
The Distributed Computing Column
by

Stefan Schmid

Aalborg University
Selma Lagerlöfs Vej 300, DK-9220 Aalborg, Denmark

The Distributed Computing Column features two articles: First, Michel Raynal
takes us on a guided tour of distributed universal constructions. Subsequently,
Srivatsan Ravi presents a survey of currently known complexity (upper and lower)
bounds for implementing Transactional Memory as a shared object. Enjoy!

http://www.en.aau.dk/

Distributed Universal Constructions:

a Guided Tour

Michel Raynal

Institut Universitaire de France

IRISA, Université de Rennes, 35042 Rennes, France

Department of Computing, Hong Kong Polytechnic University

raynal@irisa.fr

Abstract

The notion of a universal construction is central in computing science:

the wheel has not to be reinvented for each new problem. In the context of

n-process asynchronous distributed systems, a universal construction is an

algorithm that is able to build any object defined by a sequential specifica-

tion despite the occurrence of up to (n − 1) process crash failures. The aim

of this paper is to present a guided tour of such universal constructions. Its

spirit is not to be a catalog of the numerous constructions proposed so far,

but a (as simple as possible) presentation of the basic concepts and mecha-

nisms that constitute the basis these constructions rest on.

Keywords: Abortable object, Agreement problem, Asynchronous read/write

system, Atomic operations, Computability, Concurrent object, Consensus,

Crash failure, Disjoint-access parallelism, Help mechanism, LL/SC instruc-

tion, Memory location, Non-blocking, Obstruction-freedom, Progress con-

dition, Sequential specification, k-Set agreement, k-Simultaneous consen-

sus, Speculative execution, Universal construction, Wait-freedom.

1 Introduction

A (very) short historical perspective Looking for (some) universality seems

inherent to humankind. Any language, any writing system, can be seen as an

attempt to universality [42]. In the science domain, one of the very first witness

of research of universality found in the past seems to be the Plimpton 322 tablet

(Figure 1), which describes the fifteen first Pythagorean triplets (a2
+b2
= c2).This

is only a list, not yet an algorithm with its proof. Hence, this tablet is a step to

universality for Pythagorean triplets, but not yet a universal method able to provide

us with a sequence of Pythagorean triplets of any length.

Figure 1: Plimpton 322 tablet

The geometric constructions with a compass and a straightedge designed by

the Ancient Greeks are among the first algorithms coming with correctness proofs

(see also [50]). Proofs of impossible constructions in the “compass + straight-

edge” computing model took more time (e.g., the impossibility of squaring the

circle, i.e., build, with straightedge and compass only, a square whose area is

equal to the area of a given circle)1. More recently, the Turing machine provides

us with an abstract computing device, which is considered as the most general

sequential computing model, thereby fixing the limits of what can be computed

by a sequential machine [61]2. It is consequently claimed to be universal. The

halting problem is the most famous of the problems that are impossible to solve

in this “most general” sequential computing model.

In distributed computing the situation is different. As written in [36]: “In se-

quential systems, computability is understood through the Church-Turing Thesis:

anything that can be computed, can be computed by a Turing Machine. In dis-

tributed systems, where computations require coordination among multiple par-

1This impossibility follows from the fact that π is a transcendent number (F. von Lindemann

1882), and a theorem by P. L. Wantzel, who established, in 1837, necessary and sufficient condi-

tions for a number to be constructible in the “compass + straightedge” computing model [62].
2This means that any sequential computing model proposed so far has the same computability

power as a Turing machine (e.g., Church’s Lambda calculus, or Post systems [51]), or is weaker

than a Turing machine (e.g., finite state automata).

ticipants, computability questions have a different flavor. Here, too, there are

many problems which are not computable, but these limits to computability reflect

the difficulty of making decisions in the face of ambiguity, and have little to do

with the inherent computational power of individual participants.”

In distributed computing the main issues posed by universality and computabil-

ity appear when one has to implement distributed state machines (distributed ser-

vices encapsulated in concurrent objects) in the presence of adversaries due to the

environment in which the computation evolves (such as asynchrony and process

failures) [25, 32, 43, 46].

Concurrent objects and asynchronous crash-prone read/write systems A

concurrent object is an object that can be accessed (possibly simultaneously) by

several processes. From both practical and theoretical point of views, a fundamen-

tal problem of concurrent programming consists in implementing high level con-

current objects, where “high level” means that the object provides the processes

with an abstraction level higher than the atomic hardware-provided instructions.

While this is well-known and well-mastered since a long time in the context of

failure-free systems [13], it is far from being trivial in failure-prone systems (e.g.,

see textbooks such as [52, 58]), where it is still an important research domain.

This paper considers systems made up of n sequential asynchronous processes

which, at the hardware level, communicate through memory locations (memory

words also called registers) which can be accessed by atomic operations (instruc-

tions), including the basic read and write operations. Moreover, it is assumed that,

in any run, up to (n−1) processes may crash (unexpected halting). When restricted

to the basic read and write instructions, this computation model is known under

the name wait-free read/write model (denoted here CARWn[∅], where CARW

stands for Crash Asynchronous Read/Write).

On progress conditions Deadlock-freedom and starvation-freedom are well-

known progress conditions in failure-free asynchronous systems. As their im-

plementation is based on lock mechanisms, they are not suited to asynchronous

crash-prone systems. This is due to the fact that it is impossible to distinguish a

crashed process from a slow process, and consequently a process that acquires a

lock and crashes before releasing it can entail the blocking of the entire system.

Hence, new progress conditions for concurrent objects suited to crash-prone

asynchronous systems have been proposed. Given an object, we have the follow-

ing.

• The strongest progress condition is wait-freedom (WF) [32]. It states that,

any operation (on the object that is built) issued by a process that does not

crash terminates. This means that it terminates whatever the behavior of the

other processes. This can be seen as the equivalent of the starvation-freedom

progress condition encountered in failure-free systems.

• The non-blocking progress condition (NB) states that there is at least one

process that can always progress (all its object operations terminate) [38].

This progress condition is also called lock-freedom. It can be seen as the

equivalent of deadlock-freedom in failure-free systems. Non-blocking has

been generalized in [14], under the name k-lock-freedom (k-NB), which

states that at least k processes can always make progress.

• The obstruction-freedom progress condition (OB) states that a process that

does not crash will be able to terminate its operation if all the other processes

hold still long enough [34]. This is the weakest progress condition. It has

been generalized in [59], under the name k-obstruction-freedom (k-OB),

which states that, if a set of at most k processes run alone for a sufficiently

long period of time, they will terminate their operations.

While wait-freedom and non-blocking are independent of the concurrency and

failure pattern, obstruction-freedom is dependent from it. Asymmetric progress

conditions have been introduced in [41]. The computational structure of progress

conditions is investigated in [60].

Universal construction The notion of a universal construction was introduced

by M. Herlihy in [32]. It considers objects (a) which are defined from sequential

specifications and (b) whose operations are total, i.e., any object operation returns

a result (as an example, a push() operation on an empty stack returns the default

value ⊥).

Let PC be a progress condition. A PC-compliant universal construction is an

algorithm that, given the sequential specification of an object O (or a sequential

implementation of it), provides a concurrent implementation of O satisfying the

progress condition PC in the the presence of up (n−1) process crashes (Figure 2).

Sequential specification

of an object Z

PC-compliant implementation

of object Z

PC-compliant
universal construction

Figure 2: PC-compliant universal construction

It has been shown in [25, 32, 47] that the design of a universal construction

with respect to the wait-freedom progress condition is impossible in CARWn[∅].

This means that the basic system model CARWn[∅] has to be enriched with

hardware-provided atomic instructions or additional computing objects whose

computational power is stronger than atomic read/write registers (in the following,

we consider terms “register” and “memory location” as synonyms; we sometimes

also say “atomic read/write object” by a slight abuse of language).

Content of the paper This paper aims at being a guided tour to distributed

universal constructions. Its goal is not to be a presentation including as many

universal constructions as possible, but to focus on the central features universal

constructions rest on, and illustrate them with existing algorithms. To this end, af-

ter having introduced basic definitions (Section 2), the paper proceeds as follows.

• Section 3 presents first a simple and elegant universal construction suited to

the system model CARWn[LL/SC] (which is CARWn[∅] enriched with

the hardware-provided instructions LL and SC, which are defined in the

section). This allows for an easy introduction of the notion of a speculative

computation and the notion of a help mechanism (introduced in [32] and

recently formalized in [17]). This section presents also extensions devoted

to large objects.

• Section 4 is made up of two subsections. the first is on the efficiency of

universal constructions. Considering the algorithms that realize them, it

addresses the notion of disjoint-access parallelism.

The second subsection is on the object side. It considers the case of uni-

versal constructions for deterministic abortable objects [15, 31, 52, 53].

Such an object is a classical object defined by a sequential specification

which allows an operation to return a default value ⊥ in the presence of

contention (in this case the operation has no effect on the object). Hence,

in a concurrency-free execution, an abortable object behaves as its non-

abortable counterpart. The notion of k-abortable object has been recently

introduced in [8], where is also presented an associated universal construc-

tion. A k-abortable object is such that an operation is allowed to return ⊥

only if it is concurrent with operations from at most k different processes,

and none these operations return ⊥.

• All the previous universal constructions consider that the underlying crash-

prone system is enriched with hardware-provided atomic instructions such

as LL/SC or Compare&Swap, which work on memory locations [22]. Hence,

the question: Which are the instructions that allow to build a universal

construction? As an example, can a universal construction be designed

for the system model CARWn[Test&Set] (CARWn[∅] enriched with the

hardware-provided atomic instruction Test&Set). This issue was solved by

M. Herlihy in [32], who introduced the celebrated consensus hierarchy.

This is addressed in the first part of Section 5. Hence, the consensus ob-

ject is at the core of universal constructions.

Then, the section shows another important advantage of using consensus

objects instead of primitives hardware-provided instructions to design uni-

versal constructions. While instructions are uniform (any instruction can

access any memory location [22]), an object is a typed abstraction that has

the property that an operation on type T cannot be applied to an object of

type T ′. Moreover, an object can be weakened or generalized according to

the needs of the user. As an example, the consensus object can be weakened

to the k-set agreement (k-SA) object [19] or to the k-simultaneous consensus

(k-SC) object [3] (k-SA and k-SC objects are defined in the section).

The section presents then the notion of a k-universal construction due to E.

Gafni and R. Guerraoui [27]. Such a construction considers k objects (in-

stead of only one) and ensures that at least one of these objects progresses

forever. This construction relies on k-SC objects instead of consensus ob-

jects.

Finally, the section considers the case where we want that, not at least one

but at least ℓ objects progress forever, where ℓ is any predefined constant

in [1..k]. As shown in [55], objects denoted (k, ℓ)-SC ((k, ℓ)-simultaneous

consensus objects defined in the section), which are strictly stronger than

k-SC objects (when ℓ > 1), and weaker than consensus objects (when

ℓ < k), are necessary and sufficient to build a universal construction for

k objects, where at least ℓ objects progress forever. It is important to notice

that these generalizations of universal constructions could not have been ob-

tained from hardware-provided instructions. This will conclude the guided

tour.

Finally, after a short Section 6 comparing universal constructions and software

transactional memory (STM) systems, Section 7 concludes the paper.

2 Basic Asynchronous Read/Write ModelCARWn[∅]

Crash-prone asynchronous processes The basic computing model (denoted

here CARWn[∅]) was sketched in the introduction. It is composed of a set of

n sequential processes denoted p1, ..., pn. Each process is asynchronous which

means that it proceeds at its own speed, which can be arbitrary and remains always

unknown to the other processes.

A process may halt prematurely (crash failure), but executes correctly its local

algorithm until it possibly crashes. Up to (n−1) processes may crash in a run. Due

to the atomicity of the hardware-provided operations, if a process crashes while

executing such an operation, this operation appears as entirely executed or not at

all. A process that crashes in a run is said to be faulty in this run. Otherwise, it

is correct or non-faulty. Hence, a faulty process is a process whose speed, after

some time, remains forever equal to 0.

On atomicity The processes communicate by accessing atomic read/write reg-

isters (memory locations). Atomicity means that the read and write primitive

operations on a register appear as if they have been executed one after the other.

Moreover, the corresponding sequence of operations S is such that (a) if the op-

eration op1 terminated before the operation op2 started, op1 appears before op2

in S , and (b) a read operation on a register R returns the value written by the

closest preceding write operation on R (or its initial value if there is no preceding

write) [44]. Atomicity is also called linearizability when considering any object

defined by a sequential specification [38].

Notation Variables local to a process pi are denoted with lowercase letters,

sometimes indexed with i. Memory location and objects shared by the processes

are denoted with capital letters.

3 A Simple LL/SC-Based WF-Compliant

Universal Construction

3.1 Extending CARWn[∅] with LL/SC

Model CARWn[LL/SC] These hardware-provided atomic instructions can be

applied to any memory location. The wait-free read/write model CARWn[∅]

enriched with them is denoted CARWn[LL/SC]. LL/SC is made up of three

instructions: LL stands for Linked Load; SC stands for store conditional; VL

stands for Validate.

Let X be a memory location. X.LL() returns the current value of X. Let pi

be a process that invokes X.SC(v). This invocation assigns v to X if X has not

been assigned a value by another process since the previous invocation of X.LL()

issued by pi. In this case, X.SC(v) returns true and we say that the invocation is

successful; otherwise it returns false. Finally, an invocation of X.VL() by process

pi returns true if no other process has issued a successful X.SC() since the last

invocation of X.LL() issued by pi.

These instructions are used to bracket a speculative computation. A process

first reads X with X.LL() and stores its value in a local variable xi. Then pi does

a local computation which depends on both xi and its local state. The aim of this

local computation is to define a new value v for X. Finally, pi tries to commit

its local computation by writing v into X, which is done by invoking X.SC(v).

If this invocation is successful, the write is committed; otherwise the write fails.

A similar behavior can be obtained by the Compare&Swap() instruction. The

main advantage of LL/SC, with respect to Compare&Swap(), lies in the fact that

it does suffer the ABA problem (see [52, 58]), which requires sequence numbers

to be solved. Algorithms based on LL/SC can be found in many publications

(e.g., [23, 33, 39, 52, 58, 59] to cite a few).

3.2 A simple universal construction in CARWn[LL/SC]

This section presents a simplified version (denoted sFK) of a universal construc-

tion due to P. Fatourou and N. Kallimanis [24]. The main difference is that the

presented construction uses sequence numbers which increase forever, while [24]

uses sequence numbers modulo 2). This additional memory cost makes it much

easier to present and prove correct.

Collect object This construction uses a collect object. Such an object can easily

be built in CARWn[∅]. It consists of an array COL[1..n], with one entry per pro-

cess, and provides them with two operations denoted update() and collect(). The

invocation of COL.update(v) by a process pi assigns v to COL[i]. The invocation

of COL.collect() is an asynchronous scan of the array which returns, for each en-

try j, the value it has read from COL[j]. A formal definition of such an object can

be found in [52].

Due to the asynchronous scan, a collect object is not atomic (hence a collect

object is computationally weaker than a snapshot object [1]). An atomic version

of a collect object is described in [24]. Its implementation (a) assumes that the n

components of the collect object are stored in a single memory location, and (b)

is based on the hardware-provided instruction add() (Y.add(v) atomically adds v

to Y).

Global and local variables Let O be the object that is built.

• STATE is a memory location made up of three fields:

– STATE.value contains the current value of O. It is initialized to the

initial value of O.

– STATE.sn[1..n] is an array of sequence numbers initialized to [0, · · · , 0];

STATE.sn[i] is the sequence number of the last invocation of an oper-

ation on O issued by pi.

– STATE.res[1..n] is an array of result values initialized to [⊥, · · · ,⊥];

STATE.res[i] contains the result of the last operation issued by pi that

has been applied to O.

• BOARD is a collect object. BOARD[i] is a pair 〈BOARD[i].op,BOARD[i].sn〉

initialized to 〈⊥, 0〉; BOARD[i].op contains the last operation on O issued

by pi, and BOARD[i].sn contains its sequence number.

• Each process pi manages a sequence number generator sni initialized to 1.

The object O is assumed to be defined by a transition function δ(). Let s be the

current state of O and op(in) be the invocation of the operation op() on O, with

input parameter in; δ(s, op(in)) outputs a pair 〈s′, r〉 such that s′ is the state of O

after the execution of op(in) on s, and r is the result of op(in).

Construction sFK: speculative computation and helping The construction

sFK is described in Figure 3. When a process pi invokes an operation op(in)

on O, it first publishes the pair 〈op(in), sni〉 in the collect object BOARD (line 1).

Then, it invokes the internal procedure apply() at the end of which it will locally

return the result produced by op(in) (line 2).

when pi invokes op(in) do

(1) BOARD.update(〈op(in), sni〉); sni ← sni + 1;

(2) apply(); let r = STATE.res[i]; return(r).

internal procedure apply() is

(3) repeat twice

(4) ls← STATE.LL();

(5) pairs← BOARD.collect();

(6) for ℓ ∈ {1, 2, · · · , n} do

(7) if (pairs[ℓ].sn = ls.sn[ℓ] + 1 then

(8) 〈new_state, r〉 ← δ(ls.value, pairs[ℓ].op);

(9) ls.res[ℓ]← r; ls.sn[ℓ]← pairs[ℓ].sn

(10) end if

(11) end for

(12) STATE.SC(ls)

(13) end repeat twice.

Figure 3: WF-compliant universal construction sFK (system model

CARWn[LL/SC])

The core of the construction is the procedure apply(), in which a process pi

executes twice the lines 4-12 (we will see later why this has to be done twice).

Process pi first reads the current local state of the object (line 4), and starts a first

speculative execution (which will end at line 12). In this speculative execution, pi

first reads the content of the collect object BOARD from which it obtains for each

process pℓ a pair 〈last operation invoked by pℓ, associated sequence number〉. Let

us recall that as BOARD.collect() is not atomic, and pi is asynchronous, the pairs

that are returned are not necessarily associated with a consistent global state the

computation passed through.

Then, pi considers each pair in pairs in the “for” loop of lines 6-11. In

this loop, pi strives to help all the processes that have a pending operation on

O. From its point of view (i.e., with the information it has obtained from its

previous reads of STATE and BOARD), those are all the processes pℓ such that

pairs[ℓ].sn = ls.sn[ℓ] + 1 (line 7). If this local predicate is true, pi locally simu-

lates (speculative computation) the last operation issued by pℓ not yet applied to

the object (line 6), and locally saves the result of the operation and its sequence

number (line 9). Finally, pi tries to commit its speculative computation by invok-

ing STATE.SC() (line 12). Let us observe that, if this invocation is successful, we

can conclude that no process modified STATE while pi was doing its speculative

computation. Hence, the local variable ls of pi is up to date, and, from an external

observer point of view, everything appears as if the computation starting at line 4

and ending at line 12 was executed atomically. If the invocation of STATE.SC() is

not successful, the speculative execution is not committed.

Construction sFK: why “repeat twice”? Let us first observe that, due to se-

quence numbers, once registered in the collect object BOARD, an operation cannot

be executed more than once. Moreover, if the process pi that invokes an opera-

tion does not crash, it terminates its operation op(in). This follows from the fact

that the lines 7-10 are executed a bounded number of times (2n). But is the result

provided for op(in) correct?

To answer this question, let us consider the execution described in Figure 4.

When process p j (bottom of the figure) executes the atomic statement STATE.LL()

followed by BOARD.collect() (lines 4-5), pi (top of the figure) has not yet reg-

istered by executing BOARD.update() (line 1). Hence pairs j does not contain

〈op(in), sn〉. Let us assume that the execution of STATE.SC(ls j) by p j is success-

ful. If pi executes only once the repeat loop, its execution of STATE.SC() is not

successful, and pi returns despite the fact that p j has not helped it by executing

op(in). Hence, the statement return(r) executed by pi at line 2 returns the result

of its previous operation invocation.

Assuming now that pi executes twice the repeat loop, let us consider the first

successful invocation of STATE.SC() that occurs after the previous successful in-

vocation by p j. This invocation is issued by some process pk (which can be pi,

p j or any other process). According to the algorithm of Figure 3, it follows that

pk has previously invoked STATE.LL(). Moreover, this invocation occurs neces-

sarily after the successful invocation of STATE.SC() by p j (otherwise the invoca-

tion of STATE.SC() by pk could not be successful). Consequently, the invocation

of BOARD.collect() by pk is such that 〈op(in), sn〉 ∈ pairsk. It follows that pk

pi

next successful

p j

Atomicity line

by some process pk

STATE.SC()

BOARD.update(op(in), sn) lsi ← STATE.LL() STATE.SC(): not successful

successful
ls j ← STATE.LL() pairs j ← BOARD.collect() STATE.SC()

Figure 4: Why to repeat twice lines 4-12 (big dot = atomic step)

found pairsk[i].sn = lsk.sn[i]+ 1, and simulated the execution of op(in) on behalf

of pi and wrote the corresponding result in lsk.res[i] which was then copied in

STATE.res[i] by the successful execution of STATE.SC() by pk.

Linearization of the operations on O Let SC[1], SC[2], ..., SC[x], etc. be

the sequence of all the successful invocations of STATE.SC(); as STATE.SC() is

atomic, this sequence is well-defined. Starting from S C[1], each SC[x] applies at

least one operation on the object O. It is possible to totally order the operations

applied to O by each SC[x]. Let seq[x] be the corresponding sequence. The

sequence of operations applied to O is then seq[1] followed by seq[2], ..., followed

by seq[x], etc.

Remark on sequence numbers Techniques such as the one described in [9,

48] (known under the name alternating bit protocol) can be used to obtain an

implementation in which the sequence numbers are implemented modulo 2.

3.3 The case of large objects

The previous universal construction considered that the internal state of the object

(STATE) can be copied all at once. A large object is an object whose internal state

cannot be copied in one instruction.

Several articles have addressed this problem, e.g., [2, 6, 33]. They all propose

to fragment a large object into blocks. Two main approaches have been proposed.

• One consists in using pointers linking the blocks representing the object [33].

Moreover, it requires that the programmer provides a sequential implemen-

tation of the object that performs as little copying as possible. The pointers

are then accessed with LL instructions which allow a process to obtain a

logical copy of the object (which means that only the needed part of the

object is copied in its local memory). A process executes then locally a

speculative computation, as defined by the operation it wants to apply to the

object. Finally it uses SC instructions on the appropriate pointers to try to

commit the new value of the object.

• The other approach consists in representing the object as a long array frag-

mented into blocks [6]. This paper presents two object constructions based

on this approach, which are universal with respect to non-blocking and wait-

freedom, respectively. It also presents algorithms implementing atomic

LLL/LSC operations (where “L” stands for Large), which extend the LL/SC

instructions to arrays of memory locations. These operations are built in the

system model CARWn[LL/SC].

4 Extensions

This section presents two extensions of universal constructions. The first one

regards their efficiency. The second one considers a weakening of concurrent

objects called abortable objects.

4.1 On the implementation side: Disjoint-access parallelism

Disjoint-access parallelism A universal construction is disjoint-access parallel

if two processes that access distinct parts of an object O do not access common

base objects or common memory location which constitute the internal represen-

tation of O. As an example, let us consider a queue. If the queue contains three or

more items, a process executing enqueue(v) and a process executing dequeue()

must be able to progress without interfering.

Hence, the aim of a disjoint-access parallel universal construction is to provide

efficient implementations. Let us observe that all the universal constructions that

built a total order on the operations (such as the one described in Section 3.2 and

the ones presented in [2, 23, 33]) are not disjoint-access parallel.

What can be done? Hence the question posed by F. Ellen, P. Fatourou, N. Kos-

mas, A. Milani, and C. Travers, in [21]: Is it possible to design a disjoint-access

parallel WF-compliant universal construction? This work presents two important

results.

• The first is an impossibility result. It states that it is impossible to design a

universal construction that is disjoint-access parallel and ensures that all the

operation invocations of the processes that do not crash always terminate.

Hence, when we consider any object defined by a sequential specification,

disjoint-access parallelism and wait-freedom are mutually exclusive.

• The second result is a positive one, namely the previous impossibility (which

considers any object defined by a sequential specification) does not apply

to a special class of concurrent objects. Hence, the constructions for this

object class are no longer “universal” in the strict sense. This object class

contains all the objects O for which, in any sequential execution, each op-

eration accesses a bounded number of base objects used to represent O.

Examples of such objects are bounded trees, or stacks and queues whose

internal representations are list-based.

In their paper, the authors describe a universal construction that ensures,

for the previous objects, both the disjoint-access parallel property of the

object implementation, and the wait-freedom progress condition for the

processes that use it. This construction is presented in the system model

CARWn[LL/SC].

4.2 On the object side: Abortable objects

Abortable objects have been investigated in several articles, e.g., [4, 15, 31, 52,

53]. They found their origin in the commit/abort output of transaction-based sys-

tems [28], and the notion of “fast path” initially introduced in fast mutual exclu-

sion algorithms [45].

Definition An abortable object is an object (defined by a sequential specifica-

tion) such that

• When executed in a contention-free context, an operation takes effect, i.e.,

modifies the state of the object and returns a result as defined by its sequen-

tial specification,

• When executed in a contention context, an operation either takes effect and

returns a result as defined by its sequential specification, or returns the de-

fault value ⊥ (abort). If ⊥ is returned, the operation has no effect on the

state of the object.

Hence, an abortable object is such that any operation always returns (i.e.,

whatever the concurrency context). Its progress condition is consequently wait-

freedom. Differently from an abortable object, an obstruction-free object does

not guarantee operation termination in the presence of concurrency. A theory of

deterministic abortable objects (including a study of their respective power) is

presented in [31].

Universal constructions for abortable objects Such a very simple construc-

tion is described in Figure 5. It is a trivial simplification of the universal con-

struction described in Figure 3 from which the helping mechanism has been sup-

pressed. The memory location STATE contains now only the state of the object.

when pi invokes op(in) do

(1) ls← STATE.LL();

(2) 〈new_state, r〉 ← δ(ls, pairs[ℓ].op);

(3) done← STATE.SC(ls);

(4) if (done) then return(r) else return(⊥) end if.

Figure 5: WF-compliant universal construction for abortable objects (system

model CARWn[LL/SC])

When a process pi invokes an operation op(in) on the object, it reads its current

state to obtain a local copy (line 1). Then it produces a speculative execution of

op(in) on this local state ls (line 2). Finally, it tries to commit its local execution

by issuing STATE.SC(ls) (line 3). If this SC is successful, pi returns the result it

has previously computed. Otherwise, there was at least one concurrent operation,

and pi returns ⊥ (line 4).

Let us observe that, if several processes concurrently invoke operations, each

invokes STATE.LL(), and the first of them that invokes STATE.SC() produces a

successful SC. It follows that, in the presence of concurrency, at least one process

is guaranteed to make progress in the sense that it does not return ⊥.

An efficient solo-fast universal construction for deterministic abortable ob-

jects is described in [15]. Solo-fast (also called contention-aware in other articles)

means that the implementation is allowed to use atomic operations on memory

locations stronger than read/write only when there is contention. Moreover, this

implementation guarantees that the operations that do not modify the object never

return ⊥ and use only read/write operations. This implementation is based on the

primitive operation on memory locations Compare&Swap, whose computational

power is the same as LL/SC.

k-Abortable objects This notion was recently introduced in [8]. A k-abortable

object guarantees progress even under high contention, where “progress” means

that ⊥ cannot be returned by some operation invocations.

Roughly speaking an operation invoked by a process is allowed to abort only

if it is concurrent with operations issued by k distinct processes and none of them

returns ⊥. This means that the k operations that entail the abort of another opera-

tion must succeed. It is easy to see that n-abortability is wait-freedom where any

operation returns a non-⊥ result. A formal presentation can be found in [8].

A universal construction for k-abortable objects suited to the system model

CARWn[LL/SC] is presented in [8]. Differently from the trivial construction for

abortable objects presented in Figure 5, it is not a trivial construction. It uses an

array of n memory locations BOARD[1..n] used by the processes to store their

last operations (they are the equivalent of the collect object BOARD[1..n] used

in Figure 3), an array of k memory locations WINNERS[1..k] which contains the

(up to k) “winning” operations, and another memory location STATE (similar to

the location STATE used in Figure 3). All these memory locations are accessed

with the LL/SC atomic operations. (We use the same identifiers as in Figure 3 to

facilitate the understanding.)

The construction works as follows. After it has registered its operation in

BOARD[i], a process pi tries to find an available entry in WINNERS[1..k]. If it

succeeds, its operation will not abort; otherwise its operation will eventually abort.

In all cases, i.e., whatever the fate of its own operation, the process pi will help

the winning operations to terminate. This construction is efficient in the sense that

each operation terminates in O(k) accesses to memory locations.

Let us observe that, as every k-abortable object can easily implement its k-

lock-free counterpart, the previous universal construction for k-abortable objects

is k-NB-compliant universal construction. Let us remember that, differently from

its k-lock-free counterpart, no process can get stuck when a k-abortable object is

used.)

5 From Operations on Memory Locations

to Agreement Objects

5.1 Primitive operations versus objects

The previous universal constructions are based on hardware-provided atomic op-

erations such as LL/SC. This operation, as all the hardware-provided synchroniza-

tion operations (such as Test&Set or Compare&Swap) is uniform in the sense that

they can be applied to any memory location [6, 22]. Hence the following natural

questions come to mind:

• Is it possible to design a universal construction with other hardware-provided

atomic operations such as Test&Set or Fetch&Add, initially designed to

solve synchronization issues? Moreover, which synchronization atomic op-

erations are equivalent (from the point of view of a universal construction)?

• Is it possible to generalize the concept of a universal construction to the co-

ordinated construction of several objects with different progress conditions?

These questions are answered in this section.

5.2 A fundamental agreement object: consensus

Differently from a memory location which is only a sequence of bits accessed

by hardware-provided atomic operations, the aim of an object is to provide its

user with a high abstraction level (by hiding implementation details) and allow

easier reasoning and proofs. An object is defined by a set of operations, and a

specification which describes its correct behavior. The operations associated with

an object are specific to it (i.e., due the very essence of the object concept, they

are not uniform).

The consensus object The consensus object is the fundamental object associ-

ated with agreement problems. Introduced (in a different form) in the context of

Byzantine synchronous message-passing systems [46], a consensus object pro-

vides the processes with a single operation denoted propose() that a process can

invoke only once (one-shot object). When a process invokes propose(v), we say

that it “proposes the value v”. This operation returns a result. If a process returns

value w, we say that it “decides w”. In the context of process crash failures, the

consensus object is defined by the following set of properties (let us recall that a

correct process is a process that does not crash).

• Termination. If a correct process invokes propose(), it decides a value.

• Validity. A decided value is a proposed value.

• Agreement. No two processes decide different values.

A consensus object allows the processes to agree on the same value, and this

value is not arbitrary: it was proposed by one of them. Hence, when considering

a universal construction, consensus objects can be used by the processes to agree

on the order in which their operations must be applied to the object that is built.

5.3 A simple consensus-based universal construction

A simple WF-compliant consensus-based universal construction is described in

Figure 6. This construction, proposed in [30], is inspired from the state machine

replication paradigm [43] and the consensus-based atomic broadcast algorithm

presented in [18]. The reader will find a proof of it in [52]. Let O be the object

that is built. As in Section 3, its sequential behavior is defined by a transition

function δ().

Local variables A process pi manages locally a copy of the object, denoted

statei, an array sni[1..n] where sni[j] denotes the sequence number of the last

operation on O issued by p j locally applied to statei. The local variables donei,

resi, propi, ki, and listi, are auxiliary variables whose meaning is clear from the

context; listi is a list of pairs of (operation, process identity); |listi| is its size, and

listi[r] is its rth element; hence, listi[r].op is an object operation and listi[r].proc

the process that issued it.

when pi invokes op(in) do

(1) donei ← false; BOARD[i]← 〈op(in), sni[i] + 1〉;

(2) wait (donei); return(resi).

Underlying local task T : % background server task %

(3) while (true) do

(4) propi ← ǫ; % empty list %

(5) for j ∈ {1, . . . , n} do

(6) if (BOARD[j].sn > sni[j]) then

(7) append (BOARD[j].op, j) to propi

(8) end if

(9) end for;

(10) if (propi , ǫ) then

(11) ki ← ki + 1;

(12) listi ← CONS[ki].propose(propi);

(13) for r = 1 to |listi| do

(14) 〈statei, resi〉 ← δ(statei, listi[r].op);

(15) let j = listi[r].proc; sni[j]← sni[j] + 1;

(16) if (i = j) then donei ← true end if

(17) end for

(18) end if

(19) end while.

Figure 6: A wait-free consensus-based universal construction (code for process

pi)

Shared Objects The shared memory contains the following objects.
• An array BOARD[1..n] of single-writer/multi-reader atomic registers. Each

entry is a pair such that the pair 〈BOARD[j].op,BOARD[j].sn〉 contains the

last operation issued by p j and its sequence number. Each BOARD[j] is

initialized to 〈⊥, 0〉.

• An unbounded array CONS[1..] of consensus objects.

Process behavior When a process pi invokes an operation op(in) on O, it reg-

isters it and its associated sequence number in BOARD[i] (line 1). Then, it waits

until the operation has been executed, and returns its result (line 2).

The array BOARD constitutes the helping mechanism used by the background

task of each process pi. This task is made up two parts, which are repeated forever.

First, pi build a proposal propi, which includes the last operations (at most one

per process) not yet applied to the object O, from its local point of view (lines 4-9

and predicate of line 6). Then, if the sequence propi is not empty, pi proposes

it to the next consensus instance CONS[ki] line 12). The resulting value listi is a

sequence of operations proposed by a process to this consensus instance. Process

pi then applies this sequence of operations to its local copy statei of O (line 14),

and updates accordingly its local array sni (line 15). If the operation that was

applied is its own operation, pi sets the Boolean donei to true (line 16), which will

terminate its current invocation (line 2).

Bounded wait-freedom versus unbounded wait-freedom This construction

ensures that the operations issued by the processes are wait-free, but does not

guarantee that they are bounded-wait-free, namely, the number of steps (accesses

to the shared memory) executed before an operation terminates is finite but not

bounded. Consider a process pi that issues an operation op(), while k1 is the

value of ki. let and k2 = k1 + α be such that op() is output by the consensus

instance CONS[k2]. The task T of pi must execute α times the lines 4-18 in order

to catch up the consensus instance CONS[k2] and return the result produced by

op(). It is easy to see that the quantity (k2 − k1) is always finite but cannot be

bounded.

A bounded construction is described in [32]. Instead of requiring each pro-

cess to manage a local copy of the object, O is kept in shared memory and is

represented by a list of cells including an operation, the resulting state, the result

produced by this operation, and a consensus object whose value is a pointer to the

next cell. The last cell defines the current value of the object.

5.4 Consensus number and the consensus hierarchy

Consensus number of an object The notion of the consensus number of an

object was introduced by M. Herlihy in [32]. Let us consider an object of type

T (defined by a sequential specification). The consensus number of an object of

type T is the greatest integer n such that it is possible to implement a consensus

object in a system of n processes, with any number of atomic read/write registers

and objects of type T . The consensus number is +∞ if there is no largest n.

This notion allows us to answer the first question posed in Section 5.1, and

this answer defines what is called the object consensus hierarchy. More precisely,

it has been shown in [32] that:
• The consensus number of read/write registers is 1. It follows that all objects

that can be built from read/write registers only (i.e., in CARWn[∅] without

enrichment with additional operations) have consensus number 1. Snapshot

objects [1, 5] and renaming objects [7, 16] are such objects.

• The consensus number of hardware operations such as Test&Set, Fetch&Add,

Swap (exchange the values in a local register an a shared register), and a few

others, have consensus number 2. This means that a universal construction

can be built in CARW2[Test&Set] (i.e., in a system of two processes), but

impossible in CARWn[Test&Set] for n > 2.

• Let a k-window read/write register be a register that stores only the sequence

of the last k values which have been written, and whose read operation re-

turns this sequence of at most k values. It is shown in [49] that the consensus

number of a k-window is k.

• Finally, the consensus number of Compare&Swap, LL/SC, and a few others,

is +∞.

This infinite hierarchy is the consensus hierarchy. It provides us with a rank-

ing of the power of synchronization objects and hardware provided synchroniza-

tion operations in wait-free systems (i.e., systems where all, except one, processes

may crash). As an example, if any number of processors may crash, this hierar-

chy states that a multicore with Test&Set is computationally less powerful than a

multicore with LL/SC.

Consensus from several operations on memory locations The previous hier-

archy considers that consensus must be built from read/write registers and objects

of a given type T only. What can be done when several hardware operations which

access the same memory locations are given?

As an example, let CARWn[Test&Set, Fetch&Add2] be the system model

(defined in [22]) where Test&Set and Fetch&Add2 are two atomic operations de-

fined as follows:

• Test&Set returns the value of the memory location, and sets it to 1 if it

contained 0,

• Fetch&Add2 returns the value in the memory location and increases it by 2.

Each of these operations on memory locations has consensus number 2. The

algorithm described in Figure 7 (due to F. Ellen, G. Gelashvili, N. Shavit, and L.

Zhu, [22]) shows that a binary consensus object can be built in the system model

in CARWn[Test&Set, Fetch&Add2], for any value of n. This means that the

previous hierarchy collapses when object types defined by operations on memory

locations can be used to implement consensus. Binary consensus means that only

the values 0 and 1 can be proposed. This is not a problem as it is possible to build

a multivalued consensus object from binary consensus objects (see [52]).

when pi invokes propose(v) do

(1) if (v = 0) then X.fetch&add2();

(2) if (X is odd) then return(1) else return(0) end if

(3) else x← X.test&set();

(4) if (x is odd) ∨ (x = 0) then return(1) else return(0) end if

(5) end if.

Figure 7: A wait-free consensus algorithm in CARWn[Test&Set, Fetch&Add2]

(code for process pi)

The internal representation of the binary consensus object is a single mem-

ory location X, initialized to 0. According to the value it proposes (0 or 1), a

process executes the statements of lines 2-3 or the statements of lines 4-5. The

value returned by the consensus object is sealed by the first atomic operation that

is executed. It is 0 if the first operation on X is X.fetch&add2(), and 1 if first

operation on X is X.test&set(). The reader can check that, if the first operation

on X is fetch&add2(), X becomes and remains even forever. If it is test&set(), X

becomes and remains odd forever. In the first case, only 0 can be decided, while

in the second case, only 1 can be decided.

Power number The notion of the power number of an object type T (PN(T))

was introduced by G. Taubenfeld in [59]. It is the largest integer k such that it

is possible to implement a k-obstruction-free consensus object for any number of

processes, using any number of atomic read/write registers, and any number of

objects of type T (the registers and the objects of type T being wait-free). If there

is no such largest k, PN(T) = +∞.

Hence, the power number of an object type T relates k-obstruction-freedom

and wait-freedom, when objects of type T are used. Let CN(T) be the consensus

number of the objects of type T . It is shown in [59] that CN(T) = PN(T). This re-

sult establishes a strong relation linking wait-freedom and k-obstruction-freedom.

As noticed in [59], “the difficult part of the proof is to show that, for any k ≥ 1, it

is possible to implement a k-obstruction-free consensus algorithm for any number

of processes, using only wait-free consensus objects for k processes and atomic

read/write registers”.

5.5 Universal construction “1 among k”

k-Set agreement k-Set agreement (k-SA) was introduced by S. Chaudhuri [19].

It is a simple generalization of consensus. It is defined by the same validity and

termination properties, and a weaker agreement property, namely, at most k differ-

ent values can be decided by the processes. Hence, 1-set agreement is consensus.

It is shown in [10, 37, 56] that it is impossible to build a k-set agreement object in

CARWn[∅] when k or more processes may crash.

k-simultaneous consensus k-Simultaneous consensus (k-SC) was introduced

in [3]. As consensus and k-SA, a k-SC object is a one-shot object that provides

the processes with a single operation denoted propose(). This operation takes

an input parameter a vector of size k, whose each entry contains a value, and re-

turns a pair 〈x, v〉. The input vector contains “proposed” values, and if 〈x, v〉 is the

pair returned to the invoking process, this process “decides v, and this decision is

associated with the consensus instance x”, 1 ≤ x ≤ k.

More precisely, the behavior of a k-SC object is defined by the following prop-

erties.

• Termination. If a correct process invokes propose(), it decides a pair 〈x, v〉.

• Validity. If a process pi decides the pair 〈x, v〉, we have 1 ≤ x ≤ k, and

the value v was proposed by a process in the entry x of its input vector

parameter.

• Agreement. Let pi be a process that decides the pair 〈x, v〉, and p j be a

process that decides the pair 〈y,w〉. We have (x = y)⇒ (v = w).

It is shown in [3] that k-SA and k-SC have the same computational power in

the sense that a k-SA object can be built in CARWn[k-SC], and a k-SC object can

be built in CARWn[k-SA]. This equivalence is no longer true in asynchronous

crash-prone message-passing systems, where k-SC is stronger than k-SA [12, 54].

Let ini[1..k] be the input parameter of a process pi. An easy implementation of

k-SC in CARWn[∅] enriched with k consensus objects CONS[1..k] is as follows.

For each x, 1 ≤ x ≤ k, and in parallel, a process pi proposes ini[x] to the consensus

object CONS[x]. Let CONS[y] be the first consensus object which returns a value

v to pi. Process pi decides then the pair 〈y, v〉.

The notion of k-universality E. Gafni and R. Guerraoui investigated in [27] the

following question: What does happen if, instead of consensus objects, we use

k-SA (or equivalently k-SC) objects to design a universal construction?

They showed that it is then possible to design what they called a k-universal

construction. Such a construction considers k objects (instead of only one) and

guarantees that at least one of these objects progresses forever. Let GG denote the

k-universal construction described in [27].

Adopt-commit object The GG construction relies on k-SC objects and adopt-

commit (AC) objects. This object, introduced in [26], is a one-shot object which

provides the processes with a single operation denoted propose(), which takes a

value as input parameter and returns a pair composed of a tag and a value. Its

behavior is defined by the following properties.

• Validity.

– Result domain. Any returned pair 〈tag, v〉 is such that (a) v has been

proposed by a process and (b) tag ∈ {commit, adopt}.

– No-conflicting values. If a process pi invokes propose(v) and returns

before any other process p j has invoked propose(w) with w , v, only

the pair 〈commit, v〉 can be returned.

• Agreement. If a process returns 〈commit, v〉, only the pairs 〈commit, v〉 or

〈adopt, v〉 can be returned by the other processes.

• Termination. An invocation of propose() by a correct process always ter-

minates.

It follows from the “no-conflicting values” property that, if a single value v is pro-

posed, only the pair 〈commit, v〉 can be returned. Adopt-commit objects can be

wait-free implemented in CARWn[∅] (e.g., [26, 52]). Hence, they provide pro-

cesses with a higher abstraction level than read/write registers, but do not provide

them with additional computational power.

A non-blocking k-universal construction (This section borrows text from [55])

The algorithm GG is based on local replication paradigm, namely, the only shared

objects are the control objects KSC[1..] (unbounded list of k-SC objects) and

AC[1..][1..k] (matrix of adopt-commit objects). Each process pi manages a copy

of every object m, denoted statei[m], which contains the last state of m as known

by pi. The invocation by pi of δ(statei[m], op) applies the operation op() to its

local copy of object m. The construction consists in an infinite sequence of asyn-

chronous rounds, locally denoted ri at process pi.

Each process manages the following local data structures.

• For each object m, my_listi[m] defines the list of operations that pi wants

to apply to the object m. Moreover, my_listi[m].first() sets the read head to

point to the first element of this list and returns its value; my_listi[m].current()

returns the operation under the read head; finally, my_listi[m].next() ad-

vances the read head before returning the operation pointed to by the read

head.

• For each object m, operi[m], ac_opi[m] are local variables which contain

operations that pi wants to apply object m (this list can be defined dynami-

cally according to the algorithm executed by pi); tagi[m] is used to contain

a tag returned by an adopt-commit object concerning the object m.

The algorithm is presented in Figure 8. A process pi first initializes its round

number, and the local copy of each object. The array operi[1..k] is such that

operi[m] contains the next operation that pi wants to apply to m. When this is

done, it enters an infinite loop, which constitutes the core of the construction.

To simplify the presentation, and without loss of generality, we consider that all

object operations are different (this can be easily realized with sequence numbers

and process identities). Moreover, we also do not consider the result returned by

each operation.

ri ← 0;

for each m ∈ {1, ..., k} do

statei[m]← initial state of the object m; operi[m]← my_listi[m].first()

end for.

repeat forever

(1) ri ← ri + 1;

(2) 〈ob j, op〉 ← KSC[ri].propose(operi[1..k]);

(3) (tagi[ob j], ac_opi[ob j])← AC[ri][ob j].propose(op);

(4) for each m ∈ {1, ..., k} \ {ob j} do

(tagi[m], ac_opi[m])← AC[ri][m].propose(operi[m]) end for;

(5) for each m ∈ {1, ..., k} do

(6) if (ac_opi[m] is marked “to_be_executed_after” operi[m])

(7) then statei[m].δ(statei[m], operi[m])

(8) end if;

(9) if (operi[m] is not marked “to_be_executed_after′′ ac_opi[m])

(10) then if (tagi[m] = adopt)

(11) then operi[m]← ac_opi[m]

(12) else statei[m]← δ(statei[m], ac_opi[m]); % tagi[m] = commit %

(13) if ac_opi[m] = my_listi[m].current()

(14) then operi[m]← my_listi[m].next()

(15) else operi[m]← my_listi[m].current()

(16) end if;

(17) mark operi[m] “to_be_executed_after” ac_opi[m]

(18) end if

(19) end if

(20) end for

end repeat.

Figure 8: Non-blocking k-universal construction (code of pi)

After it has increased its round number, a process pi invokes the k-simultaneous

consensus object KSC[r] to which it proposes the operation vector operi[1..n],

and from which it obtains the pair denoted 〈ob j, op〉; op is an operation proposed

by some process for the object ob j (line 2). Process pi then invokes the adopt-

commit object AC[r][ob j] to which it proposes the operation op output by KSC[r]

for the object ob j (line 3). Finally, for all the other objects m , ob j, pi invokes

the adopt-commit object AC[r][m] to which it proposes operi[m] (line 4). As al-

ready indicated, the tags and the operations defined by the vector of pairs output

by the adopt-commit objects AC[r][1..k] are saved in the vectors tagi[1..k];and

ac_opi[1..k], respectively. The aim of these lines, realized by the objects KSC[r]

and AC[r][1..m]is to implement a filtering mechanism such that (a) for each ob-

ject, at most one operation can be be committed, and (b) there is at least one object

for which an operation is committed at some process. This filtering mechanism is

explained separately below.

After the execution lines 2-4, for 1 ≤ m ≤ k, 〈tagi[m], ac_opi[m]〉 contains

the operation that pi has to consider for the object m. For each of them it does

the following. First, if ac_opi[m] is marked “to be executed after” operi[m], pi

applies operi[m] to statei[m] (lines 6-8). Then, the predicate of line 9 ensures that

no operation invocation is applied twice on the same object (this line is missing

in [27]). If tagi[m] = adopt, pi adopts ac_opi[m] as its next proposal for the

object m (lines 10-11). Otherwise, tagi[m] = commit. In this case pi first ap-

plies ac_opi[m] to its local copy statei[m] (line 12). Then, if ac_opi[m] was an

operation it has issued, pi computes its next operation operi[m] on the object m

(lines 13-16).

As explained in [27], the use of a naive strategy to update local copies of the

objects, makes possible the following bad scenario. During a round r, a process

p1 executes an operation op1 on its copy of the object m1, while a process p2

executes a operation op2 on a different object m2. Then, during round r + 1, p1

executes a operation op3 on the object m2 without having executed first op2 on its

copy of m2. This bad behavior is prevented from occurring by a combined used

of adopt-commit objects and an appropriate marking mechanism. When a process

pi applies an operation op() to its local copy of an object m, it has necessarily re-

ceived the pair 〈commit, op()〉 from the adopt-commit object associated with the

current round, and consequently the other processes have received 〈commit, op()〉

or 〈adopt, op()〉. The process pi attaches then to its next operation for the object

m (which is denoted operi[m]) the indication that operi[m] has to be applied to

m after op() so that no process executes operi[m] without having previously exe-

cuted op(). Hence, to prevent the bad behavior previously described, a process pi

attaches to operi[m] (line 17) the fact that this operation cannot be applied to any

copy of the object m before the operation ac_opi[m].

As already indicated, this k-universal construction ensures that at least one

process progresses forever (non-blocking progress condition), and at least one

object progresses forever.

Why at least one object operation is committed at every round It was claimed

above that the “filtering mechanism” realized by lines 2-4 ensures that at least one

operation is committed at every round. We prove here this claim. Figure 9 illus-

trates the associated reasoning.

After (at line 2) a process pi1 obtained a pair 〈ob j1, op1〉 from its invoca-

tion KSC[r].propose(operi[1..k]), it invokes AC[r][ob j1].propose(op1) at line 3,

and only then it invokes AC[r][ob j].propose(op1) for each object ob j , ob j1 at

line 4. If its invocation of AC[r][ob j1].propose(op1) at line 3 returns 〈commit,−〉,

the claim follows.

Hence, let us assume that the invocation of AC[r][ob j1].propose(op1) by pi1

returns 〈adopt,−〉. It follows from the “non-conflicting” property of the AC ob-

ject AC[r][ob j1] that another process pi2 has necessarily invoked the operation

AC[r][ob j1].propose(op′) with op′ , op1; moreover this invocation by pi2 was

issued at line 4 (if both pi1 and pi2 had invoked AC[r][ob j1].propose() at line 3,

due to agreement property of AC[r][ob j1], they would have obtained the same

pair from this object at line 3, and consequently pi2 could not have prevented pi1

from obtaining 〈commit,−〉 from the AC object AC[r][ob j1] at line 3). If follows

that pi2 started line 4 before pi1 terminated line 3. The invocation by pi2 at line 3 of

AC[r][−] involved some object ob j2 obtained by pi2 at line 2, and we necessarily

have ob j2 , ob j1).

line 3pix

pi2

pi1

line 3

line 3line 2

AC[r][ob j2].propose()

AC[r][ob j1].propose()

AC[r][ob jx].propose()

precedes

line 4

line 4

precedes

〈ob j1,−〉 ← KSC[r].propose()

AC[r][ob j2].propose()

〈adopt,−〉 ← AC[r][ob j1].propose()

Figure 9: Net effect of the k-SC and CA objects used at lines 2-4 of round r

If the invocation of AC[r][ob j2].propose() returns 〈commit,−〉, the claim fol-

lows. Otherwise, due to the agreement property of AC[r][ob j2], there is a process

pi3, different from pi1 and pi2, such that the execution pattern between pi3 , pi2

is the same as the previous pattern between pi2 , pi1, etc. The claim then follows

by induction and the fact that there is finite number of processes.

5.6 Ultimate universal construction “ℓ among k”

The previous NB-compliant k-universal construction ensures that at least one ob-

ject progresses forever, and one process progresses forever. Hence, the natural

question: Is it possible to design a universal construction in which at least ℓ ob-

jects progress forever, where 1 ≤ ℓ ≤ k, and all correct processes progress forever

(wait-freedom progress condition).

Such a very general universal construction was proposed by M. Raynal, J.

Stainer, and G. Taubenfeld in [55]. It rests on an extension of the k-SC object

called (k, ℓ)-simultaneous consensus.

(k, ℓ)-simultaneous consensus Let ℓ ∈ {1, ..., k}. A (k, ℓ)-SC object is a k-

SC object (see Section 5.5) where instead of a single pair 〈x, v〉, the operation

propose() returns a set of exactly ℓ pairs {〈x1, v1〉, ..., 〈xℓ, vℓ〉}, such that all the

pairs differ in their first component.

It is easy to see that (k, 1)-SC object is a k-SC object (and consequently a k-

SA object). Moreover, a (k, k)-SC object is a consensus object. It is also easy to

see that a (k, k)-SC object is a consensus object. For k > 1, a (k, ℓ)-SC object is

weaker than a (k, ℓ + 1)-SC object.

(k, ℓ)-Universal construction The (k, ℓ)-universal construction presented in [55]

borrows the lines 1-4 of Figure 8, in which k-SC objects are replaced by (k, ℓ)-SC

objects. All the rest of the construction, which is built incrementally, is based on

a different approach. A non-blocking k-universal construction is first described,

and then enriched step by step to obtain the final WF-compliant (k, ℓ)-universal

construction. Its noteworthy features are the following.

• On the object side. At least ℓ among the k objects progress forever, 1 ≤ ℓ ≤

k. This means that an infinite number of operations is applied to each of

these ℓ objects. This set of ℓ objects is not predetermined, and depends on

the execution.

• On the process side. The progress condition associated with processes is

wait-freedom. That is, a process that does not crash executes an infinite

number of operations on each object that progresses forever.

• An object stops progressing when no more operations are applied to it. The

construction guarantees that, when an object stops progressing, all its copies

stop in the same state (at the non-crashed processes).

• The construction is contention-aware. This means that the overhead intro-

duced by using operations on memory locations other than atomic read/write

registers is eliminated when there is no contention during the execution of

an object operation. In the absence of contention, a process completes its

operations by accessing only read/write registers.

• The construction is generous with respect to obstruction-freedom. This

means that each process is able to complete its pending operations on all

the k objects each time all the other processes hold still long enough. That

is, if once and again all the processes except one hold still long enough, then

all the k objects, and not just ℓ objects, are guaranteed to always progress.

• Last but least, it is shown in [55] that (k, ℓ)-simultaneous consensus objects

are necessary and sufficient to implement a (k, ℓ)-universal construction, i.e.

to ensure that at least ℓ among k objects progress forever while guaranteeing

the wait-freedom progress condition to the processes. Relations between

(k, k − p)-SC objects and (p + 1)-set agreement objects for 0 ≤ p < k are

also investigated in [55].

6 Universal Construction

vs Software Transactional Memory

A universal construction concerns the distributed implementation of concurrent

objects defined by a sequential specification. The concept of a software transac-

tional memory (STM), introduced in [35], and later refined in [57], is different.

Its aim is to provide the programmers with a language construct (called transac-

tion) that discharges them from the management of synchronization issues. In this

way, a programmer can concentrate his efforts on which parts of processes have

to be executed atomically and not on the way atomicity is realized. This last issue

is then the job of the underlying STM system. Among others, main differences

between universal constructions and STM systems are the following.

• Object operations are defined a priori (statically), and the universal con-

struction knows them. Differently, the transactions are defined dynamically,

and the STM system has no priori knowledge of their content and their ef-

fects.

Let us also notice that, despite the fact they have the same name, database

transactions [28] and STM transactions are not the same. Database trans-

actions are constrained in the sense that they are the result of a queries

expressed in a given formalism. Differently, STM transactions can be any

piece of code produced by a programmer, which must be executed atomi-

cally. Moreover, usually the code of the STM transactions is not known by

the STM system.

• The consistency condition of concurrent objects (captured at run-time by

linearizability [38]) and the consistency conditions of STM systems (e.g.,

opacity [29], virtual world consistency [40], or TMS1 [20]) are different.

Among other points, this come from the fact that any two transactions are a

priori independent.

• Due to their very nature, universal constructions consider failure-prone sys-

tems. Differently, some STMs address failure-free systems while others

address failure-prone systems.

7 Conclusion

The aim of this article was to be a guided visit to universal constructions in

asynchronous crash-prone systems, where the processes communicate through a

shared memory. As announced in the introduction, its ambition is not to be an

exhaustive catalog of the numerous universal constructions proposed so far, but a

relatively easy to understand introduction to the “universal construction” problem

and the important concepts, objects, and approaches, which constitute the founda-

tions of the associated algorithms.

To this end, the article has first presented a simple construction based on hard-

ware operations on memory locations, namely the LL/SC pair of operations. It

then moved from hardware-provided operations to agreement objects, and pre-

sented a simple consensus-based universal construction. Finally, the article con-

sidered the case where the aim is not to address the construction of a single object,

but the coordinated construction of several objects. It is important to realize that,

if not all the objects which are built are required to progress forever, hardware op-

erations such as LL/SC or Compare&Swap are stronger than necessary to build

universal constructions.

As a final remark, let us notice that OB-compliant (obstruction-free) universal

constructions do not require to enrich the system with the additional computa-

tional power provided by instructions such as LL/SC or agreement objects, i.e.,

they can be done in the basic system model CARW[∅]. This remains true even

if the processes are anonymous. The algorithms presented in [11] build a consen-

sus object and a repeated consensus object respectively, in such an asynchronous

crash-prone anonymous read/write system with only n read/write atomic registers,

which we conjecture to be optimal (it is proved in [63] that at least (n−1) registers

are necessary).

Acknowledgments

This work was partially supported by the Franco-German DFG/ANR project DIS-

CMAT devoted to connections between mathematics and distributed computing

(ANR-14-CE35-0010-02), and the French ANR project DESCARTES devoted to

distributed software engineering (ANR-16-CE40-0023-03). A special thank to

Stefan Schmid for his careful reading of the article.

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic snapshots

of shared memory. Journal of the ACM, 40(4):873-890 (1993)

[2] Afek Y., Dauber D., and Touitou D., Wait-free made fast. Proc. 27th ACM Sympo-

sium on Theory of Computing (STOC’95), ACM Press, pp. 538-547 (1995)

[3] Afek Y., Gafni E., Rajsbaum S., Raynal M., and Travers C., The k-simultaneous

consensus problem. Distributed Computing, 22(3):185-195 (2010)

[4] Aguilera M.K., Frolund S., Hadzilacos V., Horn S.L., and Toueg S., Abortable and

query-abortable objects and their efficient implementation. Proc. 26th ACM Sympo-

sium on Principles of Distributed Computing (PODC’07), ACM Press, pp. 23-32

(2007)

[5] Anderson J.H., Multi-writer composite registers. Distributed Computing, 7(4):175-

195 (1994)

[6] Anderson J. and Moir M., Universal constructions for large objects. IEEE Transac-

tions on Parallel and Distributed Systems, 10(12):1317-1332 (1999)

[7] Attiya H., Bar-Noy A., Dolev D., Peleg D., and Reischuk R., Renaming in an asyn-

chronous environment. Journal of the ACM, 37(3):524-548 (1990)

[8] Ben-David N., Cheng Chan D.Y., Hadzilacos V. and Toueg S., k-Abortable objects:

progress under high contention. Proc. 30th Int’l Symposium on Distributed Comput-

ing (DISC’16), Springer LNCS 9888, pp. 298-312 (2016)

[9] Bartlett K. A., Scantlebury S. A., and Wilkinson P. T., A note on reliable full-duplex

transmission over half-duplex links. Communications of the ACM, 12(5):260-261

(1969)

[10] Borowsky E. and Gafni E., Generalized FLP impossibility results for t-resilient

asynchronous computations. Proc. 25th ACM Symposium on Theory of Computing

(STOC’93), ACM Press, pp. 91-100 (1993)

[11] Bouzid Z., Raynal M., and Sutra P., Anonymous obstruction-free (n, k)-set agree-

ment with (n − k + 1) atomic read/write registers. Proc. 19th Int’l Conference On

Principles Of Distributed Systems (OPODIS’15), Leibniz Int’l Proceedings in Infor-

matics, LIPICS 46, Article 18:1-17 (2015)

[12] Bouzid Z. and Travers C., Simultaneous consensus is harder than set agreement

in message-passing. Proc. 33rd Int’l IEEE Conference on Distributed Computing

Systems (ICDCS’13), IEEE Press, pp. 611-620 (2013)

[13] Brinch Hansen, P., The origin of concurrent programming. Springer, 534 pages,

ISBN 0-387-95401-5 (2002)

[14] Bushkov V. and Guerraoui G., Safety-liveness exclusion in distributed computing.

Proc. 34th ACM Symposium on Principles of Distributed Computing (PODC’15),

ACM Press, pp. 227-236 (2015)

[15] Capdevielle Cl., Johnen C., and Milani A., Solo-fast universal constructions for de-

terministic abortable objects. Proc. 28th Int’l Symposium on Distributed Computing

(DISC’14), Springer LNCS 8784, pp. 288-302 (2014)

[16] Castañeda A., Rajsbaum S., and Raynal M., The renaming problem in shared mem-

ory systems: an introduction. Elsevier Computer Science Review, 5:229-251 (2011)

[17] Censor-Hillel K., Petrank E., and Timnat S., Help! Proc. 34th Symposium on Prin-

ciples of Distributed Computing (PODC’15), ACM Press, pp. 241-250 (2015)

[18] Chandra T.D. and Toueg S., Unreliable failure detectors for reliable distributed sys-

tems. Journal of the ACM, 43(2):225-267 (1996)

[19] Chaudhuri S., More choices allow more faults: set consensus problems in totally

asynchronous systems. Information and Computation, 105(1):132-158 (1993)

[20] Doherty S., Groves L., Luchangco V., and Moir M., Towards formally specify-

ing and verifying transactional memory. Formal Aspects of Computing, 25:769-799

(2013)

[21] Ellen F., Fatourou P., Kosmas E., Milani A., and Travers C., Universal constructions

that ensure disjoint-access parallelism and wait-freedom. Distributed Computing,

29:251-277 (2016)

[22] Ellen F., Gelashvili G., Shavit N. and Zhu L., A complexity-based hierarchy for

multiprocessor synchronization (Extended abstract). Proc. 35th ACM Symposium on

Principles of Distributed Computing (PODC’16), ACM Press, pp. 289-298 (2016)

[23] Fatourou P. and Kallimanis N.D., The RedBlue adaptive universal constructions.

Proc. 23rd Symposium on Distributed Computing (DISC’09), Springer LNCS 5805,

pp. 127-141 (2009)

[24] Fatourou P. and Kallimanis N.D., Highly-efficient wait-free synchronization. Theory

of Computing Systems, 55:475-520 (2014)

[25] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus

with one faulty process. Journal of the ACM, 32(2):374-382 (1985)

[26] Gafni E., Round-by-round fault detectors: unifying synchrony and asynchrony.

Proc. 17th ACM Symposium on Principles of Distributed Computing (PODC), ACM

Press, pp. 143-152 (1998)

[27] Gafni E. and Guerraoui R., Generalizing universality. Proc. 22nd Int’l Conference

on Concurrency Theory (CONCUR’11), Springer LNCS 6901, pp. 17-27 (2011)

[28] Gray J., Notes on database operating systems. Advanced course on Operating Sys-

tems, Springer LNCS 60, pp. 393-481 (1978)

[29] Guerraoui R. and Kapalka M., On the correctness of transactional memory. Proc. 3rd

ACM Symposium on Principles an Practice of Parallel Programming (PPOPP’03),

ACM Press, pp. 175-184 (2008)

[30] Guerraoui R. and Raynal M., A universal construction for wait-free objects. Proc.

Workshop on Foundations of Fault-Tolerant Distributed Computing (FOFDC 2007),

Computer Society Press, pp. 959-966 (2007)

[31] Hadzilacos V. and Toueg S., On deterministic abortable objects. Proc. 35th ACM

symposium on Principles of Distributed Computing (PODC’13), ACM Press, pp. 4-

12 (2013)

[32] Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Lan-

guages and Systems, 13(1):124-149 (1991)

[33] Herlihy M.P., A methodology for implementing highly concurrent data objects.

ACM Transactions on Programming Languages and Systems, 15(5):745-770 (1993)

[34] Herlihy M.P., Luchangco V., and Moir M., Obstruction-free synchronization:

double-ended queues as an example. Proc. 23th Int’l IEEE Conference on Dis-

tributed Computing Systems (ICDCS’03), IEEE Press, pp. 522-529 (2003)

[35] Herlihy M. and Moss J.E.B., Transactional memory: architectural support for lock-

free data structures. Proc. 20th Annual International Symposium on Computer Ar-

chitecture (ISCA’93), ACM Press, pp. 289-300 (1993)

[36] Herlihy M., Rajsbaum S., and Raynal M., Power and limits of distributed computing

shared memory models. Theoretical Computer Science, 509:3-24 (2013)

[37] Herlihy M.P. and Shavit N., The topological structure of asynchronous computabil-

ity. Journal of the ACM, 46(6):858-923 (1999)

[38] Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems, 12(3):463-

492 (1990)

[39] Imbs D. and Raynal M., Help when needed, but no more: efficient read/write partial

snapshot. Journal of Parallel and Distributed Computing, 72(1):1-13 (2012)

[40] Imbs D. and Raynal M., Virtual world consistency: A condition for STM systems

(with a versatile protocol with invisible read operations). Theoretical Computer Sci-

ence, 444:113-127 (2012)

[41] Imbs D., Raynal M., and Taubenfeld G., On asymmetric progress conditions. Proc.

29th ACM Symposium on Principles of Distributed Computing (PODC’10), ACM

Press, pp. 55-64 (2010)

[42] Kramer S. N., History begins at Sumer: thirty-nine firsts in man’s recorded history.

University of Pennsylvania Press, 416 pages, ISBN 978-0-8122-1276-1 (1956)

[43] Lamport L., Time, clocks, and the ordering of events in a distributed system. Com-

munications of the ACM, 21(7):558-565 (1978)

[44] Lamport L., On interprocess communication, Part I: basic formalism. Distributed

Computing, 1(2):77-85 (1986)

[45] Lamport L., Fast mutual exclusion. ACM Transactions on Computer Systems, 5(1):1-

11 (1987)

[46] Lamport L., Shostack R. and Pease M., The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 4(3)-382-401 (1982)

[47] Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable

asynchronous processes. Advances in Computing Research, 4:163-183, JAI Press

(1987)

[48] Lynch W. C., Reliable full-duplex file transmission over half-duplex telephone lines.

Communications of the ACM, 11(6):407-410 (1968)

[49] Mostéfaoui A., Perrin M., and Raynal M., A simple object that spans the whole

consensus hierarchy. Submitted to publication, (2016)

[50] Neugebauer O. E., The exact sciences in Antiquity. Princeton University Press

(1952); 2nd edition: Brown University Press, (1957); Reprint: Dover publications

(1969)

[51] Post E. L., Formal reductions of the general combinatorial decision problem. Amer-

ican Journal of Mathematics, 65 (2):197-215 (1943)

[52] Raynal M., Concurrent programming: algorithms, principles and foundations.

Springer, 515 pages, ISBN 978-3-642-32026-2 (2013)

[53] Raynal M., Concurrent systems: hybrid object implementations and abortable ob-

jects. Proc. 21th Int’l European Parallel Computing Conference (EUROPAR’15),

Springer LNCS 9233, pp. 3-15 (2015)

[54] Raynal M. and Stainer J., Simultaneous consensus vs set agreement: a message-

passing-sensitive hierarchy of agreement problems. Proc. 20th Int’l Colloquium on

Structural Information and Communication Complexity (SIROCCO 2013), Springer

LNCS 8179, pp. 298-309 (2013)

[55] Raynal M., Stainer J., and Taubenfeld G., Distributed universality. Algorithmica,

76(2):502-535 (2016)

[56] Saks M. and Zaharoglou F., Wait-free k-set agreement is impossible: the topology

of public knowledge. SIAM Journal on Computing, 29(5):1449-1483 (2000)

[57] Shavit N. and Touitou D., Software transactional memory. Distributed Computing

10(2):99-116 (1997)

[58] Taubenfeld G., Synchronization algorithms and concurrent programming. 423

pages, Pearson Education/Prentice Hall, ISBN 0-131-97259-6 (2006)

[59] Taubenfeld G., Contention-sensitive data structure and algorithms. Proc. 23rd Int’l

Symposium on Distributed Computing (DISC’09), Springer LNCS 5805, pp. 157-

171 (2009)

[60] Taubenfeld G., The computational structure of progress conditions. Proc. 24th Int’l

Symposium on Distributed Computing (DISC’10), Springer LNCS 6343, pp. 221-

235 (2010)

[61] Turing A. M., On computable numbers with an application to the Entschei-

dungsproblem. Proc. of the London Mathematical Society, 42:230-265 (1936)

[62] Wantzel P. L., Recherches sur les moyens de reconnaître si un problème de géométrie

peut se résoudre avec la règle et le compas, Journal de mathématiques pures et

appliquées, 1(2):366-372 (1837)

[63] Zhu L., A tight space bound for consensus. Proc. 48th ACM Symposium on Theory

of Computing (STOC’16), ACM Press, pp. 345-350 (2016)

Lower bounds for Transactional memory

Srivatsan Ravi
Purdue University

Abstract

Transactional memory allows the user to declare sequences of instructions
as speculative transactions that can either commit or abort. If a transaction
commits, it appears to be executed sequentially, so that the committed transac-
tions constitute a correct sequential execution. If a transaction aborts, none of
its update operations can affect other transactions. The TM implementation
endeavors to execute these instructions in a manner that efficiently utilizes
the concurrent computing facilities provided by multicore architectures.

The TM abstraction, in its original manifestation, extended the processor’s
instruction set with instructions to indicate which memory accesses must be
transactional. Most popular TM designs, subsequent to the original proposal
have implemented all the functionality in software. More recently, processors
have included hardware extensions to support small transactions. Hardware
transactions may be spuriously aborted due to several reasons: cache capacity
overflow, interrupts etc. This has led to proposals for hybrid TMs in which
the fast, but potentially unreliable hardware transactions are complemented
with slower, but more reliable software transactions.

The complexity of TM implementations, whether realized in hardware
or software, is characterized by several measures: ordering semantics for
transactions, conditions under which transactions must terminate, conditions
under which transactions must commit/abort, bound on the number of ver-
sions that can be maintained, choice of the complexity metric and complexity
of read-only or updating transactions as well as a multitude of other imple-
mentation strategies. In this work, we survey known complexity bounds for
implementing TM as a shared object and the implicit assumptions underlying
these results.

1 Introduction

The wickedness and the foolishness of no man can
avail against the fond optimism of mankind.

James Branch Cabell-The Silver Stallion

Transactional memory (TM) allows concurrent processes to organize sequences
of operations on shared data items into atomic transactions. A transaction may
commit, in which case its updates of data items “take effect” or it may abort, in
which case no data items are updated. A TM implementation provides processes
with algorithms for implementing transactional operations on data items (such
as read, write and tryCommit) by applying primitives on shared base objects.
Intuitively, the idea behind the TM abstraction is optimism: before a transaction
commits, all its operations are speculative, and it is expected that, in the absence of
concurrency, a transaction commits.

TM implementations typically ensure that all committed transactions appear to
execute sequentially in some total order respecting the timing of non-overlapping
transactions. Moreover, intermediate states witnessed by the read operations of
an incomplete transaction may affect the user application. Thus, to ensure that
the TM implementation is safe and does not export any pathological executions, it
is additionally expected that every transaction (including aborted and incomplete
ones) must return responses that is consistent with some sequential execution of
the TM implementation.
TM implementations. As a synchronization abstraction, TM came as an alterna-
tive to conventional lock-based synchronization. The TM abstraction, in its original
manifestation, augmented the processor’s cache-coherence protocol and extended
the CPU’s instruction set with instructions to indicate which memory accesses must
be transactional [39]. Most popular TM designs, subsequent to the original pro-
posal in [39] have implemented all the functionality in software [18, 29, 38, 50, 61].
Early software transactional memory (STM) implementations [29, 38, 50, 61, 63]
adopted optimistic concurrency control and guaranteed that a prematurely halted
transaction cannot not prevent other transactions from committing. These imple-
mentations avoided using locks and relied on non-blocking (sometimes also called
lock-free) synchronization. Possibly the weakest non-blocking progress condition
is obstruction-freedom [37, 40] stipulating that every transaction running in the
absence of step contention, i.e., not encountering steps of concurrent transactions,
must commit.

In 2005, Ennals [28] argued that that obstruction-free TMs inherently yield
poor performance, because they require transactions to forcefully abort each other.
Ennals further describes a lock-based TM implementation [27] that he claimed to
outperform DSTM [38], the most referenced obstruction-free TM implementation at

Hardware TM
 (Static)

Non-blocking
Software TM

Hybrid TM

1993 Today1995-2003

 Non-blocking
Software TM

 Blocking
Software TM

2003-2006 2006-2010

Figure 1: TM implementations: a brief history

the time. Inspired by [28], more recent TM implementations like TL [21], TL2 [20]
and NOrec [18] employ locking and showed that Ennal’s claims about performance
of lock-based TMs hold true on most workloads. The progress guarantee provided
by these TMs is typically progressiveness: a transaction may be aborted only if it
encounters a read-write or a write-write conflicts with a concurrent transaction [32].
Nonetheless, TM designs that are implemented entirely in software still incur
significant performance overhead. Thus, current CPUs have included instructions
to mark a block of memory accesses as transactional [1, 53, 56], allowing them
to be executed atomically in hardware. Hardware transactions promise better
performance than STMs, but they offer no progress guarantees since they may
experience spurious aborts. This motivates the need for hybrid TMs in which the
fast hardware transactions are complemented with slower software transactions
that do not have spurious aborts.

Our focus. This work surveys lower bounds and (im)possibility results for TM
implementations. We identify the popular complexity metrics (e.g. expensive
synchronization patterns [8], memory stalls [26], number of memory steps etc.)
and their relevance in the TM context. We survey known lower and upper bounds
on the complexity of three classes of safe (software) TMs: blocking TMs that
allow transactions to delay or abort due to overlapping transactions (Section 3),
non-blocking TMs which adapt to step contention by ensuring that a transaction
not encountering steps of overlapping transactions must commit (Section 4), and
partially non-blocking TMs that provide strong non-blocking guarantees (wait-
freedom) to only a subset of transactions (Section 5). We then survey attempts at
modelling HyTMs and lower bounds that exhibit inherent trade-offs on the degree
of concurrency allowed between hardware and software transactions and the costs
introduced on the hardware (Section 6). We conclude with an overview of future
research directions and open questions concerning complexity of TMs (Section 7).

2 Transactional memory model and preliminaries

TM interface. Transactional memory (in short, TM) allows a set of data items
(called t-objects) to be accessed via atomic transactions. A transaction Tk may
contain the following t-operations: readk(X) returns a value in some domain V
(denoted readk(X)→ v) or a special value Ak < V (abort); writek(X, v), for a value
v ∈ V , returns ok or Ak; tryCk returns Ck < V (commit) or Ak.

TM implementations. We consider an asynchronous shared-memory system in
which a set of n processes, communicate by applying primitives on shared base ob-
jects. We assume that processes issue transactions sequentially, i.e., a process starts
a new transaction only after its previous transaction has completed (committed or
aborted). A TM implementation provides processes with algorithms for implement-
ing readk, writek and tryCk() of a transaction Tk by applying primitives from a set
of shared base objects, each of which is assigned an initial value. A primitive is
a generic read-modify-write (rmw) procedure applied to a base object [26, 36]. It
is characterized by a pair of functions 〈g, h〉: given the current state of the base
object, g is an update function that computes its state after the primitive is applied,
while h is a response function that specifies the outcome of the primitive returned
to the process. A rmw primitive is trivial if it never changes the value of the base
object to which it is applied. Otherwise, it is nontrivial. A trivial rmw primitive is
conditional if there exist configurations in which the primitive does not change the
value of the base object. Observe that this model explicitly precludes the use of
atomic primitives that access multiple base objects in a single step [24].

Executions and configurations. An event of a transaction Tk (sometimes we say
a step of Tk) is a rmw primitive 〈g, h〉 applied by Tk to a base object b along with
its response r (we call it a rmw event and write (b, 〈g, h〉, r, k)), or the invocation or
the response of a t-operation performed by Tk.

A configuration (of a TM implementation) specifies the value of each base
object and the state of each process. The initial configuration is the configuration
in which all base objects have their initial values and all processes are in their
initial states.

An execution fragment is a (finite or infinite) sequence of events. An execution
of a TM implementation M is an execution fragment where, starting from the initial
configuration, each event is issued according to M and each response of a RMW
event (b, 〈g, h〉, r, k) matches the state of b resulting from the preceding events. If
an execution can be represented as E · E′ (concatenation of execution fragments E
and E′), then we say that E · E′ is an extension of E or E′ extends E.

Let E be an execution fragment. For a transaction Tk (and resp. process pk),
E|k denotes the subsequence of E restricted to events of Tk (and resp. pk). If
E|k is non-empty, we say that Tk (resp. pk) participates in E, else we say E is

Tk-free (resp. pk-free). Two executions E and E′ are indistinguishable to a set T
of transactions, if for each transaction Tk ∈ T , E|k = E′|k. A TM history is the
subsequence of an execution consisting of the invocation and response events of
t-operations. Two histories H and H′ are equivalent if txns(H) = txns(H′) and for
every transaction Tk ∈ txns(H), H|k = H′|k.

Dynamic programming model. The read set (resp., the write set) of a transaction
Tk in an execution E, denoted RsetE(Tk) (and resp. WsetE(Tk)), is the set of t-objects
that Tk attempts to read (and resp. write) by issuing a t-read (and resp. t-write)
invocation in E (for brevity, we sometimes omit the subscript E from the notation).
The data set of Tk is Dset(Tk) = Rset(Tk) ∪ Wset(Tk). Tk is called read-only if
Wset(Tk) = ∅; write-only if Rset(Tk) = ∅ and updating if Wset(Tk) , ∅. Note that
we consider the conventional dynamic TM model: the data set of a transaction is
identifiable only by the set of t-objects the transaction has invoked a read or write
in the given execution.

Orders on transactions. Let txns(E) denote the set of transactions that participate
in E. An execution E is sequential if every invocation of a t-operation is either
the last event in the history H exported by E or is immediately followed by a
matching response. We assume that executions are well-formed, i.e., for all Tk, E|k
begins with the invocation of a t-operation, is sequential and has no events after
Ak or Ck. A transaction Tk ∈ txns(E) is complete in E if E|k ends with a response
event. The execution E is complete if all transactions in txns(E) are complete in
E. A transaction Tk ∈ txns(E) is t-complete if E|k ends with Ak or Ck; otherwise,
Tk is t-incomplete. Tk is committed (resp., aborted) in E if the last event of Tk

is Ck (resp., Ak). The execution E is t-complete if all transactions in txns(E) are
t-complete.

For transactions {Tk,Tm} ∈ txns(E), we say that Tk precedes Tm in the real-time
order of E, denoted Tk ≺

RT
E Tm, if Tk is t-complete in E and the last event of Tk

precedes the first event of Tm in E. If neither Tk ≺
RT
E Tm nor Tm ≺

RT
E Tk, then Tk and

Tm are concurrent in E. An execution E is t-sequential if there are no concurrent
transactions in E.

Contention. We say that a configuration C after an execution E is quiescent (resp.,
t-quiescent) if every transaction Tk ∈ txns(E) is complete (resp., t-complete) in
C. If a transaction T is incomplete in an execution E, it has exactly one enabled
event, which is the next event the transaction will perform according to the TM
implementation. Events e and e′ of an execution E contend on a base object b
if they are both events on b in E and at least one of them is nontrivial (the event
is trivial (resp., nontrivial) if it is the application of a trivial (resp., nontrivial)
primitive).

We say that T is poised to apply an event e after E if e is the next enabled event
for T in E. We say that transactions T and T ′ concurrently contend on b in E if

they are poised to apply contending events on b after E.
We say that an execution fragment E is step contention-free for t-operation

opk if the events of E|opk are contiguous in E. We say that an execution fragment
E is step contention-free for Tk if the events of E|k are contiguous in E. We say
that E is step contention-free if E is step contention-free for all transactions that
participate in E.
TM-correctness. Informally, a t-sequential history S is legal if every t-read of a
t-object returns the latest written value of this t-object. A history H is opaque if
there exists a legal t-sequential history S equivalent to H such that S respects the
real-time order of transactions in H [33].

A weaker condition called strict serializability ensures opacity only with re-
spect to committed transactions while definitions like virtual-world consistency
(VWC) [41] and transactional memory specification (TMS1) ensure strict serial-
izability and restricted safety for aborted transactions [25]. We direct the reader
to [9] for details on these definitions.
TM-progress. One may notice that a TM implementation that forces, in every
execution to abort every transaction is trivially strictly serializable, but not very
useful. A TM-progress condition specifies the conditions under which a transaction
is allowed to abort. Technically, a TM-progress condition specified this way is a
safety property since it can be violated in a finite execution.
TM-liveness. Observe that a TM-progress condition only specifies the conditions
under which a transaction is aborted, but does not specify the conditions under
which it must commit. Thus, in addition to a progress condition, we must stipulate
a liveness [5, 49] condition.
Read invisibility. Informally, in a TM using invisible reads, a transaction cannot
reveal any information about its read set to other transactions. Thus, given an
execution E and some transaction Tk with a non-empty read set, transactions other
than Tk cannot distinguish E from an execution in which Tk’s read set is empty.
This prevents TMs from applying nontrivial primitives during t-read operations
and from announcing read sets of transactions during tryCommit. Most popular
TM implementations like TL2 [20] and NOrec [18] satisfy this property.

The notion of weak invisible that prevents t-read operations from applying
nontrivial primitives only in the absence of concurrent transactions. Specifically,
weak read invisibility allows t-read operations of a transaction T to be “visible”,
i.e., write to base objects, only if T is concurrent with another transaction. For
example, the popular TM implementation DSTM [38] satisfies weak invisible reads,
but not invisible reads.
Disjoint-access parallelism (DAP). A TM implementation M is strictly disjoint-
access parallel (strict DAP) if, for all executions E of M, and for all transactions
Ti and T j that participate in E, Ti and T j contend on a base object in E only if

Dset(Ti) ∩ Dset(T j) , ∅ [33].
Informally, weak DAP [11] ensures that two transactions concurrently contend

on the same base object only if their data sets are connected in the conflict graph,
capturing data-set overlaps among all concurrent transactions [11]. Read-write
(RW) DAP [45], a restriction of weak DAP and a relaxation of strict DAP, defines
the conflict graph based on the write-set overlaps among concurrent transactions
and is satisfied by several popular obstruction-free implementations [29, 38, 63].

Observe that every RW DAP TM implementation satisfies weak DAP, but not
vice versa. Consider the following execution E that begins with the incomplete
execution of a transaction T0 that reads X and writes to Y , followed by the exe-
cution of two transactions T1 and T2 that access X and Y respectively. If E is an
execution of a weak DAP TM, transactions T1 and T2 may contend on a base object
since there is a path between X and Y in G(T1,T2, E). However, a RW DAP TM
implementation would preclude transactions T1 and T2 from contending on the
same base object: there is no edge between t-objects X and Y in the corresponding
conflict graph G̃(T1,T2, E) because X and Y are not contained in the write set of
T0.

For any two DAP definitions D1 and D2, if every TM implementation that
satisfies D1 also satisfies D2, but the converse is not true, we say that D2 � D1.
The following observation is immediate.

Observation 1. Weak DAP� RW DAP� Strict DAP� Strict data-partitioning.

3 Complexity of blocking TMs
We begin by overviewing TM implementations that are blocking. Figure 2 char-
acterizes the class of blocking TMs: single-lock TMs that satisfy sequential TM-
progress (a transaction may abort due to a concurrent transaction), (strongly)
progressive TMs that allow transactions to abort only due to read-write conflicts on
t-objects and finally permissive TMs that provide maximal concurrency allowing a
transaction to abort only if committing it would violate TM-correctness.

3.1 Sequential TMs
A quadratic lower bound on step complexity. [47] showed that a read-only trans-
action in an opaque TM featured with weak DAP, weak invisible reads, interval
contention-free (ICF) TM-liveness and sequential TM-progress must incremen-
tally validate every next read operation. This results in a quadratic (in the size of
the transaction’s read set) step-complexity lower bound. Here ICF TM-liveness
means, for every finite execution E such that the configuration after E is quiescent,

Sequential Progressive Strongly
progressive Permissive

Minimal concurrency Maximal concurrency

Figure 2: Classification of blocking TMs based on TM-progress: sequential (aborts
due to concurrent transaction); progressive (aborts due to read-write conflicts;
strongly progressive (progressive but at least one transaction from a set con-
flicting on single t-object must not be aborted); permissive (abort only due to
TM-correctness violation)

and every transaction Tk that applies the invocation of a t-operation opk immedi-
ately after E, the finite step contention-free extension for opk contains a response.
Secondly, [47] prove that if the TM-correctness property is weakened to strict
serializability, there exist executions in which the tryCommit of some transaction
must access a linear (in the size of the transaction’s read set) number of distinct
base objects.

Theorem 2 ([47]). For every weak DAP TM implementation M that provides ICF
TM-liveness, sequential TM-progress and uses weak invisible reads,

(1) If M is opaque, for every m ∈ N, there exists an execution E of M such that
some transaction T ∈ txns(E) performs Ω(m2) steps, where m = |Rset(Tk)|.

(2) if M is strictly serializable, for every m ∈ N, there exists an execution E of
M such that some transaction Tk ∈ txns(E) accesses at least m − 1 distinct
base objects during the executions of the mth t-read operation and tryCk(),
where m = |Rset(Tk)|.

Theorem 2 improves the read-validation step-complexity lower bound [32, 33]
derived for strict-data partitioning (a very strong version of DAP) and invisible
reads. In a strict data partitioned TM, the set of base objects used by the TM
is split into disjoint sets, each storing information only about a single data item.
Indeed, every TM implementation that is strict data-partitioned satisfies weak DAP,
but not vice-versa. The definition of invisible reads assumed in [32,33] requires that
a t-read operation does not apply nontrivial events in any execution. Theorem 2
however, assumes weak invisible reads, stipulating that t-read operations of a
transaction T do not apply nontrivial events only when T is not concurrent with any
other transaction. We believe that the TM-progress and TM-liveness restrictions
as well as the definitions of DAP and invisible reads considered for this result are

TM-correctness TM-liveness DAP Invisible reads Read-write Complexity
Opacity ICF weak yes yes Θ(|Rset|2) step-complexity
Strict serializability ICF weak yes yes Θ(|Rset|) step-complexity for tryCommit
Opacity WF strict yes yes O(1) RAW/AWAR, O(1) stalls for t-reads
Opacity starvation-free strict Θ(|Wset|) protected data

Table 1: Complexity bounds for progressive TMs.

the weakest possible assumptions that may be made. To the best of our knowledge,
these assumptions cover every TM implementation that is subject to the validation
step-complexity [18, 20, 38].

3.2 Progressive TMs

We turn our focus to progressive TM implementations which allow a transaction to
be aborted only due to read-write conflicts with concurrent transactions.

A linear lower bound on protected data size. Kuznetsov et al. [44] introduce
a new metric called protected data size that, intuitively, captures the amount of
data that a transaction must exclusively control at some point of its execution.
All progressive TM implementations (see, e.g., an overview in [32]) use locks
or timing assumptions to give an updating transaction exclusive access to all
objects in its write set at some point of its execution. For example, lock-based
progressive implementations like TL [21] and TL2 [20] require that a transaction
grabs all locks on its write set before updating the corresponding base objects. [44]
shows that this is an inherent price to pay for providing progressive concurrency:
every committed transaction in a progressive and strict DAP TM implementation
providing starvation-free (each t-operation eventually returns a matching response,
assuming that no concurrent t-operation stops indefinitely before returning) TM-
liveness must, at some point of its execution, protect every t-object in its write
set.

Let M be a progressive TM implementation providing starvation-free TM-
liveness. Intuitively, a t-object X j is protected at the end of some finite execution π
of M if some transaction T0 is about to atomically change the value of X j in its next
step (e.g., by performing a compare-and-swap) or does not allow any concurrent
transaction to read X j (e.g., by holding a “lock” on X j).

Formally, let α · π be an execution of M such that π is a t-sequential t-complete
execution of a transaction T0, where Wset(T0) = {X1, . . . , Xm}. Let u j (j = 1, . . . ,m)
denote the value written by T0 to t-object X j in π. In this section, let πt denote the
t-th shortest prefix of π. Let π0 denote the empty prefix.

For any X j ∈ Wset(T0), let T j denote a transaction that tries to read X j and
commit. Let Et

j = α · πt · ρt
j denote the extension of α · πt in which T j runs solo

until it completes. Note that, since we only require the implementation to be
starvation-free, ρt

j can be infinite.
We say that α ·πt is (1, j)-valent if the read operation performed by T j in α ·πt ·ρt

j
returns u j (the value written by T0 to X j). We say that α · πt is (0, j)-valent if the
read operation performed by T j in α · πt · ρt

j does not abort and returns an "old"
value u , u j. Otherwise, if the read operation of T j aborts or never returns in
α · πt · ρt

j, we say that α · πt is (⊥, j)-valent.

Definition 1 ([44]). We say that T0 protects an object X j in α · πt, where πt is the
t-th shortest prefix of π (t > 0) if one of the following conditions holds: (1) α · πt is
(0, j)-valent and α · πt+1 is (1, j)-valent, or (2) α · πt or α · πt+1 is (⊥, j)-valent.

Theorem 3 ([44]). Let M be a progressive, opaque and strict disjoint-access-
parallel TM implementation that provides starvation-free TM-liveness. Let α · π be
an execution of M, where π is a t-sequential t-complete execution of a transaction
T0. Then, there exists πt, a prefix of π, such that T0 protects |Wset(T0)| t-objects in
α · πt.

A constant stall and constant expensive synchronization strict DAP opaque
TM. Attiya et al. identified two common expensive synchronization patterns that
frequently arise in the design of concurrent algorithms: read-after-write (RAW)
or atomic write-after-read (AWAR) [8, 52] and showed that it is impossible to
derive RAW/AWAR-free implementations of a wide class of data types that in-
clude sets, queues and deadlock-free mutual exclusion. RAW (read-after-write)
or AWAR (atomic-write-after-read) patterns [8] capture the amount of “expensive
synchronization”, i.e., the number of costly memory barriers or conditional primi-
tives [2] incurred by the implementation in relaxed CPU architectures. The metric
appears to be more practically relevant than simply counting the number of steps
performed by a process, as it accounts for expensive cache-coherence operations
or instructions like compare-and-swap.

A RAW (read-after-write) pattern performed by a transaction Tk in an execution
π is a pair of its events e and e′, such that: (1) e is a write to a base object b by
Tk, (2) e′ is a subsequent read of a base object b′ , b by Tk, and (3) no event
on b by Tk takes place between e and e′. Note that we are concerned only with
non-overlapping RAWs, i.e., the read performed by one RAW precedes the write
performed by the other RAW. An AWAR (atomic-write-after-read) pattern e in an
execution π · e is a nontrivial rmw event on an object b which atomically returns
the value of b (resulting after π) and updates b with a new value.

Intuitively, the stall metric captures the fact that the time a process might have
to spend before it applies a primitive on a base object can be proportional to the

number of processes that try to update the object concurrently. Let M be any TM
implementation. Let e be an event applied by process p to a base object b as it
performs a transaction T during an execution E of M. Let E = α · e1 · · · em · e · β
be an execution of M, where α and β are execution fragments and e1 · · · em is
a maximal sequence of m ≥ 1 consecutive nontrivial events by distinct distinct
processes other than p that access b. Then, we say that T incurs m memory stalls
in E on account of e. The number of memory stalls incurred by T in E is the sum
of memory stalls incurred by all events of T in E [7, 26].

Theorem 4 ([45]). There exists a progressive, opaque and strict DAP TM imple-
mentation LP that provides wait-free TM-liveness, uses invisible reads, uses only
read-write base objects, and for every execution E and transaction Tk ∈ txns(E):
• Tk performs at most a single RAW, and
• every t-read operation invoked by Tk incurs O(1) memory stalls in E, and
• every complete t-read operation invoked by Tk performs O(|Rset(Tk)|) steps

in E.

Proof sketch. There exists a cheap progressive, opaque TM implementation LP
in which every transaction performs at most a single RAW, every t-read operation
incurs O(1) memory stalls and maintains exactly one version of every t-object at
any prefix of an execution. Moreover, the implementation is strict DAP and uses
only read-write base objects.

For every t-object X j, LP maintains a base object v j that stores the value of X j.
Additionally, for each X j, we maintain a bit L j, which if set, indicates the presence
of an updating transaction writing to X j. Also, for every process pi and t-object X j,
LP maintains a single-writer bit ri j to which only pi is allowed to write. Each of
these base objects may be accessed only via read and write primitives.

The implementation first reads the value of t-object X j from base object v j and
then reads the bit L j to detect contention with an updating transaction. If L j is set,
the transaction is aborted; if not, read validation is performed on the entire read set.
If the validation fails, the transaction is aborted. Otherwise, the implementation
returns the value of X j. For a read-only transaction Tk, tryCk simply returns the
commit response.

The writek(X, v) implementation by process pi simply stores the value v locally,
deferring the actual updates to tryCk. During tryCk, process pi attempts to obtain
exclusive write access to every X j ∈ Wset(Tk). This is realized through the single-
writer bits, which ensure that no other transaction may write to base objects v j and
L j until Tk relinquishes its exclusive write access to Wset(Tk). Specifically, process
pi writes 1 to each ri j, then checks that no other process pt has written 1 to any
rt j by executing a series of reads (incurring a single RAW). If there exists such a
process that concurrently contends on write set of Tk, for each X j ∈ Wset(Tk), pi

writes 0 to ri j and aborts Tk. If successful in obtaining exclusive write access to

TM-correctness TM-liveness Invisible reads rmw primitives Complexity
Strict serializability WF read-write Impossible
Strict serializability read-write, conditional Ω(n log n) RMRs
Opacity starvation-free yes read-write O(1) RAW/AWAR

Table 2: Complexity bounds for strongly progressive TMs.

Wset(Tk), pi sets the bit L j for each X j in its write set. Implementation of tryCk
now checks if any t-object in its read set is concurrently contended by another
transaction and then validates its read set. If there is contention on the read set or
validation fails (indicating the presence of a conflicting transaction), the transaction
is aborted. If not, pi writes the values of the t-objects to shared memory and
relinquishes exclusive write access to each X j ∈ Wset(Tk) by writing 0 to each of
the base objects L j and ri j.

Read-only transactions do not apply any nontrivial primitives. Any updating
transaction performs at most a single RAW in the course of acquiring exclusive
write access to the transaction’s write set. Thus, every transaction performs O(1)
non-overlapping RAWs in any execution.

Observe that a transaction may write to base objects v j and L j only after obtain-
ing exclusive write access to t-object X j, which in turn is realized via single-writer
base objects. Thus, no transaction performs a write to any base object b immedi-
ately after a write to b by another transaction, i.e., every transaction incurs only
O(1) memory stalls on account of any event it performs. The readk(X j) implemen-
tation reads base objects v j and L j, followed by the validation phase in which it
reads vk for each Xk in its current read set. Note that if the first read in the validation
phase incurs a stall, then readk(X j) aborts. It follows that each t-read incurs O(1)
stalls in every execution. �

3.3 Strongly progressive TMs
We then turn our focus to strongly progressive TMs [33] that, in addition to
progressiveness, ensure that not all concurrent transactions conflicting over a single
data item abort.

A Ω(n log n) lower bound on remote memory references. [47] showed that in
any strongly progressive strictly serializable TM implementation that accesses
the shared memory with read, write and conditional primitives, such as compare-
and-swap and load-linked/store-conditional, the total number of remote memory
references (RMRs) that take place in an execution of a progressive TM in which

n concurrent processes perform transactions on a single t-object might reach
Ω(n log n).

Modern shared memory CPU architectures employ a memory hierarchy [35]:
a hierarchy of memory devices with different capacities and costs. Some of the
memory is local to a given process while the rest of the memory is remote. Accesses
to memory locations (i.e. base objects) that are remote to a given process are often
orders of magnitude slower than a local access of the base object. Thus, the
performance of concurrent implementations in the shared memory model may
depend on the number of remote memory references made to base objects [6].

The RMR lower bound in [47] is obtained via a reduction to an analogous
lower bound for mutual exclusion [10]. The reduction shows that any TM with
the above properties can be used to implement a deadlock-free mutual exclusion,
employing transactional operations on only one t-object and incurring a constant
RMR overhead. The lower bound applies to RMRs in both the cache-coherent
(CC) and distributed shared memory (DSM) models, and it appears to be the first
RMR complexity lower bound for transactional memory.

Theorem 5 ([47]). Any strictly serializable, strongly progressive TM implementa-
tion M that accesses a single t-object implies a deadlock-free, finite exit mutual
exclusion implementation L(M) such that the RMR complexity of M is within a
constant factor of the RMR complexity of L(M).

Strongly progressive TMs from read-write primitives. Guerraoui et al. [33]
proved the impossibility of implementing strongly progressive strictly serializable
TMs providing wait-free TM-liveness from read-write base objects.

Theorem 6 ([33]). It is impossible to implement strictly serializable strongly
progressive TMs that provide wait-free TM-liveness (every t-operation returns
a matching response within a finite number of steps) using only read and write
primitives.

[44] describes one means to circumvent this impossibility result: specifically,
they prove the existence an opaque strongly progressive TM implementation from
read-write base objects that provides starvation-free TM-liveness.

Theorem 7. There exists a strongly progressive opaque TM implementation with
starvation-free t-operations that uses invisible reads and employs at most four
RAWs per transaction.

3.4 On the cost of permissive opaque TMs
(Strongly) progressive TMs that allow a transaction to be aborted only on read-
write conflicts have constant RAW/AWAR complexity. However, not aborting on

conflicts may not necessarily affect TM-correctness. Ideally, we would like to
derive TM implementations that are permissive [30], in the sense that a transaction
is aborted only if committing it would violate TM-correctness.

Kuznetsov et al. [44] establish a linear (in the transaction’s data set size) sepa-
ration between the worst-case transaction expensive synchronization complexity of
strongly progressive TMs and permissive TMs that allow a transaction to abort only
if committing it would violate opacity. Specifically, [44] show that an execution of
a transaction in a permissive opaque TM implementation that provides starvation-
free TM-liveness may require to perform at least one RAW/AWAR pattern per
t-read.

Definition 2 (Permissiveness). A TM implementation M is permissive with respect
to TM-correctness C if for every history H of M such that H ends with a response
rk and replacing rk with some rk , Ak gives a history that satisfies C, we have
rk , Ak.

Therefore, permissiveness does not allow a transaction to abort, unless commit-
ting it would violate the execution’s correctness.

[44] show that an execution of a transaction in a permissive opaque TM
implementation (providing starvation-free TM-liveness) may require to perform at
least one RAW/AWAR pattern per t-read.

Theorem 8 ([44]). Let M be a permissive opaque TM implementation providing
starvation-free TM-liveness. Then, for any m ∈ N, M has an execution in which
some transaction performs m t-reads such that the execution of each t-read contains
at least one RAW or AWAR.

Proof. Consider an execution E of M consisting of transactions T1, T2, T3 as
shown in Figure 3: T3 performs a t-read of X1, then T2 performs a t-write on X1

and commits, and finally T1 performs a series of reads from objects X1, . . . , Xm.
Since the implementation is permissive, no transaction can be forcefully aborted in
E, and the only valid serialization of this execution is T3, T2, T1. Note also that
the execution generates a sequential history: each invocation of a t-operation is
immediately followed by a matching response. Thus, since we assume starvation-
freedom as a liveness property, such an execution exists.

We consider read1(Xk), 2 ≤ k ≤ m in execution E. Imagine that we modify
the execution E as follows. Immediately after read1(Xk) executed by T1 we add
write3(X, v), and tryC3 executed by T3 (let TC3(Xk) denote the complete execution
of W3(Xk, v) followed by tryC3). Obviously, TC3(Xk) must return abort: neither T3

can be serialized before T1 nor T1 can be serialized before T3. On the other hand
if TC3(Xk) takes place just before read1(Xk), then TC3(Xk) must return commit
but read1(Xk) must return the value written by T3. In other words, read1(Xk) and

R1(X1)→ nv R1(Xm)

W2(X1, nv)

R3(X1)→ v

T1

T2 C2

T3

Figure 3: Execution E of a permissive, opaque TM: T2 and T3 force T1 to perform a
RAW/AWAR in each R1(Xk), 2 ≤ k ≤ m

TC3(Xk) are strongly non-commutative [8]: both of them see the difference when
ordered differently. As a result, intuitively, read1(Xk) needs to perform a RAW or
AWAR to make sure that the order of these two “conflicting” operations is properly
maintained. We formalize this argument below.

Consider a modification E′ of E, in which T3 performs write3(Xk) immediately
after read1(Xk) and then tries to commit. In any serialization of E′, T3 must precede
T2 (read3(X1) returns the initial value of X1) and T2 must precede T1 to respect the
real-time order of transactions. The execution of read1(Xk) does not modify base
objects, hence, T3 does not observe read1(Xk) in E′. Since M is permissive, T3

must commit in E′. But since T1 performs read1(Xk) before T3 commits and T3

updates Xk, we also have T1 must precede T3 in any serialization. Thus, T3 cannot
precede T1 in any serialization—contradiction. Consequently, each read1(Xk) must
perform a write to a base object.

Let π be the execution fragment that represents the complete execution of
read1(Xk) and Ek, the prefix of E up to (but excluding) the invocation of read1(Xk).

Clearly, π contains a write to a base object. Let πw be the first write to a base
object in π. Thus, π can be represented as πs · πw · π f . Suppose that π does not
contain a RAW or AWAR. Consider the execution fragment Ek · πs · ρ, where ρ is
the complete execution of TC3(Xk) by T3. Such an execution of M exists since πs

does not perform any base object write, hence, Ek · πs · ρ is indistinguishable to T3

from Ek · ρ.
Since, by our assumption, πw · π f contains no RAW, any read performed in

πw · π f can only be applied to base objects previously written in πw · π f . Since πw is
not an AWAR, Ek ·πs ·ρ ·πw ·π f is an execution of M since it is indistinguishable to
T1 from Ek · π. In Ek · πs · ρ · πw · π f , T3 commits (as in ρ) but T1 ignores the value
written by T3 to Xk. But there exists no serialization that justifies this execution—
contradiction to the assumption that M is opaque. Thus, each read1(Xk), 2 ≤ k ≤ m
must contain a RAW/AWAR.

Note that since all t-reads of T1 are executed sequentially, all these RAW/AWAR
patterns are pairwise non-overlapping, which completes the proof. �

The following result is a simple corollary to Theorem 8.

Corollary 9 ([16]). There does not exist any permissive opaque TM implementa-
tion with invisible reads and starvation-free TM-liveness.

4 Complexity of non-blocking TMs
We focus on TMs that avoid using locks and rely on non-blocking synchronization:
a prematurely halted transaction cannot prevent other transactions from committing.
Possibly the weakest non-blocking progress condition is obstruction-freedom [37,
40] stipulating that every transaction running in the absence of step contention, i.e.,
not encountering steps of concurrent transactions, must commit. In fact, several
early TM implementations [29, 38, 50, 61, 63] satisfied obstruction-freedom.

Let OF denote the class of non-blocking TMs that provide obstruction-free
TM-progress (a transaction is allowed to abort only in executions that are not step
contention-free) and obstruction-free (every t-operation must return a matching
response within a finite number of steps in step contention-free executions) TM-
liveness. Observe that there exists an execution exported by an obstruction-free
TM, but not by any progressive TM and vice-versa. Consider a t-read X by a
transaction T that runs step contention-free from a configuration that contains an
incomplete write to X. Weak progressiveness does not preclude T from being
aborted in such an execution. Obstruction-free TMs however, must ensure that T
must complete its read of X without blocking or aborting in such executions. On
the other hand, weak progressiveness requires two non-conflicting transactions to
not be aborted even in executions that are not step contention-free; but this is not
guaranteed by obstruction-freedom.

4.1 Lower bounds for obstruction-free TMs
On the cost of disjoint-access parallelism. Complexity of obstruction-free TMs
was first studied by Guerraoui and Kapalka [31, 33] who proved that they cannot
provide strict DAP. However, it is possible to realize weaker than strict DAP
variants of obstruction-free opaque TMs. For example, DSTM [38] satisfies RW
DAP (and hence weak DAP), but not strict DAP.

Theorem 10 ([31]). There does not exist any strict DAP strictly serializable TM
implementation in OF .

The next result we survey focuses on strictly serializable TM implementations
that satisfy two important properties: weak DAP and read invisibility. There
exist weak DAP lock-based TM implementations that use invisible reads [21, 27].
In contrast, [45] establish that it is impossible to implement an obstruction-free

Algorithm 1 Strict DAP progressive opaque TM implementation LP; code for Tk

executed by process pi

1: Shared base objects:

2: v j, for each t-object X j

3: ri j, for each process pi and t-object X j

4: single-writer bit
5: L j, for each t-object X j

6: readk(X j):

7: if X j < Rset(Tk) then
8: [ov j, k j] := read(v j)
9: Rset(Tk) := Rset(Tk)∪ {X j, [ov j, k j]}

10: if read(L j) , 0 then
11: Return Ak

12: if validate() then
13: Return Ak

14: Return ov j

15: else
16: [ov j,⊥] := Rset(Tk).locate(X j)
17: Return ov j

18: writek(X j , v):

19: nv j := v
20: Wset(Tk) := Wset(Tk) ∪ {X j}

21: Return ok

22: tryCk():

23: if |Wset(Tk)| = ∅ then
24: Return Ck

25: locked := acquire(Wset(Tk))
26: if ¬ locked then
27: Return Ak

28: if isAbortable() then
29: release(Wset(Tk))
30: Return Ak

31: for all X j ∈ Wset(Tk) do
32: write(v j, [nv j, k])

33: release(Wset(Tk))
34: Return Ck

35: Function: release(Q):

36: for all X j ∈ Q do
37: write(L j, 0)

38: for all X j ∈ Q do
39: write(ri j, 0)

40: Return ok

41: Function: acquire(Q):

42: for all X j ∈ Q do
43: write(ri j, 1)

44: if ∃X j ∈ Q; t , k : read(rt j) = 1 then
45: for all X j ∈ Q do
46: write(ri j, 0)

47: Return false

48: for all X j ∈ Q do
49: write(L j, 1)

50: Return true

51: Function: isAbortable() :

52: if ∃X j ∈ Rset(Tk) : X j < Wset(Tk) ∧
read(L j) , 0 then

53: Return true
54: if validate() then
55: Return true
56: Return false

57: Function: validate() :

58: if ∃X j ∈ Rset(Tk):[ov j, k j] , read(v j)
then

59: Return true
60: Return false

R0(Z)→ v W0(X, nv) tryC0 (event of T0)
e

R1(X)→ nv

new value
T0 T1

(a) T1 must read the base object updated in e and return the new value nv of
X

R0(Z)→ v W0(X, nv) tryC0 R2(X)→ v

initial value

(event of T0)
e

R1(X)→ nv

new value
T0 T2 T1

(b) T1 returns new value of X since T2 is invisible

R0(Z)→ v W0(X, nv) tryC0 R2(X)→ v

initial value

(event of T0)
e

R1(X)→ nv

new value

W3(Z, nv)

write new value
T0 T3 T2 T1

(c) By weak DAP and invisible reads, T1 and T2 do not observe the presence of T3

Figure 4: Executions describing the proof sketch of Theorem 11; execution in 4c is
not strictly serializable

TM that provides both weak DAP and read invisibility. Indeed, DSTM [38] and
FSTM [29] are weak DAP, but use visible reads for aborting pending writing
transactions.

Theorem 11 ([45]). There does not exist a weak DAP strictly serializable TM
implementation in OF that uses invisible reads.

Proof sketch. Suppose, by contradiction, that such a TM implementation M exists.
Consider an execution E of M in which a transaction T0 performs a t-read of
t-object Z (returning the initial value v), writes nv (new value) to t-object X, and
commits. Let E′ denote the longest prefix of E that cannot be extended with the
t-complete step contention-free execution of any transaction that reads nv in X and
commits.

Thus if T0 takes one more step, then the resulting execution E′ · e can be
extended with the t-complete step contention-free execution of a transaction T1

that reads nv in X and commits.
Since M uses invisible reads, the following execution exists: E′ can be extended

with the t-complete step contention-free execution of a transaction T2 that reads
the initial value v in X and commits, followed by the step e of T0 after which
transaction T1 running step contention-free reads nv in X and commits. Moreover,
this execution is indistinguishable to T1 and T2 from an execution in which the
read set of T0 is empty. Thus, we can modify this execution by inserting the
step contention-free execution of a committed transaction T3 that writes a new
value to Z after E′, but preceding T2 in real-time order. Intuitively, by weak DAP,

transactions T1 and T2 cannot distinguish this execution from the original one in
which T3 does not participate.

Thus, we can show that the following execution exists: E′ is extended with the
t-complete step contention-free execution of T3 that writes nv to Z and commits,
followed by the t-complete step contention-free execution of T2 that reads the
initial value v in X and commits, followed by the step e of T0, after which T1 reads
nv in X and commits.

This execution is, however, not strictly serializable: T0 must appear in any
serialization (T1 reads a value written by T0). Transaction T2 must precede T0,
since the t-read of X by T2 returns the initial value of X. To respect real-time order,
T3 must precede T2. Finally, T0 must precede T3 since the t-read of Z returns the
initial value of Z. The cycle T0 → T3 → T2 → T0 implies a contradiction. �

A linear lower bound on memory stall complexity. [45] prove a linear (in n)
lower bound for strictly serializable TM implementations in OF on the total
number of memory stalls incurred by a single t-read operation.

Theorem 12 ([45]). Every strictly serializable TM implementation M ∈ OF has
a (n − 1)-stall execution E for a t-read operation performed in E.

Proof sketch. Inductively, for each k ≤ n − 1, construct a specific k-stall ex-
ecution [26] in which some t-read operation by a process p incurs k stalls. In
the k-stall execution, k processes are partitioned into disjoint subsets S 1, . . . , S i.
The execution can be represented as α · σ1 · · ·σi; α is p-free, where in each σ j,
j = 1, . . . , i, p first runs by itself, then each process in S j applies a nontrivial event
on a base object b j, and then p applies an event on b j. Moreover, p does not detect
step contention in this execution and, thus, must return a non-abort value in its
t-read and commit in the solo extension of it. Additionally, it is guaranteed that in
any extension of α by the processes other than {p}∪S 1∪S 2∪ . . .∪S i, no nontrivial
primitive is applied on a base object accessed in σ1 · · ·σi.

Assuming that k ≤ n − 2, we introduce a not previously used process executing
an updating transaction immediately after α, so that the subsequent t-read operation
executed by p is “perturbed” (must return another value). This will help us to
construct a (k + k′)-stall execution α · α′ · σ1 · · ·σi · σi+1, where k′ > 0. �

Observe that, since there are at most n concurrent transactions, we cannot do better
than (n − 1) stalls. Thus, the lower bound of Theorem 12 is tight.

RAW/AWAR complexity. [45] prove that opaque, RW DAP TM implementations
in OF have executions in which some read-only transaction performs a linear (in
n) number of non-overlapping RAWs or AWARs.

Obstruction-free Progressive LP
strict DAP No Yes

invisible reads+weak DAP No Yes
stall complexity of reads Ω(n) O(1)
RAW/AWAR complexity Ω(n) O(1)

read-write base objects, wait-free termination No Yes

Figure 5: Complexity gap between blocking and non-blocking TMs; n is the
number of processes

Theorem 13. Every RW DAP opaque TM implementation M ∈ OF has an exe-
cution E in which some read-only transaction T ∈ txns(E) performs Ω(n) non-
overlapping RAW/AWARs.

Impossibility of obstruction-free TMs from read-write primitives. Guerraoui
and Kapalka [31, 33] also proved that a strict serializable TM that provides OF
TM-progress and wait-free TM-liveness cannot be implemented using only read
and write primitives. An interesting open question is whether we can implement
strict serializable TMs in OF using only read and write primitives.

4.2 Blocking versus non-blocking TMs
Some benefits of obstruction-free TMs, namely their ability to make progress
even if some transactions prematurely fail, are not provided by progressive TMs.
However, several papers [20,21,28] argued that lock-based TMs tend to outperform
obstruction-free ones by allowing for simpler algorithms with lower overhead, and
their inherent progress issues may be resolved using timeouts and contention-
managers [60].

As highlighted in [21,28], obstruction-free TMs typically must forcefully abort
pending conflicting transactions. This observation inspires the impossibility of
invisible reads (Theorem 11). Typically, to detect the presence of a conflicting
transaction and abort it, the reading transaction must employ a RAW or a read-
modify-write primitive like compare-and-swap, motivating the linear lower bound
on expensive synchronization (Theorem 13). Also, in obstruction-free TMs, a
transaction may not wait for a concurrent inactive transaction to complete and, as a
result, we may have an execution in which a transaction incurs a distinct stall due
to a transaction run by each other process, hence the linear stall complexity (Theo-
rem 12). Intuitively, since transactions in progressive TMs may abort themselves
in case of conflicts, they can employ invisible reads and maintain constant stall and
RAW/AWAR complexities.

Overcoming the lower bounds for obstruction-free TMs individually is com-
paratively easy. Say, TL [21] combines strict DAP with invisible reads, but it

is not read-write (for base object primitives), and it does not provide constant
RAW/AWAR and stall complexities. However, the progressive TM LP overcomes
most of the lower bounds known for obstruction-free TMs. Observe that the opaque
implementation LP, (1) uses only read-write base objects and ensures that every
transactional operation terminates in a wait-free manner, (2) ensures strict DAP,
(3) has invisible reads, (4) performs O(1) non-overlapping RAWs/AWARs per
transaction, and (5) incurs O(1) memory stalls per read operation. In contrast,
from the lower bounds summarized in this survey we know that (i) no OF TM
that provides wait-free transactional operations can be implemented using only
read-write base objects; (ii) no OF TM can provide strict DAP; (iii) no weak DAP
OF TM has invisible reads and (iv) no OF TM ensures a constant number of stalls
incurred by a read operation. Finally, (v) no RW DAP opaque OF TM has constant
RAW/AWAR complexity. Thus, (iv) and (v) exhibit a linear separation between
blocking and non-blocking TMs w.r.t expensive synchronization and memory stall
complexity, respectively.

The results are summarized and put in perspective in Figure 5 [45]. Altogether,
we grasp a considerable complexity gap between blocking and non-blocking TM
implementations, justifying theoretically the shift in TM practice we observed
during the past decade.

5 Lower bounds for partially non-blocking TMs
It is easy to see that dynamic TMs where the patterns in which transactions access
t-objects are not known in advance do not allow for wait-free TMs [33], i.e., every
transaction must commit in a finite number of steps of the process executing it,
regardless of the behavior of concurrent processes. Suppose that a transaction T1

reads t-object X, then a concurrent transaction T2 reads t-object Y , writes to X and
commits, and finally T2 writes to Y . Since T1 has read the “old” value in X and
T2 has read the “old” value in Y , there is no way to commit T1 and order the two
transactions in a sequential execution. As this scenario can be repeated arbitrarily
often, even the weaker guarantee of local progress that only requires that each
transaction eventually commits if repeated sufficiently often, cannot be ensured
by any strictly serializable TM implementation, regardless of the base objects it
uses [14].1

Theorem 14 ([14]). There does not exist any strictly serializable TM implementa-
tion that provides local progress.

1Note that the counter-example would not work if we imagine that the data sets accessed by
a transaction can be known in advance. However, we consider the conventional dynamic TM
programming model.

But can we ensure that at least some transactions commit wait-free and what
are the inherent costs? It is often argued that many realistic workloads are read-
dominated: the proportion of read-only transactions is higher than that of updating
ones, or read-only transactions have much larger data sets than updating ones [12,
34]. Therefore, it seems natural to require that read-only transactions commit wait-
free. Moreover, we require that updating transaction provide only an extremely
weak sequential TM-progress.

We denote by RWF the class of partially non-blocking TMs originally studied
and motivated by Attiya et al. [11].

Definition 3 ([46]). (The class RWF) A TM implementation M ∈ RWF iff in
its every execution:
• (wait-free TM-progress for read-only transactions) every read-only transac-

tion commits in a finite number of its steps, and
• (sequential TM-progress and sequential TM-liveness for updating transac-

tions) i.e., every transaction running step contention-free from a t-quiescent
configuration, commits in a finite number of its steps.

5.1 The space complexity of invisible reads
[46] prove that every strictly serializable TM implementation M ∈ RWF that

uses invisible reads must keep unbounded sets of values for every t-object. To do
so, for every c ∈ N, construct an execution of M that maintains at least c distinct
values for every t-object.

Definition 4 ([46]). Let E be any execution of a TM implementation M. We
say that E maintains c distinct values {v1, . . . , vc} of t-object X, if there exists an
execution E · E′ of M such that
• E′ contains the complete executions of c t-reads of X and,
• for all i ∈ {1, . . . , c}, the response of the ith t-read of X in E′ is vi.

Theorem 15 ([46]). Let M be any strictly serializable TM implementation in
RWF that uses invisible reads, and X, any set of t-objects. Then, for every c ∈ N,
there exists an execution E of M such that E maintains at least c distinct values of
each t-object X ∈ X.

Proof. Let v0` be the initial value of t-object X` ∈ X. For every c ∈ N, we iteratively
construct an execution E of M of the form depicted in Figure 6a. The construction
of E proceeds in phases: there are at most c − 1 phases. For all i ∈ {0, . . . c − 1},
we denote the execution after phase i as Ei which is defined as follows:
• E0 is the complete step contention-free execution fragment α0 of read-only

transaction T0 that performs read0(X1)→ v01

R0(X1)→ v01

R2(X1)→ v11

R2i(X1)→ vi1

∀X` ∈ X: write v1`

T1 commits

∀X` ∈ X: write vi`

T2i−1 commits

Phase 0| T0

T2Phase 1| T1

Phase i| T2i−1 T2i

↓

extend to c − 1 phases

(a) for all i ∈ {1, . . . , c − 1}, T2i−1 writes vi` to each X`; read2i(X1) must return vi1

R0(X1)→ v01

R2(X1)→ v11

R2i(X1)→ vi1

R0(X2)→ v02 · · ·R0(X`)→ v0` · · ·

R2(X2)→ v12 · · ·R2(X`)→ v1` · · ·

R2i(X2)→ vi2 · · ·R2i(X`)→ vi` · · ·

∀X` ∈ X: write v1`

T1 commits

∀X` ∈ X: write vi`

T2i−1 commits

T0

T2T1

T2i−1 T2i

↓

extend to c − 1 phases

(b) extend every read-only transaction T2i in phase i with t-reads of X2, . . . X`, . . .; note that each read2i(X`)
must return vi`

Figure 6: Executions in the proof of Theorem 15; execution in 6a must maintain c
distinct values of every t-object

• for all i ∈ {1, . . . , c − 1}, Ei is defined to be an execution of the form α0 · ρ1 ·

α1 · · · ρi · αi such that for all j ∈ {1, . . . , i},
– ρ j is the t-complete step contention-free execution fragment of an

updating transaction T2 j−1 that, for all X` ∈ X writes the value v j` and
commits

– α j is the complete step contention-free execution fragment of a read-
only transaction T2 j that performs read2 j(X1)→ v j1

Since read-only transactions are invisible, for all i ∈ {0, . . . , c − 1}, the execution
fragment αi does not contain any nontrivial events. Consequently, for all i < j ≤
c − 1, the configuration after Ei is indistinguishable to transaction T2 j−1 from a
t-quiescent configuration and it must be committed in ρ j (by sequential progress
for updating transactions). Observe that, for all 1 ≤ j < i, T2 j−1 ≺

RT
E T2i−1. Strict

serializability of M now stipulates that, for all i ∈ {1, . . . , c − 1}, the t-read of
X1 performed by transaction T2i in the execution fragment αi must return the
value vi1 of X1 as written by transaction T2i−1 in the execution fragment ρi (in any
serialization, T2i−1 is the latest committed transaction writing to X1 that precedes
T2i). Thus, M indeed has an execution E of the form depicted in Figure 6a.

Consider the execution fragment E′ that extends E in which, for all i ∈
{0, . . . , c − 1}, read-only transaction T2i is extended with the complete execution of
the t-reads of every t-object X` ∈ X \ {X1} (depicted in Figure 6b).

We claim that, for all i ∈ {0, . . . , c − 1}, and for all X` ∈ X \ {X1}, read2i(X`)
performed by transaction T2i must return the value vi` of X` written by transaction
T2i−1 in the execution fragment ρi. Indeed, by wait-free progress, readi(X`) must
return a non-abort response in such an extension of E. Suppose by contradiction
that readi(X`) returns a response that is not vi` . There are two cases:
• read2i(X`) returns the value v j` written by transaction T2 j−1; j < i. However,

since for all j < i, T2 j ≺
RT
E T2i, the execution is not strictly serializable—

contradiction.
• read2i(X`) returns the value v j` written by transaction T2 j; j > i. Since

readi(X1) returns the value vi1 and T2i ≺
RT
E T2 j, there exists no such serialization—

contradiction.
Thus, E maintains at least c distinct values of every t-object X ∈ X. �

Perelman et al. [55] considered the closely related (to RWF) class of mv-
permissive TMs: a transaction can only be aborted if it is an updating transaction
that conflicts with another updating transaction. RWF is incomparable with the
class of mv-permissive TMs. On the one hand, mv-permissiveness guarantees
that read-only transactions never abort, but does not imply that they commit in
a wait-free manner. On the other hand, RWF allows an updating transaction to
abort in the presence of a concurrent read-only transaction, which is disallowed by
mv-permissive TMs. Observe that, technically, mv-permissiveness is a blocking
TM-progress condition, although when used in conjunction with wait-free TM-
liveness, it is a partially non-blocking TM-progress condition that is strictly stronger
than RWF .

[55] proved that mv-permissive TMs cannot be online space optimal, i.e., no
mv-permissive TM can keep the minimum number of old object versions for any
TM history. The result on the space complexity of implementations in RWF that
use invisible reads (Theorem 15) is different since it proves that the implementation
must maintain an unbounded number of versions of every t-object. The above
proof technique can however be used to show that mv-permissive TMs considered
in [55] should also maintain unbounded number of versions.

5.2 On the cost of disjoint-access parallelism
Kuznetsov et al. [46] prove that it is impossible to derive strictly serializable
TM implementations in RWF which ensure that any two transactions accessing
pairwise disjoint data sets can execute without contending on the same base object.

Theorem 16 ([46]). There exists no strictly serializable strict DAP TM implemen-
tation in RWF .

Kuznetsov et al. [46] also prove a linear lower bound (in the size of the
transaction’s read set) on the number of RAWs or AWARs for weak DAP TM
implementations in RWF . Specifically, there exist executions in which each
t-read operation of an arbitrarily long read-only transaction contains a RAW or an
AWAR.

Theorem 17 ([46]). Every strictly serializable weakly DAP TM implementation
M ∈ RWF has, for all m ∈ N, an execution in which some read-only transaction
T0 with m = |Rset(T0)| performs Ω(m) RAWs/AWARs.

Since Theorem 17 implies that read-only transactions must perform nontrivial
events, we have the following corollary that was proved directly in [11].

Corollary 18 ([11]). There does not exist any strictly serializable weak DAP TM
implementation M ∈ RWF that uses invisible reads.

Attiya et al. [11] also considered a stronger “disjoint-access” property, called
simply DAP, referring to the original definition proposed Israeli and Rappoport [42].
In DAP, two transactions are allowed to concurrently access (even for reading)
the same base object only if they are disjoint-access. For an n-process DAP TM
implementation, it is shown in [11] that a read-only transaction must perform at
least n − 3 writes. The lower bound in Theorem 17 is strictly stronger than the
one in [11], as it assumes only weak DAP, considers a more precise RAW/AWAR
metric, and does not depend on the number of processes in the system. (Technically,
the last point follows from the fact that the execution constructed in the proof of
Theorem 17 uses only 3 concurrent processes.) Thus, the theorem subsumes the
two lower bounds of [11] within a single proof.

Assuming starvation-free TM-liveness, [55] showed that implementing a weak
DAP strictly serializable mv-permissive TM is impossible. The proof of this result
is immediate from the analogous results for RWF in [11] and [46].

6 Hybrid Transactional Memory
If used carefully, HTM can be an extremely useful construct, and can significantly
speed up and simplify concurrent implementations. At the same time, this powerful
tool is not without its limitations: since HTMs are usually implemented on top
of the cache coherence mechanism, hardware transactions have inherent capacity
constraints on the number of distinct memory locations that can be accessed inside
a single transaction. Moreover, all current proposals are best-effort, as they may

abort under imprecisely specified conditions (cache capacity overflow, interrupts
etc). In brief, the programmer should not solely rely on HTMs.

Several HyTM schemes [17, 19, 43, 48] have been proposed to complement
the fast, but best-effort nature of HTM with a slow, reliable software transactional
memory (STM) backup. These proposals have explored a wide range of trade-offs
between the overhead on hardware transactions, concurrent execution of hardware
and software, and the provided progress guarantees. Early proposals for HyTM
implementations [19, 43] shared some interesting features. First, transactions that
do not conflict are expected to run concurrently, regardless of their types (software
or hardware), à la progressiveness. Second, in addition to changing the values of
transactional objects, hardware transactions usually employ code instrumentation
techniques. Intuitively, instrumentation is used by hardware transactions to detect
concurrency scenarios and abort in the case of contention. The number of instru-
mentation steps performed by these implementations within a hardware transaction
is usually proportional to the size of the transaction’s data set.

Recent work by Riegel et al. [58] surveyed the various HyTM algorithms to
date, focusing on techniques to reduce instrumentation overheads in the frequently
executed hardware fast-path. However, it is not clear whether there are fundamental
limitations when building a HyTM with non-trivial concurrency between hardware
and software transactions. In particular, what are the inherent instrumentation
costs of building a HyTM, and what are the trade-offs between these costs and the
provided concurrency, i.e., the ability of the HyTM system to run software and
hardware transactions in parallel?

Modelling HyTM. To address these questions, [4] proposes a model for hybrid
TM systems which formally captures the notion of cached accesses provided by
hardware transactions, and precisely defines instrumentation costs in a quantifi-
able way. [4] models a hardware transaction as a series of memory accesses that
operate on locally cached copies of the variables, followed by a cache-commit
operation. In case a concurrent transaction performs a (read-write or write-write)
conflicting access to a cached object, the cached copy is invalidated and the hard-
ware transaction aborts. The model for instrumentation is motivated by recent
experimental evidence which suggests that the overhead on hardware transactions
imposed by code which detects concurrent software transactions is a significant
performance bottleneck [51]. In particular, a HyTM implementation imposes a
logical partitioning of shared memory into data and metadata locations. Intuitively,
metadata is used by transactions to exchange information about contention and
conflicts while data locations only store the values of data items read and updated
within transactions. [4] quantifies instrumentation cost by measuring the number
of accesses to metadata objects which transactions perform. All known HyTM

proposals, such as HybridNOrec [17, 57], PhTM [48] and others [19, 43] avoid
co-locating the data and metadata within a single base object.

Complexity. Once this general model is in place, Alistarh et al. [4] derive two
lower bounds on the cost of implementing a HyTM. First, they show that some
instrumentation is necessary in a HyTM implementation even if we only intend to
provide sequential progress, where any transaction is only guaranteed to commit if
it runs in the absence of concurrency.

Theorem 19 ([4]). There does not exist a strictly serializable uninstrumented
HyTM implementation that ensures sequential TM-progress and TM-liveness.

Second, [4] prove that any progressive HyTM implementation providing
obstruction-free liveness (every operation running solo returns some response)
and has executions in which an arbitrarily long read-only hardware transaction
running in the absence of concurrency must access a number of distinct metadata
objects proportional to the size of its data set.

Theorem 20 ([4]). LetM be any progressive, opaque HyTM implementation that
provides OF TM-liveness. For every m ∈ N, there exists an execution E in which
some fast-path read-only transaction Tk ∈ txns(E) satisfies either (1) Dset(Tk) ≤ m
and Tk incurs a capacity abort in E or (2) Dset(Tk) = m and Tk accesses Ω(m)
distinct metadata base objects in E.

The proof of the above theorem proceeds inductively. Start with a sequential
execution in which a “large” set S m of read-only hardware transactions, each
accessing m distinct data items and m distinct metadata memory locations, run after
an execution Em. We then construct execution Em+1, an extension of Em, which
forces at least half of the transactions in S m to access a new metadata base object
when reading a new (m+1)th data item, running after Em+1. The technical challenge,
and the key departure from prior work on STM lower bounds, e.g. [11, 31, 33],
is that hardware transactions practically possess “automatic” conflict detection,
aborting on contention. This is in contrast to STMs, which must take steps to detect
contention on memory locations.

Algorithms. The inherent high instrumentation costs of early HyTM designs,
stimulated more recent HyTM schemes [17, 48, 51, 58] to sacrifice progressiveness
for constant instrumentation cost (i.e., not depending on the size of the transaction).
In the past few years, Dalessandro et al. [17] and Riegel et al. [58] have proposed
HyTMs based on the efficient NOrec STM [18]. These HyTMs schemes do not
guarantee any parallelism among transactions; only sequential progress is ensured.
Despite this, they are among the best-performing HyTMs to date due to the limited

instrumentation in hardware transactions. Therefore, the cost of avoiding the linear
lower bound for progressive implementations is that hardware transactions may be
aborted by non-conflicting software ones.

7 Research directions and open questions

Weak TM-correctness. In this survey, we focussed on TM implementations pro-
viding the TM-correctness properties of opacity or the weaker strict serializability.
However, one may observe that as long as committed transactions constitute a
serial execution and every transaction witnesses a consistent state, the execution
can be considered “safe”: no run-time error that cannot occur in a serial execution
can happen. TM-correctness properties like virtual-world consistency (VWC) [41]
and transactional memory specification (TMS1) [25] ensure strict serializability,
but are strictly weaker than opacity. Are TM implementations that satisfy VWC
or TMS1, but not opacity subject to the lower bounds surveyed in this paper? For
instance, it is easy to see that the lower bound of Theorem 8 on the complexity
of permissive opaque TMs is not subject to permissive VWC TMs [16]. Further-
more, [16] described a permissive VWC TM implementation that ensures that
t-read operations do not perform nontrivial primitives, but the tryCommit invoked
by a read-only transaction perform a linear (in the size of the transaction’s data set)
number of RAW/AWARs.

Bushkov et al. [13] improved on the impossibility result in [31] and showed
that a variant of strict DAP cannot be combined with obstruction-free TM-progress,
even if a weaker (than strictly serializability) TM-correctness property is assumed.

Peluso et al. [54] study the complexity of TM implementations in the class
RWF and show that deriving DAP implementations is impossible even if the
TM-correctness assumed is weaker than strict serializability.

Exploring the complexity of STM and HyTM implementations satisfying the
TM-correctness properties of VWC and TMS1 as well as properties weaker than
strict serializability opens up several open questions and research directions.

HyTM models and complexity. Recent work has investigated alternatives to
HyTMs that rely on STM fallback, such as sandboxing [3, 15] or hardware-
accelerated STM [59,62], and the use of both direct and cached accesses within the
same hardware transaction to reduce instrumentation overhead [57,58]. Another
recent approach proposed reduced hardware transactions [51], where a part of the
slow-path is executed using a short fast-path transaction, which allows to partially
eliminate instrumentation from the hardware fast-path.

Verifying the correctness and understanding the complexity of these protocols
is an important research direction as is identifying techniques for automatically

deploying the best TM implementation for a given workload [22] and scheduling
techniques for HyTMs [23].

References
[1] Advanced Synchronization Facility Proposed Architectural Specification, March

2009. http://developer.amd.com/wordpress/media/2013/09/45432-ASF_
Spec_2.1.pdf.

[2] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
IEEE Computer, 29(12):66–76, 1996.

[3] Y. Afek, A. Levy, and A. Morrison. Software-improved hardware lock elision. In
PODC. ACM, 2014.

[4] D. Alistarh, J. Kopinsky, P. Kuznetsov, S. Ravi, and N. Shavit. Inherent limitations
of hybrid transactional memory. In Distributed Computing - 29th International
Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 185–
199, 2015.

[5] B. Alpern and F. B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181–185,
Oct. 1985.

[6] T. E. Anderson. The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE Trans. Parallel Distrib. Syst., 1(1):6–16, 1990.

[7] H. Attiya, R. Guerraoui, D. Hendler, and P. Kuznetsov. The complexity of obstruction-
free implementations. J. ACM, 56(4), 2009.

[8] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. Michael, and M. Vechev. Laws
of order: Expensive synchronization in concurrent algorithms cannot be eliminated.
In POPL, pages 487–498, 2011.

[9] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety and deferred update in trans-
actional memory. In R. Guerraoui and P. Romano, editors, Transactional Memory.
Foundations, Algorithms, Tools, and Applications, volume 8913 of Lecture Notes in
Computer Science, pages 50–71. Springer International Publishing, 2015.

[10] H. Attiya, D. Hendler, and P. Woelfel. Tight rmr lower bounds for mutual exclusion
and other problems. In Proceedings of the Twenty-seventh ACM Symposium on
Principles of Distributed Computing, PODC ’08, pages 447–447, New York, NY,
USA, 2008. ACM.

[11] H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access parallel
implementations of transactional memory. Theory of Computing Systems, 49(4):698–
719, 2011.

[12] H. Attiya and A. Milani. Transactional scheduling for read-dominated workloads.
In Proceedings of the 13th International Conference on Principles of Distributed
Systems, OPODIS ’09, pages 3–17, Berlin, Heidelberg, 2009. Springer-Verlag.

http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf
http://developer.amd.com/wordpress/media/2013/09/45432-ASF_Spec_2.1.pdf

[13] V. Bushkov, D. Dziuma, P. Fatourou, and R. Guerraoui. The pcl theorem: Transactions
cannot be parallel, consistent and live. In SPAA, pages 178–187, 2014.

[14] V. Bushkov, R. Guerraoui, and M. Kapalka. On the liveness of transactional memory.
In Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing,
PODC ’12, pages 9–18, New York, NY, USA, 2012. ACM.

[15] I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy. Improved single global lock
fallback for best-effort hardware transactional memory. In Transact 2014 Workshop.
ACM, 2014.

[16] T. Crain, D. Imbs, and M. Raynal. Read invisibility, virtual world consistency
and permissiveness are compatible. Research Report, ASAP - INRIA - IRISA -
CNRS : UMR6074 - INRIA - Institut National des Sciences Appliquées de Rennes -
Université de Rennes I, 11 2010.

[17] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F. Spear.
Hybrid NOrec: a case study in the effectiveness of best effort hardware transactional
memory. In R. Gupta and T. C. Mowry, editors, ASPLOS, pages 39–52. ACM, 2011.

[18] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: Streamlining stm by abolishing
ownership records. SIGPLAN Not., 45(5):67–78, Jan. 2010.

[19] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid
transactional memory. SIGPLAN Not., 41(11):336–346, Oct. 2006.

[20] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Proceedings of the
20th International Conference on Distributed Computing, DISC’06, pages 194–208,
Berlin, Heidelberg, 2006. Springer-Verlag.

[21] D. Dice and N. Shavit. What really makes transactions fast? In Transact, 2006.

[22] D. Didona, N. Diegues, A.-M. Kermarrec, R. Guerraoui, R. Neves, and P. Romano.
Proteustm: Abstraction meets performance in transactional memory. SIGOPS Oper.
Syst. Rev., 50(2):757–771, Mar. 2016.

[23] N. Diegues, P. Romano, and S. Garbatov. Seer: Probabilistic scheduling for hardware
transactional memory. In Proceedings of the 27th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA ’15, pages 224–233, New York, NY, USA,
2015. ACM.

[24] S. Doherty, D. L. Detlefs, L. Groves, C. H. Flood, V. Luchangco, P. A. Martin,
M. Moir, N. Shavit, and G. L. Steele, Jr. Dcas is not a silver bullet for nonblocking
algorithm design. In Proceedings of the Sixteenth Annual ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA ’04, pages 216–224, New York,
NY, USA, 2004. ACM.

[25] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and
verifying transactional memory. Formal Asp. Comput., 25(5):769–799, 2013.

[26] F. Ellen, D. Hendler, and N. Shavit. On the inherent sequentiality of concurrent
objects. SIAM J. Comput., 41(3):519–536, 2012.

[27] R. Ennals. The lightweight transaction library.
http://sourceforge.net/projects/libltx/files/.

[28] R. Ennals. Software transactional memory should not be obstruction-free. 2005.

[29] K. Fraser. Practical lock-freedom. Technical report, Cambridge University Computer
Laborotory, 2003.

[30] R. Guerraoui, T. A. Henzinger, and V. Singh. Permissiveness in transactional memo-
ries. In DISC, pages 305–319, 2008.

[31] R. Guerraoui and M. Kapalka. On obstruction-free transactions. In Proceedings
of the twentieth annual symposium on Parallelism in algorithms and architectures,
SPAA ’08, pages 304–313, New York, NY, USA, 2008. ACM.

[32] R. Guerraoui and M. Kapalka. The semantics of progress in lock-based transactional
memory. SIGPLAN Not., 44(1):404–415, Jan. 2009.

[33] R. Guerraoui and M. Kapalka. Principles of Transactional Memory, Synthesis
Lectures on Distributed Computing Theory. Morgan and Claypool, 2010.

[34] R. Guerraoui, M. Kapalka, and J. Vitek. Stmbench7: A benchmark for software
transactional memory. SIGOPS Oper. Syst. Rev., 41(3):315–324, Mar. 2007.

[35] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3 edition, 2003.

[36] M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149,
1991.

[37] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In ICDCS, pages 522–529, 2003.

[38] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III. Software transactional
memory for dynamic-sized data structures. In Proceedings of the Twenty-second
Annual Symposium on Principles of Distributed Computing, PODC ’03, pages 92–
101, New York, NY, USA, 2003. ACM.

[39] M. Herlihy and J. E. B. Moss. Transactional memory: architectural support for
lock-free data structures. In ISCA, pages 289–300, 1993.

[40] M. Herlihy and N. Shavit. On the nature of progress. In OPODIS, pages 313–328,
2011.

[41] D. Imbs and M. Raynal. Virtual world consistency: A condition for STM systems
(with a versatile protocol with invisible read operations). Theor. Comput. Sci., 444,
July 2012.

[42] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of strong
shared memory primitives. In PODC, pages 151–160, 1994.

[43] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional
memory. In Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’06, pages 209–220, New York, NY,
USA, 2006. ACM.

[44] P. Kuznetsov and S. Ravi. On the cost of concurrency in transactional memory. In
OPODIS, pages 112–127, 2011.

[45] P. Kuznetsov and S. Ravi. Grasping the gap between blocking and non-blocking
transactional memories. In Distributed Computing - 29th International Symposium,
DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 232–247, 2015.

[46] P. Kuznetsov and S. Ravi. On partial wait-freedom in transactional memory. In
Proceedings of the 2015 International Conference on Distributed Computing and
Networking, ICDCN 2015, Goa, India, January 4-7, 2015, page 10, 2015.

[47] P. Kuznetsov and S. Ravi. Progressive transactional memory in time and space.
In Parallel Computing Technologies - 13th International Conference, PaCT 2015,
Petrozavodsk, Russia, August 31 - September 4, 2015, Proceedings, pages 410–425,
2015.

[48] Y. Lev, M. Moir, and D. Nussbaum. Phtm: Phased transactional memory. In In Work-
shop on Transactional Computing (Transact), 2007. research.sun.com/scalable/pubs/
TRANSACT2007PhTM.pdf.

[49] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[50] V. J. Marathe, W. N. S. Iii, and M. L. Scott. Adaptive software transactional memory.
In In Proc. of the 19th Intl. Symp. on Distributed Computing, pages 354–368, 2005.

[51] A. Matveev and N. Shavit. Reduced hardware transactions: a new approach to hybrid
transactional memory. In Proceedings of the 25th ACM symposium on Parallelism in
algorithms and architectures, pages 11–22. ACM, 2013.

[52] P. E. McKenney. Memory barriers: a hardware view for software hackers. Linux
Technology Center, IBM Beaverton, June 2010.

[53] M. Ohmacht. Memory Speculation of the Blue Gene/Q Compute Chip, 2011. http:
//wands.cse.lehigh.edu/IBM_BQC_PACT2011.ppt.

[54] S. Peluso, R. Palmieri, P. Romano, B. Ravindran, and F. Quaglia. Disjoint-access
parallelism: Impossibility, possibility, and cost of transactional memory implemen-
tations. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC ’15, pages 217–226, New York, NY, USA, 2015. ACM.

[55] D. Perelman, R. Fan, and I. Keidar. On maintaining multiple versions in STM. In
PODC, pages 16–25, 2010.

[56] J. Reinders. Transactional Synchronization in Haswell, 2012.
http://software.intel.com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell/.

[57] T. Riegel. Software Transactional Memory Building Blocks. 2013.

[58] T. Riegel, P. Marlier, M. Nowack, P. Felber, and C. Fetzer. Optimizing hybrid
transactional memory: The importance of nonspeculative operations. In Proceedings
of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, pages
53–64. ACM, 2011.

http://wands.cse.lehigh.edu/IBM_BQC_PACT2011.ppt
http://wands.cse.lehigh.edu/IBM_BQC_PACT2011.ppt
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://www.qucosa.de/fileadmin/data/qucosa/documents/11559/Riegel_Diss_final.pdf

[59] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson. Architectural support for software
transactional memory. In Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 39, pages 185–196, Washington, DC,
USA, 2006. IEEE Computer Society.

[60] W. N. Scherer, III and M. L. Scott. Advanced contention management for dynamic
software transactional memory. In Proceedings of the Twenty-fourth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’05, pages 240–248, New
York, NY, USA, 2005. ACM.

[61] N. Shavit and D. Touitou. Software transactional memory. In PODC, pages 204–213,
1995.

[62] M. F. Spear, A. Shriraman, L. Dalessandro, S. Dwarkadas, and M. L. Scott. Non-
blocking transactions without indirection using alert-on-update. In Proceedings of
the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’07, pages 210–220, New York, NY, USA, 2007. ACM.

[63] F. Tabba, M. Moir, J. R. Goodman, A. W. Hay, and C. Wang. Nztm: Nonblocking
zero-indirection transactional memory. In Proceedings of the Twenty-first Annual
Symposium on Parallelism in Algorithms and Architectures, SPAA ’09, pages 204–
213, New York, NY, USA, 2009. ACM.

	Introduction
	Basic Asynchronous Read/Write Model CARWn[]
	A Simple LL/SC-Based WF-Compliant Universal Construction
	Extending CARWn[] with LL/SC
	A simple universal construction in CARWn[LL/SC]
	The case of large objects

	Extensions
	On the implementation side: Disjoint-access parallelism
	On the object side: Abortable objects

	From Operations on Memory Locations to Agreement Objects
	Primitive operations versus objects
	A fundamental agreement object: consensus
	A simple consensus-based universal construction
	Consensus number and the consensus hierarchy
	Universal construction ``1 among k''
	Ultimate universal construction `` among k''

	Universal Construction vs Software Transactional Memory
	Conclusion
	Introduction
	Transactional memory model and preliminaries
	Complexity of blocking TMs
	Sequential TMs
	Progressive TMs
	Strongly progressive TMs
	On the cost of permissive opaque TMs

	Complexity of non-blocking TMs
	Lower bounds for obstruction-free TMs
	Blocking versus non-blocking TMs

	Lower bounds for partially non-blocking TMs
	The space complexity of invisible reads
	On the cost of disjoint-access parallelism

	Hybrid Transactional Memory
	Research directions and open questions

