small nodes can be helper nodes. A small
node has a maximum degree of θ, so it may need at most
12c =3θ ports in its forwarding table for the working
set. For how many edges can a helper node be used
as a relay? Since the number of helper nodes is at
least n/2 (otherwise more than half of the nodes have
degree larger than twice the average degree, which leads
to a contradiction) and since there are at most cn large-
large edges, each helper node needs to help at most 2c
such edges. Each helper node requires 6 ports (3 for each
tree), so in total it needs at most 3θ ports for helpers.
Since the size of the forwarding table is 6θ, there will
always be a helper node while the number of edges is
less than cn which mean total size of all working sets is
less than 2cn = θn/2

7 Related Work

The design of effective and efficient (also in terms of
cost and cabling) datacenter networks has received much
interest over the last years [29,30,35,36,37,38,39,40,41,
42, 43]. The situation has been compared to the early
1980s, when many new interconnection network designs
were proposed [44], not for datacenters, but for parallel
computers.
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The advent of technologies for reconfigurable
(a.k.a. malleable [18]) networks recently introduced a
new degree of freedom to the datacenter network design
problem [1, 7, 10, 11, 13, 15, 16, 17, 18, 45, 46, 47, 48, 49,
50,51,52,53,54]. By relying on movable antennas [51],
mirrors [13, 50], and “disco-balls” [1], novel technologies
in the context of optical circuit switches [10,11,12,49],
60 GHz wireless communication [50,55], free-space op-
tics [1, 13], provide unprecedented topological flexibili-
ties, allowing to quickly adapt the topology to traffic
demands. Some empirical evaluations show that for cer-
tain workloads, a demand-aware network can achieve a
performance similar to a demand-oblivious full-bisection
bandwidth network at 25-40% lower cost [1, 13]. Empir-
ical studies also confirm that communication patterns
are often sparse and of low entropy [1, 2, 3, 4, 5], which
can be exploited in demand-aware networks: in [1], it
is shown that a high percentage of rack pairs does not
exchange any traffic at all, while less than 1% of them
account for 80% of the total traffic. In general, most
bytes are delivered by large flows [40, 56, 57]. Recent
surveys [6, 9] provide an overview of the literature on
reconfigurable datacenter networks.

In contrast to our approach, most existing self-
adjusting demand-aware network designs rely on some
estimate or snapshot of the traffic demands, from
which an optimized network topology is (re)computed
periodically (often using exact algorithms or heuris-
tics) [18, 30, 45, 46, 58]. This can lead to unnecessary
reconfigurations as the optimal solutions for two differ-
ent snapshots are very sensitive to changes in the input
and can look completely different, although a similar
outcome could have been achieves with small reconfig-
urations only. Furthermore, periodic reconfigurations
introduce the problem that they are either too coarse-
grained or too fine-grained, and do not fully exploit
the potential of demand-awareness. We in this paper
present a more refined and adaptive model, accounting
also for the reconfiguration costs, and allowing us to
study (within our model) the tradeoff between the costs
and benefits of reconfigurations. Moreover, in contrast
to most existing algorithms relying on mixed integer
programming, our algorithms are efficient (polynomial-
time), and in contrast to existing algorithms relying on
heuristics, our approach comes with provable guarantees,
even over time.

In terms of formal guarantees, an upper bound on
what can be achieved in terms of statically optimized
demand-aware networks is due to Avin et al. [7], who
build upon initial insights derived in [47, 59]. We
in this paper leverage the degree reduction technique
of [7], however, to derive a very different result. The
fixed demand-aware network designs by Avin et al. [7]

have recently also been extended to optimize for load,
in addition to route lengths [8]. SplayNets [47, 59]
also rely on splay trees to adjust the network, and
dynamically adapt to changing traffic patterns. However,
besides their convergence properties under specific fixed
demands, these networks do not provide any optimality
but only heuristic guarantees. In fact, this is an inherent
limitation, as static optimality is impossible to achieve
based on single tree networks (unless the demand has
a specific structure, e.g., comes from a single node, in
which case dynamic optimality can be achieved using
networks based on push-down trees [60]). Indeed, to
the best of our knowledge, so far, no result existed on
how to actually match the lower bound provided in [47],
without perfect knowledge of the demand. Recently,
Bienkowski et al. [47] considered the problem of how to
schedule b reconfigurable optical switches in a hybrid
datacenter, to minimize the expected path length over
time; the reconfiguration cost is α per link, where α is a
parameter. The authors showed that this problem can
be seen as an online b-matching problem and presented a
constant competitive algorithm, exploiting a connection
to online paging. In their setting, however, routing is
strictly segregated [46]: if an optical link is used, it needs
to connect the source and destination directly.

Our model also features interesting connections to
switch scheduling [61,62]: In classic switch scheduling,
packets arriving at a switch need to be moved from the
input buffer to the output buffer, and in each time step,
the input buffers and all their output buffers must form
a bipartite matching. A striking result of Chuang, Goel,
McKeown, and Prabhakar showed that a switch using
input/output queuing with a speed-up of 2 can simu-
late a switch that uses pure output queuing [62]. This
connection has recently been exploited by Venkatakr-
ishnan et al. to design offline scheduling algorithms for
reconfigurable datacenters [53]. The authors consider a
setting in which demand matrix entries are small, and
analyze a greedy algorithm achieving an (almost) tight
approximation guarantee. In particular, their model
allows to account for reconfiguration delays, which are
not captured by traditional crossbar switch scheduling
algorithms, e.g., relying on centralized Birkhoff-von- Neu-
mann decomposition schedulers [63]. Schwartz et al. [64]
recently presented online greedy algorithms for this prob-
lem, achieving a provable competitive ratio over time. A
powerful approach to design online algorithms is based
on primal-dual techniques, also leveraged by Dinitz et
al. [17] to optimize flow and completion times: in [17],
a model is considered where the demands are the edges
in an arbitrary graph, and in each round, a vertex cover
can be communicated: each node can only send certain
number of packets in one round. Kulkarni et al. [65]
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generalize classic online packet scheduling to a two-tiered
reconfigurable datacenter network, as it is for example
used by ProjecToR [1]; using a primal-dual analysis of a
stable matching algorithm the authors show a competi-
tive ratio of 2·(2/ε+1) in a resource augmentation model:
the online algorithm runs 2 + ε times faster. These lines
of research however are technically fairly different from
ours: they either consider a maximization problem, aim-
ing to maximize the total data transmission for a certain
time window, or to minimize flow times, whereas in our
model, we aim to minimize routing and reconfiguration
costs.

We are not aware of any demand-aware network
which provides compact and local routing, or arbitrary
addressing. We believe that this aspect of our work is
of independent interest, as it shows, for the first time,
that highly scalable reconfigurable networks are possible
at least in theory, and can be a stepping stone toward a
better understanding of the important cross-layer issues
arising in reconfigurable networks.

8 Conclusion

This paper presented the first self-adjusting network
which provides entropy-proportional (and hence stati-
cally optimal) route lengths while minimizing reconfig-
urations costs and accounting for scalability, through
compact and local routing. Our approach leveraged an
intriguing connection to self-adjusting datastructures,
using self-adjusting BSTs as building blocks (i.e., per-
source “ego-trees”), and combining them to a network.

We believe that our work opens several interesting
directions for future research. First, while this paper
shows that scalable demand-aware networks achieving
all the desirable properties above are feasible in theory,
further refinements are needed in order to tailor our
approach to practical use cases or specific objective
functions such as flow completion times. It also remains
to further explore the implications of our approach (and
of reconfigurable networks in general) on other layers,
such as routing and congestion control, as well as on
scalability. An intriguing open theoretical question from
our work regards the design of self-adjusting DANs which
optimize metrics related to temporal locality, such as
dynamic optimality in specific settings. More generally,
we believe that self-adjusting networks can be of interest
beyond the datacenter context considered here.
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