
The Distributed Computing Column
by

Stefan Schmid

Aalborg University
Selma Lagerlöfs Vej 300, DK-9220 Aalborg, Denmark

This issue of the distributed computing column includes two articles:

1. Ittai Abraham and Dahlia Malkhi present an interesting perspective on
Blockchain consensus protocols, through the lens of distributed computing,
and discuss the relationship to Byzantine Fault Tolerant (BFT) protocols.

2. Carlos Baquero, Paulo Sérgio Almeida, Alcino Cunha, and Carla Ferreira
present a survey of the mathematical structures and compositional proper-
ties of state-based replicated data types that support the implementation of
eventually consistent, geo-replicated data management solutions.

Enjoy!

http://www.en.aau.dk/

The Blockchain Consensus Layer and BFT

Ittai Abraham Dahlia Malkhi
Vmware Research Group

VMware
{iabraham, dmalkhi}@vmware.com

Abstract
In this paper, we analyze Blockchain consensus protocols in the lens of the founda-

tions of distributed computing. Our goal is to present analogies and connections between
Blockchain protocols and Byzantine fault tolerant (BFT) protocols. We also discuss op-
portunities to consider hybrid solutions.

Keywords: Blockchain, Byzantine Agreement, BFT

1 Introduction
In the early 2000’s, a group of activists advocating the wide-spread use of cryptography and
privacy-enhancing technologies were engaging over the cypherpunks mailing-list in an effort to
create an anonymous, monitor-free digital cash. Step by step, they jointly built the ingredients
that eventually lead to the emergence of Bitcoin in 2009. In recent years more crypto-currency
variants have emerged. As of late 2017, the market cap associated with Bitcoin is over $70
billion and the total crypto-currency market cap is about twice that.

The steps leading to the construction of Bitcoin harness deep ideas and methods from pub-
lished academic works. Its incredible market cap reflects the public trust in the robustness and
soundness of the technology, without any company or institution backing it.

At the core of Bitcoin is a method for reaching agreement on a shared chain of blocks where
each block contains a sequence of transactions. This core is called the Blockchain. In many
ways the Blockchain is the most intriguing and innovative aspect of Bitcoin. In this paper, we
study Blockchain through the lens of the theory of distributed computing.

To put this exploration in context, let’s take a quick perspective on the full Bitcoin ap-
proach, and explain what challenge Blockchain addresses. Bitcoin relies heavily on the idea of
computational puzzles as proof-of-work (PoW). The idea of using computational puzzles first
appeared in the pioneering work of Dwork and Naor in [17]. Similar approaches were taken to
fight email spam by forcing senders to work by Hashcash [8]. Aspnes et al. [7] suggested to
use computational puzzles for preventing Sybil attacks in a Byzantine setting.

The cypherpunks were interested in a much more ambitious use-case of crypto-puzzles
such as Hashcash, the use of computation power as means for minting crypto-currency. They
recognized that PoW provided scarcity and uniqueness, two necessary ingredients for creating
value. However, the main challenge was to provide users with a decentralized, anonymity-
preserving solution to protect against double-spending. At first, this seems like a daunting
problem: How can you track spendings and preserve privacy at the same time?

A couple of ideas that eventually led to the Blockchain solution were posted to the cypher-
punks mailing list. Dai proposed b-money [12], a crypto-currency system that already uses
crypto-puzzles for minting digital currency, in which participants themselves track all digital
account balances. This was not a very practical approach because it relied on a timely multicast
channel in a peer-to-peer setting, and rather than preventing double spending, involved rather
cumbersome remediation mechanisms. Szabo enhanced this idea with the Bit Gold crypto-
currency [38]. The Bit Gold system uses Haber and Stornetta’s hash-chaining [22] to create
a secure ordering of transfers, a transaction ledger. The position of a transaction in the ledger
determines the latest owner of a digital asset. The question was who is in charge of maintaining
the ledger. Bit Gold used Byzantine quorums [31] to maintain the ledger replicated among all
users. Since there was no way to validate membership in Bit Gold, quorums were not enough
to provide consistency guarantees.

The challenge of preventing double-spending in a permissionless setting thus remained
unsolved until the introduction of the Bitcoin Blockchain protocol. The last piece of a full
crypto-currency solution was finally addressed.

Blockchain uses PoW as a way to obtain several goals at once. It is a way to mint currency
but more importantly it is a key ingredient in the Bitcoin Blockchain protocol that reaches
agreement and prevents double spending. Newly minted blocks are spread among the miners
over a peer-to-peer network, and each miner keeps the longest chain as the winning chain, even
if it means overturning earlier segments of the chain. Since winning the longest chain means
solving cryptographic puzzles in each block, overturning a long tail segment is hard. For this
reason, blocks “buried” deep in a miner’s chain are typically considered committed with high
probability.

1.1 A Layered view
The Blochain technology is more than a consensus engine. Zooming out a bit, we advocate
a layered view, which decomposes Blockchain into different components that each deals with
separate concerns.

Layer-1: State-machine replication (SMR). The bottom layer is focused on an infrastruc-
ture for storing an immutable sequence of transaction-blocks among distrustful parties.

From a foundational standpoint, this layer builds a chain of consensus blocks, a problem
that has received tremendous attention in the distributed systems arena. As evidenced from
the above brief history, Bitcoin incorporates several deep ideas that have been around for quite
a while, some more than two decades. Yet the consensus engine, which achieves agreement
among distrusting parties in a scalable settings with unknown participants, seems very different
than the classical methods for Byzantine fault tolerance (BFT).

This writeup is dedicated to an exploration of the analogous replication problem model
with Byzantine fault tolerance in the distributed computing literature and relating BFT to
Blockchain.

Layer-2: Smart contracts. The middle layer takes a simple shared data structure and ex-
poses rich, high level, business relevant abstractions. This allows users and applications to use
advanced cryptography tools to generate smart contracts [37]. Contracts allow to programat-
ically facilitate, verify, or enforce the negotiation or performance of a business transactions.

They are embedded as Blockchain SMR commands, hence all participants in share the respon-
sibility of executing them, their logic is immutable, and their audit-trace is open. A future
writeup will overview the foundations of this layer.

Layer-3: Services. Finally, the top layer, applications, is where the customer value is created.
There is great excitement about the possibilities that shared provenance of asset and identity
tracking brings. Not surprisingly, many of them are in the financial arena, but not only, and it
is yet to be seen what are the “killer-apps” for Blockchains.

1.2 Roadmap
In this paper, we analyze Blockchain consensus protocols in the lens of the foundations of
distributed computing. In §2, we present the algorithmic foundation of Nakamoto Consensus
(NC), explaining how it solves (with high probability) the state-machine replication (SMR)
problem. In §3, we attempt to relate NC to the classical literature on Byzantine fault tolerant
SMR (BFT). We continue in §4 to overview several approaches for bringing the two paradigms
together. We conclude in §5.

2 Nakamoto Consensus through the lens of the theory of dis-
tributed computing

Distributed protocols often have some desired properties they wish to obtain. For example,
Byzantine agreement protocols aim to solve the “consensus” problem and it is often said that
Blockchains solve the “double spending” problem. It is crucial to understand under what con-
ditions do these protocols obtain their desired properties. In distributed computing theory we
typically start by defining an adversary model and then prove that the desired properties hold
in any execution against such an adversary.

2.1 Adversary Model
In the traditional distributed computing literature, the most common adversary assumption is
the Threshold Adversary Model. In this model there is typically an assumption of a threshold
gap between two parameters:

1. The total number of parties, often denoted by n.

2. The total number of parties the adversary can control, often denoted by f .

The typical threshold chosen is either of a minority n > 2 f or a third n > 3 f . This model is
sometimes also called the “permissioned model” to indicate that it is not the case that anyone
can join the group of n parties, but rather one needs to have a “permission to join”. Indeed in
this model we tyically assume there is a fixed set n participants.

One of the major model modifications that Bitcoin considers is the alternative Computa-
tional Threshold Adversary (CTA) model. In this model, instead of bounding the total number
of parties the adversary controls relative to the total number of parties, the model bounds the

total amount of computational power the adversary has relative to the total available computa-
tional power of all parties. To push the analogy we can formally define:

1. The total amount of computational power, denoted by NC.

2. The total amount of computational power the adversary can control, denoted by FC.

The assumption in Bitcoin is that the adversary controls a minority of computational power.
We can denote this by a threshold of Nc > 2FC. In some cases it helps to assume the adversary
controls some ε fraction less than a majority, NC > 2(1 + ε)FC.

We note that the formal definition of “computational power” needs a concrete material-
ization. For example, in Bitcoin, this assumption builds on mechanisms that harnesses the
difficulty of inverting SHA1.

This model is often also called the “permissionless model” to indicate that there is no ex-
plicit membership protocol, anyone who can solve cryptographic puzzles can join the system.

A new model modification is being debated and considered lately. The idea is to bound the
adversary by allowing him a minority stake in some abstract finite resource. Indeed, instead of
bounding the relative number of parties or the relative computational power of the adversary,
one can imagine bounding some other limited resource. In a crypto-currency use case it is very
natural to use the crypto-currency itself as the limited resource.

This leads to the Stake Threshold Adversary (STA) model. In this model, there is some finite
abstract resource we will call R. Again we can define:

1. The total amount of resource R, denoted by NR.

2. The total amount of resource R that the adversary can control, denoted by FR.

For example, the underlining assumption in Ethereum’s Proof-of-Stake approach can be mod-
eled as an adversary that controls a third of the resource R (in their case of the Ethereum
crypto-currency). We can simply denote this as a threshold assumption NR > 3FR.

In many ways this third model is a generalization of the previous two. The classic threshold
model is just a one-party one-vote resource and the computational threshold model just using
computation as the limited resource.

We note that in all three models there is a possibility to dynamically modify the parameters
as long as the threshold remains the same. These dynamic changes often bring more challenges
for protocol solutions.

An additional power of the Proof-of-Stake approach is that it allows for punishing parties
(by “slashing” their stake) if they can be publicly detected as malicious. We briefly discuss this
next.

2.2 Game theoretic model
Instead of designing protocols against a malicious adversary, an alternative approach is to de-
sign protocols that form a threshold coalition resilient equilibrium [3, 4]. In both models the
potential deviating parties are limited by a threshold. The main difference is that in the ma-
licious model the deviating parties can act completely arbitrarily while in the game theoretic
model we often assume the deviating coalitions acts rationally while attempting to maximize
their utility.

In the crypto-currency scenario it is often natural to define the utility simply as a function of
the crypto-currency itself. The main mechanism used is the fear of punishment. This leads to
the idea of each member putting some deposit (stake) in such a way that if a deviating member
is publicly verified as malicious then its deposit can be deleted or reduced. This approach
appears in Wei Dai’s b-money [12] and in recent Casper suggestions [9].

In the rest of this section, we analyze Bitcoin in the Computational Threshold Adversary
model, and leave the game theoretic model for a future survey.

2.3 The Computational Threshold Adversary model
We now discuss the Computational Threshold Adversary model in more detail. A key element
of the CTA model is the notion of Proof-of-work (PoW): The adversary cannot prove more
work than its threshold share of computation power.

Synchrony. We note that bounding the computational power is often meaningless as PoW in
a fully asynchronous system. If network delay can be unbounded then the adversary can boost
its computational power just by making the non-faulty parties incur much higher delays. It is
therefore commonly accepted that the CTA model incorporates in it some degree of synchrony
assumptions [20, 13, 35, 6]. A more detailed analysis of network delays appears in [34]. This is
in contrast to the traditional threshold adversary model where both asynchrony and synchrony
models can be considered.

PCNELE. Bitcoin uses PoW to implement a leader election “oracle” with several interesting
properties:

• (Independence) Each party is elected independently (so multiple parties may be elected
in the same round).

• (Fairness) The probability of electing each party is proportional to its relative computa-
tional power.

• (Pre-Commit Non-Equivocation Leadership announcement) In each round, each party
commits to an action and the oracle probabilistically elects parties and announces them
and their action.

We name an oracle with these properties a Fair, Pre-Commit, Non-Equivocation, Leader
Elections (PCNELE) Oracle. The first PCNELE property, Independence, implies that in some
rounds it may elect multiple leaders. This is typically tolerated in distributed protocols, as long
as sufficiently often just one leader is elected.

The second one, Fairness, is important for many distributed protocols, e.g., for load bal-
ancing or contention resolution. It is crucial for Bitcoin’s setting because winning an Oracle
election has economical value.

The last, Pre-Commit Non-Equivocation, captures two unique functionalities. In a Byzan-
tine fault model, just electing a leader is not enough because we want the leader to be able to
add just a single block (and not be able to send different blocks to different parties). More-
over we would like the potential leader to commit to its single block content before the election

winner(s) are announced. In particular this means the leader cannot equivocate by sending two
different messages to different parties.

Note that PCNELE is much stronger than the classic Ω Oracle that is sufficient for con-
sensus in an asynchronous environment. This oracle is a key building block of the Nakamoto
Consensus protocol. Getting the full protocol requires just one more idea: each new block will
contain a reference to a previous block and the protocol advices to connect the new block so it
forms the longest chain. Before we get there, we discuss a concrete PCNELE implementation
via crypto-puzzles.

Implementing PCNELE using crypto-puzzles. In the CTA model, we can implement the
FPCNELE oracle using cryptographic puzzles. Such a puzzle needs to have three properties:

• (Pre-commit) Solving the puzzle requires to commit to a specific block.

• (Public verifiability) The solver of the puzzle can generate a solution certificate of his
correct solution and his committed block. This certificate can be efficiently publicly
verified.

• (Fairness) the probability of solving the puzzle (generating a solution certificate) at any
given round is proportional to the computational power of the party.

Note that this definition inherently assumes a round based model (or a partially synchronous
model).

We now detail a concrete protocol based on a very simple cryptographic puzzle (a simpli-
fication of the Bitcoin cryptographic puzzle). We use two parameters: P which is the base of
the puzzle and H which is the hardness parameter. For party with a public key i and a desired
action o to solve the puzzle it must find a number nonce such that

S HA1(P||i||o||nonce) < H

Here we use SHA1 as an example of a secure hash function. Pre-commit is obtained be-
cause the action o is embedded into the puzzle and it is computationally hard to find a collision
with another action o′. Public verifiability is obtained, because once the party discovers an ad-
equate nonce, then it can publish it and anyone can verify solution. Fairness is obtained under
the assumption that the cryptographic hash function is essentially a random function. So the
only solution strategy is use brute force to find the nonce.

The parameter H needs to be tuned relative to the total amount of computational power.
A large value of H will cause many parties to solve the puzzle in the same round, causing
contention. A small value of H may cause the expected time it takes to elect a leader to be too
long. Note that the election process essentially induces a Poisson process on elected parties
whose parameter depends on H.

2.4 The Nakamoto Consensus protocol - Longest Fork Wins

At its core, Nakamoto Consensus (NC) is a protocol that implements a replication of a Blockchain
by using two elegant and powerful ideas: PoW and a longest fork win (LFW) strategy.

The LFW strategy works as follows. When pre-committing a block content, a party must
also pre-commit on a reference to a previous block. The LFW rule is to always choose to
reference the longest chain.

We begin by providing an abstract solution that assumes access to an abstract FPCNELE
Oracle of the previous section. We then define what problem this solution solves. Finally we
detail a concrete example that follows the Bitcoin protocol.

An abstract NC protocol: Implementing Blockchain replication We now focus on imple-
menting Blockchain replication assuming access to a FPCNELE Oracle.

The abstract NC protocol has just two principles:

• (New Block via FPCNELE Oracle): the Oracles allows each elected leader to announce
a single pre-committed new block.

• (Longest Fork Wins): non-faulty leaders will connect their pre-committed block to the
leaf block which forms the longest path from the genesis block.

Concretely, in each round, parties pre-commit to the FPCNELE Oracle which block they
want to add and to which existing block they want to add it to. The Oracle then announces
the set of parties that are elected (possibly none, possibly more than one) and the blocks of the
elected parties are announced.

Now that we defined the abstract NC protocol, let’s formally define what problem it solves.

Blockchain replication The core goal of state-machine replication (SMR) is to form a grow-
ing log of commands. A new command is appended to the tail of the log by a consensus
decision, and does not modify anything before the tail. We will return to the classical SMR
problem in the next section. Here, we view an even more abstract graph theoretic model.

We can view a log of commands as a dynamically growing directed path. A new command
is added by adding a new node that points to the previous last node of the path. To define a
Blockchain replication protocol we need to deal with potential forks: instances where there is
(some) uncertainty about which command it decides on. For example, there may be several
competing blocks that all point to the same parent block. To model this we need to extend the
dynamically growing directed path abstraction to a more general dynamic direct acyclic graph
model. We will call this graph G and call the root node g of G the “genesis” node. Given any
existing leaf y we can extend y with a new node x by announcing the edge y ← x. We call this
operation “announcing a new block”.

We note that while G can be an arbitrary DAG, the goal of a Blockchain protocol is to force
G to be as similar as possible to a directed path.

Blockchain Replication Properties. The goal of the Nakamoto Consensus protocol is to
implement a Blockchain replication protocol in the computational threshold adversary model.

To this end we define four desired properties:

• (Uniqueness) there is a unique deterministic function L(G) to extract a single path P =

g, a1, a2, a3, . . . , ak from G. Typically L(G) is the longest path in G from the genesis (with
some tie-breaker).

• (Liveness) the path L(G) is constantly growing (this often depends on the synchrony
assumptions, for example: that a new block is added in expectation every 10 minutes).

• (Safety) If P = g, a1, a2, a3, . . . , ak = L(G) is a path of length k for G and G grows to
become G′ then for any ai ∈ P the probability that ai < L(G′) is exponentially decreas-
ing proportional to k − i. This is the famous “burying” property: the deeper a block is
buried in the path P the harder it is to revoke it. In bitcoin, a block is typically consid-
ered “committed” if its buried behind a chain if 6 newer blocks (= one hour’s worth of
computational puzzle solving).

• (Fairness) the proportion of nodes in P that belong to non-faulty parties is at least pro-
portional to their relative computational power.

We note that uniqueness is typically obtained by defining L(G) as the longest path in G. If
there are several paths of maximal length then we can deterministically choose one of them.
Using a randomized tie breaker is also an option and has certain advantages (improved fairness
and resilience to selfish mining) and disadvantages (potentially slower conversion).

The liveness and fairness properties are natural: we want the unique chain to grow and we
want the proportion of blocks to represent the proportion of computational power of the parties.

The safety property is somewhat subtle. In order to make sure that a block is committed
and will not be removed with high probability one needs to wait until the block is “buried” deep
enough in the path P.

As we will later discuss, a solution for Blockchain replication can be trivially used to solve
state-machine replication: simply define the state-machine as the operations in P = L(G) after
removing the k most recent nodes in P. Note that this implementation provides safety only with
high probability.

Analyzing abstract NC If non-faulty parties follow the LFW principle, then it can be shown
that indeed the properties of Blockchain replication are held.

While Liveness and Fairness seem to follow almost directly from the FPCNELE Oracle
properties, again Safety is more subtle. Roughly speaking, the reason that a block ai that is
“buried” k blocks deep will not be replaced is that the probability that the adversary manages
to fork the chain from ai−1 and create an alternate longer chain of length k + 1 is exponentially
small as a function of k. The exponent of this property is a function of how far the adversary is
from controlling half of the computational resources.

After defining an abstract NC protocol (that uses an Oracle) and defining what problem it
solves we now describe a very simply concrete NC protocol.

2.5 Nakamoto Consensus - A concrete protocol
A concrete Nakamoto consensus protocol can be written in a single line:

• Given a party i that wants to commit a block with transactions o, let P = a1, . . . , ak be the
longest path in G then party i attempts to solve the puzzle that will allow it to announce
the ak ← b where b is a new block that contains i public key, and o.

Concretely, find the nonce such that

S HA1(ak||i||o||nonce) < H

The simple, single line protocol is a simplified version that captures the central idea behind
the Bitcoin’s Blockchain consensus protocol. At its core it uses Proof-of-Work to implement a
Fair Leader Election Oracle that provides non-equivocation and pre-commitment. Non-faulty
leaders are expected to always use the Longest Fork Wins rule and extend the longest path.
This in turn implies that the non-faulty parties manage to implement a Blockchain replication
protocol. Which in turn can be used to implement a state-machine replication protocol (where
safety is guaranteed with high probability). A rigorous and detailed analysis of this approach
appears in [20, 34].

3 Relating NC to BFT

When an NC leader announces a block ak ← b, it implicitly announces not just the new block
b, but also any block in {a1, ..., ak} missing from G. By the Longest Fork Wins principle, this
leader “proposal” wins if the path a1, ..., ak, b is L(G), i.e., the longest path in G. As mentioned
above, this is the NC solution to the classical state-machine replication (SMR) problem of
reaching agreement on a growing log of commands.

Relating this to the classical SMR literature, there is a common theme where proposals
are prioritized by leader ranks: A proposal by a highest ranking leader is accepted and forces
the leader’s log-prefix. In the BFT literature, replication consistency is maintained by two
principles:

• (Non-equivocation) leaders are prevented from equivocating, so that there is only one
possible proposal per leader per rank

• (Proposal-safety) a (higher-ranking) proposal may extend, but not modify, any lower-
ranking committed log prefix.

NC and BFT differ in how they accomplish these two key principles, and consequently, in
BFT having instant finality and NC not having it.

We now put aside NC and discuss the foundations of replicated services. We will get back
to relating the two approaches later.

SMR Problem Model. We start with a brief overview of state-machine replication (SMR)
and related terminology. The State-Machine-Replication (SMR) approach [28, 36] is well
known paradigm for building a fault-tolerant service, that linearizes all updates as if they oc-
cur one after another [23]. Driving an SMR service is a sequence of consensus decisions on
a growing log of state-machine operations. The parties in the protocol are called replicas, and
each state-machine replica executes the log of operations deterministically, arriving at a con-
sistent replicated state. Here we adopt the traditional Threshold Adversary model (see §2). In
this model, a threshold of the replica set may suffer certain failures; below, we discuss both be-
nign failures and arbitrary corruptions (Byzantine failures). For simplicity, we neglect clients
and the details by which requests arrive at replicas, and simply assume replicas have their own
inputs.

Focusing on the consensus core, the key challenge is to repeatedly reach agreement deci-
sions among the replicas on extending the log with a new command:

• (Agreement) There is agreement on a sequence of decisions among all correct replicas.

• (Validity) Committed decisions form a monotonically growing log of commands. Each
command has been proposed by a replica. (In particular, in the Byzantine failure case,
each command must carry some replica’s signature.)

• (Liveness) If a correct replica proposes a command, then eventually some decision is
committed.

3.1 Asynchronous benign framework with N = 2F + 1

We start with the benign-failure model, which allows us to focus on Safety; we get back to
dealing with the threat of leader equivocation later, in the Byzantine-failure model.

We present a framework that borrows from the asynchronous consensus solution introduced
by Dwork, Lynch and Stockmeyer in [16], and widely employed for SMR, e.g., in Viewstamped
Replication [32], Paxos [29], Raft [33], and others. The DLS framework has the desirable
property that Agreement is kept under all scenarios, including asynchrony; liveness depends on
successfully electing a correct leader with timely communication channels to replicas.

A key concept of the framework is an explicit ranking among proposals. In DLS, ranks are
termed phases, in Paxos, they are called ballots, and in VR, views. Here we use views. Replicas
all start with an initial view, and progress from one view to the next. Commands are accepted
in the highest view to have started. In some views, a decision will be reached to extend the
log-prefix by one slot; other views will expire without a decision. Liveness relies on having a
constant fraction of the views with a good and timely leader.

Decision values are monotonically increasing: Once a certain prefix becomes committed in
a view, higher views can only extend it, but no slot in the committed log-prefix may ever be
reverted. Therefore, once a certain prefix is committed, it becomes ready for execution by the
replicas.

Algorithm 1 provides a breakdown of the framework into five abstract components: VIEW,
a scheme for prioritizing proposals; WEDGE, a mechanism for starting new views; SAFE, a
mechanism for collecting information about lower views and picking a safe value to propose
based on responses; ACCEPT, a mechanism for making an accepted leader proposal durable;
and DECIDE, a predicate for committing a decision.

Briefly, in each view there is a single designated leader (in fact, we typically identify the
leader with the view-number). The other replicas are called acceptors, they accept at most one
proposed value in the view. A replica moves to a higher view if a local timer expires.

A leader in a view ensures Validity by collecting information from a quorum that intersects
every commit quorum in lower views in at least one correct acceptor. The leader then picks
a safe log-prefix to propose, and extends it by one slot. Specifically, in a benign settings, the
algorithm works for N = 2F + 1 replicas and quorums of size N − F. The leader collects
STATUS messages from a quorum of N − F acceptors, thus intersecting the quorums of all
previous views. Among all the accepted prefixes reported to it, the leader picks the one accepted
at the highest view, if any, or an empty prefix if none. It extends the log-prefix with its own
input command, and proposes it to replicas.

Pipelining. Practical SMR solutions, such as VR/Paxos/Raft, let the leader of the current
view drive repeated extensions to the growing log. This enables an optimized pipeline of pro-
posals: A stable leader avoids waiting for the current view to expire for each command, and
does not need to collect status messages. In this tutorial, for pedagogical reasons we will ignore
this optimization (for a discussion of this optimization, see [11]).

Correctness In a nutshell, this protocol guarantees Agreement because a leader proposes
only safe proposals: A value is safe to propose in a view if no lower view can ever decide a
conflicting value.

As for liveness, the protocol makes a decision as soon as a good view is activated, meaning
that the view-leader has timely communication with a majority quorum, none of which times
out and moves to a higher view.

Algorithm 1 Benign SMR solution skeleton with N = 2F + 1.

VIEW Initially, each replica starts in view 0. A replica starts view v + 1 if view v expires with
no progress, or if it receives any message from a view higher than its current view. The
leader for view v is the replica whose ID modulo N equals the view number. We denote
it by L(v).1

WEDGE An acceptor Q, upon starting view v, sends L(v) a message (STATUS, v, Q, H),
where H is the proposal and view number in a maximal view for which Q ever received
a proposal, or ⊥ if none received. After moving to view v, an acceptor rejects messages
from views lower than v.

SAFE L(v) waits for N − F status responses (STATUS, v, Q, HQ). It picks a safe value S
to propose. S is the status value whose view is highest among the STATUS responses
collected, if any, or an empty log.

ACCEPT L(v) extends S with its own input value, and sends the extended prefix S ∗ to all
replicas a message (PROPOSE, v, S ∗).

An acceptor Q in view v, upon receiving a (PROPOSE, v, S ∗) message from L(v), records
v, S ∗ as the highest proposal it accepted, and sends (ACK, v, Q) to the leader.

DECIDE When N−F acceptors of any view v accepted a proposal S it becomes the committed
decision. The leader, or anyone learning this decision, broadcasts a (DECIDE, v, S ∗)
notification.

3.2 Asynchronous Byzantine framework with N = 5F + 1

The above solution works in a model where the adversary can only cause crash failures. For
the Byzantine model where the adversary can perform arbitrary actions on the faulty parties
we need to make a few adjustments. First, all messages are signed, to prevent spoofing and
to enable forwarding messages on behalf of others as proofs of safety and validity in various
steps.

Second, the quorums of the SAFE mechanism, which are used for collecting information
about lower views and picking a safe value to propose based on responses, need to be adjusted
to guarantee intersection in sufficiently many non-faulty replicas [31]. Third, the ACCEPT
component requires a mechanism that prevents a leader from equivocating and sending con-
flicting proposals to different parties.

The first solution we illustrate addresses these challenges simply by increasing quorum
intersection to 3F + 1. Consequently, this solution requires N = 5F + 1, and does not have
optimal resilience. Nevertheless, it is a simple adaptation of Algorithm 1, and has the benefit
of incurring linear communication complexity. Similar 5F + 1 schemes appeared in [27, 1].
Algorithm 2 below highlights the modified parts.

Algorithm 2 Byzantine SMR solution skeleton with N = 5F + 1.

VIEW Initially, each replica starts in view 0. A replica starts view v + 1 if view v expires with
no progress, or if it receives F + 1 messages (directly or indirectly) from a view higher
than its current view. The leader for view v is the replica whose ID modulo N equals the
view number. We denote it by L(v).

WEDGE An acceptor Q, upon starting view v, sends L(v) a message (STATUS, v, Q, H),
where H is the proposal and view number in a maximal view for which Q ever received
a proposal, or ⊥ if none received. After moving to view v, an acceptor rejects messages
from views lower than v.

SAFE L(v) waits for N − F status responses (STATUS, v, Q, HQ). It picks a safe value S to
propose. S is the proposal whose view is highest such that 2F + 1 replicas accepted it in
the view, if any, or ⊥ if none received.

ACCEPT L(v) extends S with its own input value, and sends the extended prefix S ∗ to all
replicas a message (PROPOSE, v, S ∗). It attaches to its proposal a proof of safety, e.g.,
the collection of STATUS messages.

An acceptor Q in view v, upon receiving a (PROPOSE, v, S ∗) message from L(v) for the
first time, verifies the proposal validity and then records v, S ∗ as the highest proposal it
accepted, and sends (ACK, v, Q) to the leader.

DECIDE When N−F acceptors of any view v accepted a proposal S it becomes the committed
decision. The leader, or anyone learning this decision, broadcasts a (DECIDE, v, S)
notification.

A brief note about correctness of this Byzantine protocol. It guarantees agreement because
each two quorums intersect in 3F + 1 replicas, and 2F + 1 of them are correct. Therefore, if a

decision is made in a view, a higher view intersects it in 2F + 1 responses. Furthermore, in a
system of N = 5F + 1, no other value can appear 3F + 1 times. Similar to the benign case, the
protocol is live if a correct leader has timely links with a quorum.

3.3 Synchronous Byzantine framework with N = 3F + 1

We can adapt Algorithm 2 to a synchronous settings, such that the resulting synchronous algo-
rithm requires only N = 3F +1 replicas, instead of N = 5F +1. We do not repeat the algorithm,
and instead we just highlight the adaptations.

In a synchronous setting, a party can collect messages from all non-faulty replicas by wait-
ing the appropriate number of maximal transmission durations.

The leader sends a signed PROPOSE. A replica accepts the first PROPOSE message it
receives and “echoes” it–adding its own signature–to all other replicas in a PROPOSE message.

After it accepts a proposal, a replica waits for echoes from all other replicas. A replica
DECIDES if it hears N − F PROPOSE messages with the same value and does not hear any
PROPOSE message with a different value.

For a decision to be safe, the SAFE component requires a new leader to choose the value
whose view is highest in which F + 1 replicas accepted an identical value, if any, or ⊥ if none
received.

Briefly, this algorithm maintains Agreement because a decision is reached in a round in
which all correct replicas accept some proposal and no correct replica accepts a different pro-
posal. Because correct replicas always respond in time, a leader of a higher round picking
among STATUS messages the highest view in which F + 1 replicas accepted an identical value
is guaranteed to choose this value as the only safe possibility.

3.4 Byzantine frameworks with optimal resilience
The two Byzantine protocols above do not have optimal resilience. To obtain a protocol for
N = 3F + 1 for the asynchronous model, and likewise, N = 2F + 1 for the synchronous model,
the trick is to replace the leader’s broadcast with a protocol that provides two guarantees. One,
the leader cannot equivocate. And two, every non-faulty replica that echoes a leader proposal
can prove that it is unique. Obtaining these two properties typically requires replacing the
trivial leader broadcast with a two-round protocol [14].

Asynchronous Byzantine framework with N = 3F + 1: In the asynchronous model, the
leader protocol works in two-phases as follows. In the first phase, the leader sends a signed
proposal tagged PRE-PROPOSE. Replicas echo–adding their own signature–the first leader’s
PRE-PROPOSE message they receive either directly from the leader, or in a PRE-PROPOSE
message they receive from other replicas. In the second phase, upon receiving the same value
in either 2F + 1 PRE-PROPOSE messages, or F + 1 PROPOSE messages, replicas echo with
a signed PROPOSE message and accept the proposal.

Upon accepting a PROPOSE value from the 2-phase broadcast protocol, replicas proceed
to process the message as a leader proposal. Specifically, a decision is reached in a view (as
usual) upon receiving N − F PROPOSE messages for a value.

For a decision to be safe, the SAFE component requires a new leader to choose the value
whose view is highest, such that either (i) F + 1 replicas sent a PROPOSE message with the

value, if any, or (ii) 2F + 1 replicas sent a PRE-PROPOSE for it, if any, or (iii) F + 1 replicas
sent a PRE-PROPOSE for it, if any. It chooses ⊥ if non such value is received.

For further details of folding this leader broadcast protocol into the SMR full protocol, we
refer to the PBFT protocol of Castro and Liskov [10]. Note that, the communication com-
plexity here is quadratic, and matches the communication lower bound of Dolev, Reischuk and
Strong [15].

Synchronous Byzantine framework with N = 2F + 1: In synchronous settings, we can
implement the leader’s broadcast protocol using two all-to-all exchanges as follows.

In the first phase, the leader broadcasts a PRE-PROPOSE value. Replicas echo to all other
replicas–adding their own signature–the first leader PRE-PROPOSE message they receive.

In the second phase, a replica accepts a value if all PRE-PROPOSE echoes (of which there
are at least F + 1) match. Note that, due to synchrony, if two correct replicas echo conflicting
PRE-PROPOSE values, no correct replica will accept any value.

Upon accepting a value, a replica broadcasts to all other replicas a PROPOSE messages that
carries the value it accepted, along with a proof of its validity, e.g., F+1 signed PRE-PROPOSE
echoes.

It should be obvious from the above discussion that if any value is proposed by a correct
replica, then it is unique. Furthermore, in that case, there may be no valid PROPOSE with
a conflicting value. Therefore, a decision can be reached in a view upon receiving F + 1
PROPOSE messages carrying an identical value.

For this decision to be safe, upon starting a new view a replica broadcasts a PRE-STATUS
message containing the last value it accepted, if any, along with a proof of its safety. It waits
for all other PRE-STATUS messages and keeps among the valid ones the one whose view
is highest. The SAFE component requires a new leader to choose the value whose view is
highest which a single replica proposed, if any, or ⊥ if either conflicting ones received or none
received. The leader attaches to a PRE-PROPOSE messages a proof of safety, e.g., F + 1
STATUS messages.

Briefly, this algorithm maintains Agreement because if any correct replica sends PROPOSE,
no conflicting valid PROPOSE exists. The leader cannot hide the proposed value because all
correct replicas will receive a PRE-STATUS message about it.

This synchronous N = 2F +1 paradigm appears in [2]. A slightly different leader-based so-
lution paradigm called XFT, which guarantees safety against Byzantine failures in synchronous
settings, is given by Liu et al. in [30]. A framework for several of these trade-offs is provided
in [5].

3.5 Back to Nakamoto Consensus

We now get back to the world of parties that solve computation puzzles instead of replicas, and
a Computational Threshold Adversary instead of a Threshold Adversary.

At first sight, Nakamoto Consensus (NC) seems very different than traditional SMR pro-
tocols. Instead of an explicit safe value selection scheme it just uses Longest Fork Wins to
prioritize the currently longest “proposed” chain. Instead of using explicit quorum to guarantee
that decision persists, NC uses synchrony assumptions and cryptographic puzzles to progres-
sively make decisions harder to revoke.

Nevertheless in this section we attempt to view NC in the SMR framework we have just
detailed. This exercise highlights many of the similarities. Algorithm 3 illustrates how NC
(almost) implements the necessary ingredients we characterized above.

In NC, the notion of a view number (and implicit proposal rank) translates into chain-length;
the longer the chain, the higher the rank (with ties broken by some deterministic rule). Like
BFT, initially, each party starts in view 0 and moves from one view to the next. A leader of
view v is a party solving a puzzle for a chain of length v−1, which it announces in a PROPOSE
message sent to everyone. The Computational Threshold adversary captures the guarantee of
having a constant fraction of the views with a good and timely leader. Indeed, in NC, if an
adversary takes control of more than 50% of the computation power in the network, it can
theoretically prevent progress: By forking blocks buried at arbitrary level, it can prevent any
block from ever becoming finalized.

Similar to BFT solutions, the NC PROPOSE message is self-validating and causes other
parties to move to view v when they receive this announcement, and subsequently reject mes-
sages from lower views. Different from BFT, there is no explicit collection of STATUS re-
sponses, nor explicit proof of safety of the proposal. Nevertheless, NC obtains Agreement
(with high probability), and we now explain the relation to STATUS messages and quorums.

The key observation is that a party acceptance is implicit by the collaborative work rep-
resented in a puzzle solution. More specifically, recall that we model a Fair PCNELE Oracle
model in §2 as choosing only one (or a few) blocks to extend G out of all the parties attempt-
ing to. Since all parties wish their proposal to win longest path of G, a block announcement
av−1 ← b that extends the current longest path a1, ..., av−1 in G to length v represents the col-
lective “acceptance” of this path by many parties presenting proposed blocks to the Oracle.
Indeed, if a party tried to introduce a path that replaces the last ε blocks of L(G), it would need
to win the oracle’s choice ε times. This occurs with probability that decays exponentially with
ε. Thus, the PCNELE selection policy incentivizes parties to accept G and extend L(G), rather
than replacing any part of it.

In summary, a PoW av−1 ← b, although not a strict proof of acceptance by a quorum of the
parties, is a statistical tallying of their acceptances of a1, ..., av−1. Hence, while Validity is not
strictly guaranteed, the probability of replacing a block buried ε levels deep is exponentially
diminishing with ε. As a corollary, Agreement on blocks buried k level deep in L(G) holds with
high probability.

Algorithm 3 NC in the view of the Threshold Adversary framework.

VIEW Initially, each party starts in view 0. By the “longest-chain-wins” principle, upon re-
ceiving an announcement that extends L(G) to length v, a party moves to view v if it is
currently in a lower view.

A party becomes a leader L(v) for view v when solves the puzzle that allows it to an-
nounce into G a block av−1 ← b, such that b forms a chain a1 ← ...← av−1 ← b of length
v. Note that this leader is not necessarily unique, so there may be multiple leaders for
view v, and multiple proposals with the same view.

WEDGE Upon starting a new view, a party chooses to work on the puzzle at the end of L(G).
By the “longest-chain-wins” principle, after moving to view v, a party rejects messages
from views lower than v.

SAFE Successfully solving the puzzle at the end of L(G) implicitly and statistically represents
acceptance of L(G) by a large fraction of parties.

ACCEPT A leader L(v) announces to all parties a block av−1 ← b that extends L(G) to length
v. A party chooses to work on the puzzle at the end of L(G), implicitly conveying accep-
tance.

DECIDE A party in view v may decide on the block at position v−ε in L(G), the longest chain
in G. With probability proportional to ε, this block will not be overturned by any future
insertions to G.

4 Combining NC with BFT

In this section we discuss emerging approaches to combine NC with BFT. Such hybrid solutions
address the deficiencies in either arena, and bring the combined benefits of both worlds.

We begin by underscoring challenges of either paradigm.

4.1 Blockchain replication challenges

While Blockchain replication can be used to implement state-machine replication, this imple-
mentation has several limitations.

Lack of finality Blockchain replication suffers from a long-term deficiency where there is
always the risk that a block will be un-committed. In fact the formal safety seems to require
infinite executions and to assume that the relative minority computational bound of the adver-
sary will remain true till infinity. In practice this raises many concerns: what if after some safe
period an adversary acquires more than half of the relative computational power and reverts all
the transactions?

Commit Latency Blockchain replication suffers from a short-term deficiency. Even if we
assume infinite execution and are willing to assume that a block that is buried by an hour’s
worth of cryptographic puzzles is completely safe, this still means we need to wait an hour! In
fact one of the biggest advantages of BFT protocols is that they provide “instant finality”. This
is a property that the NC does not achieve.

Selfish Mining This is an attack on the fairness property first suggested by Eyal and Sirer
[19]. This attack is related to the incentives behind publishing PoW puzzles immediately when
they are solved.

4.2 BFT State-machine replication challenges

State-machine replication with Byzantine fault tolerance brings many advantages. Unlike NC,
it does not suffer from lack of finality. On the contrary, once a block is committed it can never
be revoked. Moreover, modern BFT SMR systems have very low latency and high throughput.
In particular these systems are often tuned to provide high performance in the common, failure-
free case. Even in a WAN deployment with tens of servers these systems typically manage to
commit hundreds (if not thousands) of operations per second in good network conditions and
failure free executions.

The permissionless model of NC allows for a much larger set of replicas. It is commonly
believed that there are at least several thousands of miners implementing the BitCoin NC repli-
cation protocol.

While BFT SMR protocols seem to work well for few tens of servers, scaling these solutions
to hundreds or even thousands of replicas raises new challenges.

4.3 Bridging the two paradigms
We proceed to mention a few approaches to combine both the NC and BFT techniques to
overcome the above challenges.

The Ethereum Casper [9] approach harnesses BFT to deal with the lack of finality in NC.
Casper sets up a trusted committee of validators, who may be selected by placing a security
deposit. The committee post-validates NC blocks (buried to a certain depth) via a BFT protocol.
Only after a path is validated by the committee it is considered committed. In this approach,
the NC chain can be viewed as a client sending a stream of requests to a permissioned BFT
engine. Note that due to the slow cadence of requests (e.g., an Ethereum average block time is
14 seconds), the BFT protocol can work in essentially synchronous mode.

Another approach uses NC to elect a rotating committee, and then the committee is respon-
sible for deciding on blocks to add to the chain. The first step in this approach was BitCoin-NG
[18], they suggest that after a leader is elected it continues to perform micro-transactions. Byz-
Coin [26] took this idea a step further, and defined a committee of size C simply as the last C
elements in the NC chain. ByzCoin suggests that this committee then proceeds to use PBFT
to drive micro-transactions. One challenge is that committee members themselves may not be
finalized. To remedy this, a similar approach is taken by Hybrid Consensus [35], where the
committee C is chosen as the members that are buried 2C to C + 1 in the NC chain. In addi-
tion to finality of decisions, the benefit of this approach is that the BFT engine provides faster
turnaround of (finalized) decisions.

A third approach introduced in Solidus [6] builds the Blockchain itself by consensus and
does not use LFW at all. It uses PoW as a way to both mint new currency and rotate a com-
mittee. A newly minted block does not win by LFW, instead it needs to go through consensus
approval by the existing committee in order to be added to the Blockchain. Once a block is
added to the chain, it also rotates the committee (similar to Byzcoin and HC), i.e., the new ele-
ment gets admitted to the committee, and the oldest element retired. Like the above approaches,
Solidus provides finality and low latency. In addition, in Solidus the details of reconfiguring
the committee members are weaved into the Blockchain protocol and are based on traditional
SMR-BFT reconfiguration approaches.

Scaling Byzantine agreement through a randomized sample of a sub-committee is, in it-
self, a known idea (see, e.g., [25]). A vulnerability of all committee-based approaches is that
an adversary can mount a targeted attack on the (smaller) set of committee members. Cryp-
tographic techniques were introduced in [24] to hide the committee selection against such a
rushing adversary. More recently, Algorand [21] uses Proof-of-Stake coupled with verifiable
random functions (VRF) to secure a randomized selection of committee members in permis-
sionless setting. Algorand further mitigates vulnerability by having each committee determine
only one block, and converging in one communication step by each member.

5 Concluding Remarks
In this tutorial, we discussed the foundational aspect of Blockchain as a Byzantine fault-tolerant
state-machine-replication engine.

We first provided a foundational breakdown of NC as a randomized protocol in the syn-
chronous settings. We introduced the abstractions of a randomized oracle, that selects a small
number of requests to extend a directed graph. We then expressed NC as a simple combination

of two principles, request to extend the longest chain in the graph, and accept the longest chain
as winning.

We then introduced a general framework for classical BFT solutions that preserves two
key safety properties: Validity and Agreement. It builds around a view by view solution that
explicitly collect information from a quorum of parties, and determines a proper way to the log
from one view to the next. We used the framework to relate NC to classical BFT solutions.
The NC oracle, by admitting only a small selection of requested block additions, implicitly
performs approximate quorum collection.

An exciting emerging direction is to bring the two worlds together. We provided a glimpse
into several ideas for “hybrid” solutions.

As discussed in the introduction, the SMR engine of the Blockchain provides only the base
layer for the Blockchain stack. Future tutorials may cover the smart contract layer, where there
are fascinating connections between this service logic layer and parallel advances in the area of
removing trust from centralized implementations.

References
[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and Jay J.

Wylie. Fault-scalable byzantine fault-tolerant services. SIGOPS Oper. Syst. Rev., 39(5):59–74,
October 2005.

[2] Ittai Abraham, Srini Devadas, Kartik Nayak, and Ling Ren. Brief announcement: Practical syn-
chronous byzantine consensus. In Proceedings of the Int’l Symposium on Distributed Computing,
October 2017.

[3] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed computing meets game
theory: Robust mechanisms for rational secret sharing and multiparty computation. In Proceedings
of the Twenty-fifth Annual ACM Symposium on Principles of Distributed Computing, PODC ’06,
pages 53–62, New York, NY, USA, 2006. ACM.

[4] Ittai Abraham, Danny Dolev, and Joseph Y. Halpern. Lower bounds on implementing robust and
resilient mediators. In Ran Canetti, editor, Theory of Cryptography, Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008., volume 4948 of Lecture Notes in
Computer Science, pages 302–319. Springer, 2008.

[5] Ittai Abraham and Dahlia Malkhi. BVP: Byzantine vertical paxos. https://www.zurich.
ibm.com/dccl/papers/abraham_dccl.pdf, May 2016. Accessed: 2016-11-08.

[6] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. Solidus:
An incentive-compatible cryptocurrency based on permissionless byzantine consensus. CoRR,
abs/1612.02916, 2016.

[7] James Aspnes, Collin Jackson, and Arvind Krishnamurthy. Exposing computationally-challenged
Byzantine impostors. Technical Report YALEU/DCS/TR-1332, Yale University Department of
Computer Science, July 2005.

[8] Adam Back. Hashcash - a denial of service counter-measure. Technical report, 2002.

[9] Vitalik Buterin. Casper version 1 implementation guide. Technical report, 2017.

[10] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI ’99, pages 173–186,
Berkeley, CA, USA, 1999. USENIX Association.

https://www.zurich.ibm.com/dccl/papers/abraham_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/abraham_dccl.pdf

[11] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: An engineering per-
spective. In Proceedings of the Twenty-sixth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’07, pages 398–407, New York, NY, USA, 2007. ACM.

[12] Wei Dai. B-money. Technical report, 1998.

[13] Christian Decker and Roger Wattenhofer. Information Propagation in the Bitcoin Network. In 13th
IEEE International Conference on Peer-to-Peer Computing (P2P), Trento, Italy, September 2013.

[14] Danny Dolev. The byzantine generals strike again. Technical report, Stanford, CA, USA, 1981.

[15] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine agreement.
J. ACM, 32(1):191–204, January 1985.

[16] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial syn-
chrony. J. ACM, 35(2):288–323, April 1988.

[17] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Proceedings of
the 12th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’92,
pages 139–147, London, UK, UK, 1993. Springer-Verlag.

[18] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-ng: A scalable
blockchain protocol. In Proceedings of the 13th Usenix Conference on Networked Systems Design
and Implementation, NSDI’16, pages 45–59, Berkeley, CA, USA, 2016. USENIX Association.

[19] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Nicolas
Christin and Reihaneh Safavi-Naini, editors, Financial Cryptography and Data Security - 18th
International Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected
Papers, volume 8437 of Lecture Notes in Computer Science, pages 436–454. Springer, 2014.

[20] Juan Garay and Leonardos Kiayias. The bitcoin backbone protocol: Analysis and applications. In
EUROCRYPT, pages 281–310, 2015.

[21] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP), October 2017.

[22] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital document. In Proceedings of
the 10th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’90,
pages 437–455, London, UK, UK, 1991. Springer-Verlag.

[23] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[24] Valerie King and Jared Saia. Breaking the o(n2) bit barrier: Scalable byzantine agreement with an
adaptive adversary. J. ACM, 58(4):18:1–18:24, July 2011.

[25] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election. In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, pages 990–
999, Philadelphia, PA, USA, 2006. Society for Industrial and Applied Mathematics.

[26] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and
Bryan Ford. Enhancing bitcoin security and performance with strong consistency via collective
signing. In USENIX Security Symposium, pages 279–296. USENIX Association, 2016.

[27] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
Speculative byzantine fault tolerance. In Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, SOSP ’07, pages 45–58, New York, NY, USA, 2007. ACM.

[28] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, July 1978.

[29] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16:133–169, May 1998.

[30] Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolic. Xft: Practical
fault tolerance beyond crashes. In Proceedings of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’16, pages 485–500, Berkeley, CA, USA, 2016. USENIX
Association.

[31] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distrib. Comput., 11(4):203–213,
October 1998.

[32] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy method to
support highly-available distributed systems. In Proceedings of the Seventh Annual ACM Sympo-
sium on Principles of Distributed Computing, PODC ’88, pages 8–17, New York, NY, USA, 1988.
ACM.

[33] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In Proc.
USENIX Annual Technical Conference, pages 305–320, 2014.

[34] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In EUROCRYPT (2), volume 10211 of Lecture Notes in Computer Science, pages 643–
673, 2017.

[35] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
IACR Cryptology ePrint Archive, 2016:917, 2016.

[36] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299–319, 1990.

[37] Nick Szabo. Smart contracts: Building blocks for digital market. Technical report, 1996.

[38] Nick Szabo. Bit gold. Technical report, 2005.

Composition in State-based
Replicated Data Types

Carlos Baquero1, Paulo Sérgio Almeida1,
Alcino Cunha1, and Carla Ferreira2

1HASLab, INESC-TEC & Minho University, Portugal,
{cbm,psa,alcino}@di.uminho.pt

2NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa, Portugal,
carla.ferreira@fct.unl.pt

Abstract

Keeping replicated data strongly consistent is convenient when com-
munication is fast and available. In internet-scale distributed systems the
reality of high communication latencies and likelihood of partitions, leads
developers to adopt more relaxed consistency models, such as eventual con-
sistency. Conflict-free Replicated Data Types, bring structure to the design
of eventually consistent data management solutions, by precisely describing
the behaviour under concurrent updates and guarantying a path to reconcili-
ation. This paper offers a survey of the mathematical structures that support
state based multi-master replication with reconciliation, and shows how state
structures and state transformations can be composed to provide data types
that are now used in practice in many geo-replicated systems.

1 Introduction
Eventual consistency [25] is a relaxed, and highly available, data consistency
model that is often the option of choice in internet-scale distributed systems. The
common reasoning is that availability must be maintained, despite outages and
partitioning, whereas delayed consistency is acceptable. Replicated data can be
independently updated by multiple masters, allowing replicas to temporarily di-
verge [15], provided that they can eventually be reconciled into a common state.
The notion of attaining eventual consistency when updates stop can be traced to
R. H. Thomas in [23] “By mutual consistency we mean that all copies converge
to the same state and would be identical should update activity cease”.

Reconciliation of divergent data has been studied for many years, with strong
roots in databases [22, 23] and distributed file-systems [17, 18], often motivated
by support of disconnected operation. However, reconciliation algorithms used
to be ad-hoc and had to be devised by application layer programmers, typically
lacking a sound basis that ensured their correctness and convergence properties.
Alternatively, reconciliation can be left to the user, as in version control systems,
thus any outcome is possible and reconciliation becomes non deterministic.

Conflict-free Replicated Data Types (CRDTs) [21] are motivated by modern
demands from internet-scale systems [3, 14, 16, 24]. Within those systems, they
currently serve millions of users world-wide, and bring a more grounded approach
to the design of efficient and deterministic reconciliation solutions. They preserve
the sequential semantics of the modeled data types, and present a choice among
deterministic options when addressing concurrent changes. For instance, when
facing concurrent insertion and removal of the same element in a set, different set
concurrency semantics can lead to Add-wins or Remove-wins CRDT Sets. While
the choice of best CRDT data type implementation is still left to the application
designer, each data type is still assured to be correct with respect to its sequential
and specific concurrent semantics.

CRDTs support two complementary designs: operation-based and state-based.
Operation-based CRDTs require a middleware that provides reliable causal deliv-
ery to a known group of replicas, while state-based CRDTs usually only require
access to globally unique identifiers and eschew membership information. Due to
their additional flexibility, state-based CRDTs have a larger ratio of adoption in
industry, and will be the focus of this study.

State-based CRDTs are rooted in the mathematical structure known as join-
semilattices (which in this document we will abbreviate to simply lattices). These
order structures ensure that: 1) the replicated states of the data types evolve and
increase in a partial order in a precise way, as operations are applied, so that
the new version subsumes the previous one; 2) all concurrent evolutions can be
merged deterministically by the lattice join. In order to understand the building
principles of state-based CRDTs it is necessary to understand the basic building
blocks of lattices and how lattices can be composed.

In the following sections we will make a bridge linking classic results from
order and lattice theory into state-based CRDT construction techniques. We will
show how state evolves within a lattice; present several examples of concrete
CRDTs; and when possible link them to concrete use cases. We envision two
main readership goals: to provide a compact reference of constructions for the
benefit of data type developers, and to possibly entice theoreticians to consider a
new subject area for practical application of lattice theory.

2 From Sets to Lattices
In this context the most basic structure to define is a set of distinct values. An ex-
ample is the set of vowels that can defined by extension as vowels � {a, e, i, o, u}.
Elements in a set have no specific order and they only need to be distinguishable.

A partially ordered set, usually known as poset, is a set equipped with a binary
relation v which is reflexive, transitive and anti-symmetric. Given any elements
o, p, q in a poset we have:

• (reflexive) p v p

• (transitive) o v p ∧ p v q⇒ o v q

• (anti-symmetric) p v q ∧ q v p⇒ p = q

As an example, we can build a poset over the set of vowels by ordering just
two elements a v u, while the remaining elements are left unordered. These
unordered elements are called concurrent.

• (concurrent) p ‖ q ⇐⇒ ¬(p v q ∨ q v p)

In one extreme, we can build a poset with a total order on the set of vowels
with a v e v i v o v u. In this example we ordered all elements and thus created
a chain, i.e. a set where for any two elements p, q we have either p v q or q v p.

In the other extreme, we can leave all elements unordered and define a poset
that is an antichain, where any two elements are always concurrent. E.g., for the
vowels, defining v � {(a, a), (e, e), (i, i), (o, o), (u, u)}.

Throughout the paper we will use simple typing rules to clarify how some
structures can be obtained from others (by composition or simply by shedding
some properties). For example, every poset is obviously also a set:

A : poset
A : set

Given a poset A and a subset S of A, an upper bound of S is an element of A
that is greater than or equal to all elements of S . The least upper bound, if it exists,
is an upper bound that is less than any other upper bound, and therefore, unique.
Going back to the chain defined over the set of vowels (a v e v i v o v u),
considering the subset {a, i}, elements i, o, u are all upper bounds of the subset,
while i is the least upper bound.

A given poset A is a lattice if there exists a least upper bound for any pair
of elements p and q in A, written p t q, being t called the join operator. By
definition, this binary join satisfies the following properties:

• (idempotent) p t p = p

• (commutative) p t q = q t p

• (associative) o t (p t q) = (o t p) t q

We can generalise it to express the least upper bound of any non-empty finite
set S in a lattice A as

⊔
S . Some properties of least upper bounds are:

• (upper bound) o v o t p

• (least upper bound) o v p ∧ o v q⇒ o v p t q

There are posets where the join does not exist for all pairs of different ele-
ments; these are not lattices. For instance, an antichain is not a lattice, as the join
of any pair of different elements does not exist. Another example is bit strings
under prefix ordering (e.g., 01 v 010) where concurrent elements, e.g., 010 ‖ 100,
are not joinable.

However, having a set and any idempotent, commutative and associative bi-
nary operation, which can be called a join, we have a lattice, with the order in-
duced by the join as p v q ⇐⇒ p t q = q.

A : lattice
A : poset

When implementing CRDTs, where all possible states must have a join, this
can allow skipping the direct implementation of v and deriving it from t. How-
ever, for performance reasons, it might still be advisable to directly implement v
when appropriate.

As will be presented in Section 4.5, a lattice can be obtained from any set A,
by using the powerset P(A) as the supporting set and choosing the order to be set
inclusion, which results in the join being set union. In our running example this
would be the lattice defined by 〈P(vowels),⊆,∪〉.

As another general rule, any totally ordered set, i.e., any chain, is a lattice,
with the join being the maximum.

A : chain
A : lattice

For natural numbers we have the lattice 〈N,≤N,max〉. These simple lattices,
and others, can be found as building blocks for the BloomL system [7], a language
supporting eventual consistency without coordination.

Some lattices have a least element, called the bottom element ⊥. In these
cases the least upper bound for the empty set

⊔
∅ exists, and it is precisely ⊥.

Some properties are:

• (bottom) ⊥ v o

• (identity) ⊥ t o = o

Some examples: the lattice formed by the powerset of a given set A has the
empty set as bottom, 〈P(A),⊆,∪, ∅〉, and natural numbers have 0 as bottom. For
those lattices that do not have a bottom, it is always possible to add an extra
element as bottom, ordered before all others, obtaining a lattice with bottom. We
will address this construction when talking about lattice composition by linear
sums in Section 4.3. Trivially, lattices with bottom are lattices.

A : lattice⊥
A : lattice

A : chain⊥
A : chain

2.1 Primitive Lattices

We now introduce a small set of lattices, that will be later useful to construct more
complex structures by composition.

Singleton A single element, ⊥.

1 : chain⊥

⊥ v ⊥ ⊥ t ⊥ = ⊥

Boolean Two elements B = {False,True} in a chain, where join is logical ∨.

B : chain⊥

False v True x t y = x ∨ y ⊥ = False

Naturals Natural numbers with maximum as join. We include the 0, thus N =

{0, 1, . . .}.

N : chain⊥

n v m = n ≤ m n t m = max(n,m) ⊥ = 0

Integers Integers with maximum as join.

Z : chain

n v m = n ≤ m n t m = max(n,m)

3 Inflations make CRDTs
State-based CRDTs can be specified by selecting a given lattice to model the state,
and choosing the initial state usually as the lattice ⊥, if there is one. Query op-
erations evaluate an arbitrary function on the state and return a value. Mutation
operations do not return values and can only change the state by inflations. An
inflation f is an endofunction over A that for any value x in A returns an element
greater than or equal to x:

• (inflation) x v f (x)

It should be noticed that an inflation is not the same as a monotonic function,
x v y ⇒ f (x) v f (y). (We have noticed this confusion sometimes.) As an
example, the function f (x) = x

2 on positive reals is monotonic but not an inflation.
Inflations can be further classified as non-strict and strict inflations, where a strict
inflation is one such that:

• (strict inflation) x @ f (x)

The rules concerning inflations are thus:

∀x ∈ a · x v f (x)

f : A
v
−→ A

∀x ∈ a · x @ f (x)

f : A
@
−→ A

f : A
@
−→ A

f : A
v
−→ A

A state that is only updated as a result of inflations over its current value will
not be modified if joined with some past state: the new state always subsumes
the older one. This has important practical implications: state can be transmitted

at-least-once across replicas, since duplicates have no impact. If an old dupli-
cate arrives at a replica, even out of order with more recent states, joining it with
the local state will be harmless (a no-op), as its effect will have already been in-
corporated, and there is no danger of ‘going backwards’ and losing more recent
information.

3.1 Primitive Inflations

Similarly to the primitive lattices introduced above we can define some primitive
inflations.

id(x) = x
id : A

v
−→ A

True(x) = True
True : B

v
−→ B

succ(x) = x + 1
succ : N

@
−→ N

3.2 Sequential Composition

Inflations can be composed sequentially. As long as there is at least one strict
inflation in the composition, we obtain a strict inflation.

(f • g)(x) = f (g(x))

f : A
v
−→ A g : A

v
−→ A

f • g : A
v
−→ A

f : A
v
−→ A g : A

@
−→ A

f • g : A
@
−→ A

f : A
@
−→ A g : A

v
−→ A

f • g : A
@
−→ A

4 Lattice Compositions

Since we are interested in creating lattices we consider a few composition tech-
niques that are known to derive lattices. While in some cases they build from other
lattices, in others they can derive lattices from simpler structures.

4.1 Product

The product ×, or pair construction, derives a lattice formed by pairs of other
lattices. It can be applied recursively and derive a composition from a sequence
of lattices, where operations are applied in point-wise order.

A : lattice B : lattice
A × B : lattice

(x1, y1) v (x2, y2) = x1 v x2 ∧ y1 v y2

(x1, y1) t (x2, y2) = (x1 t x2, y1 t y2)

The construction also extends to lattices with bottom.

A : lattice⊥ B : lattice⊥
A × B : lattice⊥

⊥ = (⊥,⊥)

As an example, the underlying lattice structure of a version vector [15] among
three replica nodes is composable by N ×N ×N with ⊥ = (0, 0, 0).

Bellow are the properties of inflations over products. A strict inflation on one
of the components leads to an overall strict inflation.

(f × g)(x, y) = (f (x), g(y))

f : A
v
−→ A g : B

v
−→ B

f × g : A × B
v
−→ A × B

f : A
v
−→ A g : B

@
−→ B

f × g : A × B
@
−→ A × B

f : A
@
−→ A g : B

v
−→ B

f × g : A × B
@
−→ A × B

Classic causality based event ordering mechanisms can be described by lat-
tices that evolve by strict inflations. Lamport scalar logical clocks [13] are de-
scribed by the N lattice where each event number is generated locally by strict
inflation, and received remote clocks are merged-in by join. Similarly, vector
clocks share the same structure as version vectors, a product composition of N
lattices, with local events generated by strict inflation of the local entry.

4.2 Lexicographic Product
The � construct builds a lexicographic order from its source lattices. Components
to the left are more significant and, unless they are equal, they filter out further
comparisons towards the right side.

A : lattice B : lattice⊥
A � B : lattice

A : lattice⊥ B : lattice⊥
A � B : lattice⊥

(x1, y1) v (x2, y2) = x1 v x2 ∨ (x1 = x2 ∧ y1 v y2)

(x1, y1) t (x2, y2) =

(x1, y1) if x2 @ x1

(x2, y2) if x1 @ x2

(x1, y1 t y2) if x1 = x2

(x1 t x2,⊥) if x1 ‖ x2

⊥ = (⊥,⊥)

If the left component is a chain, often the case in practical uses based on
timestamps or scalar logical clocks, then the right one can be any lattice (without
requiring ⊥) as the fourth clause of the join definition never applies.

A : chain B : lattice
A � B : lattice

And, if the right component is also a chain the composition is a chain.

A : chain B : chain
A � B : chain

Some properties of inflations on lexicographic products are:

(f � g)(x, y) = (f (x), g(y))

f : A
v
−→ A g : B

v
−→ B

f � g : A � B
v
−→ A � B

f : A
v
−→ A g : B

@
−→ B

f � g : A � B
@
−→ A � B

f : A
@
−→ A g : B −→ B

f � g : A � B
@
−→ A � B

Notice that if we apply a strict inflation to the left component, then the right
component can be transformed by any function even if non inflationary. In prac-
tice this allows resetting the right component after strictly inflating the left; we
will see this in Section 5.2 when building lexicographic counters.

The abstraction provided by the lexicographic product is at the core of many
practical systems that use last-writer-wins approaches to manage concurrent data
updates [11]. By using fine grained timestamps in the left side and keeping node
clocks as closely synchronized as possible across system nodes, one can expect
strict inflations on the left as timestamps increase with time. When merging,
higher timestamp values will determine the outcome of the join.

4.3 Linear Sum
The next composition, linear sum ⊕, picks two lattices, left and right, and creates
a new lattice where any element from the left lattice is always ordered as less than
any element in the right lattice. In the resulting set the elements are tagged with a
label that identifies from which source lattice they come from. i.e., Left a means
that element a comes from the left lattice and is now named Left a. Tagging also
ensures that the sets supporting each lattice can have elements in common.

A : lattice B : lattice
A ⊕ B : lattice

A : lattice⊥ B : lattice
A ⊕ B : lattice⊥

Left x v Left y = x v y Left x t Left y = Left (x t y)
Right x v Right y = x v y Right x t Right y = Right (x t y)
Left x v Right y = True Left x t Right y = Right y
Right x v Left y = False Right x t Left y = Right x

⊥ = Left ⊥

A possible use of this construction is to add a ⊥ to a lattice that did not had
one. For instance 1 ⊕ R can add a special element, e.g. nil, that is ordered as
less than any real number. The same construction can also be used to add a top
element > to a lattice, that can act as a tombstone that stops lattice evolution.

Some properties of inflations on sums are:

(f ⊕ g)(Left x) = Left f (x)
(f ⊕ g)(Right x) = Right g(x)

f : A
v
−→ A g : B

v
−→ B

f ⊕ g : A ⊕ B
v
−→ A ⊕ B

f : A
@
−→ A g : B

@
−→ B

f ⊕ g : A ⊕ B
@
−→ A ⊕ B

4.4 Functions and Maps
The function space A→ B is a lattice, obtained by combining a set A with a lattice
B, and using pointwise comparison and join.

A : set B : lattice
A→ B : lattice

A : set B : lattice⊥
A→ B : lattice⊥

f v g = ∀x ∈ A · f (x) v g(x) (f t g)(x) = f (x) t g(x)

⊥(x) = ⊥

Many CRDTs are based on partial functions, i.e., maps K ↪→ V , where K is
any set of keys, and V is any lattice with bottom. Such maps are sometimes used
to (efficiently) represent total functions, assuming that keys which are not present
in the map implicitly yield bottom.

m(k) =

v if (k, v) ∈ m
⊥ otherwise

This view of maps as functions also allows us to reuse the respective definition
for join.

K : set V : lattice⊥
K ↪→ V : lattice⊥

An example of a map from vowels to integers vowels ↪→ N is m = {a 7→

3, i 7→ 5}. Viewing this map as function we could query for m(u) which yields 0.
We now define some inflations over maps. The first applies an inflation to all

values in the co-domain and thus inflates the whole map.

map(f)(m) = {(k, f (v)) | (k, v) ∈ m}

f : V
v
−→ V

map(f) : (K ↪→ V)
v
−→ (K ↪→ V)

The second applies an inflation to the value for a given key.

applyk(f)(m) = m{k 7→ f (m(k))}

Note that if the key is missing the function is applied to ⊥.

f : V
v
−→ V

applyk(f) : (K ↪→ V)
v
−→ (K ↪→ V)

Having maps we can refine the modeling of fixed size vector clocks that was
based on products of N. A dynamic vector clock can be obtained by mapping
node identifiers to N lattices, as described in [7].

4.5 Sets and Multisets
As we have seen in Section 2, given any set A it is possible to derive a lattice with
bottom by using the set of all possible subsets, the powerset P(A).

The powerset can also be defined by a function that maps each set element to
a boolean that states its presence in the subset. This composition is very general
since it can produce a lattice with bottom from any set.

P(A) � A→ B

Given that B is a lattice with bottom, from the previous section we know that
function A → B is also a lattice with bottom. Moreover, the respective order
relation and join operator are obtained by construction and are equivalent to the
expected.

A : set
P(A) : lattice⊥

a v b = a ⊆ b a t b = a ∪ b ⊥ = {}

A natural extension is to represent multisets by mapping the domain set to
naturals, instead of booleans.

A : set
Pm(A) : lattice⊥

Pm(A) � A→ N

Once again, by the properties of lattice composition, we get that function space
A → N is a lattice with bottom and both the order relation and join operator are
provided by construction.

Given that both B and N are lattices with bottom, actual CRDTs for sets and
multisets use maps to represent functions, as discussed in the previous section.
The generic inflations defined for maps can be used here to define an inflation that
adds an element e to a given set s.

add(e)(s) = applye(True)(s)

Likewise, to add an element to a multiset one increments the element count,
having a strict inflation.

add(e)(s) = applye(succ)(s)

4.6 Maximal Elements
A down-set (or order ideal) D of a poset P, is downward closed set, according to
v, of elements in P; i.e., if x ∈ D and y v x, then y ∈ D. Down-sets are useful
in many situations, e.g., to represent causal histories [19] of all events in the past,
up to a given point. Down-sets are also closed under set union, which means that
the set of down-sets D(A) of a poset A is a lattice with bottom (similarly to the
powerset for sets), with the usual set inclusion for order and union for join.

A : poset
D(A) : lattice⊥

But as they tend to get very large, they are used more as a modelling device,
than as an actual construct in implementations. However, a down-set can be more
compactly represented by the set of its maximal elements, which is an antichain.

maximal(S) = {x ∈ S | @y ∈ S · x @ y}

This means that, starting from a poset A, we can obtain a lattice with bottom,
isomorphic toD(A), which we callM(A): the lattice of maximal elements.

M(A) = {maximal(S) | S ∈ P(A)}

A : poset
M(A) : lattice⊥

M(A) � D(A)

The definitions of join and the order come directly from the isomorphism.
Upon a join, given two antichains, all elements that are concurrent are kept, but
any element that is subsumed by a greater element is removed.

a t b = maximal(a ∪ b)

a v b = ∀x ∈ a · ∃y ∈ b · x v y

⊥ = {}

In [7] a similar structure, using vector clocks to capture poset ordering, is
described as a ldom lattice and referred to as a dominating set.

{ }

{i1 ↦1}

i1 i2

inc {i2 ↦1}

{i1 ↦2}
{i1 ↦2, i2 ↦1}

{i1 ↦2, i2 ↦2}
{i1 ↦3}

inc

{i1 ↦2, i2 ↦3}

{i1 ↦4}

inc

{ }

inc
inc

inc

inc

{i1 ↦4, i2 ↦3}

(a) Positive counter.

{ }

{i1 ↦(1,False)}

i1 i2

disable
{ }

enable
{ }

{i1 ↦(1,False)}
disable {i1 ↦(1,True)}

{i1 ↦(1,True)}
enable {i1 ↦(1,True),

 i2 ↦(1,False)}
enable{i1 ↦(2,False)}

{i1 ↦(2,False),
 i2 ↦(1,False)}

(b) Enable-wins flag.

{ }
assign4

{ }

{({i1↦1},3),
 ({i2↦2},2)}

{({i2↦1},4)}
assign2 {({i2↦2},2)}

{({i1↦1},3)} assign3

assign5 {({i1↦1,i2↦3},5)}

{({i1↦1,i2↦3},5)}
assign7{({i1↦2,i2↦3},7)}

i1 i2

(c) Multi-value register.

{ }
addx

{ }

{x ↦{i1 ↦(1,True),
 i2 ↦(1,False)}}

{x↦{}}
rmvx{x ↦{i1 ↦(1,False)}}

{x ↦{i1 ↦(1,True)}}

addx{x ↦{i1 ↦(1,True)}}

rmvx

{x ↦{i1 ↦(2,False)}} rmvx
{x ↦{i1 ↦(1,True),

 i2 ↦(1,True)}}
addx

{x ↦{i1 ↦(2,False),
 i2 ↦(1,True)}}

i1 i2

(d) Remove-wins set.

Figure 1: Example executions.

The maximal elements construction is the basis for the creation of multi-value
registers that can store both single values and multiple values, when concurrent as-
signment occurs (see Section 5.7). This is the core data-type for tracking updates
to shopping carts in the original Amazon Dynamo framework [10], and occurs in
derived implementations such as the Riak Key-Value Store [4].

5 Abridged Catalog
In order to exemplify the composition constructs we present a small set of exam-
ple CRDTs. Simple query functions are included and all mutators are inflations.
Notice that join does not need to be defined as it follows from the composition
rules that were introduced. Figure 1 shows example executions of most CRDTs
discussed in this section.

5.1 Positive Counter

This simple form of counter can only increase. Replica nodes must have access
to unique ids among a set I; each can only increment its position in a map of

ids to integers. While increment mutators are parametrized by id i the query is
anonymous and simply inspects the state.

PCounter = I ↪→ N

inci(a) = applyi(succ)(a)

value(a) =
∑
{v | (i, v) ∈ a}

Notice that if a given node does not yet have an entry in the map and incre-
ments, then succ applies over ⊥, which for N was defined to be 0.

5.2 Positive and Negative Counter
This variation allows for both increments and decrements. A solution is to pair
two positive counters and consider the right side as negative. We use the standard
functions fst() and snd() to respectively access the left and right elements of a
pair.

PNCounter = (I ↪→ N) × (I ↪→ N)

inci(a) = (applyi(succ)(fst(a)), snd(a))
deci(a) = (fst(a), applyi(succ)(snd(a)))

value(a) =
∑
{v | (i, v) ∈ fst(a)} −

∑
{v | (i, v) ∈ snd(a)}

An alternative way to obtain a similar result is to use a lexicographic pair and
have the first element incremented when one needs to update the count on the
second element.

LexCounter = I ↪→ N � Z

inci(a) = applyi(id� succ)(a)
deci(a) = applyi(succ� pred)(a)

value(a) =
∑
{snd(v) | (i, v) ∈ a}

pred(x) = x − 1

While the PNCounter was one of the first CRDTs to be added to a production
database, in Riak 1.4 [4], the competing Cassandra database had its own counter
implementations based on the LWW strategy. Interestingly it proved to be difficult
to avoid semantic anomalies in the behaviour of those early counters, and since
Cassandra 2.1, a new counter was introduced [8] in line with the LexCounter.

5.3 Enable-wins Flag
A boolean flag that can be flipped, implemented in Riak under the name flag data
type [3]. It uses a lexicographic pair per replica, where the left (more significant)
element is a grow-only counter and the right element is a boolean. Enabling the
flag increases the counter and resets the flag to False, for the replica entry; dis-
abling the flag sets all booleans to True (maintaining the counters). The fact that
only the enable operation increases the counter, ensures that this operation takes
precedence over the disable operation. Flag starts disabled.

EWFlag = I ↪→ N �B

enablei(a) = applyi(succ�False)(a)
disable(a) = map(id � True)(a)

value(a) = ∃i, n · (i, (n,False)) ∈ a

5.4 Disable-wins Flag
The disable-wins flag is a dual construction of the enable-wins flag, and uses the
same state lattice. Disabling the flag increases the counter, while enabling the flag
sets all boolean to True. Flag starts enabled.

DWFlag = I ↪→ N �B

disablei(a) = applyi(succ�False)(a)
enable(a) = map(id � True)(a)

value(a) = @ i, n · (i, (n,False)) ∈ a

5.5 Add-wins Set
A set with add-wins semantics can be derived by creating unique tokens whenever
a new element is inserted, using for that a grow-only counter per replica, and
canceling these tokens, by setting a boolean to True, upon removal. Only elements
supported by non-canceled tokens are considered to be in the set.

AWSet = E ↪→ I ↪→ N �B

adde,i(a) = applye(applyi(succ�False))(a)
rmve(a) = applye(map(id � True))(a)

membere(a) = ∃(e,m) ∈ a · ∃i, n · (i, (n,False)) ∈ m

5.6 Remove-wins Set
A set with remove-wins semantics is derived by a dual construction to the previous
one, while sharing the same state lattice. Removal creates unique tokens, and
additions need to cancel all remove tokens that are visible in the state.

RWSet = E ↪→ I ↪→ N �B

rmve,i(a) = applye(applyi(succ�False))(a)
adde(a) = applye(map(id � True))(a)

membere(a) = ∃(e,m) ∈ a · @i, n · (i, (n,False)) ∈ m

5.7 Multi-value Register
A non-optimized multi-value register can be derived by lexicographic coupling a
version vector clock I ↪→ N with a payload value V . When a new value v is to
be assigned, a new clock, greater than all visible clocks in the state, is created
and coupled with the value. These pairs are kept in an antichain of maximal
elements. Thus, upon merge, concurrently assigned values will be collected, but
any subsequent assignment will again reduce the state to a single pair.

MVRegister = M((I ↪→ N) � V)

assignv,i(a) = {applyi(succ)(
⊔
{c | (c, v′) ∈ a}) � v}

values(a) = {v | (c, v) ∈ a}

Notice that the value is never updated without creating a new clock. Thus, lex-
icographic comparison (needed for the operation of the maximals join) is always

decided by the first component, and V can be any opaque payload with no need
for a partial order.

It is possible to improve the multi-value register construction, by keeping sin-
gle tags with each value entry and storing a common causal context [26], and by
compacting concurrent assignment of identical values [6]. Making such an im-
provement, while automatically deriving the join by lattice composition is still an
open problem.

6 Closing Remarks
This report collects several composition techniques for lattices, adopts the notion
of inflation and shows how it applies to the specification of state based CRDTs
over lattices. Most of the lattice compositions are very standard techniques from
order theory [9]. An early version of this work was presented at Schloss Dagstuhl
under the title Composition of Lattices and CRDTs and the summary of the pre-
sentation is available at [12]. Most of the CRDT constructions used here are
influenced by work in [2, 5–7, 20, 21].

The CRDTs selected for this small abridged catalog illustrate the potential
of lattice composition, but do not cover the whole spectrum of known CRDTs,
neither aims to be optimized. Further analysis on efficient implementations and
optimality results can be found on [1, 6].

Acknowledgements. The work presented was partially supported by FCT-MCTES-
PT NOVA LINCS project (UID/CEC/04516/2013), EU FP7 SyncFree project
(609551), EU H2020 LightKone project (732505), and SMILES line in project
TEC4Growth (NORTE-01-0145-FEDER-000020).

References
[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state replicated data

types. Journal of Parallel and Distributed Computing, 2017. http://dx.doi.
org/10.1016/j.jpdc.2017.08.003.

[2] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-based
CRDTs operation-based. In Proceedings of Distributed Applications and Interoper-
able Systems: 14th IFIP WG 6.1 International Conference, (DAIS’14), pages 126–
140. Springer, 2014. http://dx.doi.org/10.1007/978-3-662-43352-2_11.

[3] Basho. Riak datatypes, Retrieved 22-Dec-2015. http://github.com/basho.

[4] Basho. Riak 1.4, Retrieved 4-Jan-2016. https://github.com/basho/riak/
blob/1.4/RELEASE-NOTES.md.

http://dx.doi.org/10.1016/j.jpdc.2017.08.003
http://dx.doi.org/10.1016/j.jpdc.2017.08.003
http://dx.doi.org/10.1007/978-3-662-43352-2_11
http://github.com/basho
https://github.com/basho/riak/blob/1.4/RELEASE-NOTES.md
https://github.com/basho/riak/blob/1.4/RELEASE-NOTES.md

[5] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero,
Valter Balegas, and Sérgio Duarte. Brief announcement: Semantics of eventually
consistent replicated sets. In Distributed Computing: 26th International Symposium
(DISC’12), volume 7611 of LNCS, pages 441–442. Springer, 2012. http://dx.
doi.org/10.1007/978-3-642-33651-5_48.

[6] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski.
Replicated data types: Specification, verification, optimality. In Proceedings of
the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL’14), pages 271–284. ACM, 2014. http://doi.acm.org/10.
1145/2535838.2535848.

[7] Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David
Maier. Logic and lattices for distributed programming. In Proceedings of the 3rd
ACM Symposium on Cloud Computing (SoCC’12), pages 1:1–1:14. ACM, 2012.
http://doi.acm.org/10.1145/2391229.2391230.

[8] Datastax. What’s New in Cassandra 2.1: Better Implementation of
Counters, Retrieved 4-Jan-2016. http://www.datastax.com/dev/blog/
whats-new-in-cassandra-2-1-a-better-implementation-of-counters.

[9] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order (2. ed.).
Cambridge University Press, 2002.

[10] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In
Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Princi-
ples (SOSP’07), pages 205–220. ACM, 2007. http://doi.acm.org/10.1145/
1294261.1294281.

[11] Jonathan Ellis. Why cassandra doesn’t need vector clocks, Datas-
tax, Retrieved 4-Jul-2017. https://www.datastax.com/dev/blog/
why-cassandra-doesnt-need-vector-clocks.

[12] Bettina Kemme, André Schiper, G. Ramalingam, and Marc Shapiro. Dagstuhl sem-
inar review: Consistency in distributed systems. SIGACT News, 45(1):67–89, 2014.
http://doi.acm.org/10.1145/2596583.2596601.

[13] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978. http://doi.acm.org/10.1145/359545.
359563.

[14] Michael Owen. Using Erlang, Riak and the ORSWOT CRDT at bet365 for scala-
bility and performance, Retrieved 17-Jul-2017. http://www.erlang-factory.
com/euc2015/michael-owen.

[15] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton, J. M.
Chow, D. Edwards, S. Kiser, and C. Kline. Detection of mutual inconsistency in
distributed systems. IEEE Trans. Softw. Eng., 9(3):240–247, 1983. http://dx.
doi.org/10.1109/TSE.1983.236733.

http://dx.doi.org/10.1007/978-3-642-33651-5_48
http://dx.doi.org/10.1007/978-3-642-33651-5_48
http://doi.acm.org/10.1145/2535838.2535848
http://doi.acm.org/10.1145/2535838.2535848
http://doi.acm.org/10.1145/2391229.2391230
http://www.datastax.com/dev/blog/whats-new-in-cassandra-2-1-a-better-implementation-of-counters
http://www.datastax.com/dev/blog/whats-new-in-cassandra-2-1-a-better-implementation-of-counters
http://doi.acm.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
https://www.datastax.com/dev/blog/why-cassandra-doesnt-need-vector-clocks
https://www.datastax.com/dev/blog/why-cassandra-doesnt-need-vector-clocks
http://doi.acm.org/10.1145/2596583.2596601
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://www.erlang-factory.com/euc2015/michael-owen
http://www.erlang-factory.com/euc2015/michael-owen
http://dx.doi.org/10.1109/TSE.1983.236733
http://dx.doi.org/10.1109/TSE.1983.236733

[16] Peter Bourgon. Consistency without Consensus: CRDTs in Production at Sound-
Cloud, Retrieved 22-Dec-2015. http://www.infoq.com/presentations/
crdt-soundcloud.

[17] Peter Reiher, John Heidemann, David Ratner, Greg Skinner, and Gerald Popek.
Resolving file conflicts in the ficus file system. In Proceedings of the USENIX
Summer 1994 Technical Conference on USENIX Summer 1994 Technical Confer-
ence (USTC’94), pages 12–12. USENIX Association, 1994. http://dl.acm.org/
citation.cfm?id=1267257.1267269.

[18] Mahadev Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki,
Ellen H. Siegel, and David C. Steere. Coda: A highly available file system for a
distributed workstation environment. IEEE Trans. Comput., 39(4):447–459, 1990.
http://dx.doi.org/10.1109/12.54838.

[19] Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in dis-
tributed computations: In search of the holy grail. Distrib. Comput., 7(3):149–174,
March 1994. https://doi.org/10.1007/BF02277859.

[20] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types. Technical
Report 7506, Institut National de la Recherche en Informatique et Automatique (IN-
RIA), Rocquencourt, France, January 2011. http://hal.archives-ouvertes.
fr/inria-00555588/.

[21] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free
replicated data types. In Stabilization, Safety, and Security of Distributed Systems
(SSS’11), volume 6976 of LNCS, pages 386–400. Springer, 2011. http://dx.doi.
org/10.1007/978-3-642-24550-3_29.

[22] Douglas B. Terry, Marvin M. Theimer, Karin Peterson, Alan J. Demers, Mike J.
Spreitzer, and Carl H. Hauser. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In Mobility, pages 322–334. ACM, 1999.
http://dl.acm.org/citation.cfm?id=303461.342780.

[23] Robert H. Thomas. A majority consensus approach to concurrency control for mul-
tiple copy databases. ACM Trans. Database Syst., 4(2):180–209, 1979. http:
//doi.acm.org/10.1145/320071.320076.

[24] Todd Hoff. How League of Legends Scaled Chat to 70 Mil-
lion Players - It takes a lot of Minions, Retrieved 22-Dec-
2015. http://highscalability.com/blog/2014/10/13/
how-league-of-legends-scaled-chat-to-70-million-players-it-t.
html.

[25] Werner Vogels. Eventually consistent. Queue, 6(6):14–19, 2008. http://doi.
acm.org/10.1145/1466443.1466448.

http://www.infoq.com/presentations/crdt-soundcloud
http://www.infoq.com/presentations/crdt-soundcloud
http://dl.acm.org/citation.cfm?id=1267257.1267269
http://dl.acm.org/citation.cfm?id=1267257.1267269
http://dx.doi.org/10.1109/12.54838
https://doi.org/10.1007/BF02277859
http://hal.archives-ouvertes.fr/inria-00555588/
http://hal.archives-ouvertes.fr/inria-00555588/
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dl.acm.org/citation.cfm?id=303461.342780
http://doi.acm.org/10.1145/320071.320076
http://doi.acm.org/10.1145/320071.320076
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html
http://highscalability.com/blog/2014/10/13/how-league-of-legends-scaled-chat-to-70-million-players-it-t.html
http://doi.acm.org/10.1145/1466443.1466448
http://doi.acm.org/10.1145/1466443.1466448

[26] Marek Zawirski, Carlos Baquero, Annette Bieniusa, Nuno Preguiça, and Marc
Shapiro. Eventually consistent register revisited. In Proceedings of the 2nd Work-
shop on the Principles and Practice of Consistency for Distributed Data (Pa-
PoC’16), pages 9:1–9:3. ACM, 2016. http://doi.acm.org/10.1145/2911151.
2911157.

http://doi.acm.org/10.1145/2911151.2911157
http://doi.acm.org/10.1145/2911151.2911157

	Introduction
	A Layered view
	Roadmap

	Nakamoto Consensus through the lens of the theory of distributed computing
	Adversary Model
	Game theoretic model
	 The Computational Threshold Adversary model
	The Nakamoto Consensus protocol - Longest Fork Wins
	Nakamoto Consensus - A concrete protocol

	Relating NC to BFT
	Asynchronous benign framework with N=2F+1
	Asynchronous Byzantine framework with N=5F+1
	Synchronous Byzantine framework with N=3F+1
	Byzantine frameworks with optimal resilience
	Back to Nakamoto Consensus

	Combining NC with BFT
	Blockchain replication challenges
	BFT State-machine replication challenges
	Bridging the two paradigms

	Concluding Remarks
	Introduction (1)
	From Sets to Lattices
	Primitive Lattices

	Inflations make CRDTs
	Primitive Inflations
	Sequential Composition

	Lattice Compositions
	Product
	Lexicographic Product
	Linear Sum
	Functions and Maps
	Sets and Multisets
	Maximal Elements

	Abridged Catalog
	Positive Counter
	Positive and Negative Counter
	Enable-wins Flag
	Disable-wins Flag
	Add-wins Set
	Remove-wins Set
	Multi-value Register

	Closing Remarks

