
Distributed Computing Column

Stefan Schmid
TU Berlin & T-Labs, Germany
stefan.schmid@tu-berlin.de

1

 stefan.schmid@tu-berlin.de

Fault-tolerant Distributed Systems
in Hardware

Danny Dolev (Hebrew University of Jerusalem)
Matthias Függer (MPI for Informatics)

Christoph Lenzen (MPI for Informatics)
Ulrich Schmid (TU Vienna)

Andreas Steininger (TU Vienna)

Very large-scale integrated (VLSI) hardware designs can be seen as distributed
systems at several levels of abstraction: from the cores in a multicore architecture
down to the Boolean gates in its circuit implementation, hardware designs com-
prise of interacting computing nodes with non-negligible communication delays.
The resulting similarities to classic large-scale distributed systems become even
more accented in mission critical hardware designs that are required to operate
correctly in the presence of component failures.

We advocate to act on this observation and treat fault-tolerant hardware de-
sign as the task of devising suitable distributed algorithms. By means of problems
related to clock generation and distribution, we show that (i) design and analy-
sis techniques from distributed computing can provide new and provably correct
mission critical hardware solutions and (ii) studying such systems reveals many
interesting and challenging open problems for distributed computing.

2

1 Introduction
Very large-scale integrated (VLSI) circuits bear several similarities with the sys-
tems studied by the distributed computing community:

• They are formed by an increasing number of interacting computing nodes.

• Communication delays are not negligible.

• The cost of communication, such as area and power consumption, is not
negligible.

In fact, this view is correct at different levels of abstraction. We will elaborate
on two such levels that significantly differ from each other with respect to the
computational power of the system’s nodes, their means of communication, and
the problems they solve.

(I) Viewed from a low-level perspective, every digital circuit is a network of
logic gates with delays, which continuously compute their current output state
from their input history and interact via binary-valued, continuous-time signals.
We stress the fact, however, that this is already a (convenient) abstraction, as real
gates are electronic devices that process analog (continuous-valued) signals: A
signal that is above a certain threshold voltage is considered high, otherwise low.
Whereas analog signals (like a good clock signal) that swing fast from low volt-
ages to high voltages are represented reasonably well by the resulting digital ab-
straction, this is obviously not the case for every signal: Just consider an analog
signal that stays very close to the threshold voltage and just, e.g., due to very
small noise, occasionally crosses it. It will turn out that this modeling inaccuracy
causes serious problems both for synchronization and fault-tolerance, which must
be considered explicitly.

Analogously to distributed computing, there are two fundamentally different
ways to design digital circuits (i.e., algorithms in hardware), which correspond to
synchronous and asynchronous algorithms in distributed computing.

The classic design paradigm relies on the synchronous computational model.
It abstracts away the timing of gates and interconnects by considering gate outputs
only at predetermined instants dictated by a central periodic clock signal. While
this approach allows the designer to solely concentrate on the stable outputs of a
network of gates, it relies critically on the guarantee that all signals have settled
and all transients have vanished at the occurrence of the next clock transition.
Inherently, such designs run at the speed of the clock period that is determined
from worst-case bounds on gate and interconnect delays. Due to increasingly
pronounced delay variations [52, 84] this results in highly conservative bounds
and thus in considerable performance loss.

3

In contrast, designs that do not rely on the convenient discrete time abstraction
provided by a clock signal are called clockless or asynchronous.1 Such circuits
must rely on different techniques to enforce some ordering between signal tran-
sitions. Suitable techniques range from aggressively timed circuits that explicitly
use information on the delays along certain paths [80, 91, 97] to circuits that toler-
ate (certain) delay variations by means of some forms of handshaking. Prominent
examples of the latter are delay insensitive (DI) circuits [72], speed-independent
(SI) circuits and quasi-delay insensitive (QDI) circuits [74, 75]. While DI circuits
are guaranteed to behave correctly in the presence of arbitrary gate and intercon-
nect delay variations, SI resp. QDI circuits assume that all resp. certain signal
forks in the interconnect are isochronic, i.e., have roughly equal propagation de-
lays along all their fork teeth.

The robustness to delay variations in DI circuits comes at a high price, how-
ever: Martin [73] showed that the expressiveness of circuits that are DI at gate-
level is severely limited. In fact, the only two-input gate allowed in such circuits
is the C-Element, which is an AND gate for signal transitions; it produces a, say,
rising transition at its output when it observed a rising transition at all its inputs.
This clearly restricts the usability of DI circuits for real applications.

SI and QDI circuits, on the other hand, are Turing-complete [70]. Intuitively,
the isochronic fork assumption guarantees that a gate whose output drives an
isochronic fork implicitly performs a handshake with all its successor gates while
just handshaking with one of its successors. A precise characterization of the con-
ditions on the propagation delay that have to hold on certain paths in SI circuits
was derived in [56].

(II) With the increasing number of computing nodes in System-on-Chip (SoC)
and Network-on-Chip (NoC) architectures, problems that used to be relevant only
in large-scale computer networks also become relevant within a single chip. Ex-
amples range from establishing a common time base over data communication
and routing between nodes to load balancing.

In the hardware context, establishing a common time base among all nodes
is of particular interest, because this sets the base for a synchronous computa-
tional model: Rather than being implemented entirely clockless, higher-level ser-
vices like routing and load balancing could then also exploit synchrony proper-
ties. Unfortunately, however, the GHz clock speeds and sizes of modern VLSI
circuits make it increasingly difficult to distribute a central clock signal through-
out the whole circuit [43, 96]. Modern SoCs and NoCs hence typically rely on
the globally asynchronous locally synchronous (GALS) approach [14], where
different parts of a chip are clocked by different clock sources. Using inde-

1We will use the term “clockless” in the following, as such circuits do not always allow for
arbitrarily large and unknown delays.

4

pendent and hence unsynchronized clock domains would give away the advan-
tages of global synchrony and also requires non-synchronous cross-domain com-
munication mechanisms or synchronizers [59, 58]. A promising alternative is
mesochronous clocking [79] (sometimes also called multi-synchronous clocking
[93]) as it guarantees some upper bound on the skew between clock domains. In
this article, we will thus focus on discussing methods for providing a common
time in GALS architectures.

Fault-tolerance. Besides an increasing number of components and non-negli-
gible communication costs both at gate and system level, there is a further trend
that advocates the application of distributed computing methods for designing
VLSI chips: the increasing susceptibility to failures. Indeed, fault-tolerance has
been identified as a key challenge in the International Technology Roadmap for
Semiconductors [52] for years. Besides the increasing susceptibility of nanome-
ter VLSI technology to permanent failures caused by manufacturing process varia-
tions and excessive operating conditions (supply voltage, temperature) [62],
steadily decreasing feature sizes and signal voltage swings also led to dramati-
cally increased transient failure rates [16], caused by ionizing particles hitting the
junction of transistors [6], electro-magnetic cross-talk between signal wires and
supply-voltage variations caused by simultaneous switching activities [78, 85].

Unfortunately, even relatively simple faults unveil the very limited ability of
the convenient digital signal abstraction to properly describe reality. For example,
an out-of-spec output driver of a gate that drives a fork to two different gate inputs
may be able to reach the threshold voltage at one input but not at the other, causing
those to interpret the gate output inconsistently. Similarly, a single-event transient
(SET) [6] caused by an ionizing particle that hits the output driver of such a gate
may be visible at one input but not at the other, depending on the latter’s input
capacitances. It is hence apparent that classic benign failure models from dis-
tributed computing, where a message is either lost or transmitted correctly, do not
cover such faults. In fact, faulty gates have to be assumed to potentially behave
arbitrarily, i.e., Byzantine [86].

While there is a huge body of work on fault mitigation techniques at the tech-
nological level (like silicon-on-insulator (SOI) technology [76]) and gate level
(like the SET-tolerant DICE latch [83]), keeping the overall error rate acceptable
[89, 22] despite the tremendously increasing number of gates/cores on a single
chip demands for additional architectural solutions. At the same time, solutions
that require central knowledge of the current system state (i) become infeasible
due to the high communication costs and (ii) would themselves form a single
point of failure. Algorithmic solutions that use only local knowledge, studied by
the distributed computing community for decades, are hence promising in this

5

context.
Classic architectural fault-tolerance approaches [87] like Dual Modular Re-

dundancy (DMR) and Triple Modular Redundancy (TMR) fail in absence of a
global time base, as it becomes unclear over which values to vote. Jang and
Martin [53] adapted this method to QDI designs and applied it to build a micro-
controller tolerating certain transient faults [54], in particular, single-event upsets
(SEUs), where a state-holding device may flip its state due to a particle hit. Their
solution duplicates each gate and adds two succeeding cross-coupled C-Elements
whose inputs are connected to the outputs of the duplicated gates. In case of a
spurious state transition of one of the duplicated gates, both C-Elements do not
propagate the spurious output value until it is matched by the other gate’s output
also (which can be proved to eventually happen). While this method tolerates
SEUs, it neither allows to tolerate SETs nor permanent faults.

Tolerating such faults necessarily requires to extend the circuit’s control logic
not to wait for all of its predecessors’ outputs. In contrast to the AND-causality
semantics of the C-Element, this requires OR-causality semantics. Interestingly,
there has been research in this direction in a different context: In certain cases, a
Boolean function’s value can already be determined from a subset of its param-
eters. This fact can be used to speed up clockless circuits [17, 95]. Instead of
waiting for all of a module’s inputs to arrive, the module waits until its outcome
is determined and then immediately produces a new output value. Care must
be taken not to mix up current input data with lately arriving input data from a
previous computation, however. The approach thus requires additional timing as-
sumptions and ways to memorize which input values a module already took into
account when computing its output.

A similar strategy can also be applied to design clockless circuits that tol-
erate a certain fraction of its input nodes to fail permanently. In particular, it
has also been employed in the DARTS Byzantine fault-tolerant clock generation
approach [49, 44] for mesochronous GALS architectures, which comprises a net-
work of interconnected OR-causality gates whose outputs generate tightly syn-
chronized clock pulses. The approach is discussed in more detail in Section 3.1.3.

The limit of the fault-tolerant hardware solutions discussed above is that they
allow only a certain subset of the components to fail. Even if these components
start to operate according to their specification again later on, their state may re-
main corrupted, preventing them from recommencing correct operation. For mas-
sive transient failures, which are likely to occur e.g. in space missions and may
corrupt the entire system state, the above solutions are not adequate. To attack
this problem, the concept of self-stabilizing distributed algorithms [33] has suc-
cessfully been applied to digital circuits. A self-stabilizing circuit is guaranteed to
eventually behave correctly again after its state was arbitrarily corrupted. For ex-
ample, a self-stabilizing token passing algorithm implemented in clockless hard-

6

ware was presented in [11], and S. Dolev and Haviv [34] built and proved correct
a self-stabilizing microprocessor.

From a robustness point of view, a combination of resilience to permanent
faults and self-stabilization is most desirable: Appropriate solutions operate cor-
rectly in the presence of not too many permanent faults and even recover from
massive transient disruptions. In [27, 28] the fault-tolerant and self-stabilizing
pulse generation algorithm FATAL and its hardware implementation were pre-
sented and proven correct. This solution is discussed in more detail in Sec-
tion 3.1.4.

Additional challenges. While we highlighted major similarities between VLSI
designs and classic distributed systems, there are also important differences. In
most cases, these advise against a naive implementation of distributed algorithms
in hardware.

First and foremost, this is the absence of computationally powerful atomic
actions at the gate level in clockless circuits: Explicit means such as handshaking
must be employed to synchronize activities in such a circuit, which is not only
costly but also imperfect in terms of synchronization accuracy. This, in turn,
is also a source for a unique problem called metastability, which arises when a
circuit must handle input signals that bear no well-defined timing relation to its
own state transitions. Consider a simple R/W register in a shared memory system
that my be read by a processor at the time it is written by some other processor.
Distributed computing models based on regular or even atomic registers assume
that either the previous or the newly written value is returned by the read. In
reality, the situation is even worse than assumed for safe registers, which allow
an arbitrary return value in this case: The register may reach a metastable state,
which moves its output voltage to a non-digital level for an unpredictable time!

Another unique problem arises from the imperfect coverage of the digital
abstraction for analog signals in the case of failures. In distributed computing,
Byzantine behavior is considered the worst a component can do to a system. Un-
fortunately, in digital circuits, generating an arbitrary binary-valued continuous-
time signal is not the worst behavior of a component. Rather, a component may
produce an arbitrary analog signal on its output, e.g., an output voltage that re-
mains very close to the threshold voltage arbitrarily long, which is actually one
manifestation of metastability (creeping metastability) [7, 13]. We will discuss
these issues in more detail in Section 2.

Structure of this article. We start in Section 2 with a discussion on the pecu-
liarities of SoCs in comparison to classic distributed systems, and the challenges
arising in the definition of an appropriate distributed system model. In Section 3,

7

we discuss the problem of obtaining a common time base for multi-synchronous
GALS architectures, which is both fundamental to the solution of other problems
and exemplarily captures the challenges of adapting distributed algorithms for use
on a chip. The problem is divided into three parts: (i) Section 3.1 discusses the
problem of generating synchronous pulses. (ii) Section 3.2 deals with establishing
local counters. Here we provide more technical details, with the primary goal of
illustrating how techniques from distributed computing find application in VLSI
design. (iii) Section 3.3 finally is concerned with distributing the clock over a
wider area. The work is concluded in Section 4.

2 Modeling Issues
While we pointed out the similarities of VLSI circuits and fault-tolerant dis-
tributed systems in Section 1, a simple migration of classic solutions in distributed
computing is not favorable and most of the time even infeasible. The most promi-
nent obstacles are:

(i) Gates continuously compute their output state from their input states. They
generate events, i.e., binary transitions, in a fully parallel way and are capable of
very simple computations, such as the logical AND of two binary inputs, only.
Any kind of event sequencing and atomic actions that group several binary transi-
tions into more powerful computations requires explicit synchronization between
the concurrently operating gates, e.g., by handshaking or timing assumptions.
Note that this includes even “simple” computations such as the sum or the product.

(ii) Communication and computation is costly, especially if the proposed so-
lution is meant to “only” provide low-level services to the application running on
top. For example, clock generation algorithms must not use more than a few wires
between nodes to be able to compete with classic clock distribution networks. Ex-
change of data, even a few bits, requires parallel or serial coding and decoding
logic and thus typically cannot be afforded for low-level services. Rather, solu-
tions must resort to signaling a few status bits only. Exchanging data of more than,
say, 32 bits, is usually also difficult for high-level services.

(iii) Non-digital low-level effects must be taken into account. Every binary
valued model necessarily abstracts from the analog signals in real gate implemen-
tations. While it is perfectly valid to resort to binary abstractions most of the time,
these models come to their limits when synchronization and failures enter the pic-
ture: Marino [71] showed that any bistable element, e.g., a binary memory cell,
may get stuck arbitrarily long in between its two stable states. This may result in
spontaneous, unpredictably late transitions on its output, and even in an inconsis-
tently perceived input at multiple successor gates. While classic designs prevent
these scenarios by ensuring that certain timing constraints on the input signals

8

are not violated, this is not always possible and inherently cannot be assumed in
fault-tolerant circuits.

In order to be able to predict the behavior of a circuit and reason formally about
its correctness and performance at early design stages, i.e., before fabrication, a
suitable circuit model is required. Clearly, any such model should be sufficiently
simple to support fast predictions and formal analysis, while at the same time
ensure that the results reflect reality sufficiently accurate. We will briefly sketch
common approaches.

Discrete time state machines. Synchronously clocked circuits of any kind can
be modeled by a discrete-time, discrete-value synchronous communicating state
machine model, for which very efficient and fast timing prediction and formal
analysis tools are available. Unfortunately, this abstraction does not cover all
existing circuits. This is obvious for clockless circuits, but also for the timing
analysis of clocked circuits, which is mandatory for validating the clock timing
requirements for justifying the synchronous abstraction. The latter is particularly
important with the advent of aggressively timed high-speed synchronous circuits,
where clock speed must be traded against the increasing rate of manufacturing
errors and other sources of timing failures. In that case one has to resort to con-
tinuous time models.

Continuous time models. Arguably, the most accurate models used in circuit
design today are fully-fledged continuous-time analog valued ones as, e.g., in-
stantiated by Spice [81]. However, excessive analog simulation times prohibit its
use for analyzing more than a fairly small part of a VLSI circuit, over fairly short
periods of simulated real-time. Discrete-value models, and specifically binary-
valued ones, are hence an attractive alternative. Modern digital design approaches
e.g. based on description languages such as VHDL [5] incorporate digital timing
simulators that are typically based on zero-time Boolean gates interconnected by
non-zero-delay channels. Popular instances are simple pure (i.e., constant-delay)
and inertial delay channels (i.e., constant-delay channels that suppress short in-
put pulses) [94], but also more elaborate ones like the Delay Degradation Model
(DDM) [8] or the empirical Synopsis CCS Timing model [92]. Continuous time,
discrete-value models can be either state-based or trace-based, as detailed in the
following.

Clockless, state-based models. At the gate level, clockless circuits are typi-
cally modeled by a binary state vector representing the global circuit state and,
potentially time-annotated, guard-action pairs [4, 72] that describe the gates. An
execution, i.e., signal trace, of the circuit is a sequence of global states over time

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

Time [ns]

S
ig
n
a
l
vo
lt
a
ge

[V
]

Figure 1: Analog simulation traces of a storage loop (e.g., a 2-input OR gate with
the output fed back to one input) that can persistently memorize a high state of its
(other) input. The blue dashed curves (the medium line actually corresponding to
8 almost identical pulses) show the real analog shape of short input pulse signals
of different duration, the solid green ones give the corresponding output signals of
the storage loop.

generated by a parallel execution of the guard-action pairs. Note that executions
need not necessarily be unique, accounting for potential delay variations within
the circuit. Like the models used in classic distributed computing, such as the
Alur-Dill Timed Automata [2] and the Timed I/O Automata by Keynar et al. [55],
these models all act on the explicitly given state-space of the underlying system.

While this view serves as a good level of abstraction in clockless circuits oper-
ated in closed environments, it comes to its limits when signals do not necessarily
stabilize before they change again. For instance, consider a gate that produces
a very short low-high-low pulse at its output: In reality, this means that the gate
driver circuitry has only started to drive the output signal to high when it is turned
off again. This results in a short, potentially non-full-swing waveform that may
quite unpredictably affect the subsequent gate. An example is shown in the blue
dashed pulse shape in Figure 1.

In this example, the subsequent gate is a memory flag, which persistently mem-
orizes a high state at its input, until it is reset again to 0. A straightforward im-
plementation is given by a storage loop, e.g. consisting of a 2-input OR gate with
its output fed back to its other input. The solid green lines represent the output
signals of the storage loop corresponding to the blue dashed inputs. The largest
input pulse causes the storage loop to flip to the high state immediately, while
the smallest one does not cause any effect on the initial low output. The medium
input pulse, however, which actually represents 8 different ones that differ only
marginally from each other, causes the loop to enter a metastable state: The input
pulses are too short to allow the storage loop, which has some short but non-

10

zero delay, to settle to a stable value. Depending on minor variations of the input
pulses, the metastable state eventually resolves after some unpredictable and pos-
sibly large resolution time. The memory flag does not operate as intended during
this time, possibly affecting the downstream logic in a similar way.

Such situations cannot be prevented from happening in open environments in
which a circuit cannot control all of its inputs. The same holds in fault-tolerant
circuits, where the signals provided by faulty nodes may be arbitrary. Thus they
must be reasonably covered by an appropriate digital circuit model. Unfortu-
nately, however, this is not the case for any model used in modern timing circuit
simulators today. Besides the complete lack of modeling and analysis support
for fault-tolerance, it was shown in [48] that none of the existing analytic chan-
nel models, including the popular pure and inertial delay channels [94] as well as
the DDM model [8], faithfully model the propagation of short pulses in physical
circuits. Specifically, it has been shown that these models are inconsistent with
possibility and impossibility results concerning the implementation of a one-shot
inertial delay channel: a channel that, like an inertial delay channel, suppresses
short pulses, but is required to work correctly only in presence of a single input
pulse (one-shot).

Recently, however, a candidate delay model [47] based on involution channels
has been proposed that does not have this shortcoming: It is not only consistent
with the theoretical results on the one-shot inertial delay problem [48], but also
achieves a promising level of accuracy [82]. As a consequence, there is a prospect
of eventually identifying a tractable delay model that can form the basis for a
comprehensive modeling framework for digital circuits.

Clockless, trace-based models. Existing frameworks for designing clockless
digital circuits also have shortcomings at higher abstraction levels. In particular,
we are not aware of any modeling framework (except the one we proposed in
[27]) that supports fault-tolerance. Instead of blowing up the state space of ex-
isting state-based models – like Alur-Dill Timed Automata [2], Lamport’s TLA
[63], Timed IO Automatons by Keynar et al. [55], discrete abstractions for hybrid
systems [3], or state-space-based control theory [64] – with error states and/or
using non-determinism or probabilistic state transitions for modeling faults, it ad-
vocates the use of solely trace-based models, which focus on the externally visible
behavior of a circuit only.

Examples of earlier trace-based approaches are Ebergen’s trace theory for
clockless circuits [37] and Broy and Stølen’s FOCUS [12]. In both approaches,
a module is specified exclusively in terms of the output signal traces that it may
exhibit in response to a given input signal trace, without referring to internal state.
The trace-based approach introduced in Dolev et al. [27] allows to express tim-

11

ing conditions via (dense) real-time constraints relating input/output signal tran-
sitions, and supports fault-tolerance by allowing (sub-)modules to behave erro-
neously, i.e., deviate from their specified behavior according to some fault model
(e.g. Byzantine behavior [86]). It provides concepts for expressing the composi-
tion and implementation of circuits by other circuits, which also allow to rigor-
ously specify self-stabilizing [33] circuits. The model has been used to precisely
specify the modules of the Byzantine fault-tolerant and self-stabilizing FATAL
clock generation algorithm, which will be described in Section 3.1.4, at a level of
abstraction that allows for a direct implementation in hardware.

Compared to state-based approaches, it may be more involved to apply a be-
havioral approach, in particular, in settings like fully synchronous or fully asyn-
chronous systems, where state-space-based descriptions are reasonably simple.
After all, in general, it is even difficult to decide whether behavioral specifica-
tions match at interface boundaries [21]. On the other hand, it is much better
suited for systems with a complex evolution of the system state over time and/or
in which the internal state of system components is too complex or even unknown,
which is typically the case for self-stabilizing algorithms. Another attractive side-
effect is the inherent support of hierarchical design using (pre-existing or yet to
be built) building blocks, without the need to define interface state machines. One
can easily build a system and/or its model in a modular way, by composing sub-
components and/or their models, whose implementation can be provided (typi-
cally by different designers) and verified at a later stage.

Nevertheless, it is understood that behavioral constraints translate into appro-
priate constraints on the modules’ states implicitly. Although making this relation
explicit is not part of our modeling framework, this definitely is part of the effort
to implement a module and to prove that it indeed exhibits the specified behaviors.
The latter may of course involve any appropriate technique, e.g. timed automata
[2] and related verification techniques [1].

Open problems. Although the model of [27] explicitly avoids metastable up-
sets in fault-free executions, it cannot deal explicitly with metastable upsets and
metastability propagation. The work by Ginosar [51], which provides several
examples of synchronizer circuits where current prediction models drastically un-
derestimate the probability of metastable upsets, shows the importance for such
an extension. The challenge here is to bound metastability resolution times and
propagation effects, potentially in a probabilistic manner, to be able to quantify
upset probabilities and stabilization times.

Besides the need to extend the model [27] by standard tools like simulation
relations and abstractions, the integration with a faithful digital circuit model like
[82] remains a challenge. The ultimate goal is a comprehensive modeling frame-

12

work for modern digital circuits, which facilitates (semi-automated) formal veri-
fication of circuits, correctness proofs and accurate performance analysis as well
as design parameter synthesis, ideally via supporting tools.

3 Generating and Distributing a System Clock

Simulating a synchronous system in the presence of both transient and perma-
nent failures is a challenging task. The traditional approach to generating and
distributing the clock signal, a clock tree [43], follows the master/slave principle:
the signal of a single quartz oscillator is distributed to all logical gates by means
of a tree topology. This approach is trivially self-stabilizing, but it must be aban-
doned due to the possibility of permanent faults; a failure of the tree’s root (i.e.,
the oscillator) or a node close to the root breaks the entire system.

In the severe failure model considered in this article, this fundamental prob-
lem was first studied by S. Dolev and Welch [35, 36]. It was motivated by the
observation that the assumption of only a fraction of the node being affected by
transient faults is too optimistic for the typically long mission times (e.g., space
missions) during which clock synchronization has to be provided.

The ultimate goal is to simulate synchronous rounds that are consistently la-
beled (at all correct nodes) by a round counter modulo C ≥ 2, where C usually is
fairly large. Dolev and Welch give a protocol that stabilizes in exponential time.
While this does not seem very exciting at first glance, at this time the big surprise
was that the problem was solvable at all!

For the sake of clarity of presentation, let us break down the task into three
subproblems:

1. Pulse Synchronization: Simulating unlabeled synchronous rounds in a sys-
tem with bounded communication delay and local clocks of bounded drift.

2. Counting: Computing consistent round counters in a synchronous system
with unnumbered rounds.

3. Clock Distribution: Distributing pulses and/or round numbers efficiently,
i.e., using a low-degree topology.

We remark that it is not imperative to follow this structure when solving the prob-
lem. However, the discussion will reveal why this is a fairly natural decomposition
of the task.

13

3.1 Pulse Synchronization
In the pulse synchronization problem, we are given a fully connected system of
n nodes, f < n/3 of which may be Byzantine faulty. Nodes communicate by
messages that are delayed between 0 and 1 time units,2 which also accounts for
any delay incurred by local computations. Each node i ∈ {1, . . . , n} is equipped
with a local clock Ci : R+

0 → R of bounded drift, i.e.,

∀t > t′ : t − t′ ≤ Ci(t) −Ci(t′) ≤ ϑ(t − t′)

for a constant ϑ > 1. As we require self-stabilization, the initial states of the
nodes, including the values of their local clocks, are arbitrary.

Pulse synchronization now requires nodes to regularly trigger pulses in a syn-
chronized way. For a time T ≥ 0, denote by t(k)

i and i ∈ {1, . . . , n}, k ∈ N, the time
when node i generates its kth pulse at or after time T (we omit T from the nota-
tion). A pulse synchronization algorithm of precision ∆, accuracy bounds Amin,
Amax, and stabilization time S satisfies in any execution that there is some time
T ≤ S so that

precision: ∀i, j, k : |t(k)
i − t(k)

j | ≤ ∆ and

accuracy: ∀i, k : Amin ≤ |t
(k+1)
i − t(k)

i | ≤ Amax .

Here it is implicit that indices i, j refer to correct nodes only, as we cannot make
any guarantees on Byzantine nodes’ behavior. Note that typically Amin will be a
given parameter and the goal is to minimize Amax − Amin as a function of Amin (or
vice versa). Due to the drifting local clocks and delayed messages, indistinguisha-
bility arguments show that always ∆ ≥ 1 and Amax ≥ max{ϑAmin, 1}.

3.1.1 Approaches by the Distributed Community

The results from [36] prompted the question whether pulse synchronization could
also be solved efficiently, i.e., with a small stabilization time. In a series of papers,
the stabilization time was first reduced to polynomial [20] and then linear [18, 29]
in n.3 These works also revealed that randomization is not essential to solve the
problem: the latter algorithm is based on running multiple instances of determin-
istic consensus concurrently.

Together, these results indicated that the problem could admit solutions suit-
able for hardware implementation. However, none of the above algorithms was a

2This is a normalization. In all existing algorithms, the maximum delay affects stabilization
times, etc. linearly.

3Linear stabilization time was claimed earlier [19], but the algorithm contained non-trivial
errors that were fixed in [18].

14

good candidate, due to unacceptable stabilization time [36], the need for highly
accurate local clocks [20], or message size Θ(n log n) and too involved local com-
putations [18, 29]. Malekpour provides an alternative linear-time solution [68, 69]
with small messages and simple computations, but uses a simplified model (in par-
ticular, it is assumed that ϑ = 1, i.e., there is no clock drift).

3.1.2 Approaches by the Hardware Community

Frequently, designers of fault-tolerant architectures consider the clocking mecha-
nism sufficiently reliable and hence do not add any measures for fault-tolerance.
The typical rationale is that a clock distribution network has very strong drivers
and is therefore not susceptible to transient disturbances. Permanent defects, on
the other hand, will make the system stop operation completely, which may be
considered safe in some cases. In reality, however, the clock distribution infras-
tructure is already so complicated that a “partial” defect can easily occur (imagine
a driver responsible for a sub-net failing). Moreover, considering that the clock
tree is virtually always the most widespread network, showing the highest activity
(in terms of transition frequency), it is not so clear why it should not be affected
from transient faults as well. These arguments become even more dominant when
talking about requirements of, e.g., a failure probability smaller than 10−9 per
hour. For such a degree of reliability, it is unrealistic to assume that the system
can be just “tried out” before being used, and the cost associated with a design
error can be extremely high.

As a single clock source like a crystal oscillator constitutes a single point of
failure, practitioners aiming for fault-tolerant clocking often turn to the alternative
of using multiple clock sources. While this approach is indeed capable of solv-
ing the fault-tolerance issue, it at the same time introduces a new problem, namely
that of synchronization. In the single-clock case we have a single timing domain to
which all activities are synchronized.4 Within this synchronous domain it is easy
to perform communication based on known time bounds, to establish a clear or-
dering/precedence of events, and to avoid metastability caused by setup/hold time
violations (i.e., too short input pulses) at storage elements. When using multiple
clock sources, we immediately leave this safe area. It does not matter whether
we use multiple clocks with the same nominal frequency or not – the only im-
portant distinction is whether the clocks are correlated (i.e., originate at the same
source) or uncorrelated. In the latter case, one can never reason about their relative
phase (which is essential for avoiding setup/hold time violations), which makes
it mandatory to use explicit synchronizers that can, beyond causing performance

4The difficulty of providing this time information with the required phase accuracy all over
a large system is, besides the fault-tolerance aspect, a key reason why this globally synchronous
design paradigm is being challenged.

15

and area overheads, never attain complete protection from metastable upsets in
the general case [60, 71].

With respect to the precision of existing approaches to synchronization, dis-
tinguishing “microticks” and “macroticks” has become common. Ultimately, this
boils down to dealing with a large value of ∆ by dividing the clock frequency
(which is between 1/Amax and 1/Amin in our model) with respect to communica-
tion, so that ∆ � 1/Amin. In other words, slowing down communication suffi-
ciently, one can make the system work despite large ∆. However, this is obvi-
ously detrimental to performance, and one hence must strive for minimizing ∆.
The software-based clock synchronization mechanisms found in practical appli-
cations like the Time-Triggered Protocol TTP [61] or FlexRay [42, 45] rely on
adjusting local microtick counters appropriately to attain synchrony on macrotick
level. However, both protocols are, essentially, variants of synchronous approxi-
mate agreement [32]. Hence, they require pre-established synchrony for correct
operation, implying that they are not self-stabilizing.

Modern application-specific integrated circuits (ASICs) are typically com-
posed of many internally synchronous function blocks that “solve” the issue of
synchronization in an even simpler way. Instead of relying on any kind of syn-
chronization between different clock domains, these blocks communicate with-
out making any assumptions on timing (one needs still to avoid buffer overflows,
however). This paradigm is called globally asynchronous locally synchronous
(GALS) in the literature [14]. The intention here is mainly to mitigate the clock
distribution problem, but this also provides a foundation for establishing fault-
tolerance. Due to the consequent existence of multiple clock domains, such ar-
chitectures feature copious amounts of synchronizers (to avoid metastability) and
arbiters (to establish precedence). This works in practice, but comes with the as-
sociated performance penalties. Moreover, due to the current lack of tractable
models accounting for metastability, there is no satisfying answer to the question
“how many synchronizers suffice?”

What is needed to get rid of the performance and area overheads incurred by
the GALS approach is correlated clocking all over the system, even if the phase
is not perfectly matched in all places. Such clocks are called mesosynchronous.
Probably the most natural implementation of such a distributed correlated clock
source is a ring oscillator. The underlying principle is to use the delay along a
cyclic path (gates plus interconnect) as a time reference. More specifically, such
a path is implemented in an inverting fashion (odd number of inverting elements),
such that the level is periodically inverted with the loop delay defining the half
period of the oscillation. Examples of such approaches are the circuits presented
by Maza et al, [77] and Fairbanks et al. [38]. They are ring oscillators in that they
both exploit the fact that a circle formed by an odd number of inverters will oscil-
late, and the frequency of the produced clock is determined by circuit delays. In

16

contrast to the simple basic ring oscillator scheme, multiple “rings” are connected
to form meshes of inverters that distribute “clock waves”, thereby also generating
new ones. In forming the mesh, output signals of inverters are joined by simply
hardwiring them and forked by wire forks.

While these approaches can indeed provide a fast clock that is perceived as
“correlated” all over the system, the clock is still not intended and claimed to be
fault-tolerant by the authors.

3.1.3 DARTS

One may view the above hardware realizations of distributed clock generators
as very simple distributed algorithms, in which the algorithmic steps are deter-
mined by the laws of superposition at the merging points. From a theoretical
point of view, this results in extremely limited options for the designer of the al-
gorithm. Thus, it is quite tempting to try out more sophisticated algorithms and
prove strong(er) fault-tolerance properties. To this end, a suitable algorithm must
be chosen and the hardwiring be replaced by an implementation based on logic
gates.

This idea was at the heart of the DARTS project [50]. The overall goal of the
project was to implement the fault-tolerant synchronization algorithm by Srikanth
and Toueg [90] in hardware. The pseudo-code of the algorithm, given in Algo-
rithm 1, is executed at each node of a fully connected network of n > 3 f nodes,
where f is the number of Byzantine faulty nodes it can tolerate. The code is
extremely simple, yet one should not be fooled: its implementation in hardware
required to overcome non-trivial obstacles [44].

Algorithm 1 Pseudo-code of a node to synchronously generate round(k) mes-
sages.
Upon bootup

1: k ← 0;
2: broadcast round(0);

Upon reception of a message
3: if received round(`) from at least f + 1 distinct nodes with ` > k then
4: broadcast round(k + 1), . . . , round(`);
5: k ← `;
6: end if
7: if received round(k) from at least 2 f + 1 distinct nodes then
8: broadcast round(k + 1);
9: k ← k + 1;

10: end if

17

According to the algorithm’s assumptions, a fully connected communication
structure was established, which also provides the highest possible degree of fault-
tolerance. The implementation of the merging points, i.e., the actual algorithm,
was done in clockless logic. This avoids the issue of having to synchronize the
local clock source to the correlated “global” time provided by the algorithm (oth-
erwise one would have to rely on synchronizers again), but in turn requires a care-
ful algorithmic design and timing analysis of the entire system [49]. Interestingly,
this means that the only timing sources in DARTS are lower and upper bounds
on wire delays, without any formal local clocks. Thus, it is quite close in spirit
to the solutions inspired by ring oscillators discussed previously. The hardware
implementation of a DARTS node is shown in Figure 2.

The implementation of these hardware nodes, which were called “tick genera-
tion algorithm (TG-Alg) nodes,” was a very insightful example for how difficult it
is to map algorithms that were, at best, developed with a software implementation
in mind, to hardware. Assumptions that seem simple at the level of an algorithm
may turn out extremely painful when having to be realized in hardware. Exam-
ples here are the existence of unbounded counters (such as "k" in Algorithm 1),
the request for mutual exclusive execution of tasks, the generous use of operators
(multiplication is expensive to implement in hardware), etc.

The identification of relevant timing constraints was a challenging issue in
the design of the DARTS prototype ASIC as well. Recall that metastability can,
in principle, not be avoided (in the general case) for uncorrelated clock sources.
However, one can show that in fault-free executions, metastability does not oc-
cur. This is not straight-forward due to the following cyclic dependencies: Under
the assumption of proper function of the algorithm one can rely on its guaranteed
properties (e.g. precision) when establishing the timing closure to avoid setup/hold
time violations. In turn, the freedom from setup/hold time violations is a prereq-
uisite for correct functionality.5 Note that such timing guarantees are essential,
as metastability, a possible result of setup/hold violations, results in unspecified
behavior not covered by the analysis of the algorithm.

Several key techniques were applied for overcoming the above challenges:

• the use of difference counters for the cycle number, thus mitigating the prob-
lem of unlimited counting;

• the implementation of these counters through Muller pipelines, thus avoid-
ing metastability issues that would arise from concurrent increase and de-
crease operations of the same counter;

5For DARTS, “only” an inductive argument was required. When turning to self-stabilization,
establishing that the most basic timing assumptions eventually hold tends to be the most difficult
aspect of the reasoning.

18

C

C

C

C

Reset

Rremote,in

C

C

C

C

Rlocal,in

NAND2

NOR2

NOR1

NAND3

NAND4

NAND5

GEQe

GR
e

GEQ
o

GR
o

Counter Module 3f+1 of 3f+1

Local Pipe
Diff-

Gate
Remote Pipe

Pipe Compare Signal Gen.

...

...

≥2f+1 ≥2f+1

≥f+1 ≥f+1

...
...

...
...

Threshold Gates

GEQ
e

GR
e

GEQ
o

GR
o

...

3f+1

...

Ctop

LocalClk

s0

s1

i0 i1 i2 i3 i4 i5 i6
i7 i8 i9

Set

RemoteClk

r s

r

s

r

s

r

s

r

s

r

s
r

s

r

s

r

s

r s

Pipe Compare Signal Gen.

Diff-Gate

Local PipeRemote Pipe

Counter Module 1 of 3f+1

C

Tick

Generation

r s

LocalClk_self

Figure 2: Hardware implementation of a DARTS node in clockless logic.

• a careful mix of event-based and state-based logic;

• the separated treatment of rising and falling signal edges in order to sub-
stantially relax the timing constraints.

The project succeeded in developing a working prototype chip, demonstrating
that it was indeed feasible to use a distributed algorithm for generating a system-
wide clock and prove that its implementation provides respective guarantees:

• bounded precision and accuracy,

• tolerance of Byzantine faults, and

• use of standard hardware libraries, with one exception: a C-Element must
be added.

While the third property might seem like an oddball here, one should be aware
that novel circuit components need to be designed on transistor level, layouted,
characterized and validated (by simulation) as well. The existing standard libraries
had to be augmented by a C-Element for DARTS.

19

While DARTS constituted a breakthrough in terms of bringing theory and
practice closer to each other, the resulting solution exhibits a number of deficien-
cies calling for further research:

• full connectivity between nodes;

• lack of recovery from transient faults: even if only a minority of nodes
undergoes transient faults at any time, there is no mechanism to recover to
a correct state;

• too small frequency, limited by the propagation delay of a long loop;

• non-trivial initialization due to fairly strict demands on initial synchrony.

3.1.4 FATAL

In light of the theoretical results from Section 3.1.1 and the proof-of-concept that
Byzantine fault-tolerance is viable in low-level hardware provided by DARTS,
the obvious next question is whether self-stabilization can be added on the circuit
level, too. This was answered affirmatively in [26].

The FATAL algorithm builds on the idea of adding a recovery mechanism to a
pulse generation mechanism based on threshold voting. On an abstract level, the
FATAL algorithm can be viewed as an implementation of the Srikanth-Toueg al-
gorithm (c.f., Algorithm 1) that avoids having to keep book on tick/pulse numbers
by making sure that the time between pulses is sufficiently large: instead of broad-
casting round(k) messages, we simply broadcast round messages in Algorithm 1.
Another interpretation is that of having a DARTS system that runs slow enough
to operate with “pipes of length one”, i.e., simple memory cells.

The basic principle is illustrated in Figure 3, depicting a state machine each
node runs a copy of. Circles represent states, arrows state transitions that happen
when the condition next to the arrow is satisfied, and the box with “propose” on
the state transition from pulse to ready indicates that the nodes’ memory flags are
reset during this state transition. Each node continuously broadcasts whether it is
in state propose or not, and when a node perceives another in this state according
to this signal (including itself), its respective memory flag is set (i.e., each node
has one memory cell for each node, including itself). The condition “3ϑ local time
passed” means that node i will transition from pulse to ready at the time t when
its local clock reads Ci(t) = Ci(t′) + 3ϑ, where t′ is the time when it switched to
pulse. Nodes generate a pulse when switching to pulse.

It is not hard to verify that, if all nodes start in ready with their memory flags
cleared, this algorithm will solve pulse synchronization with ∆ = 2, Amin = 3+3ϑ,
and Amax = 3+3ϑ+3ϑ2. By making nodes wait longer in one of the transitions by

20

pulse

ready

propose

3ϑ local time passed

3ϑ2 local time passed
or ≥ f + 1 propose

≥ n − f propose

propose

Figure 3: Simple pulse synchronization requiring consistent initialization.

ϑx local time, we can actually have Amin = 3+3ϑ+ x and Amax = 3+3ϑ+3ϑ2 +ϑx,
for any x ≥ 0, i.e., Amax → ϑAmin for x→ ∞.

We believe that the recovery mechanism developed for FATAL is a potential
key building block of further improvements in the future. In [26], the above basic
algorithm is modified so that the task of “stabilizing” the routine, i.e., getting it
into a (global) state as if it had been initialized correctly, is reduced to generat-
ing a single pulse by an independent algorithm. More precisely, all correct nodes
need to trigger a “start stabilization” event within a reasonably small time win-
dow and then not trigger another such event for Θ(1) time in order to guarantee
stabilization.

The easier task of generating a single “helper pulse” for the purpose of recov-
ery from transient faults is then solved by relying on randomization. The solution
used in [25] generates such a pulse with probability 1−2−Ω(n) within O(n) time, re-
sulting in an overall stabilization time of Θ(n). Hence, the algorithm matches the
best known stabilization time of O(n). The improvement lies in the communica-
tion complexity and the amount of local computations: Apart from a few memory
flags for each other node, each node runs a state machine with a constant number
of states; each node continuously broadcasts only a few bits about its own state.
Moreover, the algorithm can operate with arbitrary values of ϑ, permitting to use
very simple oscillators as local clock sources.

In [25], the approach is implemented and evaluated in hardware. The experi-
ments confirm the theoretical results from [26]. However, the algorithm cannot be
used for clocking as-is, for several reasons:

• The algorithm generates pulses every Θ(1) time, but the involved constants
are impractically large. Naive application of the approach would result in

21

slowing down systems by several orders of magnitude.

• The pulses are anonymous, i.e., the counting problem discussed in the next
section needs to be solved.

• The system is fully connected, which is infeasible in large circuits.

These issues will be discussed next.

3.2 Counting
Once pulse synchronization is solved, it can be used to simulate synchronous
rounds: One adjusts the accuracy lower bound Amin such that it allows for the
maximal sum of the communication delay between neighbors, the local compu-
tations for a round, and a safety margin proportional to ∆ (recall that a pulse is
not issued at all nodes precisely at the same instant of time). However, due to
the strong fault model, it is non-trivial to achieve agreement on a round counter.
Round counters are highly useful for, e.g., applying pre-determined time division
multiple access (TDMA) schemes to shared resources (memory, communication
network, etc.) or scheduling synchronized operations (measurements, snapshots,
etc.) that are to be executed regularly.

We will now discuss how a self-stabilizing round counter can be constructed in
a synchronous system with f < n/3 Byzantine faults. The problem of C-counting,
where C is an integer greater than 2, is formalized as follows. In each round r ∈ N,
each node i outputs a counter ci(r) ∈ {0, . . . ,C − 1}. The algorithm stabilizes in
S ∈ N rounds, if for all r ≥ S we have

agreement: ∀i, j : ci(r) = c j(r) and

counting: ∀i : ci(r + 1) = ci(r) + 1 mod C .

In this subsection, the discussion will be more technical, with the goal of
illustrating how the fault-tolerance techniques that have been developed by the
distributed computing community are canonical tools for designing fault-tolerant
algorithms in hardware. We remark that the inclined reader should feel free to
skip the technical proofs, as they are not essential to the remaining discussion in
this article.

3.2.1 Equivalence to Consensus

The task of (binary) consensus requires that, given an input bi ∈ {0, 1} at each node
at the beginning of round 1, each correct node computes an output oi satisfying

agreement: ∀i : oi = o for some o ∈ {0, 1} (we refer to o as the output),

22

validity: if ∀i : bi = b then o = b, and

termination: all (correct) nodes eventually set their output (exactly once)
and terminate.

In practice, one usually requires explicit bounds on when nodes terminate. By an
R-round consensus algorithm, we will refer to an algorithm in which all correct
nodes terminate by the end of round R.

The counting problem is equally hard as consensus with respect to asymptotic
time complexity. We show this for deterministic algorithms and binary consensus
algorithms here, but extensions to non-binary consensus and randomized algo-
rithms are straightforward.

Lemma 3.1 (Counting solves consensus). Given an algorithm for C-counting sta-
bilizing in R rounds, binary consensus (with f < n/3 Byzantine nodes) can be
solved in R rounds.

Proof. Denote by x(0) and x(1) state vectors such that the counting algorithm
would properly count starting from 0 and 1, respectively (regardless of the subset
of faulty nodes). Such states must exist, because after stabilization the algorithm
will count modulo C and Byzantine nodes may pretend correct operation to avoid
detection until after stabilization. Given an input vector b ∈ {0, 1}n, initialize each
(correct) node i with state xi(bi) and run the algorithm for R rounds. Then each
node outputs ci(R) − R mod 2.

Clearly, this algorithm terminates in R rounds and, by the agreement property
of the counting protocol, all nodes output the same value. Hence it remains to
show that this output value is valid, i.e., equals b if bi = b for all correct nodes.
This follows from the choice of x(0) and x(1) and the counting property, which
implies that, for all correct nodes i, ci(R) = R mod C if b = 0 and ci(R) = R +

1 mod C if b = 1. �

The other direction was shown in [30]. We present a simpler variant in the
following lemma. It makes use of consensus for non-binary values, i.e., bi, oi ∈

{0, . . . ,C − 1} (this case can be reduced to binary consensus in a straightforward
manner).

Lemma 3.2 (Consensus solves counting). Given a synchronous consensus algo-
rithm for inputs 0, . . . ,C−1 terminating in R rounds that tolerates f < n/3 Byzan-
tine nodes, C-counting can be solved with stabilization time O(R).

Proof. Given the consensus algorithm, we solve C-counting as follows. In each
synchronous round, we start a new consensus instance that will generate an output
value ci(r + R) at each node i exactly R rounds later (which will double as node

23

node 2

node 1

3

0

r4

1

0

r4

0

0

r4

0

0

r4

0

0

r3

0

1

r3

0

2

r3

0

3

r2

0

3

r2

0

3

r2

0

3

r2

3

0

r4

3

0

r4

3

0

r4

0

0

r4

o

input

rule

1

4

r1

2

5

r1

3

6

r1

0

0

r4

0

0

r4

0

0

r3

0

1

r3

0

2

r3

0

3

r2

0

3

r2

0

3

r2

3

0

r4

3

0

r4

3

0

r4

0

0

r4

o

input

rule

agreement on o(r)

agreement on input(r) and applied rule

o(r) = input(r −R)

Figure 4: Part of an execution of two nodes running the C-counting algorithm
given in the proof of Lemma 3.2, for C = 8 and R = 3. The execution progresses
from left to right, each box representing a round. On top of the input field the
applied rule (1 to 4) to compute the input is displayed. Displayed are the initial
phases of stabilization: (i) after R rounds agreement on the output is guaranteed
by consensus, (ii) then agreement on the input and the applied rule is reached, and
(iii) another R rounds later the agreed upon outputs are the agreed upon inputs
shifted by 3 rounds.

i’s counter value). Note that, while we have no guarantees about the outputs in
the first R rounds (initial states are arbitrary), in all rounds r ≥ R all correct nodes
will output the same value o(r) = oi(r) (by the agreement property of consensus).
Hence, if we define the input value Fi(r) of node i as a function of the most recent
O(R) output values at node i, after O(R) rounds all nodes will start using identical
inputs F(r) = Fi(r) and, by validity of the consensus algorithm, reproduce these
inputs as output R rounds later (cf. Figure 4). In light of these considerations, it
is sufficient to determine an input function F from the previous O(R) outputs to
values 0, . . . ,C − 1 so that counting starts within O(R) rounds, assuming that the
output of the consensus algorithm in round r + R equals the input determined at
the end of round r.

24

nodes 1 & 2

0

0

r4

0

0

r3

0

1

r3

0

2

r3

0

3

r2

1

4

r2

2

5

r2

3

6

r1

4

7

r1

5

0

r1

6

1

r1

7

2

r1

0

3

r1

1

4

r1

2

5

r1

o

input

rule

counting correctly modulo 8

Figure 5: Extension of the execution shown in Figure 4. Nodes have already
agreed upon inputs and outputs so that the latter just reproduce the inputs from R
rounds ago. The rules now make sure that the nodes start counting modulo 8 in
synchrony, always executing rule 1.

We define the following input function, where all values are taken modulo C:

input(r) :=

c + R if (o(r − R + 1), . . . , o(r)) = (c − R + 1, . . . , c)

x + R if
(o(r − 2R + 1 − x), . . . , o(r)) = (0, . . . , 0, 1, . . . , x)
for some x ∈ {0, . . . ,R − 1}

x if
(o(r − R + 1 − x), . . . , o(r)) = (0, . . . , 0)
for maximal x ∈ {0, . . . ,R − 1}

0 else .

In the setting discussed above, it is straightforward to verify the following proper-
ties of input:

• Always exactly one of the rules applies, i.e., input is well-defined.

• If the outputs counted modulo C for 2R consecutive rounds, they will do so
forever (by induction, using the first rule); c.f. Figure 5.

• If this does not happen within O(R) rounds, there will be R consecutive
rounds where input 0 will be used (by the third and the last rule), c.f. Fig-
ure 5.

• Once R consecutive rounds with input 0 occurred, inputs 1, . . . , 2R will be
used in the following 2R rounds (by the second and third rule).

• Finally, the algorithm will commence counting correctly (by the first rule).

Overall, if each node i computes its input Fi(r) from its local view of the previous
outputs using input, the algorithm will start counting correctly within S ∈ O(R)
rounds. �

These two lemmas imply that there is no asymptotic difference in the round
complexity of consensus and the stabilization time of counting. However, note

25

that the conversion of a consensus algorithm into a counting algorithm given by
Lemma 3.2 is very “lossy” in terms of communication complexity and computa-
tional efficiency, as R instances of consensus run concurrently! Hence, the main
question is whether there are fast solutions to counting that are efficient in terms
of communication and computation as well.

3.2.2 Counting Using Shared Coins

The pulse synchronization algorithm by S. Dolev and Welch [36] is conceptually
based on a counting algorithm given in the same article, yielding an exponential
time randomized solution.

This was improved by Ben-Or et al. [9]. We explain a simpler variant of the
algorithm here. The solution is based on shared coins. A (weak) shared coin
guarantees that there are probabilities p0, p1 > 0 so that with at least probability
p0, all correct nodes output 0, and with at least probability p1, all correct nodes
output 1. We call p := min{p0, p1} the defiance of the shared coin. Moreover,
we require that the value of the coin is not revealed before the round in which
the outputs are generated, so that faulty nodes cannot exploit this knowledge to
prevent stabilization.

Observe that we neither require p0 + p1 = 1 nor that all correct nodes always
output the same value. In particular, a trivial shared coin with defiance 2−n is given
by each node flipping a coin independently. The algorithm from [36] essentially
makes use of this trivial shared coin, which results in its expected exponential
stabilization time.

The first step of the algorithm from [9] is to solve 2-counting.

Lemma 3.3 (2-counting from shared coin). Given a stream of weak shared coins
with constant defiance, 2-counting can be solved with constant expected stabiliza-
tion time.

Proof. In each round r, each node i

1. broadcasts ci(r);

2. if it received at least n− f times value ci(r)− 1 mod 2 in round r − 1, it sets
ci(r + 1) := ci(r) + 1 mod 2; and

3. otherwise, ci(r + 1) is set to the output of the shared coin at i in round r.

Before we prove the claim, note that Step 2 depends on messages that were
broadcasted in round r − 1 instead of messages broadcasted in step 1 during the
same round r. The reason for this is to avoid that the faulty nodes exploit so-
called rushing: As the value of the coin for round r is revealed in round r, faulty

26

nodes may exploit this information to affect the outcome of the broadcast (in terms
of what correct nodes observes) exactly so that in Step 3 the “wrong” action is
taken by correct nodes relying on the coin. By referring to the broadcast of the
previous round instead, the faulty nodes are forced to commit to an outcome of
the broadcast before the coin is revealed, making sure that with probability at least
p the “right” action is taken by correct nodes in Step 3.

To see that the algorithm indeed stabilizes, observe first that in cannot happen
that, in the same broadcast, a correct node sees value 0 at least n − f times and
another correct node sees value 1 at least n − f times: this implies that at least
n − 2 f correct nodes each have ci(r) = 0 and ci(r) = 1, respectively, but we have
only n − f < n − f + (n − 3 f) = 2(n − 2 f) correct nodes (here we used that
f < n/3). Assume that c ∈ {0, 1} is the unique value such that some node receives
c at least n − f times in round r − 1. If there is no such value, choose c arbitrarily.
With probability at least pc, all correct nodes set ci(r + 1) := c + 2 mod 2 =

c in round r. Similarly, in round r + 1 all nodes set ci(r + 2) to c + 1 mod 2
with probability at least p1−c. Once this happened, the clocks of correct nodes
will start counting deterministically, as always Step 2 will be executed. Hence,
the algorithm stabilizes with (independent) probability p0 p1 ≥ p2 every other
round. �

Once 2-counting is available, the generalization to C-counting is achieved by a
similar approach. The key difference is that we now use a two-round protocol con-
trolled by the output of the 2-counting algorithm to solve C-counting. We remark
that the algorithm essentially performs a gradecast ([40]) followed by achieving a
consistent choice with constant probability using the shared coin.

Lemma 3.4 (C-counting from shared coin and 2-counting). Given a stream of
weak shared coins with constant defiance and a 2-counter, C-counting can be
solved with constant expected stabilization time.

Proof. In each round r, each node i performs the following steps.

1. If the 2-counter reads 0:

(a) broadcast ci(r);

(b) if received value c , ⊥ at least n− f times, set helper variable hi(r) :=
c, otherwise hi(r) := ⊥;

(c) if bi(r−1) = 1 or the shared coin shows 1 at i in round r, set ci(r+1) :=
ci(r) + 1 mod C, and otherwise ci(r + 1) := 0.

2. If the 2-counter reads 1:

(a) broadcast hi(r − 1);

27

(b) if received value c , ⊥ at least n− f times, set ci(r + 1) = c + 1 mod C
and bi := 1;

(c) else if received value c , ⊥ at least n − 2 f times, set ci(r + 1) =

c + 1 mod C and bi(r) := 0;

(d) else set ci(r + 1) := 1 and bi(r) := 0.

To see why this stabilizes with constant probability within O(1) rounds, observe
that the following holds once the 2-counter stabilized:

• If in an even round r all correct nodes agree on the clock value and have
bi(r − 1) = 1, the algorithm will count correctly forever.

• The same holds if they agree on the clock and the shared coin shows 1 at all
nodes in round r.

• As f < n/3, there can be at most one value c , ⊥ with correct nodes setting
hi(r) := c in an even round r.

• If any correct node i receives this unique value c at least n − f times in the
subsequent odd round r + 1, all correct nodes receive c at least n− 2 f times.
Hence, either it holds that (b) or (c) applies at all correct nodes or (c) or (d)
apply at all nodes.

• In the first case, all correct nodes have the same clock value. Hence, the
shared coin showing 1 in round r + 2 guarantees stabilization.

• In the second case, all correct nodes set bi(r + 1) := 0. Hence, if the coin
shows 0 at all nodes in round r+2, they all set ci(r+3) := 0 and, subsequently
ci(r + 4) := 1. If the coin shows 1 at all nodes in round r + 4, this implies
stabilization.

Hence, the algorithm stabilizes with (independent) probability min{p1, p0 p1} ≥ p2

within every 4 rounds once the 2-counter counts correctly. �

Composing the two algorithms yields a C-counter with expected constant sta-
bilization time. We stress the similarity of the routine to solutions to consensus
based on shared coins [88]; the ideas and concepts developed for consensus trans-
late directly to the counting problem, even if it might be harder in terms of the
required communication.

Unfortunately, this approach to solving counting suffers from the same prob-
lem as consensus algorithms based on shared coins: theoretically sound protocols
that generate shared coins based on the private randomness of the nodes are highly
expensive in terms of communication and computation.

28

3.2.3 Constructing Large Counters from Small Counters

There are several techniques for constructing large counters from small coun-
ters, indicating that the key challenge is to obtain a 2-counter. One is given by
Lemma 3.4, which however necessitates the presence of a shared coin. Another
one is very basic, but inefficient time-wise, as C enters the stabilization time as a
factor.

Lemma 3.5 (C-counting from 2-counting [31]). Given a 2-counting algorithm
with stabilization time S , for any k ∈ Nwe can solve 2k-counting with stabilization
time 2kS and at most factor 2 more communication.

Proof. The proof goes by induction over k, the base case being covered by as-
sumption. For the step, we simply execute the 2-counting algorithm slower, by
performing one round when the 2k-counter switches to 0. This way, concate-
nating the clock bit of the slow 2-counter and the 2k-counter, we obtain a 2k+1-
counter. The stabilization time is 2kS for the slowed-down 2-counter plus the
stabilization time of the 2k-counter, yielding by induction a total stabilization time
of
∑k

l=1 2lS < 2k+1S . The communication bounds of the 2-counting algorithm
together with the slow-down yield the claim concerning the amount of communi-
cation.6 �

A simple variant on the theme achieves faster stabilization at the cost of in-
creased message size.

Lemma 3.6 (C-counting from 2-counting, faster stabilization). Assuming we are
given a 2-counting algorithm with stabilization time S , for any k ∈ N we can solve
2k-counting with stabilization time 2k + kS and at most factor k more communica-
tion.

Proof. The proof goes by induction over k, the base case being covered by as-
sumption. For the step, we execute another copy of the 2-counting algorithm with
a minor change: If the already constructed 2k-counter reads 0, we skip a round of
the 2-counting algorithm. Thus, the 2-counter will proceed by 2k − 1 mod 2 = 1
every 2k rounds. The 2k+1-counter is now given by the 2k-counter and an addi-
tional leading bit, which is the value the 2-counter had when the 2k-counter most
recently was 0. By the above considerations, the 2k+1-counter will count correctly
once (i) both counters stabilized and (ii) the 2k-counter had value 0 once after this
happened.

6Note that one can also ensure that the maximum message size does not increase by more than
factor 2, by shifting the communication pattern so that no more than 2 instances of the 2-counting
algorithm communicate in the same round.

29

The stabilization time bound now follows: once the 2k-counter is correctly
operating, the 2-counter stabilizes within S +1 rounds, and the 2k-counter will be-
come 0 again within another 2k rounds; summation yields

∑k
l=0 2l +S < 2k+1 + (k +

1)S rounds for stabilization of the constructed 2k+1-counter. The communication
bound is trivially satisfied. �

Even if 2-counting can be solved efficiently, these techniques are slow if C is
large. Motivated by this issue, in [46] large clocks are constructed from small ones
by encoding clock values over multiple rounds. This enables to increase the clock
range exponentially. Specifically, the paper provides two main results. The first is
essentially a reduction to consensus (with only one instance running at any given
time), and it is similar to the approach taken in Lemma 3.4. The key changes are
the following:

1. To enable 1-bit messages, broadcasts of clock values are replaced by dlog Ce
rounds each in which the clock bits are transmitted sequentially.

2. Instead of relying on shared coins, nodes run an instance of consensus with
the variables bi determined in odd “rounds” as input. The output of the
consensus algorithm is used by all nodes to decide whether c (shifted by the
number of rounds passed) is the next clock value or 0.

3. In all other rounds, clock values are locally increased by 1 modulo C.

Due to the use of consensus, the correctness argument becomes simpler. If the
consensus algorithm outputs 1, there must be a node that used input 1 and there-
fore received n − f times c in the second broadcast. This implies that all nodes
received n − 2 f ≥ f + 1 times c and therefore can determine the new clock value.
Otherwise, the algorithm is certain to default to resetting clocks to 0.

This approach replaces the need for a shared coin with the need for an efficient
consensus algorithm and a sufficiently large counter. We instantiate the result for
the phase king protocol [10] in the following corollary.

Corollary 3.7 (Large counters from small counters and consensus [46]). Given a
C-counter for C ∈ O(n) sufficiently large, a 2Ω(C)-counter with stabilization time
O(n) can be constructed deterministically using 1-bit broadcast messages.

Note that one can combine this corollary with Lemma 3.5 or Lemma 3.6 to
construct large counters from 2-counters. In [46], a randomized alternative to
these lemmas is given that constructs larger counters from an O(1)-counter at
smaller overhead. Using either of the two lemmas to obtain the required O(1)-
counter, the following corollary can be derived.

30

Corollary 3.8 (Large counters from 2-counters using randomization [46]). Given
a 2-counter, C-counting can be solved with expected stabilization timeO(n+log C)
and O(log∗C) broadcasted bits per node and round.

3.2.4 Counting from Pulse Synchronization

Ironically, the obstacle of solving 2-counting disappears if it is feasible to remove
one level of abstraction and exert some control over how (perfect) synchrony is
simulated. More concretely, in all existing pulse synchronization algorithms one
can increase Amin (the minimum time between consecutive pulses) at will, so that
Amax grows proportionally. In particular, this can be used to allow for more than
a single synchronous round to be simulated in between pulses. Initializing the
simple (non-self-stabilizing) pulse synchronization algorithm given in Figure 3
consistently, we thus can allow for sufficient time to generate a tunable number C
of “sub-pulses” before the next pulse occurs. Counting locally modulo C by re-
initializing the counter to 0 at each pulse and increasing it by 1 on each sub-pulse,
we can use the sub-pulses as round delimiters for simulating synchronous rounds
with a self-stabilizing C-counter that comes “for free”.

To be precise, this counter does not come entirely for free; apart from the addi-
tional logic, increasing Amin may also result in increasing the stabilization time of
the pulse synchronization algorithm. However, one can obtain a 2-counter or, in
fact, any O(1)-counter, without asymptotically affecting the stabilization time of
the underlying pulse synchronization algorithm. The techniques for constructing
larger counters based on small counters given in [46] then can take it from there.

From an abstract perspective, this can be seen as an implementation of the
Srikanth-Toueg algorithm [90] that counts only up to O(1) and then is restarted.
This approach is followed by FATAL+, an extended version of FATAL analyzed
in [26] and implemented and evaluated in [25]. Owing to the simplicity of the
algorithm given in Figure 3, the sub-pulses can actually be produced at a higher
frequency and with better precision than offered by the basic FATAL algorithm.

We remark that the method of coupling the two algorithms in FATAL+ may be
of independent interest. We expect that it can also be applied to couple FATAL
or FATAL+ to non-stabilizing pulse synchronization protocols based on approxi-
mate agreement, like the earlier discussed TTP and FlexRay protocols. This bears
the promise of obtaining a pulse synchronization protocol that (i) can run at even
higher frequencies (i.e., Amin is smaller) and (ii) achieves a precision in the order
of the uncertainty of the communication delay, i.e., if messages are underway be-
tween 1 − ε and 1 time unit, then ∆ ∈ O(ε). This is to be contrasted to algorithms
like DARTS or FATAL, which use explicit voting for resynchronization at each
pulse and therefore have ∆ ≥ 1 even if there is a lower bound on the communi-
cation delay. Note that the uncertainty of the communication delay is known to

31

be a lower bound on the worst-case precision of any clock synchronization proto-
col [67], implying that ∆ ∈ Ω(ε) is unavoidable.

3.2.5 Constructing Counters from Scratch

Modifying the system on such a deep level as how the clock signal is provided may
not always be possible, e.g., when one designs a submodule in a larger circuit. In
this case, one may still have to solve 2-counting directly.

Recent research has started to tackle this issue. In [31], efficient solutions for
the special case of f = 1 are designed and proved optimal in terms of the trade-
off between stabilization time and number of local states using computer-aided
design. However, as the space of algorithms to consider is huge, this method does
not scale; even the case f = 2 is currently beyond reach.

In [66], a recursive approach is taken to avoid that each node participates in
Θ(R) concurrent instances of an R-round consensus algorithm used for establish-
ing agreement on clock values. The target is to, in each step of the recursion,
boost the resilience of the protocol to faults, while increasing neither the number
of required nodes nor the time for stabilization too much. The result is an algo-
rithm of slightly suboptimal resilience f < n1−o(1), but linear stabilization time
O(f) and only O(log2 n/ log log n + log C) state bits per node. These state bits are
broadcasted to all other nodes in each round. For deterministic algorithms, this
implies an exponential improvement in communication complexity as compared
to the solution from Lemma 3.2, since deterministic consensus algorithms satisfy
that R > f (see [41]).

To sketch the idea of the approach, consider a system of n nodes. Each node
i runs a 0-resilient Ci-counter (for some Ci we will determine shortly). This is
nothing but a local counter modulo Ci: it is increased in each round, and it works
correctly so long as i does not fail. We use these counters to let nodes deter-
mine temporary leaders that will assist with stabilization if required; once the
system is stabilized, the corresponding communication will be ignored. The cur-
rent leader’s local counter is used to provide a temporarily working counter to all
nodes. This counter is used to run an O(f)-round consensus algorithm, the phase
king protocol [10], to agree on the counter values. It is straightforward to show
that agreement cannot be destroyed by this mechanism once it is achieved, even if
the temporary counter produces garbage later on.

In short, this mechanism reduces the task to ensuring that eventually a correct
leader will emerge and persist for R ∈ O(f) rounds. We achieve this as follows:
Node 1 will cycle through all possible leaders, where it keeps “pointing” to the
same node for Θ(R) consecutive rounds. Node 2 does the same, albeit slower by a
factor of 2n. This guarantees that, for any other node j, nodes 1 and 2 eventually
consider it the leader for R consecutive rounds. We proceed inductively, slowing

32

down the “leader pointer” of node j by a factor of (2n) j−1 compared to the one
of node 1. Clearly, eventually all correct nodes will point to a correct node for R
consecutive rounds.

The downside of this approach is that the stabilization time is exponential,
since the slowest pointer takes R · (2n)n rounds to complete a single cycle. Here
the recursion comes into play. Instead of using single nodes, on each level of
the recursion one groups the nodes into a small number k ∈ O(1) of clusters.
Each cluster runs an f -resilient counter that is used to determine to which leader
the node currently points. The “leaders” now are also clusters, meaning that the
slowest clock takes R · (2k)k ∈ O(R) rounds for a cycle. Now the same principle
can be applied, assuming that we can also convince correct nodes in blocks with
more than f faults to point to the “correct” leader the blocks with at most f faults
will eventually choose. Requiring that fewer than half of the k blocks have more
than f faults, this is ensured by an additional majority vote. The resilience of
the compound algorithm therefore becomes dk/2e(f + 1) − 1 (one fault less than
required to make half of the blocks contain f + 1 faults). Crunching numbers and
tuning parameters, one obtains the claimed result.

Maybe the most interesting aspect of this construction is its resemblance to
recursive approaches for improving the communication complexity of consensus
protocols [10, 15, 57]. The additional challenge here is the lack of a common
clock, which is overcome by relying on the guarantees from the lower levels to-
gether with the simple leader election mechanism explained above. From this
point of view, the construction can be interpreted as a natural generalization of
the recursive phase king algorithm given in [10]. Accordingly, one may hope that
also for counting, it is possible to achieve optimal resilience in a similar way.

3.3 Clock Distribution
All the algorithms so far assume full connectivity, which is unrealistic if the num-
ber of nodes is not quite small. In principle, one could seek for solutions to the
pulse synchronization and counting problems in low-degree topologies directly.
However, it is much easier to solve these tasks in a small, fully connected “core”
and then distribute the results redundantly using a sparse interconnection topol-
ogy. The advantage is that for the distribution problem, it now is sufficient to have
pre-defined master/slave relations, i.e., a pre-defined direction of propagation of
the clock signal throughout the system. This greatly simplifies the job, as it cir-
cumvents the need for reaching any sort of agreement: the clock information is
plainly dictated by the nodes further upstream.

When using a sparse network, we must also decrease our expectations in terms
of fault-tolerance. Solving clock synchronization (or consensus, for that matter)
in the presence of f faults requires minimum node degrees of 2 f + 1, as otherwise

33

column

layer

i − 1 i i + 1

` − 1

`

` + 1

Figure 6: Node i in layer ` of a HEX grid and its incident links. The node prop-
agates a pulse when having received it from both nodes on the previous layer. If
one fails, the second signal is provided by one of its neighbors in the same layer.

0 2 4 6 8 10 12 14 16 18 0
10

20
300

4

8

12

16

20

24

28

column
layer

tr
ig
g
er

ti
m
e
[d

+
]

Figure 7: Pulse propagation in HEX with a single Byzantine node. The figure
shows pulse trigger times of nodes in a grid: initially nodes (0 to 19) in layer 0
generate pulses in synchrony, feeding these pulses into the grid. The Byzantine
faulty node 19 in layer 1 generates a “ripple” in trigger times that is clearly visible
in the next layer, but smoothes out over the following layers.

34

it may happen that a correct node does not have a majority of correct neighbors,
rendering it impossible to falsify a claim jointly made by its faulty neighbors [23].
Respecting this, we require only that, for a given parameter f , the system tolerates
up to f faulty nodes in the neighborhood of correct nodes.

Following these two paradigms – local fault-tolerance and directed clock prop-
agation – and requiring a “nice” interconnect topology (planarity, connections to
physically close nodes) led to HEX [24]. In a HEX grid, each node has 6 neigh-
bors arranged in a hexagon, and the clock information spreads along the layers
of the grid, cf. Figure 6. Nodes simply wait for the second signal indicating the
current clock pulse, where nodes in the same layer send redundant signals in case
one of the nodes in the preceding layer fails. Accordingly, a HEX grid tolerates
f = 1 local fault, while having small node degrees and a planar topology.7

In order to prove precision bounds for HEX, we assumed that communication
delays vary by at most ε � 1. Clearly, this implies that the precision cannot
deteriorate by more than ε per layer. Surprisingly, a much stronger bound of
1 + ∆0 + O(ε2W) can be shown on the precision of adjacent nodes, where ∆0

reflects the precision of the core and W is the width of the HEX grid.
This is an example of a non-trivial gradient property, a concept introduced by

Fan and Lynch [39]. Finding clock distribution mechanisms that are suitable for
hardware realization, fault-tolerant, and provide non-trivial gradient properties is
of great interest, as a strong gradient property enables adjacent chip components
to communicate at smaller delays in a synchronous, clock-driven fashion. In par-
ticular, it directly affects the time required to simulate a synchronous round and
hence the operational frequency of the entire system.

Unfortunately, the worst-case precision of HEX deteriorates by Θ(f) in the
presence of f faults, cf. Figure 7. While the simulations show that this is most
likely overly pessimistic [65], the adverse effects of even a single fault are prob-
lematic in comparison to the surprisingly good performance of the system in ab-
sence of faults. We hope that topologies that feature at least 2 f + 1 links to the
preceding layer will offer much better precision in face of faults; the idea is illus-
trated in Figure 8.

Open problems. In Section 3.2.2 we discussed efficient approaches to construct
2-counters from shared coins. While generating shared coins assuming Byzantine
failures is prohibitively costly in terms of communication, it is interesting whether
there are efficient shared coin protocols under weaker failure assumptions that are
realistic for the considered hardware setting.

Clearly, the search for clock distribution topologies that can be implemented

7Clearly, the principle can be generalized to larger values of f adding edges, but degrees in-
crease and planarity is lost.

35

p
ro
p
a
g
a
ti
o
n

Figure 8: Local structure of a clock propagation approach similar too HEX. Using
three connections from the previous layer helps to further mitigate the effect of
faults on precision, as the redundant third clock signal does not propagate along a
longer path.

with a small number of layers, balanced link delays and sufficiently high degree
to tolerate more than 1 local node failure is of central interest. It is also not clear
of how to adapt the pulse triggering rules in these HEX-variants to obtain optimal
guaranteed precision bounds.

Improving the precision of fault-tolerant self-stabilizing approaches to clock-
ing is an important challenge to achieve utility in practice. As mentioned ear-
lier, it is promising to couple existing solutions with weak precision bounds to
algorithms based on approximate agreement to combine high precision and self-
stabilization.

Last but not least, an important question is how to verify the correctness of
designs prior to production. Striving for algorithms that are sufficiently simple
to be implemented in practice bears the promise of enabling formal verification
of (parts of) the resulting systems. Given that suitable models can be devised,
a grand challenge is the full verification of a fault-tolerant clocking mechanism
bottom to top, from gates and wires up to the synchronous abstraction.

4 Conclusion
Due to the continuously increasing scale and complexity of today’s VLSI circuits,
it becomes insufficient to ensure their reliability by fault mitigation techniques at
technological and gate level only, as manufactures will not be able to support the
combination of exponentially growing numbers of transistors and decreasing fea-

36

ture size indefinitely. Error correction, on the other hand, is restricted to storing
information, neglecting the issue of dependable computation. Hence, one must
strive for algorithmic fault-tolerance above the gate level, but below the abstrac-
tion of a synchronous, computationally powerful machine.

The distributed computing community has developed many concepts and al-
gorithmic ideas that can be applied to VLSI circuits once we see them as what
they truly are: distributed systems in their own right. The main challenges are

• to adapt and extend the existing theory beyond the abstraction of computa-
tionally powerful nodes;

• to devise models of computation that account for faults and metastability in
a tractable manner;

• to come up with simple, yet efficient algorithms suitable for hardware im-
plementation; and

• to reason about their correctness in ways ensuring that produced chips will
work.

We believe that the examples given in this article demonstrate that the existing
techniques are essential tools in tackling these challenges. The task that lies ahead
is to fill the gap between fault-tolerance in theory and the design of practical,
dependable hardware.

References
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. The Algorithmic Analysis of Hybrid Systems.
Theoretical computer science, 138(1):3–34, Feb. 1995.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[3] R. Alur, T. Henzinger, G. Lafferriere, and G. Pappas. Discrete abstractions of hybrid
systems. Proceedings of the IEEE, 88(7):971–984, July 2000.

[4] J. H. Anderson and M. G. Gouda. A new explanation of the glitch phenomenon.
Acta Informatica, 28(4):297–309, 1991.

[5] P. J. Ashenden. The designer’s guide to VHDL, volume 3. Morgan Kaufmann, 2010.

[6] R. Baumann. Radiation-Induced Soft Errors in Advanced Semiconductor Technolo-
gies. IEEE Transactions on Device and Materials Reliability, 5(3):305–316, Sept.
2005.

37

[7] S. Beer, R. Ginosar, J. Cox, T. Chaney, and D. M. Zar. Metastability challenges for
65nm and beyond; simulation and measurements. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1297–1302. IEEE, 2013.

[8] M. Bellido, J. Chico, and M. Valencia. Logic-timing Simulation And the Degrada-
tion Delay Model. Imperial College Press, 2006.

[9] M. Ben-Or, D. Dolev, and E. N. Hoch. Fast Self-Stabilizing Byzantine Tolerant
Digital Clock Synchronization. In 27th Symposium on Principles of Distributed
Computing (PODC), pages 385–394, 2008.

[10] P. Berman, J. A. Garay, and K. J. Perry. Bit Optimal Distributed Consensus, pages
313–321. Plenum Press, New York, NY, USA, 1992.

[11] G. Brown, M. Gouda, and C. lin Wu. Token systems that self-stabilize. IEEE
Transactions on Computers, 38(6):845–852, Jun 1989.

[12] M. Broy and K. Stølen. Specification and Development of Interactive Systems: Fo-
cus on Streams, Interfaces, and Refinement. Springer-Verlag New York, Inc., 2001.

[13] T. J. Chaney and C. E. Molnar. Anomalous behavior of synchronizer and arbiter
circuits. IEEE Transactions on Computers, 22(4):421–422, 1973.

[14] D. M. Chapiro. Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,
Stanford University, 1984.

[15] B. A. Coan and J. L. Welch. Modular Construction of a Byzantine Agreement Proto-
col with Optimal Message Bit Complexity. Information and Computation, 97(1):61–
85, 1992.

[16] C. Constantinescu. Trends and Challenges in VLSI Circuit Reliability. IEEE Micro,
23(4):14–19, 2003.

[17] J. Cortadella and M. Kishinevsky. Synchronous Elastic Circuits with Early Evalua-
tion and Token Counterflow. In 44th Annual Design Automation Conference (DAC),
pages 416–419, New York, NY, USA, 2007. ACM.

[18] A. Daliot and D. Dolev. Self-Stabilizing Byzantine Pulse Synchronization. Com-
puting Research Repository, abs/cs/0608092, 2006.

[19] A. Daliot, D. Dolev, and H. Parnas. Linear Time Byzantine Self-Stabilizing Clock
Synchronization. In 7th International Conference on Principles of Distributed Sys-
tems (OPODIS), volume 3144 of LNCS, pages 7–19. Springer Verlag, Dec 2003. A
revised version appears in Cornell ArXiv: http://arxiv.org/abs/cs.DC/0608096.

[20] A. Daliot, D. Dolev, and H. Parnas. Self-Stabilizing Pulse Synchronization Inspired
by Biological Pacemaker Networks. In 6th Symposium on Self-Stabilizing Systems
(SSS), pages 32–48, 2003.

[21] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed Interfaces. In Embedded
Software (EMSOFT), pages 108–122, 2002.

[22] A. Dixit and A. Wood. The Impact of New Technology on Soft Error Rates. In IEEE
Reliability Physics Symposium (IRPS), pages 5B.4.1–5B.4.7, Apr 2011.

38

[23] D. Dolev. The Byzantine Generals Strike Again. Journal of Algorithms, 3:14–30,
1982.

[24] D. Dolev, M. Függer, C. Lenzen, M. Perner, and U. Schmid. HEX: Scaling Honey-
combs is Easier than Scaling Clock Trees. In 25th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2013.

[25] D. Dolev, M. Függer, C. Lenzen, M. Posch, U. Schmid, and A. Steininger. Rigor-
ously Modeling Self-Stabilizing Fault-Tolerant Circuits: An Ultra-Robust Clock-
ing Scheme for Systems-on-Chip. Journal of Computer and System Sciences,
80(4):860–900, 2014.

[26] D. Dolev, M. Függer, C. Lenzen, and U. Schmid. Fault-tolerant Algorithms for
Tick-generation in Asynchronous Logic: Robust Pulse Generation. Journal of the
ACM, 61(5):30:1–30:74, 2014.

[27] D. Dolev, M. Függer, M. Posch, U. Schmid, A. Steininger, and C. Lenzen. Rig-
orously modeling self-stabilizing fault-tolerant circuits: An ultra-robust clocking
scheme for systems-on-chip. Journal of Computer and System Sciences, 80(4):860–
900, 2014.

[28] D. Dolev, M. Függer, U. Schmid, and C. Lenzen. Fault-tolerant Algorithms for Tick-
generation in Asynchronous Logic: Robust Pulse Generation. Journal of the ACM,
61(5):30:1–30:74, Sept. 2014.

[29] D. Dolev and E. Hoch. Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model.
In 9th Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS),
volume 4280, pages 350–362, 2007.

[30] D. Dolev and E. Hoch. On Self-stabilizing Synchronous Actions Despite Byzantine
Attacks. In 21st Symposium on Distributed Computing (DISC), pages 193–207,
2007.

[31] D. Dolev, J. H. Korhonen, C. Lenzen, J. Rybicki, and J. Suomela. Synchronous
Counting and Computational Algorithm Design. In 15th Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS), pages 237–250, 2013.

[32] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching Ap-
proximate Agreement in the Presence of Faults. Journal of the ACM, 33:499–516,
1986.

[33] S. Dolev. Self-Stabilization. MIT Press, 2000.

[34] S. Dolev and Y. Haviv. Self-stabilizing microprocessor: analyzing and overcoming
soft errors. IEEE Transactions on Computers, 55(4):385–399, April 2006.

[35] S. Dolev and J. L. Welch. Self-Stabilizing Clock Synchronization in the Presence
of Byzantine Faults (Abstract). In 14th Symposium on Principles of Distributed
Computing (PODC), page 256, 1995.

[36] S. Dolev and J. L. Welch. Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults. Journal of the ACM, 51(5):780–799, 2004.

39

[37] J. C. Ebergen. A formal approach to designing delay-insensitive circuits. Distributed
Computing, 5(3):107–119, 1991.

[38] S. Fairbanks and S. Moore. Self-Timed Circuitry for Global Clocking. In 11th
International Symposium on Asynchronous Circuits and Systems (ASYNC), pages
86–96, 2005.

[39] R. Fan and N. Lynch. Gradient Clock Synchronization. In 23rd ACM Symposium
on Principles of Distributed Computing (PODC), pages 320–327, 2004.

[40] P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement. In ACM
Symposium on Theory of Computing, pages 148–161, 1988.

[41] M. J. Fischer and N. A. Lynch. A Lower Bound for the Time to Assure Interactive
Consistency. Information Processing Letters, 14:183–186, 1982.

[42] FlexRay Consortium et al. FlexRay communications system-protocol specification.
Version 2.1, 2005.

[43] E. G. Friedman. Clock Distribution Networks in Synchronous Digital Integrated
Circuits. Proceedings of the IEEE, 89(5):665–692, 2001.

[44] G. Fuchs and A. Steininger. VLSI Implementation of a Distributed Algorithm for
Fault-Tolerant Clock Generation. Journal of Electrical and Computer Engineering,
2011(936712), 2011.

[45] M. Függer, E. Armengaud, and A. Steininger. Safely Stimulating the Clock Syn-
chronization Algorithm in Time-Triggered Systems – A Combined Formal and Ex-
perimental Approach. IEEE Transactions on Industrial Informatics, 5(2):132–146,
2009.

[46] M. Függer, M. Hofstätter, C. Lenzen, and U. Schmid. Efficient Construction of
Global Time in SoCs despite Arbitrary Faults. In 16th Conference on Digital System
Design (DSD), pages 142–151, 2013.

[47] M. Függer, R. Najvirt, T. Nowak, and U. Schmid. Towards Binary Circuit Models
That Faithfully Capture Physical Solvability. In Design, Automation, and Test in
Europe (DATE), 2015.

[48] M. Függer, T. Nowak, and U. Schmid. Unfaithful Glitch Propagation in Existing
Binary Circuit Models. In 19th International Symposium on Asynchronous Circuits
and Systems (ASYNC), pages 191–199, 2013.

[49] M. Függer and U. Schmid. Reconciling Fault-Tolerant Distributed Computing and
Systems-on-Chip. Distributed Computing, 24(6):323–355, 2012.

[50] M. Függer, U. Schmid, G. Fuchs, and G. Kempf. Fault-Tolerant Distributed Clock
Generation in VLSI Systems-on-Chip. In 6th European Dependable Computing
Conference (EDCC), pages 87–96, 2006.

[51] R. Ginosar. Fourteen Ways to Fool Your Synchronizer. In 9th International Sympo-
sium on Asynchronous Circuits and Systems (ASYNC), pages 89–96, 2003.

[52] International Technology Roadmap for Semiconductors, 2012. http://www.itrs.net.

40

[53] W. Jang and A. J. Martin. SEU-Tolerant QDI Circuits. In 11th International Sym-
posium on Asynchronous Circuits and Systems (ASYNC), pages 156–165, 2005.

[54] W. Jang and A. J. Martin. A soft-error-tolerant asynchronous microcontroller. In
13th NASA Symposium on VLSI Design, 2007.

[55] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager. The Theory of Timed I/O
Automata. Morgan & Claypool Publishers, 2006.

[56] S. Keller, M. Katelman, and A. J. Martin. A Necessary and Sufficient Timing As-
sumption for Speed-Independent Circuits. In 15th Symposium on Asynchronous
Circuits and Systems (ASYNC), pages 65–76, 2009.

[57] V. King and J. Saia. Breaking the O(N2) Bit Barrier: Scalable Byzantine Agreement
with an Adaptive Adversary. Journal of the ACM, 58(4):18:1–18:24, 2011.

[58] D. J. Kinniment. Synchronization and Arbitration in Digital Systems. Wiley, Chich-
ester, 2008.

[59] D. J. Kinniment, A. Bystrov, and A. V. Yakovlev. Synchronization Circuit Perfor-
mance. IEEE Journal of Solid-State Circuits, SC-37(2):202–209, 2002.

[60] L. Kleeman and A. Cantoni. On the Unavoidability of Metastable Behavior in Dig-
ital Systems. IEEE Transactions on Computers, C-36(1):109–112, 1987.

[61] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126, 2003.

[62] I. Koren and Z. Koren. Defect tolerance in VLSI circuits: Techniques and yield
analysis. Proceedings of the IEEE, 86(9):1819–1838, Sep 1998.

[63] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, 1994.

[64] E. A. Lee and P. Varaiya. Structure and Interpretation of Signals and Systems.
LeeVaraiya.org, 2nd edition, 2011.

[65] C. Lenzen, M. Perner, M. Sigl, and U. Schmid. Byzantine Self-Stabilizing Clock
Distribution with HEX: Implementation, Simulation, Clock Multiplication. In 6th
Conference on Dependability (DEPEND), 2013.

[66] C. Lenzen, J. Rybicki, and J. Suomela. Towards Optimal Synchronous Counting. In
34th Symposium on Principles of Distributed Computing (PODC), 2015.

[67] J. Lundelius and N. Lynch. An Upper and Lower Bound for Clock Synchronization.
Information and Control, 62(2-3):190–204, 1984.

[68] M. Malekpour. A Byzantine-Fault Tolerant Self-stabilizing Protocol for Distributed
Clock Synchronization Systems. In 9th Conference on Stabilization, Safety, and
Security of Distributed Systems (SSS), pages 411–427, 2006.

[69] M. Malekpour. A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchronization
Protocol. Technical report, NASA, 2009. TM-2009-215758.

41

[70] R. Manohar and A. J. Martin. Quasi-delay-insensitive circuits are turing-complete.
Technical report, Pasadena, CA, USA, 1995.

[71] L. Marino. General Theory of Metastable Operation. IEEE Transactions on Com-
puters, C-30(2):107–115, 1981.

[72] A. J. Martin. Compiling communicating processes into delay-insensitive VLSI cir-
cuits. Distributed Computing, 1(4):226–234, 1986.

[73] A. J. Martin. The Limitations to Delay-insensitivity in Asynchronous Circuits. In
Sixth MIT Conference on Advanced Research in VLSI, AUSCRYPT ’90, pages 263–
278, Cambridge, MA, USA, 1990. MIT Press.

[74] A. J. Martin. Synthesis of asynchronous VLSI circuits. Technical report, DTIC
Document, 2000.

[75] A. J. Martin and M. Nystrom. Asynchronous Techniques for System-on-Chip De-
sign. Proceedings of the IEEE, 94(6):1089–1120, Jun 2006.

[76] D. Mavis and P. Eaton. SEU and SET Modeling and Mitigation in Deep Submicron
Technologies. In 45th Annual IEEE International Reliability physics symposium,
pages 293–305, April 2007.

[77] M. Maza and M. Aranda. Interconnected Rings and Oscillators as Gigahertz Clock
Distribution Nets. In 14th Great Lakes Symposium on VLSI (GLSVLSI), pages 41–
44, 2003.

[78] M. S. Maza and M. L. Aranda. Analysis of Clock Distribution Networks in the
Presence of Crosstalk and Groundbounce. In International IEEE Conference on
Electronics, Circuits, and Systems (ICECS), pages 773–776, 2001.

[79] D. G. Messerschmitt. Synchronization in Digital System Design. IEEE Journal on
Selected Areas in Communications, 8(8):1404–1419, 1990.

[80] C. Myers and T. H. Y. Meng. Synthesis of timed asynchronous circuits. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 1(2):106–119, June
1993.

[81] L. W. Nagel and D. Pederson. SPICE (Simulation Program with Integrated Circuit
Emphasis). Technical Report UCB/ERL M382, EECS Department, University of
California, Berkeley, 1973.

[82] R. Najvirt, M. Függer, T. Nowak, U. Schmid, M. Hofbauer, and K. Schweiger. Ex-
perimental Validation of a Faithful Binary Circuit Model. 2015. (appears in Proc.
GLSVLSI’15).

[83] R. Naseer and J. Draper. DF-DICE: A scalable solution for soft error tolerant circuit
design. IEEE International Symposium on Circuits and Systems (ISCAS), May 2006.

[84] S. Nassif, K. Bernstein, D. Frank, A. Gattiker, W. Haensch, B. Ji, E. Nowak, D. Pear-
son, and N. Rohrer. High Performance CMOS Variability in the 65nm Regime and
Beyond. In Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pages
569–571, Dec 2007.

42

[85] A. K. Palit, V. Meyer, W. Anheier, and J. Schloeffel. Modeling and Analysis of
Crosstalk Coupling Effect on the Victim Interconnect Using the ABCD Network
Model. In 19th IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems (DFT), pages 174–182, Oct 2004.

[86] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of
Faults. Journal of the ACM, 27:228–234, 1980.

[87] M. Peercy and P. Banerjee. Fault Tolerant VLSI Systems. Proceedings of the IEEE,
81(5):745–758, May 1993.

[88] M. O. Rabin. Randomized byzantine generals. In 24th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 403–409, 1983.

[89] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the Effect
of Technology Trends on the Soft Error Rate of Combinational Logic. International
Conference on Dependable Systems and Networks (DSN), pages 389–398, 2002.

[90] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Journal of the ACM,
34(3):626–645, 1987.

[91] K. Stevens, R. Ginosar, and S. Rotem. Relative timing [asynchronous design]. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 11(1):129–140, Feb
2003.

[92] Synopsis. CCS Timing. Technical white paper v2.0, 2006.

[93] P. Teehan, M. Greenstreet, and G. Lemieux. A Survey and Taxonomy of GALS
Design Styles. IEEE Design and Test of Computers, 24(5):418–428, 2007.

[94] S. H. Unger. Asynchronous Sequential Switching Circuits with Unrestricted Input
Changes. IEEE Transactions on Computers, 20(12):1437–1444, 1971.

[95] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and M. Pietkiewicz-
Koutny. On the models for asynchronous circuit behaviour with OR causality. For-
mal Methods in System Design, 9(3):189–233, 1996.

[96] C. Yeh, G. Wilke, H. Chen, S. Reddy, H. Nguyen, T. Miyoshi, W. Walker, and
R. Murgai. Clock Distribution Architectures: a Comparative Study. In 7th Sympo-
sium on Quality Electronic Design (ISQED), pages 85–91, 2006.

[97] T. Yoneda and C. Myers. Synthesis of Timed Circuits Based on Decomposition.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(7):1177–1195, July 2007.

43

Distributed Computing Column
Maurice Herlihy’s 60th Birthday Celebration

Panagiota Fatourou
FORTH ICS & University of Crete

faturu@csd.uoc.gr

Maurice Herlihy is one of the most renowned members of the Distributed
Computing community. He is currently a professor in the Computer Science De-
partment at Brown University. He has an A.B. in Mathematics from Harvard Uni-
versity, and a Ph.D. in Computer Science from M.I.T. He has served on the fac-
ulty of Carnegie Mellon University and on the staff of DEC Cambridge Research
Lab. He is the recipient of the 2003 Dijkstra Prize in Distributed Computing, the
2004 Gödel Prize in theoretical computer science, the 2008 ISCA influential pa-
per award, the 2012 Edsger W. Dijkstra Prize, and the 2013 Wallace McDowell
award. He received a 2012 Fullbright Distinguished Chair in the Natural Sciences
and Engineering Lecturing Fellowship, and he is a fellow of the ACM, a fellow
of the National Academy of Inventors, and a member of the National Academy of
Engineering and the American Academy of Arts and Sciences.

On the occasion of his 60th birthday, the SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), which was held in Paris, France
in July 2014, hosted a celebration which included several technical presentations
about Maurice’s work by colleagues and friends. This column includes a summary
of some of these presentations, written by the speakers themselves. In the first arti-
cle, Vassos Hadzilacos overviews and highlights the impact of Maurice’s seminal
paper on wait-free synchronization. Then, Tim Harris provides a perspective on
hardware trends and their impact on distributed computing, mentioning several
interesting open problems and making connections to Maurice’s work. Finally,
Michael Scott gives a concise retrospective on transactional memory, another area
where Maurice has been a leader. This is a joint column with the Distributed
Computing Column of ACM SIGACT News (June 2015 issue), edited by Jennifer
Welch. Many thanks to Vassos, Tim, and Michael for their contributions!

 faturu@csd.uoc.gr

A Quarter-Century of Wait-Free Synchronization1

Vassos Hadzilacos
Department of Computer Science

University of Toronto, Canada
vassos@cs.toronto.edu

It is an honour and a pleasure to have the opportunity to speak about what
in my opinion is Maurice Herlihy’s most influential paper, and indeed one of the
most significant papers in the theory of distributed computing. I am referring to
his work on wait-free synchronization, which appeared in preliminary form in
PODC 1988 [8] and in its final form in TOPLAS three years later [10]. I will first
review the key contributions of this paper and then I will discuss its impact.

1 Review of the key contributions
The context for this work is a distributed system in which processes take steps
asynchronously and communicate by accessing shared objects. Here asynchrony
means that between successive steps of a process other processes may take an
arbitrary number of steps. Processes are subject to crash failures, meaning that
they may stop taking steps altogether, even though they have not reached the end
of their computation. For convenience, we assume that a process is designed to
take steps (perhaps no-ops) forever, and so we can define a process to have crashed
if it takes only finitely many steps in an infinite execution. Minimally, the shared

1Remarks on the occasion of Maurice Herlihy’s 60th birthday in PODC 2014. Based on the
transparencies used in an oral presentation on July 15, 2014, Paris, France. I have tried to preserve
the informal tone of that oral presentation here. Supported in part by a grant from the Natural
Sciences and Engineering Council of Canada.

objects that the processes use to communicate are registers accessible via separate
but atomic write and read operations. The shared objects can also include registers
with additional operations such as fetch-and-add, whereby a process atomically
increments the value of the register by a specified amount and reads the value of
the register before it was incremented; or even other types of shared objects, such
as queues or stacks.

The key question that animates the paper is the following:

“For given object types A and B, in a system with n processes, can we
implement an object of type A using objects of type B and registers?”

In what follows, we will take registers (with atomic write and read operations) for
granted. So, the above question will be simplified to “in a system of n processes,
can we implement an object of type A using objects of type B?”

Here are some specific instances of this question:

• Can we implement a queue shared by two processes using only registers?
Herlihy showed that the answer to this question is negative.

• Can we implement a register with a fetch-and-add operation, shared by five
processes, using registers with a compare-and-swap operation?1 Herlihy
showed that the answer to this question is affirmative.

What is significant about this paper is not so much the answer to these specific
questions, but the tools that it gave us to answer such questions in general.

Having set the general context for the paper, I will now describe its main
contributions.

Contribution 1: Model of computation

The type of an object specifies what operations can be applied to an object (of that
type) and how the object is supposed to behave when operations are applied to it
sequentially. For example, the type queue tells us that we can access the object via
enqueue and dequeue operations only, and that in a sequence of such operations
items are dequeued in the order in which they were enqueued. But how should a
shared queue behave if operations are applied to it by processes concurrently?

1A compare-and-swap operation applied to register X takes two parameters, values old and
new, and has the following effect (atomically): If the present value of X is equal to old then X
is assigned the value new and the value “success” is returned; otherwise, the value of X is not
changed and the value “failure” is returned.

More generally, what exactly are the properties that an implementation of an
object of type A (shared by n processes) should have? Herlihy requires two prop-
erties of such an implementation: linearisability and wait freedom.2

Linearisability: The implemented object should behave as if each operation took
effect instantaneously, at some point between its invocation and its response.

Wait freedom: An operation on the implemented object invoked by a nonfaulty
process eventually terminates, regardless of whether other processes are
fast, slow, or even crash.

Note that the requirement of wait freedom implies that implementations

(a) may not use locks: otherwise, a process that crashes while holding a lock
could prevent all others from terminating, and

(b) must be starvation free: not only must the system as a whole make progress
but each individual nonfaulty process must complete all its operations.

The first important contribution of the paper was the articulation of a com-
pelling, elegant, and pragmatic model of computation.

Contribution 2: Comparing the power of object types
Recall the basic question the paper addresses: In a system of n processes, can we
implement an object of type A using objects of type B? An affirmative answer
to such a question presents no methodological difficulties: One presents an im-
plementation and a proof that it satisfies the two requisite properties. But what
if the answer is negative? How can we prove that A cannot be implemented us-
ing B? One way to do so is to show that there is some task C that A can do,
and that B cannot do. So, task C is a “yardstick” that can be used to compare
A and B. Another key contribution of the paper is the identification of the right
kind of yardstick to compare types, namely, solving the consensus problem. This
problem, which under various forms and guises had been studied extensively in
fault-tolerant distributed computing before Herlihy’s paper, can be described as
follows:

• Each process starts with an input.

2In my oral presentation, I referred to linearisability as a safety property, and to wait freedom
as a liveness property. Rachid Guerraoui, who was in the audience, brought to my attention a paper
of his with Eric Ruppert in which they show that this is not quite right [6]: There are types with
infinite non-determinism for which linearisability is not a safety property; for types with bounded
non-determinism, however, linearisability is indeed a safety property.

• Each nonfaulty process produces an output.

• The output of any process is the input of some process (validity), and is no
different than the output of any other process (agreement).

Note that we are interested in wait-free solutions for this problem. Let us exam-
ine some examples of the use of this “yardstick” to prove non-implementability
results.
Example 1: To show that in a system of two processes we cannot implement a
queue using registers we prove that

(1) using queues we can solve consensus for two processes; and

(2) using registers we cannot solve consensus for two processes.

From (1) and (2) we conclude that we cannot implement queues using only reg-
isters: For, if we could, we would combine such an implementation with (1) to
obtain an algorithm that uses registers and solves consensus for two processes,
contradicting (2).
Example 2: To show that in a system of three processes we cannot implement a
register with the compare-and-swap operation using registers with a fetch-and-add
operation we prove that

(1) using registers with compare-and-swap we can solve consensus for three pro-
cesses; and

(2) using registers with fetch-and-add we cannot solve consensus for three pro-
cesses.

Using similar reasoning as in Example 1, from (1) and (2) we conclude that we
cannot implement compare-and-swap using only fetch-and-add.

So, to capture the “power” of an object type A, Herlihy attaches to A a con-
sensus number, namely the unique integer n such that:

• using objects of type A we can solve consensus for n processes, and

• using objects of type A we cannot solve consensus for n + 1 processes.

If no such integer n exists, the consensus number of A is ∞. The following,
methodologically very useful, theorem follows immediately from this definition.

Theorem 1.1 ([8, 10]). If type A has consensus number n and type B has consen-
sus number m < n, then A cannot be implemented from B in a system with more
than m processes.

This leads us to Herlihy’s consensus hierarchy of object types: A type A is
at level n of the consensus hierarchy if and only if its consensus number is n —
i.e., if and only if A solves consensus for n, but not for n + 1, processes. Thus, by
Theorem 1.1, “stronger” types are at higher levels of this hierarchy.

Figure 1 illustrates the consensus hierarchy. I now briefly explain the types
mentioned in that figure that I have not already defined.

• The test-and-set type (at level 2) refers to a register initialised to 0, with
an operation that atomically sets the register to 1 and returns the value of
the register before the operation. (So, the operation that is linearised first
returns 0, and all others return 1.)

• The n-consensus type (at level n) refers to an object with a Propose(v) oper-
ation, where v is an arbitrary value (say a natural number); the object returns
the value proposed by the first operation to the first n Propose operations ap-
plied to it, and returns an arbitrary value to subsequent operations. (Thus, it
is an object designed to solve consensus for n processes.)

• The n-peekable queue type (also at level n) refers to a kind of queue to
which a maximum of n values can be enqueued (any values subsequently
enqueued are lost) and which allows a process to “peek” at the first value
enqueued without dequeuing it.

• The n-assignment type (at level 2n−2) allows a process to atomically assign
n specified values to n specified registers.

• The consensus type (at level ∞) is similar to n consensus, except that it
returns to all Propose operations (not only to the first n) the value proposed
by the first one.

• Finally, the memory-to-memory swap type (also at level∞) allows a process
to atomically swap the values of two specified registers.

Contribution 3: Universality of consensus
We have seen how Herlihy used consensus as a “yardstick” to compare the relative
power of object types. But why is consensus the right yardstick? In principle, we
could have taken any task and used it as a yardstick. For example, consider the
leader election problem:

• Each nonfaulty process outputs “winner” or “loser”.

• At most one process outputs “winner”.

• The consensus type (at level ∞) is similar to n consensus, except that it returns to all Propose
operations (not only to the first n) the value proposed by the first one.

• Finally, the memory-to-memory swap type (also at level ∞) allows a process to atomically swap the
values of two specified registers.

consensus

queue, stack

mem-to-mem swap

compare-and-swap

fetch-and-add

test-and-set

register

n-consensus

n-peekable queue

n-assignment

Level ∞

Level 2n − 2

Level n

Level 2

Level 1

...

...

...

Figure 1: The consensus hierarchy

Contribution 3: Universality of consensus

We have seen how Herlihy used consensus as a “yardstick” to compare the relative power of object types.
But why is consensus the right yardstick? In principle, we could have taken any task and used it as a
yardstick. For example, consider the leader election problem:

• Each nonfaulty process outputs “winner” or “loser”.

• At most one process outputs “winner”.

• Some process outputs “winner” or crashes after taking at least one step.

4

Figure 1: The consensus hierarchy

• Some process outputs “winner” or crashes after taking at least one step.

We could define the “leader election number” of type A to be the maximum num-
ber of processes for which A can solve the leader election problem — by analogy
to the definition of the consensus number, but using a different problem as the
yardstick. There is nothing in principle wrong with this, except that the resulting
“leader election hierarchy” would not be very interesting: it would consist of just
two levels: all types in levels two to infinity of the consensus hierarchy would
coalesce into a single level! In other words, unlike consensus, the leader election
yardstick is not a very discriminating one. So, what is special about consensus
that makes it the right yardstick? The answer lies in the following important fact:

Theorem 1.2 ([8, 10]). Any object type B with consensus number n is universal
for n processes: it can implement an object of any type A, shared by n processes.

The proof of this theorem is through an intricate algorithm that has come to
be known as Herlihy’s universal construction. Given a function that defines the
sequential behaviour of an arbitrary type A, this construction shows how to im-
plement an object of type A shared by n processes using only registers and n-
consensus objects. So, given any object of type B with consensus number n, we
can solve the consensus problem for n processes (by definition of consensus num-
ber), and therefore we can implement n-consensus objects. Then, using Herlihy’s
universal construction, we can implement an object of type A shared by n pro-
cesses.

At a very high level, the intuition behind this theorem is simple: Processes
use consensus to agree on the order in which to apply their operations on the
object they implement. Between this intuition and an actual working algorithm
that satisfies wait freedom, however, there is a significant gap. Herlihy’s universal
construction is an algorithm well worth studying carefully, and returning to every
now and then!

2 Impact

The impact of the paper is accurately reflected by its citation count. A Google
Scholar search conducted in July 2014 showed over 1400 citations for [10] and
over 200 for [8]. Let us look beyond the numbers, however, into the specific ways
in which Herlihy’s paper on wait-free synchronisation has influenced the field of
distributed computing.

Impact 1: The model

The model of asynchronous processes communicating via linearisable, wait-free
shared objects that was articulated in a complete form in this paper has been a very
influential one. As noted earlier, it is mathematically elegant but also pragmatic. It
is certainly true that different aspects of this model appeared earlier, but I believe
that this was the first paper that presented the complete package. It is nevertheless
useful to trace the heritage.

Shared memory: The asynchronous shared memory model goes back to Dijk-
stra’s seminal paper on mutual exclusion [3].

Wait freedom: The concept of wait-free implementations (though not under this
name) originated in Lamport’s and Peterson’s work on implementations of
shared registers [15, 19, 16, 17].

Linearisability: The concept of linearisability as the correctness criterion for the
behaviour of shared objects was introduced by Herlihy and Wing [12, 13].

Impact 2: Lock-free data structures

The idea of synchronising access to data structures without relying on locks has
had a significant impact on the practice of concurrent programming. Although
locking is still (and may well remain) the predominant mechanism employed to
coordinate access to data structures by multiple processes, Herlihy’s paper helped
highlight some of its shortcomings (potential for deadlock, unnecessary restric-
tions to concurrency, intolerance to even crash failures, priority inversions) and
pointed the way to the possibility of synchronising without using locks. There is,
by now, an extensive literature on so-called lock-free data structures. In this con-
text, lock free doesn’t necessarily mean wait free. It is a term that encompasses
wait freedom as well as the weaker non-blocking property, which requires that
progress be made by some non-faulty process, not necessarily every non-faulty
process.3

Impact 3: Weaker liveness properties

Linearisable wait-free implementations tend to be complex, and one culprit seems
to be wait freedom. The most intricate aspect of Herlihy’s universal construction is
the so-called helping mechanism, which ensures that “no process is left behind”. If
one is willing to settle for the less demanding non-blocking property, the universal
construction becomes much simpler.

The observation that wait freedom seems to complicate things and that it is
perhaps too strong a liveness property has led researchers to investigate other live-
ness properties, weaker than wait freedom, easier to implement, but hopefully
still useful in practice. The following are some examples of objects with relaxed
liveness requirements:

Obstruction-free objects: Every operation invoked by a nonfaulty process that
eventually runs solo (i.e., without interference from other processes) termi-
nates [4, 11].

“Pausable” objects: Every operation invoked by a live process eventually returns
control to the caller, either by completing normally, or by aborting without
taking effect, or by “pausing” so that another operation can run solo and ter-
minate. An operation can abort or pause only if it encounters interference.

3The terms “lock free” and “non-blocking” are not used consistently in the literature; in some
papers their meaning is as given here, in others it is reversed.

A nonfaulty process whose operation was paused is required to resume the
paused operation and complete it (normally or by aborting) before it can do
anything else [2].

Nondeterministic abortable objects: Every operation invoked by a nonfaulty pro-
cess eventually returns to the caller either by completing normally or by
aborting. An operation can abort only if it encounters interference. An
aborted operation may or may not have taken effect, and the caller doesn’t
know which of these two possibilities is the case [1].

Abortable objects: Every operation invoked by a nonfaulty process eventually re-
turns to the caller either by completing normally or by aborting. An oper-
ation can abort only if it encounters interference. An aborted operation is
guaranteed not to have taken effect [7].

Impact 4: Structure of the “A implemented by B” relation

Though the consensus number of an object type A encapsulates much information
about A’s ability to implement other types, it does not tell the whole story. By
Theorem 1.2, if A has consensus number n, it can support the implementation
of any object shared by n processes; but what about the implementation of even
“weak” objects, i.e., objects of types whose consensus number is no greater than
n, shared by more than n processes? In this setting, there are phenomena that run
counter to the notion that the higher the consensus number of a type the greater its
power to implement other types.

Consider the following question: Are all object types at the same level of the
consensus hierarchy equivalent? That is, if A and B are two types at the same level
n of the consensus hierarchy, can an object of type A, shared by any number m
of processes, be implemented using objects of type B? Or, equivalently (in view
of Theorem 1.2), can any object of a type with consensus number n, shared by
any number of processes, be implemented using n-consensus? Herlihy himself
proved that this is not the case for level 1: He demonstrated a type at level 1 that
cannot be implemented from registers (which are also at level 1) [9]. Rachman
proved that this is the case for every level [20]: For every positive integer n, he
demonstrated a type Tn at level n of the consensus hierarchy such that an object
of type Tn shared by 2n + 1 processes cannot be implemented using n-consensus
objects.4 (In fact, Rachman’s result is more general: for any positive integers n,m
such that m ≤ n, there is a type Tm at level m of the consensus hierarchy such that

4My account in this paragraph differs from my oral presentation in Paris, as a result of things I
learned in the meanwhile — but should have known then!

an object of type Tm, shared by 2n + 1 processes, cannot be implemented using
n-consensus objects.)

A related set of investigations concern the matter of “robustness” of the con-
sensus hierarchy. Consider a system with n processes. By the definition of con-
sensus number, objects of a type with consensus number less than n cannot im-
plement an n-consensus object. Is it possible, however, to use objects of multiple
“weak” types (with consensus number less than n) to implement n-consensus? If
this is possible, we say that the consensus hierarchy is not robust. Jayanti was the
first to identify and study the issue of robustness; he proved that under a restricted
definition of implementation of one type by others, the consensus hierarchy is not
robust [14]. Later, Schenk proved that under a restricted definition of wait free-
dom, the consensus hierarchy is not robust [21]. Lo and Hadzilacos proved that
under the usual definitions of implementation and wait freedom, the consensus
hierarchy is not robust [18].

Impact 5: Elevating the status of the bivalency argument

George Pólya and Gabor Szegö made a famous quip about the distinction between
a trick and a method:

“An idea that can be used only once is a trick. If one can use it more
than once, it becomes a method.” (Problems and Theorems in Analy-
sis, 1972.)

Fischer, Lynch, and Paterson gave us the bivalency argument as a brilliant trick
in their proof of the impossibility of consensus in asynchronous message-passing
systems [5]. With his masterful use of the same argument to prove that consensus
among n processes cannot be solved using objects of type B (for several choices
of n and B), Herlihy elevated bivalency to the more exalted status of a method!

Impact 6: Design of multiprocessors?

I put a question mark for this impact, because here I am speculating: I do not really
know why, in the late 1980s and early 1990s, multiprocessor architects abandoned
operations with low consensus number in favour of universal ones. But the timing
is such that I wouldn’t be surprised to learn that these architects were influenced,
at least in part, by Herlihy’s discovery that, from the perspective of wait-free syn-
chronisation, much more is possible with operations such as compare-and-swap
or load-linked/store-conditional than with operations such as test-and-set or fetch-
and-add.

Great papers answer important questions, but also open new ways of thinking,
and perhaps even influence practice. Herlihy’s paper on wait-free synchronisation
delivers on all these counts!

Acknowledgements
I am grateful to Naama Ben-David and David Chan for their comments on this
paper.

References
[1] Marcos K. Aguilera, Sven Frolund, Vassos Hadzilacos, Stephanie Horn, and Sam

Toueg. Abortable and query-abortable objects and their efficient implementation.
In PODC ’07: Proceedings of the 26th Annual ACM Symposium on Principles of
Distributed Computing, pages 23–32, 2007.

[2] Hagit Attiya, Rachid Guerraoui, and Petr Kouznetsov. Computing with reads and
writes in the absence of step contention. In DISC ’05: Proceedings of the 19th
International Symposium on Distributed Computing, pages 122–136, 2005.

[3] Edgar W. Dijkstra. Solution of a problem in concurrent programming control. Com-
mununications of the ACM, 8(9):569, 1965.

[4] Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized
synchronization. Journal of the ACM, 45(5):843–862, 1998.

[5] Michael Fischer, Nancy Lynch, and Michael Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[6] Rachid Guerraoui and Eric Ruppert. Linearizability is not always a safety property.
In Networked Systems - Second International Conference, NETYS 2014, pages 57–
69, 2014.

[7] Vassos Hadzilacos and Sam Toueg. On deterministic abortable objects. In PODC
’13: Proceedings of the 32nd ACM Symposium on Principles of Distributed Com-
puting, pages 4–12, 2013.

[8] Maurice Herlihy. Impossibility and universality results for wait-free synchroniza-
tion. In PODC ’88: Proceedings of the 7th Annual ACM Symposium on Principles
of Distributed Computing, pages 276–290, 1988.

[9] Maurice Herlihy. Impossibility results for asynchronous PRAM. In SPAA ’91:
Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 327–336, 1991.

[10] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):124–149, 1991.

[11] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchroniza-
tion: Double-ended queues as an example. In ICDCS ’03: Proceedings of the 23rd
International Conference on Distributed Computing Systems, pages 522–529, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[12] Maurice Herlihy and Jeannette Wing. Axioms for concurrent objects. In POPL
’87: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 13–26, New York, NY, USA, 1987. ACM Press.

[13] Maurice Herlihy and Jeannette Wing. Linearizability: A correctness condition
for concurrent objects. Transactions on Programming Languages and Systems,
12(3):463–492, July 1990.

[14] Prasad Jayanti. On the robustness of Herlihy’s hierarchy. In PODC ’93: Proceedings
of the 12th Annual ACM Symposium on Principles of Distributed Computing, pages
145–157, 1993.

[15] Leslie Lamport. On concurrent reading and writing. Communications of the ACM,
20(11):806–811, November 1977.

[16] Leslie Lamport. On interprocess communication. Part I: Basic formalism. Dis-
tributed Computing, 1(2):77–85, 1986.

[17] Leslie Lamport. On interprocess communication. Part II: Algorithms. Distributed
Computing, 1(2):86–101, 1986.

[18] Wai-Kau Lo and Vassos Hadzilacos. All of us are smarter than any of is: wait-free
hierarchies are not robust. In STOC ’97: In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pages 579–588, 1997.

[19] Gary Peterson. Concurrent reading while writing. ACM Transactions of Program-
ming Languages and Systems, 5(1):46–55, 1983.

[20] Ophir Rachman. Anomalies in the wait-free hierarchy. In WDAG ’94: Proceedings
of the 8th International Workshop on Distributed Algorithms, pages 156–163, 1994.

[21] Eric Schenk. The consensus hierarchy is not robust. In PODC ’97: In Proceedings
of the 16th Annual ACM Symposium on Principles of Distributed Computing, page
279, 1997.

Hardware Trends: Challenges and Opportunities in
Distributed Computing

Tim Harris
Oracle Labs

Cambridge, UK
timothy.l.harris@oracle.com

This article is about three trends in computer hardware, and some of the challenges
and opportunities that I think they provide for the distributed computing commu-
nity. A common theme in all of these trends is that hardware is moving away from
assumptions that have often been made about the relative performance of different
operations (e.g., computation versus network communication), the reliability of
operations (e.g., that memory accesses are reliable, but network communication
is not), and even some of the basic properties of the system (e.g., that the contents
of main memory are lost on power failure).

Section 1 introduces “rack-scale” systems and the kinds of properties likely in
their interconnect networks. Section 2 describes challenges in systems with shared
physical memory but without hardware cache coherence. Section 3 discusses non-
volatile byte-addressable memory. The article is based in part on my talk at the
ACM PODC 2014 event in celebration of Maurice Herlihy’s sixtieth birthday.

1 Rack-Scale Systems
Rack-scale computing is an emerging research area concerned with how we design
and program the machines used in data centers. Typically, these data centers are
built from racks of equipment, with each rack containing dozens of discrete ma-
chines. Over the last few years researchers have started to weaken the boundaries

between these individual machines, leading to new “rack-scale” systems. These
architectures are being driven by the need to increase density and connectivity
between servers, while lowering cost and power consumption.

Different researchers mean somewhat different things by “rack-scale” systems.
Some systems are built from existing components. These are packaged together
for a particular workload, providing appropriate hardware, and pre-installed soft-
ware. Other researchers mean systems with internal disaggregation of compo-
nents: rather than having a rack of machines each with its own network interface
and disk, there might be a pool of processor nodes, disk nodes, and networking
nodes, all connected over an internal intra-machine interconnect. The interconnect
can be configured to connect sets of these resources together in different ways.

Initial commercial systems provide high-density processor nodes connected
through an in-machine interconnect to storage devices or to external network in-
terfaces. Two examples are the HP MoonShot [12] and AMD SeaMicro [22]
single-box cluster computers. Many further ideas are now being explored in re-
search projects—for instance, the use of custom system-on-chip (SoC) processors
in place of commodity chips.

These systems should not just be seen as a way to build a faster data cen-
ter. Communicating over a modern interconnect is different from communicating
over a traditional packet-switched network. Some differences are purely trends in
performance—a round-trip latency for over InfiniBand is around 1µs, not much
longer than the time it takes to access data stored in DRAM on a large shared-
memory multiprocessor. The Scale-Out NUMA architecture provides one exam-
ple of how latencies may be reduced even further: it exposes the interconnect
via a specialized “remote memory controller” (RMC) on a multi-core SoC [18].
Threads in one SoC can instruct the RMC to transfer data to or from memory at-
tached to other processors in the system. Threads communicate with their RMC
over memory-mapped queues (held in the SoC’s local caches). These operations
have much lower latency than accessing a traditional network interface over PCI-
express. If network latencies continue to fall, while memory access latencies
remain constant, then this will change the optimization goals when designing a
protocol.

Other differences are qualitative: as with the Scale-Out NUMA RMC, the
main programming interface in many rack-scale systems is RDMA (remote direct
memory access). To software, RDMA appears as a transfer from a region of a
sender’s address space into a region in the receiver’s address space. Various forms
of control message and notification can be used—e.g., for a receiver to know
when data has arrived, or for a sender to know when transmission is complete.
Flow control is handled in hardware to prevent packet loss.

Some network devices provide low-latency hardware distribution of data to
multiple machines at once (for instance, the ExaLINK matrix switches advertise

5ns latency multicasting data from an input port to any number of output ports [1]).
Researchers are exploring how to use this kind of hardware as part of an atomic
broadcast mechanism [7].

Research questions: What are the correct communication primitives to let ap-
plications benefit from low-latency communication within the system? What are
the likely failure modes and how do we achieve fault tolerance? What is the ap-
propriate way to model the guarantees provided by the interconnect fabric in a
rack-scale system? How should the interconnect fabric be organized, and how
should CPUs, DRAM, and storage be placed in it?

2 Shared Memory Without Cache Coherence
The second trend I will highlight is toward systems with limited support for cache
coherence in hardware: Some systems provide shared physical memory, but rely
on threads to explicitly flush and invalidate their local caches if they want to com-
municate through them. Some researchers argue that cache coherence will be
provided within a chip, but not between chips [15].

This kind of model is not entirely new. For instance, the Cray T3D system
distributed its memory across a set of processor nodes, providing each node with
fast access to its local memory, and slower access to uncacheable remote mem-
ory [6]. This kind of model makes it important to keep remote memory accesses
rare because they will be slow even in the absence of contention (for instance,
lock implementations with local spinning are well suited in this setting [16]).

One motivation for revisiting this kind of model is to accommodate special-
ized processors or accelerators. The accelerator can transfer data to and from
memory (and sometimes to and from the caches of the traditional processors) but
does not need to participate in a full coherence protocol. A recent commercial
example of this kind of system is the Intel Xeon Phi co-processor accessed over
PCI-express [13].

A separate motivation for distributing memory is to provide closer coupling
between storage and computation. The IRAM project explored an extreme ver-
sion of this with the processor on the same chip as its associated DRAM [19].
Close coupling between memory and storage can improve the latency and energy
efficiency of memory accesses, and permit the aggregate bandwidth to memory to
grow by scaling the number of memory-compute modules.

Some research systems eschew the direct use of shared memory and instead
focus on programming models based on message passing. Shared memory buffers
can be used to provide a high-performance implementation of message passing
(for instance, by using a block of memory as a circular buffer to carry messages).

This approach means that only the message passing infrastructure needs to be
aware of the details of the memory system. Also, it means that software written
for a genuinely distributed environment is able to run correctly (and hopefully
more quickly) in an environment where messages stay within a machine.

Systems such as K2 [14] and Popcorn [4] provide abstractions to run existing
shared-memory code in systems without hardware cache coherence, using ideas
from distributed shared memory systems.

Conversely, the Barrelfish [5] and FOS [23] projects have been examining the
use of distributed computing techniques within an OS. Barrelfish is an example of
a multikernel in which each core runs a separate OS kernel, even when the cores
operate in a single cache-coherent machine. All interactions between these ker-
nels occur via message-passing. This design avoids the need for shared-memory
data structures to be managed between cores, enabling a single system to operate
across coherence boundaries. While it is elegant to rely solely on message passing,
this approach seems better suited to some workloads than to others—particularly
when multiple hardware threads share a cache, and could benefit from spatial and
temporal locality in the data they are accessing.

Research questions: What programming models and algorithms are appropri-
ate for systems which combine message passing with shared memory? To what
extent should systems with shared physical memory (without cache coherence) be
treated differently from systems without any shared memory at all?

3 Non-Volatile Byte-Addressable Memory
There are many emerging technologies that provide non-volatile byte-addressable
memory (NV-RAM). Unlike ordinary DRAM, memory contents are preserved
on power loss. Unlike traditional disks, locations can be read or written at a fine
granularity—nominally individual bytes, although in practice hardware will trans-
fer complete cache lines. Furthermore, unlike a disk, these reads and writes may
be performed by ordinary memory access instructions (rather than using RDMA,
or needing the OS to orchestrate block-sized transfers to or from a storage device).

This kind of hardware provides the possibility of an application keeping all of
its data structures accessible in main memory. Researchers are starting to explore
how to model NV-RAM [20]. Techniques from non-blocking data structures pro-
vide one starting point for building on NV-RAM. A power loss can be viewed as
a failure of all of the threads accessing a persistent object. However, there are
several challenges which complicate matters:

First, the memory state seen by the threads before the power loss is not nec-
essarily the same as the state seen after recovery. This is because, although the

NV-RAM is persistent, the remainder of the memory system may hold data in or-
dinary volatile buffers such as processor caches and memory controllers. When
power is lost, some data will transiently be in these volatile buffers. Aggressively
flushing every update to NV-RAM may harm performance. Some researchers
have explored flushing updates upon power-loss, but that approach requires care-
ful analysis to ensure that there is enough residual power to do so [17].

The second problem is that applications often need to access several structures—
for instance, removing an item from one persistent collection object, processing
it, and adding it to another persistent collection. If there is a power loss during the
processing step, then we do not want to lose the item.

Transactions provide one approach for addressing these two problems. It may
be possible to optimize the use of cache flush/invalidate operations to ensure that
data is genuinely persistent before a transaction commits, while avoiding many
individual flushes while the transaction executes. As with transactional memory
systems, transactions against NV-RAM would provide a mechanism for compos-
ing operations across multiple data structures [10]. What is less clear is whether
transactions are appropriate for long-running series of operations (such as the ex-
ample of processing an object when moving it between persistent collections).

Having an application’s data structures in NV-RAM could be a double-edged
sword. It avoids the need to define translations between on-disk and in-memory
formats, and it avoids the time taken to load data into DRAM for processing. This
time saving is significant in “big data” applications, not least when restarting a
machine after a crash. However, explicit loading and saving has benefits as well
as costs: It allows in-memory formats to change without changing the external
representation of data. It allows external data to be processed by tools in a generic
way without understanding its internal formats (backup, copying, de-duplication,
etc.). It provides some robustness against transient corruption of in-memory for-
mats by restarting an application and re-loading data.

It is difficult to quantify how significant these concerns will be. Earlier expe-
rience with persistent programming languages explored many of these issues [3].
Recent work on dynamic software updates is also relevant (e.g., Arnold and Kaashoek
in an OS kernel [2], and Pina et al. in applications written in Java [21]).

Research questions: How should software manage data held in NV-RAM, and
what kinds of correctness properties are appropriate for a data structure that is
persistent across power loss?

4 Discussion

This article has touched on three areas where developments in computer hard-
ware are changing some of the traditional assumptions about the performance and
behavior of the systems we build on.

Processor clock rates are not getting significantly faster (and, many argue, core
counts are unlikely to increase much further [9]). Nevertheless, there are other
ways in which system performance can improve such as by integrating special-
ized cores in place of general-purpose ones, or by providing more direct access
to the interconnect, or by removing the need to go through traditional storage
abstractions to access persistent memory.

I think many of these trends reflect a continued blurring of the boundaries
between what constitutes a “single machine” versus what constitutes a “distributed
system”. Reliable interconnects are providing hardware guarantees for message
delivery, and in some cases this extends to guarantees about message ordering as
well even in the presence of broadcast and multicast messages. Conversely, the
move away from hardware cache coherence within systems means that distributed
algorithms become used in systems which look like single machines—e.g., in the
Hare filesystem for non-cache-coherent multicores [8].

Many of these hardware developments have been proceeding ahead of the ad-
vancement of formal models of the abstractions being built. Although the use of
verification is widespread at low levels of the system – especially in hardware –
I think there are important opportunities to develop new models of the abstrac-
tions exposed to programmers. There are also opportunities to influence the di-
rection of future hardware evolution—perhaps as with how the identification of
the consensus hierarchy pointed to the use of atomic compare and swap in today’s
multiprocessor systems [11].

References
[1] EXALINK Fusion (web page). Apr. 2015. https://exablaze.com/
exalink-fusion.

[2] J. Arnold and M. F. Kaashoek. Ksplice: automatic rebootless kernel updates. In
Proc. 4th European Conference on Computer Systems (EuroSys), pages 187–198,
2009.

[3] M. Atkinson and M. Jordan. A review of the rationale and architectures of PJama: a
durable, flexible, evolvable and scalable orthogonally persistent programming plat-
form. Technical report, University of Glasgow, Department of Computing Science,
2000.

https://exablaze.com/exalink-fusion
https://exablaze.com/exalink-fusion

[4] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran, C. Kendir,
A. Murray, and B. Ravindran. Popcorn: bridging the programmability gap in
heterogeneous-ISA platforms. In EuroSys ’15: Proc. 10th European Conference
on Computer Systems (EuroSys), page 29, 2015.

[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The Multikernel: A new OS architecture for
scalable multicore systems. In SOSP ’09: Proc. 22nd Symposium on Operating
Systems Principles, pages 29–44, 2009.

[6] Cray Research Inc. CRAY T3D System Architecture Overview Manual.
1993. ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/
T3D.overview.html.

[7] M. P. Grosvenor, M. Fayed, and A. W. Moore. Exo: atomic broadcast for the rack-
scale computer. 2015. http://www.cl.cam.ac.uk/~mpg39/pubs/workshops/
wrsc15-exo-abstract.pdf.

[8] C. Gruenwald III, F. Sironi, M. F. Kaashoek, and N. Zeldovich. Hare: a file system
for non-cache-coherent multicores. In EuroSys ’15: Proc. 10th European Confer-
ence on Computer Systems, page 30, 2015.

[9] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in
servers. IEEE Micro, 31(4):6–15, 2011.

[10] T. Harris, M. Herlihy, S. Marlow, and S. Peyton Jones. Composable memory trans-
actions. In PPoPP ’05: Proc. 10th Symposium on Principles and Practice of Parallel
Programming, June 2005.

[11] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, Jan. 1991.

[12] HP Moonshot system: a new class of server. http://www.hp.com/go/moonshot,
Accessed 9 July 2014.

[13] Intel Corporation. Intel Xeon Phi coprocessor system software developers guide.
2012. IBL Doc ID 488596.

[14] F. X. Lin, Z. Wang, and L. Zhong. K2: a mobile operating system for heterogeneous
coherence domains. In ASPLOS ’14: Proc. Conference on Architectural Support for
Programming Languages and Operating Systems, pages 285–300, 2014.

[15] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip cache coherence is here
to stay. Commun. ACM, 55(7):78–89, 2012.

[16] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–
65, Feb. 1991.

[17] D. Narayanan and O. Hodson. Whole-system persistence. In ASPLOS ’12: Proc.
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 401–410, 2012.

ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
http://www.cl.cam.ac.uk/~mpg39/pubs/workshops/wrsc15-exo-abstract.pdf
http://www.cl.cam.ac.uk/~mpg39/pubs/workshops/wrsc15-exo-abstract.pdf
http://www.hp.com/go/moonshot

[18] S. Novaković, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. Scale-Out NUMA.
In ASPLOS ’14: Proc. 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2014.

[19] D. A. Patterson, K. Asanovic, A. B. Brown, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, C. E. Kozyrakis, D. B. Martin, S. Perissakis, R. Thomas, N. Treuhaft,
and K. A. Yelick. Intelligent RAM (IRAM): the industrial setting, applications and
architectures. In Proceedings 1997 International Conference on Computer Design:
VLSI in Computers & Processors, ICCD ’97, Austin, Texas, USA, October 12-15,
1997, pages 2–7, 1997.

[20] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In Proceeding of the
41st Annual International Symposium on Computer Architecuture, ISCA ’14, pages
265–276, Piscataway, NJ, USA, 2014. IEEE Press.

[21] L. Pina, L. Veiga, and M. Hicks. Rubah: DSU for Java on a stock JVM. In OOPSLA
’14: Proc. Conference on Object-Oriented Programming Languages, Systems, and
Applications, Oct. 2014.

[22] A. Rao. SeaMicro SM10000 system overview, June 2010. http://www.
seamicro.com/sites/default/files/SM10000SystemOverview.pdf.

[23] D. Wentzlaff and A. Agarwal. Factored operating systems (FOS): the case for a
scalable operating system for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85,
Apr. 2009.

http://www.seamicro.com/sites/default/files/SM10000SystemOverview.pdf
http://www.seamicro.com/sites/default/files/SM10000SystemOverview.pdf

Transactional Memory Today1

Michael Scott
Computer Science Department

University of Rochester, NY, USA
scott@cs.rochester.edu

It was an honor and a privilege to be asked to participate in the celebration, at
PODC 2014, of Maurice Herlihy’s many contributions to the field of distributed
computing—and specifically, to address the topic of transactional memory, which
has been a key component of my own research for the past decade or so.

When introducing transactional memory (“TM”) to people outside the field, I
describe it as a sort of magical merger of two essential ideas, at different levels of
abstraction. First, at the language level, TM allows the programmer to specify that
certain blocks of code should be atomic without saying how to make them atomic.
Second, at the implementation level, TM uses speculation (much of the time, at
least) to execute atomic blocks in parallel whenever possible. Each dynamic exe-
cution of an atomic block is known as a transaction. The implementation guesses
that concurrent transactions will be mutually independent. It then monitors their
execution, backing out and retrying if (and hopefully only if) they are discovered
to conflict with one another.

The second of these ideas—the speculative implementation—was the focus of
the original TM paper, co-authored by Maurice with Eliot Moss [22]. The first
idea—the simplified model of language-level atomicity—is also due largely to
Maurice, but was a somewhat later development.

1Based on remarks delivered at the Maurice Herlihy 60th Birthday Celebration, Paris, France,
July 2014

1 Motivation
To understand the original motivation for transactional memory, consider the typi-
cal method of a nonblocking concurrent data structure. The code is likely to begin
with a “planning phase” that peruses the current state of the structure, figuring
out the operation it wants to perform, and initializing data—some thread-private,
some visible to other threads—to describe that operation. At some point, a critical
linearizing instruction transitions the operation from “desired” to “performed.”
In some cases, the identity of the linearizing instruction is obvious in the source
code; in others it can be determined only by reasoning in hindsight over the his-
tory of the structure. Finally, the method performs whatever “cleanup” is required
to maintain long-term structural invariants. Nonblocking progress is guaranteed
because the planning phase has no effect on the logical state of the structure, the
linearizing instruction is atomic, and the cleanup phase can be performed by any
thread—not just the one that called the original operation.

Two issues make methods of this sort very difficult to devise. The first is the
need to effect the transition from “desired” to “performed” with a single atomic
instruction. The second is the need to plan correctly in the face of concurrent
changes by other threads. By contrast, an algorithm that uses a coarse-grained
lock faces neither of these issues: writes by other threads will never occur in the
middle of its reads; reads by other threads will never occur in the middle of its
writes.

2 The Original Paper
While Maurice is largely celebrated for his theoretical contributions, the original
TM paper was published at ISCA, the leading architecture conference, and was
very much a hardware proposal. We can see this in the subtitle—“Architectural
Support for Lock-Free Data Structures”—and the abstract: “[TM is] . . . intended
to make lock-free synchronization as efficient (and easy to use) as conventional
techniques based on mutual exclusion.”

The core idea is simple: a transaction runs almost the same code as a coarse-
grain critical section, but with special load and store instructions, and without
the actual lock. The special instructions allow the hardware to track conflicts
between concurrent transactions. A special end-of-transaction commit instruction
will succeed (and make transactionally written values visible to other threads) only
if no concurrent conflicting transaction has committed. Here “conflict” means
that one transaction writes a cache line that another reads or writes. Within a
transaction, a special validate instruction allows code to determine whether it still
has a chance to commit successfully—and in particular, whether the loads it has

performed to date remain mutually consistent. In response to a failed validate or
commit, the typical transaction will loop back (in software) and start over.

Looking back with the perspective of more than 20 years, the original TM pa-
per appears remarkably prescient. Elision of coarse-grain locks remains the prin-
cipal use case for TM today, though the resulting algorithms are “lock-free” only
in the informal sense of “no application-level locks,” not in the sense of livelock-
free. Like almost all contemporary TM hardware, Herlihy & Moss (H&M) TM
was also a “best-effort-only” proposal: a transaction could fail due not only to
conflict or to overflow of hardware buffers, but to a variety of other conditions—
notably external interrupts or the end of a scheduling quantum. Software must be
prepared to fall back to a coarse-grain lock (or some other hybrid method) in the
event of repeated failures.

Speculative state (the record of special loads and stores) in the H&M pro-
posal was kept in a special “transactional cache” alongside the “regular” cache (in
1993, processors generally did not have multiple cache layers). This scheme is
still considered viable today, though commercial offerings vary: the Intel Haswell
processor leverages the regular L1 data cache [40]; Sun’s unreleased Rock ma-
chine used the processor store buffer [10]; IBM’s zEC12 uses per-core private
L2s [25].

In contrast with current commercial implementations, H&M proposed a “re-
sponder wins” coherence strategy: if transaction A requested a cache line that had
already been speculatively read or written by concurrent transaction B, B would
“win” and A would be forced to abort. Current machines generally do the op-
posite: “responder loses”—kill B and let A continue. Responder-loses has the
advantage of compatibility with existing coherence protocols, but responder-wins
turns out to be considerably less vulnerable to livelock. Nested transactions were
not considered by H&M, but current commercial offerings address them only by
counting, and subsuming the inner transactions in the outer: there is no way to
abort and retry an inner transaction while keeping the outer one live.

Perhaps the most obvious difference between H&M and current TM is that the
latter uses “modal” execution, rather than special loads and stores: in the wake of
a special tm-start instruction, all ordinary memory accesses are considered spec-
ulative. In keeping with the technology of the day, H&M also assumed sequential
consistency; modern machines must generally arrange for tm-start and commit
instructions to incorporate memory barriers.

While designers of modern systems—both hardware and software—think of
speculation as a fundamental design principle—comparable to caching in its de-
gree of generality—this principle was nowhere near as widely recognized in 1993.
In hindsight, the H&M paper (which doesn’t even mention the term) can be seen
not only as the seminal work on TM, but also as a seminal work in the history of
speculation.

3 Subsequent Development
Within the architecture community, H&M TM was generally considered too am-
bitious for the hardware of the day, and was largely ignored for a decade. There
was substantial uptake in the theory community, however, where TM-like seman-
tics were incorporated into the notion of universal constructions [3, 5, 24, 28, 35].
In 1997, Shavit and Touitou coined the term “Software Transactional Memory,”
in a paper that shared with H&M the 2012 Dijkstra Prize [33].

And then came multicore. With the end of uniprocessor performance scal-
ing, the difficulty of multithreaded programming became a sudden and pressing
concern for researchers throughout academia and industry. And with advances in
processor technology and transistor budgets, TM no longer looked so difficult to
implement. Near-simultaneous breakthroughs in both software and hardware TM
were announced by several groups in the early years of the 21st century.

Now, another decade on, perhaps a thousand TM papers have been published
(including roughly a third of my own professional output). Plans are underway for
the 10th annual ACM TRANSACT workshop. Hardware TM has been incorpo-
rated into multiple “real world” processors, including the Azul Vega 2 and 3 [7];
Sun Rock [10]; IBM Blue Gene/Q [36], zEnterprise EC12 [25], and Power8 [6];
and Intel Haswell [40]. Work on software TM has proven even more fruitful, at
least from a publications perspective: there are many more viable implementa-
tion alternatives—and many more semantic subtleties—than anyone would have
anticipated back in 2003. TM language extensions have become the synchroniza-
tion mechanism of choice in the Haskell community [16], official extensions for
C++ are currently in the works (a preliminary version [1] already ships in gcc),
and research-quality extensions have been developed for a wide range of other
languages.

4 Maurice’s Contributions
Throughout the history of TM, Maurice has remained a major contributor. The
paragraphs here touch on only a few of his many contributions. With colleagues
at Sun, Maurice co-designed the DSTM system [18], one of the first software
TMs with semantics rich enough—and overheads low enough—to be potentially
acceptable in practice. Among its several contributions, DSTM introduced the
notion of out-of-band contention management, a subject on which Maurice also
collaborated with colleagues at EPFL [13, 14]. By separating safety and liveness,
contention managers simplify both STM implementation and correctness proofs.

In 2005, Maurice collaborated with colleagues at Intel on mechanisms to vir-
tualize hardware transactions, allowing them to survive both buffer overflows and

context switches [30]. He also began a series of papers, with colleagues at Brown
and Swarthmore, on transactions for energy efficiency [12]. With student Eric
Koskinen, he introduced transactional boosting [20], which refines the notion
of conflict to encompass the possibility that concurrent operations on abstract
data types, performed within a transaction, may commute with one another at an
abstract level—and thus be considered non-conflicting—even when they would
appear to conflict at the level of loads and stores. With student Yossi Lev he
explored support for debugging of transactional programs [21]. More recently,
again with the team at Sun, he has explored the use of TM for memory manage-
ment [11].

Perhaps most important, Maurice became a champion of the promise of trans-
actions to simplify parallel programming—a promise he dubbed the “transactional
manifesto” [19]. During a sabbatical at Microsoft Research in Cambridge, Eng-
land, he collaborated with the Haskell team on their landmark exploration of com-
posability [16]. Unlike locks, which require global reasoning to avoid or recover
from deadlock, transactions can easily be combined to create larger atomic oper-
ations from smaller atomic pieces. While the benefits can certainly be oversold
(and have been—though not by Maurice), composability represents a fundamen-
tal breakthrough in the creation of concurrent abstractions. Prudently employed,
transactions can offer (most of) the performance of fine-grain locks with (most of)
the convenience of coarse-grain locks.

5 Status and Challenges
Today hardware TM appears to have become a permanent addition to processor
instruction sets. Run-time systems that use this hardware typically fall back to
a global lock in the face of repeated conflict or overflow aborts. For the over-
flow case, hybrid systems that fall back to software TM may ultimately prove
to be more appropriate. STM will also be required for TM programs on legacy
hardware. The fastest STM implementations currently slow down critical sections
(though not whole applications!) by factors of 3–5, and that number is unlikely to
improve. With this present status as background, the future holds a host of open
questions.

5.1 Usage Patterns
TM is not yet widely used. Most extant applications are actually written in Haskell,
where the semantics are unusually rich but the implementation unusually slow.
The most popular languages for research have been C and C++, but progress has
been impeded, at least in part, by the lack of high quality benchmarks.

The biggest unknown remains the breadth of TM applicability. Transactions
are clearly useful—from both a semantic and a performance perspective—for
small operations on concurrent data structures. They are much less likely to be
useful—at least from a performance perspective—for very large operations, which
may overflow buffer limits in HTM, run slowly in STM, and experience high con-
flict rates in either case. No one is likely to write a web server that devotes a
single large transaction to each incoming page request. Only experience will tell
how large transactions can become and still run mostly in parallel.

When transactions are too big, and frequently conflict, programmers will need
tools to help them identify the offending instructions and restructure their code
for better performance. They will also need advances, in both theory and software
engineering, to integrate transactions successfully into pre-existing lock-based ap-
plications.

5.2 Theory and Semantics
Beyond just atomicity, transactions need some form of condition synchronization,
for operations that must wait for preconditions [16, 37]. There also appear to be
cases in which a transaction needs some sort of “escape action” [29], to generate
effects (or perhaps to observe outside state) in a way that is not fully isolated from
action in other threads. In some cases, the application-level logic of a transaction
may decide it needs to abort. If the transaction does not restart, but switches to
some other code path, then information (the fact of the abort, at least) has “leaked”
from code that “did not happen” [16]. Orthogonally, if large transactions prove
useful in some applications, it may be desirable to parallelize them internally, and
let the sub-threads share speculative state [4]. All these possibilities will require
formalization.

A more fundamental question concerns the basic model of synchronization.
While it is possible to define the behavior of transactions in terms of locks [27],
with an explicit notion of abort and rollback, such an approach seems contrary
to the claim that transactions are simpler than locks. An alternative is to make
atomicity itself the fundamental concept [8], at which point the question arises:
are aborts a part of the language-level semantics? It’s appealing to leave them out,
at least in the absence of a program-level abort operation, but it’s not clear how
such an approach would interact with operational semantics or with the definition
of a data race.

For run-time–level semantics, it has been conventional to require that every
transaction—even one that aborts—see a single, consistent memory state [15].
This requirement, unfortunately, is incompatible with implementations that “sand-
box” transactions instead of continually checking for consistency, allowing doomed
transactions to execute—at least for a little while—down logically impossible

code paths. More flexible semantics might permit such “transactional zombies”
while still ensuring forward progress [32].

5.3 Language and System Integration

For anyone building a TM language or system, the theory and semantic issues of
the previous section are of course of central importance, but there are other issues
as well. What should be the syntax of atomic blocks? Should there be atomic
expressions? How should they interact with existing mechanisms like try blocks
and exceptions? With locks?

What operations can be performed inside a transaction? Which of the standard
library routines are on the list? If routines must be labeled as “transaction safe,”
does this become a “viral” annotation that propagates throughout a code base?
How much of a large application must eschew transaction-unsafe operations?

In a similar vein, given the need to instrument loads and stores inside (but not
outside) transactions, which subroutines must be “cloned”? How does the choice
interact with separate compilation? How do we cope with the resulting “code
bloat”?

Finally, what should be done about repeated aborts? Is fallback to a global lock
acceptable, or do we need a hybrid HTM/STM system? Does the implementation
need to adapt to observed abort patterns, avoiding fruitless speculation? What
factors should influence adaptation? Should it be static or dynamic? Does it
need to incorporate feedback from prior executions? How does it interact with
scheduling?

5.4 Building and Using TM Hardware

With the spread of TM hardware, it will be increasingly important to use that
hardware well. In addition to tuning and adapting, we may wish to restructure
transactions that frequently overflow buffers. We might, for example—by hand
or automatically—reduce a transaction’s memory footprint by converting a read-
only preamble into explicit (nontransactional) speculation [2, 39]. One of my
students has recently suggested using advisory locks (acquired using nontransac-
tional loads and stores) to serialize only the portions of transactions that actually
conflict [38].

Much will depend on the evolution of hardware TM capabilities. Nontrans-
actional (but immediate) loads and stores are currently available only on IBM
Power machines, and there at heavy cost. Lightweight implementations would
enable not only partial serialization but also ordered transactions (i.e., specu-
lative parallelization of ordered iteration) and more effective hardware/software

hybrids [9, 26]. As noted above, there have been suggestions for “responder-
wins” coherence, virtualization, nesting, and condition synchronization. With
richer semantics, it may also be desirable to “deconstruct” the hardware inter-
face, so that features are available individually, and can be used for additional
purposes [23, 34].

6 Concluding Thoughts

While the discussion above spans much of the history of transactional memory,
and mentions many open questions, the coverage has of necessity been spotty,
and the choice of citations idiosyncratic. Many, many important topics and pa-
pers have been left out. For a much more comprehensive overview of the field,
interested readers should consult the book-length treatise of Harris, Larus, and
Rajwar [17]. A briefer overview can be found in chapter 9 of my synchronization
monograph [31].

My sincere thanks to Hagit Attiya, Shlomi Dolev, Rachid Guerraoui, and Nir
Shavit for organizing the celebration of Maurice’s 60th birthday, and for giving
me the opportunity to participate. My thanks, as well, to Panagiota Fatourou and
Jennifer Welch for arranging the subsequent write-ups for BEATCS and SIGACT
News. Most of all, my thanks and admiration to Maurice Herlihy for his seminal
contributions, not only to transactional memory, but to nonblocking algorithms,
topological analysis, and so many other aspects of parallel and distributed com-
puting.

References

[1] A.-R. Adl-Tabatabai, T. Shpeisman, and J. Gottschlich, editors. Draft Specification
of Transaction Language Constructs for C++. Version 1.1, IBM, Intel, and Sun
Microsystems, Feb. 2012.

[2] Y. Afek, H. Avni, and N. Shavit. Towards Consistency Oblivious Programming.
In Proc. of the 15th Intl. Conf. on Principles of Distributed Systems, pages 65-79.
Toulouse, France, Dec. 2011.

[3] Y. Afek, D. Dauber, and D. Touitou. Wait-Free Made Fast. In Proc. of the 27th ACM
Symp. on Theory of Computing, 1995.

[4] K. Agrawal, J. Fineman, and J. Sukha. Nested Parallelism in Transactional Memory.
In Proc. of the 13th ACM Symp. on Principles and Practice of Parallel Program-
ming, Salt Lake City, UT, Feb. 2008.

[5] G. Barnes. A Method for Implementing Lock-Free Shared Data Structures. In Proc.
of the 5th ACM Symp. on Parallel Algorithms and Architectures, Velen, Germany,
June–July 1993.

[6] H. W. Cain, B. Frey, D. Williams, M. M. Michael, C. May, and H. Le. Robust
Architectural Support for Transactional Memory in the Power Architecture. In Proc.
of the 40th Intl. Symp. on Computer Architecture, Tel Aviv, Israel, June 2013.

[7] C. Click Jr. And now some Hardware Transactional Memory comments. Au-
thor’s Blog, Azul Systems, Feb. 2009. blogs.azulsystems.com/cliff/2009/
02/and-now-some-hardware-transactional-memory-comments.html.

[8] L. Dalessandro, M. L. Scott, and M. F. Spear. Transactions as the Foundation of a
Memory Consistency Model. In Proc. of the 24th Intl. Symp. on Distributed Com-
puting, Cambridge, MA, Sept. 2010. Earlier but expanded version available as TR
959, Dept. of Computer Science, Univ. of Rochester, July 2010.

[9] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F.
Spear. Hybrid NOrec: A Case Study in the Effectiveness of Best Effort Hardware
Transactional Memory. In Proc. of the 16th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, Newport Beach, CA, Mar. 2011.

[10] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early Experience with a Commercial
Hardware Transactional Memory Implementation. In Proc. of the 14th Intl. Conf. on
Architectural Support for Programming Languages and Operating Systems, Wash-
ington, DC, Mar. 2009.

[11] A. Dragojević, M. Herlihy, Y. Lev, and M. Moir. On The Power of Hardware Trans-
actional Memory to Simplify Memory Management. In Proc. of the 30th ACM Symp.
on Principles of Distributed Computing, San Jose, CA, June 2011.

[12] C. Ferri, A. Viescas, T. Moreshet, I. Bahar, and M. Herlihy. Energy Implica-
tions of Transactional Memory for Embedded Architectures. In Wkshp. on Exploit-
ing Parallelism with Transactional Memory and Other Hardware Assisted Methods
(EPHAM), Boston, MA, Apr. 2008. In conjunction with CGO.

[13] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention Management in
SXM. In Proc. of the 19th Intl. Symp. on Distributed Computing, Cracow, Poland,
Sept. 2005.

[14] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a Theory of Transactional Con-
tention Managers. In Proc. of the 24th ACM Symp. on Principles of Distributed
Computing, Las Vegas, NV, Aug. 2005.

[15] R. Guerraoui and M. Kapałka. On the Correctness of Transactional Memory. In
Proc. of the 13th ACM Symp. on Principles and Practice of Parallel Programming,
Salt Lake City, UT, Feb. 2008.

[16] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Composable Memory Trans-
actions. In Proc. of the 10th ACM Symp. on Principles and Practice of Parallel
Programming, Chicago, IL, June 2005.

blogs.azulsystems.com/cliff/2009/02/and-now-some-hardware-transactional-memory-comments.html
blogs.azulsystems.com/cliff/2009/02/and-now-some-hardware-transactional-memory-comments.html

[17] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory, Synthesis Lectures on
Computer Architecture. Morgan & Claypool, second edition, 2010.

[18] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Transactional
Memory for Dynamic-sized Data Structures. In Proc. of the 22nd ACM Symp. on
Principles of Distributed Computing, Boston, MA, July 2003.

[19] M. Herlihy. The Transactional Manifesto: Software Engineering and Non-blocking
Synchronization. In Invited keynote address, SIGPLAN 2005 Conf. on Programming
Language Design and Implementation, Chicago, IL, June 2005.

[20] M. Herlihy and E. Koskinen. Transactional Boosting: A Methodology for Highly-
Concurrent Transactional Objects. In Proc. of the 13th ACM Symp. on Principles
and Practice of Parallel Programming, Salt Lake City, UT, Feb. 2008.

[21] M. Herlihy and Y. Lev. tm_db: A Generic Debugging Library for Transactional
Programs. In Proc. of the 18th Intl. Conf. on Parallel Architectures and Compilation
Techniques, Raleigh, NC, Sept. 2009.

[22] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. In Proc. of the 20th Intl. Symp. on Computer Architec-
ture, San Diego, CA, May 1993. Expanded version available as CRL 92/07, DEC
Cambridge Research Laboratory, Dec. 1992.

[23] M. D. Hill, D. Hower, K. E. Moore, M. M. Swift, H. Volos, and D. A. Wood. A Case
for Deconstructing Hardware Transactional Memory Systems. Technical Report
1594, Dept. of Computer Sciences, Univ. of Wisconsin–Madison, June 2007.

[24] A. Israeli and L. Rappoport. Disjoint-Access Parallel Implementations of Strong
Shared Memory Primitives. In Proc. of the 13th ACM Symp. on Principles of Dis-
tributed Computing, Los Angeles, CA, Aug. 1994.

[25] C. Jacobi, T. Slegel, and D. Greiner. Transactional Memory Architecture and Imple-
mentation for IBM System z. In Proc. of the 45th Intl. Symp. on Microarchitecture,
Vancouver, BC, Canada, Dec. 2012.

[26] A. Matveev and N. Shavit. Reduced Hardware Transactions: A New Approach to
Hybrid Transactional Memory. In Proc. of the 25th ACM Symp. on Parallelism in
Algorithms and Architectures, Montreal, PQ, Canada, July 2013.

[27] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L. Hudson, B.
Saha, and A. Welc. Practical Weak-Atomicity Semantics for Java STM. In Proc.
of the 20th ACM Symp. on Parallelism in Algorithms and Architectures, Munich,
Germany, June 2008.

[28] M. Moir. Transparent Support for Wait-Free Transactions. In Proc. of the 11th Intl.
Wkshp. on Distributed Algorithms, 1997.

[29] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B.
Moss, B. Saha, and T. Shpeisman. Open Nesting in Software Transactional Mem-
ory. In Proc. of the 12th ACM Symp. on Principles and Practice of Parallel Pro-
gramming, San Jose, CA, Mar. 2007.

[30] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In Proc. of
the 32nd Intl. Symp. on Computer Architecture, Madison, WI, June 2005.

[31] M. L. Scott. Shared-Memory Synchronization. Morgan & Claypool, 2013.

[32] M. L. Scott. Transactional Semantics with Zombies. In Invited keynote address, 6th
Wkshp. on the Theory of Transactional Memory, Paris, France, July 2014.

[33] N. Shavit and D. Touitou. Software Transactional Memory. Distributed Computing,
10(2):99-116, Feb. 1997. Originally presented at the 14th ACM Symp. on Principles
of Distributed Computing, Aug. 1995.

[34] A. Shriraman, S. Dwarkadas, and M. L. Scott. Implementation Tradeoffs in the De-
sign of Flexible Transactional Memory Support. Journal of Parallel and Distributed
Computing, 70(10):1068-1084, Oct. 2010.

[35] J. Turek, D. Shasha, and S. Prakash. Locking Without Blocking: Making Lock
Based Concurrent Data Structure Algorithms Nonblocking. In Proc. of the 11th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, Van-
couver, BC, Canada, Aug. 1992.

[36] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera,
and M. Michael. Evaluation of Blue Gene/Q Hardware Support for Transactional
Memories. In Proc. of the 21st Intl. Conf. on Parallel Architectures and Compilation
Techniques, Minneapolis, MN, Sept. 2012.

[37] C. Wang, Y. Liu, and M. Spear. Transaction-Friendly Condition Variables. In Proc.
of the 26th ACM Symp. on Parallelism in Algorithms and Architectures, Prague,
Czech Republic, June 2014.

[38] L. Xiang and M. L. Scott. Conflict Reduction in Hardware Transactions Using Ad-
visory Locks. In Proc. of the 27th ACM Symp. on Parallelism in Algorithms and
Architectures, Portland, OR, June 2015.

[39] L. Xiang and M. L. Scott. Software Partitioning of Hardware Transactions. In Proc.
of the 20th PPoPP, San Francisco, CA, Feb. 2015.

[40] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance Evaluation of In-
tel Transactional Synchronization. In x. f. H.-P. Computing, editor, Proc., SC2013:
High Performance Computing, Networking, Storage and Analysis, pages 1-11. Den-
ver, Colorado, Nov. 2013.

	Introduction
	Modeling Issues
	Generating and Distributing a System Clock
	Pulse Synchronization
	Approaches by the Distributed Community
	Approaches by the Hardware Community
	DARTS
	FATAL

	Counting
	Equivalence to Consensus
	Counting Using Shared Coins
	Constructing Large Counters from Small Counters
	Counting from Pulse Synchronization
	Constructing Counters from Scratch

	Clock Distribution

	Conclusion
	Review of the key contributions
	Impact
	Rack-Scale Systems
	Shared Memory Without Cache Coherence
	Non-Volatile Byte-Addressable Memory
	Discussion
	Motivation
	The Original Paper
	Subsequent Development
	Maurice's Contributions
	Status and Challenges
	Usage Patterns
	Theory and Semantics
	Language and System Integration
	Building and Using TM Hardware

	Concluding Thoughts

