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Abstract
Federated learning enables clients to train local models on private

data while exchanging model updates only. A key step in this pro-

cess is gradient aggregation. We investigate the coordinate-wise

median as an aggregation rule in both centralized and decentralized

federated learning under Byzantine failures. In order to lower the

communication cost in the decentralized setting, we allow clients

to agree approximately on model parameters, which is referred to

as approximate agreement problem. We propose two aggregation

algorithms for centralized coordinate-wise median aggregation: the

Minimum Diameter (MD) algorithm and the Hyperbox algorithm.

We prove that both satisfy the box validity condition and can toler-

ate up to
𝑛
3
and

𝑛
2
Byzantine clients, respectively. We further show

that only the Hyperbox algorithm can be generalized to the de-

centralized setting. Through empirical evaluation, we demonstrate

that the MD algorithm with coordinate-wise median aggregation

is more resilient to sign-flip attacks than its mean-based counter-

part, highlighting the robustness of median-based aggregation in

adversarial environments.
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1 Introduction
Federated learning allows training a machine learning model in a

distributed manner, where clients can keep their data locally. It is

usually implemented using a central server that aggregates model

parameters and shares the result with the clients. Recently, decen-

tralized solutions have been considered, where clients aggregate

the model parameters in a peer-to-peer manner. One particularly

interesting solution is collaborative learning [8]: the idea is to allow

clients to agree on approximately the same model parameters, thus

reducing the communication cost compared to exact agreement.

One of the main challenges in federated learning is dealing with

adversarial client inputs. Such input can be unpredictable, e.g., due

to failures in the training process or malicious behavior, and can

thus influence the training process in an arbitrary or worst-case

manner. These failures are called Byzantine. To make non-faulty

clients agree on a reasonable output, validity conditions are used.

In layman’s terms, these conditions define where an agreement

vector can lie based on the input distribution.

In this work, we investigate the coordinate-wise median aggre-

gation rule for centralized and decentralized federated learning

under Byzantine failures. The coordinate-wise median (CWM) can

be efficiently computed and is scalable. Unlike the mean, it resists

outliers and Byzantine failures and ensures robust aggregation [12].

In the theoretical part, we consider approximate instead of averag-

ing agreement, that has a stronger assumption on the agreement

output. We propose two algorithms that solve the multidimensional

approximate agreement problem and satisfy validity conditions. In

the centralized setting, we show that both, the Minimum Diame-

ter (MD) algorithm and the Hyperbox algorithm satisfy the box

validity condition and can tolerate up to
𝑛
3
and

𝑛
2
Byzantine fail-

ures, respectively. We then show that only the Hyperbox algorithm

can be generalized in the decentralized setting. We evaluate the

MD and the Hyperbox algorithms practically and compare them

to MD and Hyperbox algorithms that use mean for aggregation.

Our experiments consider homogeneous and heterogeneous data

distributions with Byzantine attacks. In the decentralized federated

learning setting, we show that MD CWM approach can tolerate

sign flip attack better than the known mean-based approaches.

2 Related work
Federated learning was introduced by McMahan et al. [21, 23]

for supervised learning, receiving a lot of attention in follow-up

work [19, 20, 22]. The original work however did not tolerate mali-

cious attacks. Malicious attacks have been investigated by the dis-

tributed computing community, where several Byzantine-tolerant
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federated learning algorithms have been introduced [3, 6, 18, 27, 28].

El-Mhamdi et al. [9] propose a decentralized solution, where multi-

ple clients replicate the server, appearing as a single trusted entity

to the user. Their fully decentralized Byzantine-tolerant federated

learning model [8] introduces two optimal averaging agreement

algorithms: a minimum-diameter-based algorithm, optimal for cor-

rectness when most clients are non-faulty, and a trimmed mean

algorithm, resilient to < 𝑛
3
Byzantine failures [15].

Jere et al. [17] provide a survey of practical malicious attacks

considered in federated learning. They divide the attacks into model

poisoning, comprising of label flipping and backdoor attacks [1];

and data poisoning attacks, including gradient manipulation [3, 11]

and training rule manipulation [2]. In the practical part, our paper

focuses on a data poisoning attack—the sign flip attack [8, 25].

Besides using mean as an aggregation function, many other ag-

gregation rules have been considered in the literature [16]. Yin

et al. [28] propose a distributed gradient descent algorithm using

coordinate-wise median for aggregation. They present a simple and

robust algorithm that aggregates local solutions using coordinate-

wise median in one round, thus improving communication effi-

ciency. To our best knowledge, this is the first work studying

coordinate-wise median as an aggregation function in centralized

federated learning.

Our decentralized federated learning algorithm makes use of

multidimensional approximate agreement. The first algorithm pro-

posed for multidimensional approximate agreement requires all

clients to converge inside the convex hull of all honest input vec-

tors. In [24], the authors show that convergence is possible if

𝑡 < 𝑛/(max{3, 𝑑 + 1}), where 𝑡 is an upper bound on the num-

ber of Byzantine failures. The strong guarantee this algorithm gives

on its output makes it attractive. However, the algorithm cannot

be used in the presence of faulty clients when 𝑛 ≤ 𝑑 and is thus

not applicable to our work. The Hyperbox algorithm presented in

this work is an adaptation of the Hyperbox algorithm for the mean

aggregation rule presented in [5].

3 Preliminaries
3.1 Distributed machine learning
We consider a system with 𝑛 clients, each possessing an input

vector 𝑣1, . . . , 𝑣𝑛 ∈ R𝑑 . Each client 𝑖 has access to its own dataset,

sampled from an unknown distribution D𝑖 . We make the standard

assumptions on local loss functions of honest clients [8]. We further

assume that communication between clients is synchronous and

reliable [4, 26]. We define 𝑡 to be the maximum number of Byzantine

vectors the system can tolerate, and 𝑓 as the actual number of

Byzantine vectors in the system. We call the 𝑛− 𝑓 non-faulty clients

honest. Note that the honest clients do not know 𝑓 .

Centralized federated learningmodel. In the centralized fed-

erated learning framework, a single server orchestrates the learning

process. The dataset is distributed across clients, who retain their

data locally. At the start of each round, each client’s local model is

initialized with the weights of the global model. Clients compute

a stochastic estimate 𝑔
(𝑖 )
𝜏 of the gradient ∇𝑄𝑖 (𝜃 (𝑖 )𝜏 ) for all local

models 𝜃
(𝑖 )
𝜏 in iteration 𝜏 . The gradient estimate 𝑔

(𝑖 )
𝜏 is computed

by drawing a data point 𝑣 or a sample from the local data generating

distribution D𝑖 :

𝑔
(𝑖 )
𝜏 = ∇𝑞(𝜃 (𝑖 )𝜏 , 𝑣) with 𝑣 ∼ D𝑖 . (1)

The gradient estimate 𝑔
(𝑖 )
𝜏 equals the true gradient ∇𝑄𝑖 (𝜃 (𝑖 )𝜏 ) in

expectation. The central server then collects stochastic gradients

𝑔𝜏 from all clients and aggregates them into 𝑔𝜏 . As a result, the

global model’s parameter 𝜃𝜏 is updated to 𝜃𝜏+1 according to: 𝜃𝜏+1 =
𝜃𝜏 − 𝛾𝜏 · 𝑔𝜏 , where 𝛾𝜏 is the learning rate. At the start of each

new round, local models reset their weights to match those of the

updated global model, and the process repeats. The total number of

iterations,𝑇 , is predefined before training begins. After each round,

the global model’s performance is evaluated, and its accuracy is

recorded.

Decentralized federated learningmodel. In the decentralized
federated learning model, there is no central entity overseeing the

process. Similar to the centralized approach, data is distributed

among clients and remains local. Each client initializes a local model

at the beginning, which is then stored and updated across iterations.

Each client 𝑖 computes a stochastic gradient 𝑔
(𝑖 )
𝜏 of its local loss

function’s gradient ∇𝑄𝑖 (𝜃 (𝑖 )𝜏 ) as in Equation (1) in the centralized

collaborative learning model. However, in the decentralized model,

clients broadcast their gradients 𝑔
(𝑖 )
𝜏 to all other clients. Each client

then gathers the received gradients and aggregates them using a

predefined aggregation function.

Since there is no central entity maintaining a global model,

clients may not agree on the same aggregated gradient, especially

in the presence of communication faults. Solving agreement ex-

actly would require at least 𝑡 + 1 rounds of communication [13],

we thus only focus on (faster) approximate solutions. To ensure

agreement close to the aggregated gradient of honest clients, we use

agreement algorithms that operate in multiple sub-rounds. In each

sub-round, clients transmit their vectors to all others and apply

an aggregation rule to the collected vectors. The output from one

sub-round serves as input for the next. The number of sub-rounds

is predefined, usually set to log𝜏 [8], where 𝜏 represents the "big"

iteration. In the final sub-round of iteration 𝜏 , clients update their

models and proceed to iteration 𝜏 + 1, repeating the process until

the stopping criteria are met.

Aggregation rules. In the following, we definemean and coordi-

nate-wise median aggregation rules.

Definition 3.1 (Mean). The mean of a finite set of 𝑛 vectors

𝑣𝑖 , 𝑖 ∈ [𝑛] is 1

𝑛

∑𝑛
𝑖=1 𝑣𝑖 .

Definition 3.2 (Coordinate-wise median (CMW)). For vectors 𝑣𝑖 ∈
R𝑑 , where 𝑖 ∈ [𝑛], the coordinate-wise median 𝐶𝑊𝑀 ∈ R𝑑 is

defined as a vector, where in each coordinate a median on the

input vectors is computed. If the number of values is even, the

coordinate-wise median takes the midpoint of two central values.

In other words, coordinate-wise median minimizes the sum of

Manhattan distances to all points. Additionally, we use 𝐶𝑊𝑀∗
to

denote the coordinate-wise median computed with only honest

input vectors, and refer to it as the true coordinate-wise median.

3.2 Multidimensional approximate agreement
To be able to aggregate local gradients in the presence of faulty

clients, we extend two algorithms from the literature presented
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for mean aggregation: the Minimum Diameter Averaging (MDA)

algorithm [8] and the Hyperbox algorithm [5]. In the following,

we adapt the definitions used in the literature to coordinate-wise

median aggregation.

3.2.1 Byzantine-tolerant aggregation. We start with the Minimum

Diameter (MD) strategy that is based on the MDA algorithm [8].

Given a set of input vectors 𝑆 = 𝑣1, . . . , 𝑣𝑛 , this strategy first defines

a subset containing 𝑛 − 𝑡 clients of minimal diameter. Based on this

subset, the coordinate-wise median is computed:

MD(𝑆, 𝑛 − 𝑡) ∈ argmin𝑆⊂[𝑛], |𝑆 |=𝑛−𝑡 max𝑗,𝑘∈𝑆 | |𝑣 𝑗 − 𝑣𝑘 | |2

We refer to the algorithm in [5], which is based on picking a

vector in the intersection of hyperboxes, as the Hyperbox algo-
rithm. The computed output vector of each client is guaranteed to

be inside a so-called trusted hyperbox, which is defined as follows.

Definition 3.3 (Trusted hyperbox). Let 𝑓 ≤ 𝑡 be the number of

Byzantine clients and let 𝑣∗
𝑖
, 𝑖 ∈ [𝑛 − 𝑓 ] denote the true vectors. Let

𝑣∗
𝑖
[𝑘] denote the 𝑘𝑡ℎ coordinates of these vectors. The trusted hy-

perbox TH is the Cartesian product of TH[𝑘] :=
[
min𝑖∈[𝑛−𝑓 ] 𝑣

∗
𝑖
[𝑘],

max𝑖∈[𝑛−𝑓 ] 𝑣
∗
𝑖
[𝑘]

]
, for all 𝑘 ∈ [𝑑] .

The trusted hyperbox cannot be computed locally, since neither

the central server, nor the clients can identify Byzantine behavior.

Therefore, the algorithm is based on computing local hyperboxes

that are guaranteed to lie inside TH.

Definition 3.4 (Locally trusted hyperbox). Let 𝑣1, . . . , 𝑣𝑚𝑝
denote

the vectors received by some participant 𝑝 (server or client), where

𝑚𝑝 denotes the number of messages 𝑝 received. The number of

Byzantine values for each coordinate is at most𝑚𝑝 − (𝑛−𝑡). Denote
𝜙𝑝 : [𝑚𝑝 ] → [𝑚𝑝 ] a bijection s.t. 𝑣𝜙𝑝 ( 𝑗1 ) [𝑘] ≤ 𝑣𝜙𝑝 ( 𝑗2 ) [𝑘],∀𝑗1, 𝑗2 ∈
[𝑚𝑝 ]. The locally trusted hyperbox of 𝑝 is the Cartesian product of

TH𝑝 [𝑘] :=
[
𝑣𝜙𝑝 (𝑚𝑝−(𝑛−𝑡 )+1) [𝑘], 𝑣𝜙𝑝 (𝑛−𝑡 ) [𝑘]

]
for all 𝑘 ∈ [𝑑].

In the decentralized setting, the aggregation algorithm addition-

ally has to satisfymultidimensional approximate agreement
[5]. That is, the algorithm must fulfill the following conditions:

𝜖-agreement: every honest client decides on a vector, s.t. any two

vectors are at most 𝜖 distance from each other; termination: all hon-
est clients must terminate; strong validity: if all honest clients start
with the same initial vector, then they must agree on that vector.

3.2.2 Validity conditions. Per definition [5, 24], multidimensional

approximate agreement satisfies strong validity (all-same-validity).

This can be replaced by weak validity [7], which requires the out-

put to be identical to the input vector if only correct clients and no

Byzantine parties are present in the system. An additional validity

condition is box validity, which is stronger than the strong validity
condition and requires agreement vector to be inside the trusted

hyperbox TH of the input vectors.

4 Coordinate-wise median: algorithms and
analysis

The coordinate-wise median (CWM) is efficient to compute, as a

median is computed independently in each dimension. It is there-

fore more practical for large-scale systems and extensive learning

Algorithm 1 Centralized MD algorithm

1: Aggregate up to 𝑛 messages𝑀 = {𝑣 𝑗 , 𝑗 ∈ [𝑛]}
2: Compute MD(𝑀,𝑛 − 𝑡)
3: return 𝐶𝑊𝑀 (MD(𝑀,𝑛 − 𝑡))

Algorithm 2 Centralized Hyperbox algorithm

1: Aggregate up to 𝑛 messages𝑀 = {𝑣 𝑗 , 𝑗 ∈ [𝑛]}
2: return𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 (𝑇𝐻 ∩𝐶𝑊𝑀𝐵𝑜𝑥)

processes. Unlike the mean, which is sensitive to outliers and Byzan-

tine failures, the coordinate-wise median provides a more robust

aggregation rule [12]. By selecting the median value in each coor-

dinate, this method reduces the influence of extreme adversarial

values, making it more robust than the mean.

Firstly, we need to introduce local sets of possible coordinate-

wise medians.

Definition 4.1 (Local set of possible coordinate-wise medians). Lo-
cal set of possible medians of client 𝑖 includes all coordinate-wise

medians of all subsets of 𝑛 − 𝑡 clients, denoted 𝑆𝐶𝑊𝑀 (𝑖).

We next define the hyperbox around the set of possible coordinate-

wise medians as follows:

Definition 4.2. The coordinate-wise median hyperbox𝐶𝑊𝑀𝐵𝑜𝑥

is the smallest coordinate-parallel hyperbox containing 𝑆𝐶𝑊𝑀 and

the local coordinate-wise median hyperbox of client 𝑖 denoted by

𝐶𝑊𝑀𝐵𝑜𝑥 (𝑖) is the smallest hyperbox containing 𝑆𝐶𝑊𝑀 (𝑖).

4.1 Centralized algorithms
We start by adapting theMDA algorithm [10] to the coordinate-wise

median and present it in Algorithm 1. In each round, the central

server finds the minimum diameter set that contains a subset of

size 𝑛− 𝑡 of the received vectors, and computes the coordinate-wise

median of this set.

Theorem 4.3. Algorithm 1 satisfies box validity with 𝑡 < 𝑛/3.

Proof. We prove this statement for each coordinate 𝑘 ∈ 𝑑 . We

need to show that 𝐶𝑊𝑀 (MD) [𝑘] is in 𝑇𝐻 [𝑘]. 𝐶𝑊𝑀 (MD) [𝑘] is
computed on the subset of at least 𝑛 − 𝑡 vectors with the smallest

diameter. Since 𝑛−𝑡 ≥ 2𝑡 +1, there are at least 𝑡 smaller and 𝑡 larger

values than 𝐶𝑊𝑀 (MD) [𝑘] in coordinate 𝑘 , also when all input

vectors are considered. Thus𝐶𝑊𝑀 (MD) [𝑘] must be in𝑇𝐻 [𝑘]. □

Next, we present a centralized algorithm based on hyperboxes,

the pseudocode is given in Algorithm 2. In each round, the server

computes the coordinate-wise median hyperbox and trusted hyper-

box and outputs the midpoint of their intersection. The𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 ()
function in Algorithm 2 on a multidimensional interval returns

a one-dimensional midpoint calculated in each dimension of the

interval.

Theorem 4.4. Algorithm 2 satisfies box validity with 𝑡 < 𝑛/2.

Proof. We start by showing that 𝐶𝑊𝑀𝐵𝑜𝑥 ∩𝑇𝐻 ≠ ∅. We will

show this for a coordinate 𝑘 , where 𝑘 ∈ [𝑛]. Consider the median of

𝑇𝐻 [𝑘], denoted𝑀𝑒𝑑𝑖𝑎𝑛(𝑇𝐻 [𝑘]). We argue that𝑀𝑒𝑑𝑖𝑎𝑛(𝑇𝐻 [𝑘]) ∈
𝐶𝑊𝑀𝐵𝑜𝑥 . Observe that the𝐶𝑊𝑀𝐵𝑜𝑥 [𝑘] contains a median that is
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computed without the largest |𝑀 |− (𝑛−𝑡) values, denoted𝑚𝑒𝑑𝑙 and

amedian computedwithout the smallest |𝑀 |−(𝑛−𝑡) values, denoted
𝑚𝑒𝑑𝑟 . Median𝑚𝑒𝑑𝑙 is computed with the values in𝑇𝐻 [𝑘] and addi-
tionally |𝑀 | − (𝑛 − 𝑡) smaller values, thus𝑚𝑒𝑑𝑙 ≤ 𝑀𝑒𝑑𝑖𝑎𝑛(𝑇𝐻 [𝑘]).
Analogously, 𝑀𝑒𝑑𝑖𝑎𝑛(𝑇𝐻 [𝑘]) ≤ 𝑚𝑒𝑑𝑟 . Since 𝑚𝑒𝑑𝑙 and 𝑚𝑒𝑑𝑟 are

contained in 𝐶𝑊𝑀𝐵𝑜𝑥 [𝑘], so is𝑀𝑒𝑑𝑖𝑎𝑛(𝑇𝐻 [𝑘]). Since the output
is chosen inside 𝑇𝐵, the algorithm satisfies box validity. □

For 𝑡 < 𝑛/3, we show a stronger connection between 𝐶𝑊𝑀𝐵𝑜𝑥

and 𝑇𝐻 , namely:

Lemma 4.5. If 𝑡 < 𝑛/3, the coordinate-wise median hyperbox is
inside the trusted hyperbox: 𝐶𝑊𝑀𝐵𝑜𝑥 ⊆ 𝑇𝐻 .

Proof. The proof of Theorem 4.3 shows that 𝐶𝑊𝑀 (MD) [𝑘] is
inside𝑇𝐻 [𝑘]. Note that we did not use the property of MD that the

vectors inside MD have the smallest diameter among all subsets of

𝑛 − 𝑡 vectors. The proof can be analogously derived for any subset

of 𝑛 − 𝑡 vectors. Thus, the coordinate-wise median of any subset of

𝑛− 𝑡 vectors is in𝑇𝐻 . Finally, the hyperbox𝐶𝑊𝑀𝐵𝑜𝑥 is in𝑇𝐻 . □

4.2 Decentralized algorithms
In the decentralized setting, it is appealing to use the MD algorithm

and let each client update its local vector to the median of the

received vectors in each round. This strategy however does not

work in the presence of Byzantine clients, unless signatures are used.

There may be only two input vectors, and due to the uncertainty

in communication, the clients may repeatedly choose either of the

vectors as their new median.

Consider the following one dimensional case and round 𝑟 of the

MD algorithm. Suppose there are 𝑡 Byzantine clients in the system,

𝑛−𝑡
2

true clients start round 𝑟 with vector 𝑣1, and the other
𝑛−𝑡
2

true

clients with vector 𝑣2. Then,
𝑡
2
Byzantine clients could send vector

𝑣1 to half of the true clients and
𝑡
2
Byzantine clients could send

vector 𝑣2 to the other half of true clients. A true client would hence

receive exactly
𝑛−𝑡
2

+ 𝑡
2
vectors, and all of them would be contained

in MD. For half of the true clients, MD would contain
𝑛−𝑡
4

+ 𝑡
2
times

𝑣1 i.e. more than half of the vectors in MD would be equal to 𝑣1, and

for the other half of true clients, more than half of the vectors in their

set MD would be equal to 𝑣2. Since a true client’s new vector is the

median of vectors in its MD set, the system would then start round

𝑟 + 1 in exactly the same configuration as round 𝑟 , i.e. the algorithm

doesn’t converge. Despite its theoretical limitations, MD performs

competitively under certain attack scenarios, which is shown in

Section 5. For further theoretical analysis, we therefore only focus

on the generalization of the centralized Hyperbox algorithm.

Lemma 4.6. True coordinate-wise median𝐶𝑊𝑀∗ is inside the local
hyperbox of all possible medians 𝐶𝑊𝑀𝐵𝑜𝑥𝑖 , for all honest clients 𝑖 .

Proof. Since we assume synchronous communication, by defi-

nition, all honest vectors will be received by all honest clients in

every round. 𝐶𝑊𝑀𝐵𝑜𝑥𝑖 contains all medians computed on subsets

of 𝑛 − 𝑡 received vectors. One of these vectors must be 𝐶𝑊𝑀∗
. □

We can now generalize Algorithm 2 to the distributed setting.

Note that this algorithm is similar to the Hyperbox algorithm

that was introduced to approximate the centroid [5]. Algorithm 3

presents this algorithm in pseudocode.

Algorithm 3 Distributed Hyperbox algorithm for 𝑡 < 𝑛/3
1: for each round 𝑟 = 1, 2, . . . do
2: for each client 𝑖 with input 𝑣𝑖 : do
3: broadcast 𝑣𝑖 reliably to all clients

4: receive up to 𝑛 messages𝑀𝑖 = {𝑣 𝑗 , 𝑗 ∈ [𝑛]}
5: compute 𝑆𝐶𝑊𝑀 (𝑖) from all 𝑣 𝑗 ∈ 𝑀𝑖

6: compute𝑇𝐻𝑖 from𝑀𝑖 by excluding |𝑀𝑖 | − (𝑛−𝑡) values
on each side

7: compute 𝐶𝑊𝑀𝐵𝑜𝑥𝑖 on subsets of (𝑛 − 𝑡) clients
8: 𝑣𝑖 = 𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 (𝐶𝑊𝑀𝐵𝑜𝑥𝑖 )
9: end for
10: end for

Theorem 4.7. Algorithm 3 converges and satisfies box validity
with resilience 𝑡 < 𝑛/3.

The bound 𝑡 < 𝑛/3 is due to the impossibility result for Byzantine

agreement [14]. In order to prove that the Algorithm 3 satisfies box

validity, we will first note that the local coordinate-wise median

hyperbox is inside the local trusted hyperbox in every round of the

algorithm. This statement follows from Lemma 4.5. Observe further

that the trusted hyperbox of every following round is contained in

the trusted hyperbox of the previous round, and thus also in the

trusted hyperbox of the input vectors, denoted TH
0

𝑖
.

Corollary 4.8. For each correct client 𝑖 , the local coordinate-wise
median hyperbox is inside the local trusted hyperbox: 𝐶𝑊𝑀𝐵𝑜𝑥𝑖 ⊆
𝑇𝐻𝑖 ⊆ TH

0.

Proof of Theorem 4.7. We show convergence for each coordi-

nate 𝑘 ∈ [𝑛]. Let 𝐻𝑟 [𝑘] denote the set of honest values and 𝐷𝑟 [𝑘]
denote the interval between the largest and the smallest honest

value in coordinate 𝑘 at the beginning of round 𝑟 . Our goal is to

show that |𝐷𝑟+1 [𝑘] | < |𝐷𝑟 [𝑘]/2|, where |𝐷𝑟 [𝑘] | denotes the length
of interval 𝐷𝑟 [𝑘]. Due to synchronous communication, all honest

clients will receive all honest values. By using reliable broadcast,

we also ensure that every honest client either accepts the same

value from a faulty client or has no value at all.

Let 𝐶𝑊𝑀𝐵𝑜𝑥𝑟 denote the coordinate-wise median hyperbox

computed in round 𝑟 of the algorithm. From Lemma 4.6 we know

that the true coordinate-wise median of the inputs of round 𝑟 , de-

noted𝐶𝑀𝑊 𝑟
, is inside𝐶𝑊𝑀𝐵𝑜𝑥𝑟

𝑖
. Therefore,

⋂
𝑖∈𝐻𝑟 [𝑘 ] 𝐶𝑊𝑀𝐵𝑜𝑥𝑟

𝑖
≠ ∅. Observe that𝐶𝑊𝑀𝐵𝑜𝑥𝑟 [𝑘] ⊆ 𝐷𝑟 [𝑘], as each median is inside

the trusted hyperbox of all honest vectors. Let 𝑑𝑟
𝑖
denote the maxi-

mum distance between 𝐶𝑀𝑊 𝑟 [𝑘] and one of the endpoints of the

interval 𝐶𝑊𝑀𝐵𝑜𝑥𝑟
𝑖
[𝑘] in coordinate 𝑘 . Since each client chooses

the midpoint of 𝐶𝑊𝑀𝐵𝑜𝑥𝑖 [𝑘] as its new input for the next round,

the distance between𝐶𝑀𝑊 𝑟
and 𝑣𝑟+1

𝑖
[𝑘] is at most half of 𝑑𝑟

𝑖
. This

holds for each client 𝑖 . Furthermore, there must have been true

input values on each side outside the open interval 𝐶𝑊𝑀𝐵𝑜𝑥𝑟
𝑖
[𝑘]

for each 𝑖 . Thus, a reduction of the interval of all honest values by

1/2 w.r.t. 𝐶𝑊𝑀𝐵𝑜𝑥𝑟 [𝑘] by a factor of 1/2 also means a reduction

of 𝐷𝑟 [𝑘] by at least 1/2. □

Observe that Algorithm 3 does not have a stopping condition.

With the result in Theorem 4.7, we can introduce a stopping condi-

tion after 𝑂 (log(𝐷/𝜀)) communication rounds, where 𝐷 denotes

the maximum coordinate-wise diameter of the honest input vectors.
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(a) Centralized MLP (b) Centralized CifarNet (c) Decentralized MLP

Homogeneous data across three settings — centralized MLP, centralized CifarNet, decentralized MLP

(d) Centralized MLP (e) Centralized CifarNet (f) Decentralized MLP

Mildly heterogeneous data across the same three settings

Figure 1: Performance comparisons of centralized and decentralized federated learning

Lemma 4.9. Algorithm 3 with the stopping condition satisfies ap-
proximate agreement.

Proof. After𝑂 (log(𝐷/𝜀)) rounds, themaximum diameter of the

honest input vectors in each coordinate is 𝜀. Additionally, Algorithm

3 satisfies the strong validity condition, as the agreement is located

within the trusted hyperbox. As a result, it successfully solves the

multidimensional approximate agreement problem. □

5 Experimental Results
In order to understand how the convergence of algorithms influ-

ences the convergence of the machine learning model, we empiri-

cally evaluate our algorithms. Although decentralizedMD coordinate-

wise median algorithm lacks theoretical convergence guarantees,

we include it in our experiments to assess its performance.

Centralized and decentralized federated learning models are eval-

uated on the MNIST and CIFAR10 dataset. We study uniform and

heterogeneous data distributions to reflect a range of federated

learning scenarios, from idealized (uniform) to more realistic and

challenging (heterogeneous). The first heterogeneous scenario stud-

ies mild heterogeneity, where each class from the train dataset is

split into 10 parts, where 8 parts contain 10% of the class, one part

5% and one part 15% of the class. The second scenario studies ex-

treme heterogeneity, also known as 2-class heterogeneity [29]. The

dataset is sorted and split into 20 pieces. Each client gets randomly

2 parts of the data, so that each client holds up to 2 classes of data.

The underlying neural network for solving the image classifi-

cation task on MNIST dataset is a MultiLayer Perceptron (MLP)

with 3 layers. For the CIFAR10 dataset we implemented CifarNet, a

medium-sized convolutional network with thousands of trainable

parameters and the ability to capture spatial relationships in col-

ored images. To study a standard Byzantine scenario, we set the

number of clients to 𝑛 = 10 and number of Byzantine clients to

𝑓 = 1. We consider the sign flip attack [25]. Instead of sending their

true gradients, 𝑓 Byzantine clients invert their sign before sharing.

How is the performance in centralized MLP and CifarNet
architectures? Figure 1 illustrates the performance of MD and

Hyperbox algorithms with mean and coordinate-wise median as

aggregation rules. Figures 1a and 1d show all methods converge in

homogeneous and mild heterogeneous case under MNIST dataset,

and achieve 91% and 90% accuracy, respectively. When the same

setting is evaluated on CIFAR10 dataset and CifarNet architecture,

the accuracy of all methods drops, as shown in Figures 1b and 1e.

Mean is showing better accuracy (67%) over coordinate-wisemedian

methods (65%). The overall accuracy achieved by the CifarNet is

lower than that of the MLP architecture, which is explained by

the increased architectural complexity of CifarNet and the greater

visual and structural complexity of the colored CIFAR dataset.
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Figure 2: Centralized federated learning onMLP architecture
under extreme heterogeneous data

How is the performance in decentralized MLP architec-
ture? Figures 1c and 1f illustrate decentralized federated learning

model with homogeneous and heterogeneous data distribution on

MLP architecture. Here, MD mean and Box mean fail to produce a

model under the sign flip attack. Box algorithm with coordinate-

wise median is not stable and does not seem to converge. However,

MD with coordinate-wise median converges with accuracy 77% for

homogeneous and 74% for mild heterogeneous case. This result

indicates that the convergence of the agreement algorithm does

not influence the convergence of the machine learning model. As

shown in Section 4.2, MD approach for coordinate-wise median

does not converge. However, this did not prevent convergence of

the machine learning model using MD coordinate-wise median as

an aggregation rule. This example also highlights the advantage of

coordinate-wise median based approach over mean.

How is the convergence behavior under extreme hetero-
geneity? An additional experiment in Figure 2 shows extreme

heterogeneous scenario in a centralized setting. Coordinate-wise

median approaches fail to converge, since the data is extremely

heterogeneous and each client has up to two classes of data. Hy-

perbox algorithm with mean achieves around 90% accuracy, while

MD mean reaches 80% and is more unstable than the Hyperbox

approach. Under extremely heterogeneous data distribution in a

decentralized setting, all aggregation rules fail, suggesting that a

different approach should be considered in this case.
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