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The Distributed Minimum Spanning Tree
Problem

Gopal Pandurangan∗ Peter Robinson† Michele Scquizzato‡

Abstract

This article surveys the distributed minimum spanning tree (MST) prob-
lem, a central and one of the most studied problems in distributed comput-
ing. In this problem, we are given a network, represented as a weighted
graph G = (V, E), and the nodes in the network communicate by message
passing via the edges of G with the goal of constructing an MST of G in a
distributed fashion, i.e., each node should identify the MST edges incident
to itself. This article summarizes the long line of research in designing ef-
ficient distributed algorithms and showing lower bounds for the distributed
MST problem, including the most recent developments which have focused
on algorithms that are simultaneously round- and message-optimal.
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1 Introduction
The minimum-weight spanning tree (MST) problem is a classical and fundamen-
tal problem in graph theory, with a long line of research dating back to Borůvka’s
algorithm in 1926. The MST is an important and commonly occurring primitive in
the design and operation of communication networks. Formally, the MST problem
is as follows. Given an n-node connected (undirected) graph with edge weights,
the goal is to compute a spanning tree of minimum total weight. Weights can be
used to model fundamental network performance parameters such as transmission
delays, communication costs, etc., and hence an MST represents a spanning tree
that optimizes these parameters. One of the most common applications of MST
is that it can serve as a backbone for efficient communication, e.g., it can be used
naturally for broadcasting, i.e., sending a message from a (source) node to all the
nodes in the network. Any node that wishes to broadcast simply sends messages
along the spanning tree. The message complexity is then O(n), which is optimal.
The advantage of this method over flooding (which uses all the edges in the net-
works) is that redundant messages are avoided, as only the edges in the spanning
tree are used. In particular, if weights model the cost or the delay for a message
to pass through an edge of the network, an MST can minimize the total cost for a
node to communicate with all the other nodes of the network.

Because of its fundamental importance in networks, the MST problem is also
one of the central and most studied problems in network algorithms, specifically
distributed network algorithms. In the distributed MST problem, the goal is to
compute a MST in a distributed fashion efficiently, which is achieved by minimiz-
ing two fundamental performance measures used for distributed algorithms: mes-
sage and time complexity. In a distributed network, each node (which represents
a processor) is aware only of its incident edges (which represent communication
links to its neighbors) and of their weights. That is, each node starts with only lo-
cal knowledge, and at the end of the distributed algorithm each node should know
which of its incident edges belong to the MST, i.e., the output knowledge is also
local (e.g., a node need not know about the status of edges that are not incident to
it). We will give formal details of the model assumptions in Section 2.

Besides an efficient communication backbone, a distributed MST algorithm
can be also be used for leader election, a fundamental symmetry breaking prob-
lem in distributed computing. In the leader election problem, among many nodes
(potentially all) nodes vying to be leader, the goal is to elect one unique leader.
A distributed MST algorithm can construct a rooted tree (where parent-child rela-
tionships are known to each node), and the root can serve as the leader. The MST
algorithms described in this article naturally construct a rooted tree.

In this article, we survey algorithms and lower bounds for the distributed MST
problem. The rest of the article is organized as follows. In Section 2, we formally



describe the distributed computing model and its complexity measures and dis-
cuss some preliminaries on the distributed MST problem. In section 3, we give
a quick historical survey and summarize the state of the art until 2016. In Sec-
tion 4, we discuss three well-studied distributed MST algorithms. In Section 5,
we present singularly optimal distributed MST algorithms that were discovered
more recently, i.e., distributed MST algorithms that are simultaneously time- and
message-optimal. In Section 6 we discuss lower bounds and describe the tech-
niques used to show such results. We conclude with some open questions in Sec-
tion 7.

2 Model, Definitions, and Preliminaries
We first describe the distributed computing model that we consider in this article.
The model is called the CONGEST model (see, e.g., [47, 43]), which is now
standard in the distributed computing literature.

A point-to-point communication network is modeled as an undirected weighted
graph G = (V, E,w), where the vertices of V represent the processors, the edges
of E represent the communication links between them, and w(e) is the weight
of edge e ∈ E. Without loss of generality, we assume that G is connected. We
use D to denote the hop-diameter (that is, the unweighted diameter) of G, and, in
this article, by diameter we always mean hop-diameter. We also assume that the
weights of the edges of the graph are all distinct. This implies that the MST of
the graph is unique. 1 Each node hosts a processor with limited initial knowledge.
Specifically, we make the common assumption that each node has unique identity
numbers, and at the beginning of computation each vertex v accepts as input its
own identity number and the weights of the edges incident to it. Thus, a node
has only local knowledge. Specifically, we assume that each node u has ports
(each port having a unique integer port number) and each incident edge of u is
connected to one of u’s distinct port. A node does not have any initial knowledge
of the other endpoint of its incident edge (which node it is connected to or the port
number that this node is connected to). This model is referred to as the clean net-
work model in [47, 43] and is also sometimes called the KT0 model, i.e., the initial
(K)nowledge of all nodes is restricted (T)ill radius 0, c.f. [43, 47]. The KT0 model
is a standard model in distributed computing and used by many prior results on
distributed MST (e.g., [3, 6, 15, 16, 36, 14, 10]), with a notable exception ([29],
discussed in Section 3).

The vertices are allowed to communicate by sending messages to their neigh-
bors through the edges of the graph G. Here we assume that communication is

1Even if the weights are not distinct, it is easier to make them distinct by using the unique node
identifiers of the respective endpoints of the edges to break ties.



synchronous and occurs in discrete rounds (time steps). In each round, each node
v can send an arbitrary message of O(log n) bits through each edge e = (v, u) in-
cident to v, and each message arrives at u by the end of this round. 2 The weights
of the edges are at most polynomial in the number of vertices n, and therefore
the weight of a single edge can be communicated in one time step. This model
of distributed computation is called the CONGEST(log n) model or simply the
CONGEST model [47, 43]. Some of the MST algorithms discussed are random-
ized and hence also assume that each vertex has access to the outcomes of an
unbiased private coin flips.

The efficiency of distributed algorithms is traditionally measured by their time
and message (or, communication) complexities. Time complexity measures the
number of synchronous rounds taken by the algorithm, whereas message complex-
ity measures the total number of messages sent and received by all the processors
during the execution of the algorithm. Both complexity measures crucially influ-
ence the performance of a distributed algorithm. As defined in [45], we say that a
problem enjoys singular optimality if it admits a distributed algorithm whose time
and message complexity are both optimal.

We make an assumption that simplifies our algorithms and analysis: we as-
sume that all edge weights in the graph are distinct. It is easy to show that this
implies that the MST is unique. This assumption is without loss of generality,
because one can tag each edge weight (additionally) with the node IDs of the end-
points of the edge (which are unique as a pair).3 This tagging can be used to break
ties between edges having the same weight.

As in centralized MST algorithms, distributed MST algorithms also rely on
two important properties of an MST: (1) the cut property and (2) the cycle property
[49]:

1. Cut property: A cut in a graph is a partition of the vertex set into two
disjoint sets. The cut property states that, given any cut in a graph, the
lightest, i.e. minimum weight, edge crossing the cut belongs to the MST.
(Recall that due to the assumption of unique edge weights, there is a unique
lightest edge crossing the cut.)

2. Cycle property: Consider any cycle in the graph. The heaviest (i.e. maxi-
mum weight) edge in the cycle will not be in the MST.

2If unbounded-size messages are allowed—this is the so-called LOCAL model—the MST
problem can be trivially solved in O(D) time by collecting all the topology information in one
node [43].

3Note that this tagging involves nodes knowing the IDs of their neighbors. This tagging can be
done during the course of an MST algorithm.



3 Summary of Prior Research
Given the importance of the distributed MST problem, there has been significant
work over the last 30 years on this problem and related aspects. The distributed
MST problem has triggered a lot of research in distributed computing, leading to
new techniques for the design and analysis of distributed algorithms as well as for
showing lower bounds. We first briefly summarize research until 2016 and then
discuss very recent results on singularly optimal algorithms.

3.1 Research Until 2016
Early Work. Distributed MST was one of the very first distributed computing
problems that was studied. A long line of research aimed at developing efficient
distributed algorithms for the MST problem started more than thirty years ago
with the seminal paper of Gallager, Humblet, and Spira [15], which presented a
distributed algorithm that constructs an MST in O(n log n) rounds exchanging a
total of O(m + n log n) messages, where n and m denote the number of nodes and
the number of edges of the network, respectively.4 The message complexity of
this algorithm is (essentially) optimal [35], but its time complexity is not. Hence
further research concentrated on improving the time complexity, resulting in a
first improvement to O(n log log n) by Chin and Ting [6], a further improvement
to O(n log∗ n) by Gafni [14], and then to O(n) by Awerbuch [3] (see also [13]).
The O(n) bound is existentially optimal in the sense that there exist graphs with
diameter Θ(n) for which this is the best possible, even for randomized Monte-
Carlo algorithms (see [35]).

This was the state of the art until the mid-nineties when Garay, Kutten, and
Peleg [16] raised the question of whether it is possible to identify graph pa-
rameters that can better capture the complexity of distributed network computa-
tions. In fact, for many existing networks, the hop-diameter D is significantly
smaller than the number of vertices n, and therefore it is desirable to obtain
protocols whose running time is bounded in terms of D rather than in terms
of n. (We note that Ω(D) is a lower bound on the running time of any dis-
tributed MST algorithm in a “universal” sense [35, 34]). Garay, Kutten, and
Peleg [16] gave the first such distributed algorithm for the MST problem with run-
ning time O(D + n0.614 log∗ n), which was later improved by Kutten and Peleg [36]
to O(D +

√
n log∗ n).5 However, both these algorithms are not message-optimal,6

4The original algorithm has a message complexity of O(m log n), but it can be improved to
O(m + n log n).

5The log∗ n factor can, in all respective algorithms, be reduced to
√

log∗ n, by growing compo-
nents to a size larger by a factor

√
log∗ n in the respective first phase.

6In this paper, “optimal” means “optimal up to a polylog(n) factor.”



as they exchange O(m + n1.614) and O(m + n1.5) messages, respectively.
The lack of progress in improving the result of [36], and in particular breaking

the Õ(
√

n) barrier,7 led to work on lower bounds for the distributed MST prob-
lems, starting out by the result of Peleg and Rubinovich [48] and the more recent
extensions of [11, 7], which we discuss in more detail in Section 6.

State of the Art (until 2016). We now summarize the state of the art for dis-
tributed MST algorithms until 2016: There exist algorithms which are either
time-optimal (i.e., they run in Õ(D +

√
n) time) or message-optimal (i.e., they

exchange Õ(m) messages), but not simultaneously both. Indeed, the time-optimal
algorithms of [36, 10] (as well as the sublinear time algorithm of [16]) are not
message-optimal, i.e., they require asymptotically much more than Θ(m) mes-
sages. In contrast, the known message-optimal algorithms for MST (in partic-
ular, [15, 3]) are not time-optimal, i.e., they take significantly more time than
Õ(D +

√
n). In their 2000 SICOMP paper [48], Peleg and Rubinovich raised the

question of whether one can design a distributed MST algorithm that is simul-
taneously optimal with respect to time and message complexity. In 2011, Kor,
Korman, and Peleg [32] also raised this question and showed that distributed ver-
ification of MST, i.e., verifying whether a given spanning tree is MST or not, can
be done in optimal messages and time, i.e., there exists a distributed verification
algorithm that uses Õ(m) messages and runs in Õ(D+

√
n) time. However, achiev-

ing these bounds for MST construction remained open until 2017.

Singular Optimality. As defined in [45], the main question that remained open
for distributed MST is whether there is a distributed algorithm that is singularly
optimal or if the problem exhibits a time-message trade-off:

• Singularly optimal: A distributed algorithm that is optimal with respect to
both measures simultaneously. In this case we say that the problem enjoys
singular optimality.

• Time-message trade-off: When the problem inherently fails to admit a
singularly optimal solution, namely, algorithms with better time complexity
necessarily incur higher message complexity, and vice versa. In this case
we say that the problem exhibits a time-message trade-off.

The above question addresses a fundamental aspect in distributed algorithms,
namely the relationship between the two basic complexity measures of time and
messages. The simultaneous optimization of both time and message complex-
ity has been elusive for several fundamental problems (including MST, shortest

7Õ( f (n)) and Ω̃( f (n)) denote O( f (n) · polylog( f (n))) and Ω( f (n)/ polylog( f (n))), respectively.



paths, and random walks), and consequently research in the last three decades
in distributed algorithms has focused mainly on optimizing either one of the two
measures separately. However, in various modern and emerging applications such
as resource-constrained communication networks and distributed computation of
large-scale data, it is crucial to design distributed algorithms that optimize both
measures simultaneously [30, 24].

Besides the prior work already mentioned, we now discuss other relevant work
on distributed MST.

Other Distributed MST Algorithms. Elkin [10] showed that a parameter called
MST-radius captures the complexity of distributed MST algorithms better. The
MST-radius, denoted by µ(G,w), is a function of the graph topology as well as the
edge weights and, roughly speaking, is the maximum radius each vertex has to ex-
amine to check whether any of its edges is in the MST. Elkin devised a distributed
protocol that constructs the MST in Õ(µ(G,w) +

√
n) time. The ratio between di-

ameter and MST-radius can be as large as Θ(n), and consequently, on some inputs,
this protocol is faster than the protocol of [36] by a factor of Ω(

√
n). However, a

drawback of this protocol (unlike the previous MST protocols [36, 16, 6, 14, 15])
is that it cannot detect the termination of the algorithm in that time (unless µ(G,w)
is given as part of the input). On the other hand, it can be shown that for distributed
MST algorithms that correctly terminate, Ω(D) is a lower bound on the running
time [48, 34]. (In fact, [34] shows that for every sufficiently large n and every
function D(n) with 2 ≤ D(n) < n/4, there exists a graph G of n′ ∈ Θ(n) nodes
and diameter D′ ∈ Θ(D(n)) which requires Ω(D′) rounds to compute a spanning
tree with constant probability in the clean network model.) We also note that the
message complexity of Elkin’s algorithm is O(m + n1.5).

Some specific classes of graphs admit efficient MST algorithms that beat the
general Ω̃(D +

√
n) time lower bound. Perhaps the first result in this direction

is due to Khan and Pandurangan [28] who showed that one can obtain a dis-
tributed O(log n)-approximate algorithm for MST for special classes of graphs
such as unit disk graphs (that are used to model wireless networks) and randomly
weighted graphs that runs in Õ(D) time and Õ(m) messages. More recently, faster
distributed MST algorithms have been presented for planar graphs, graphs of
bounded genus, treewidth, or pathwidth [17, 22, 23], and graphs with small mix-
ing time [18]. Faster distributed MST algorithms have also been developed for
networks with small constant diameter. An O(log n) time algorithm for networks
with D = 2 was given in [38], and an O(log log n) time algorithm for networks
with D = 1 (i.e., complete networks) was given in [37]. In fact, the complete
network case, and more in general, MST construction in the so-called Congested
Clique model, has received significant attention in recent years. (The Congested



Clique is a simple model for overlay networks whereby, unlike the CONGEST
model, even non-adjacent nodes can communicate directly.) The deterministic
algorithm of Lotker et al. [37] (which improved significantly over an easy-to-
construct O(log n)-round algorithm) was later improved by Hegeman et al. [24],
who presented an O(log log log n)-round randomized Monte Carlo algorithm. The
key technique for this result is linear graph sketching [1, 2, 40], which has since
been applied in other distributed algorithms (see, e.g., [44]). This paper also gives
lower bounds on the message complexity of MST construction in the Congested
Clique: Ω(n2) in the KT0 model and Ω(n) in the KT1 model respectively. It also
gives a randomized algorithm that uses Õ(n) messages and runs in Õ(1) rounds in
the KT1 model. Building on the work of Hegeman et al., the time bound for MST
construction in the Congested Clique has been improved to O(log∗ n) rounds [19],
and then, very recently, to O(1) rounds [27]. All these algorithms are randomized
and crucially rely on using graph sketches.

However, there exists a significant gap in the time complexity of the distributed
MST algorithms between the cases of network diameters 2 and 3. In [38], it was
shown that the time complexity of any distributed MST algorithm is Ω( 4

√
n/
√

B)
for networks of diameter 3 and Ω( 3

√
n/
√

B) for networks of diameter 4. These
asymptotic lower bounds hold for randomized algorithms as well. (On the other
hand, O(log n) time suffices to compute an MST deterministically for graphs with
diameter 2.)

Time Complexity. From a practical perspective, given that MST construction
can take as much as Ω(

√
n/ log n) time even in low-diameter networks, it is worth

investigating whether one can design distributed algorithms that run faster and
output an approximate minimum spanning tree. The question of devising faster
approximation algorithms for MST was raised in [48]. Elkin [11] later estab-
lished a hardness result on distributed MST approximation, showing that approx-
imating the MST problem on a certain family of graphs of small diameter (e.g.,
O(log n)) within a ratio H requires essentially Ω(

√
n/H log n) time. Khan and

Pandurangan [28] showed that there can be an exponential time gap between ex-
act and approximate MST construction by showing that there exist graphs where
any distributed (exact) MST algorithm takes Ω(

√
n/ log n) rounds, whereas an

O(log n)-approximate MST can be computed in O(log n) rounds. The distributed
approximation algorithm of [28] is message-optimal but not time-optimal.

Das Sarma et al. [7] settled the time complexity of distributed approximate
MST by showing that this problem, as well as approximating shortest paths and
about twenty other problems, satisfies a time lower bound of Ω̃(D +

√
n). This

applies to deterministic as well as randomized algorithms, and to both exact and
approximate versions. In other words, any distributed algorithm for computing a



H-approximation to MST, for any H > 0, takes Ω̃(D +
√

n) time in the worst case.

Message Complexity. Kutten et al. [35] fully settled the message complexity
of leader election in general graphs assuming the clean network (i.e. KT0 model),
even for randomized algorithms and under very general settings. Specifically, they
showed that any randomized algorithm (including Monte Carlo algorithms with
suitably large constant success probability) requires Ω(m) messages; this lower
bound holds in a universal sense: Given any n and m, there exists a graph with
Θ(n) nodes and Θ(m) edges for which the lower bound applies. Since a distributed
MST algorithm can also be used to elect a leader (where the root of the tree is the
leader, which can be chosen using O(n) messages once a tree is constructed),
the above lower bound applies to distributed MST constructions as well, for all
m ≥ cn, where c is a sufficiently large constant.

The above lower bound bound holds even if nodes have initial knowledge of
n,m, and D. It also holds for synchronous networks, where all the nodes wake up
simultaneously. Finally, it holds not only for the CONGEST model [47], where
sending a message of O(log n) bits takes one unit of time, but also for the LOCAL
model [47], where the number of bits carried in a single message can be arbitrary.
On the other hand, it is known from [15, 3] that an MST can be constructed using
Õ(m) messages in synchronous networks.

The KT1 Variant. It is important to point out that all the results discussed in this
article (including the MST results [3, 6, 15, 16, 36, 14, 10]) assume the so-called
clean network model, a.k.a. KT0 [47] (cf. Section 2), where nodes do not have
initial knowledge of the identity of their neighbors. However, one can assume
a model where nodes do have such a knowledge. This model is called the KT1

model. Although the distinction between KT0 and KT1 has clearly no bearing on
the asymptotic bounds for the time complexity, it is significant when considering
message complexity. Awerbuch et al. [4] show that Ω(m) is a message lower
bound for MST in the KT1 model, if one allows only (possibly randomized Monte
Carlo) comparison-based algorithms, i.e., algorithms that can operate on IDs only
by comparing them.

Awerbuch et al. [4] also show that the Ω(m) message lower bound applies even
to non-comparison based (in particular, algorithms that can perform arbitrary local
computations) deterministic algorithms in the CONGEST model that terminate in
a time bound that depends only on the graph topology (e.g., a function of n).
On the other hand, for randomized non-comparison-based algorithms, it turns out
that the message lower bound of Ω(m) does not apply in the KT1 model. In 2015,
King et al. [29] showed a surprising and elegant result: in the KT1 model one
can give a randomized Monte Carlo algorithm to construct an MST in Õ(n) mes-



sages (Ω(n) is a trivial message lower bound for the KT1 model) and in Õ(n) time.
This algorithm is randomized and not comparison-based. While this algorithm
shows that one can achieve o(m) message complexity (when m = ω(n polylog n)),
it is not time-optimal (it can take significantly more than Θ̃(D +

√
n) rounds). In

subsequent work, Mashreghi and King [39] presented another randomized, not
comparison-based MST algorithm with round complexity Õ(Diam(MST)) and
with message complexity Õ(n). It is an open question whether one can design
a randomized (non-comparison based) algorithm that takes Õ(D +

√
n) time and

Õ(n) messages in the KT1 model. Very recently, Gmyr and Pandurangan [20]
presented improved algorithms in the KT1 model for MST and several other prob-
lems. For the MST problem, they showed that it can be solved in Õ(D + n1−δ)
rounds using Õ(min{m, n1+δ}) messages for any δ ∈ [0, 0.5]. In particular, for
δ = 0.5 they obtain a distributed MST algorithm that runs in optimal Õ(D +

√
n)

rounds and uses Õ(min{m, n3/2}) messages. Notice that this improves over the
singularly optimal algorithms ([45, 12, 21]) for the KT0 model.

3.2 Recent Results

In 2017, Pandurangan et al. [45] presented the first distributed MST algorithm for
the CONGEST model which is simultaneously time- and message-optimal. The
algorithm is randomized Las Vegas, and always returns the MST. The running
time of the algorithm is Õ(D +

√
n) and the message complexity is Õ(m), and

both bounds hold with high probability.8 This is the first distributed MST algo-
rithm that matches simultaneously the time lower bound of Ω̃(D +

√
n) [11, 7]

and the message lower bound of Ω(m) [35], which both apply even to randomized
Monte Carlo algorithms, thus closing a more than thirty-year-old line of research
in distributed computing. In terms of the terminology introduced earlier, we can
therefore say that the distributed MST problem exhibits singular optimality up to
polylogarithmic factors.

The work of Pandurangan et al. [45] raised the open problem of whether there
exists a deterministic time- and message-optimal MST algorithm. We notice that
the algorithm of Pandurangan et al. is randomized, due to the use of the random-
ized cover construction of [10], even though the rest of the algorithm is deter-
ministic. Elkin [12], building on the work of [45], answered this question affir-
matively by devising a deterministic MST algorithm that achieves essentially the
same bounds, i.e., it uses Õ(m) messages and runs in Õ(D +

√
n) time. Another

deterministic round- and message-optimal algorithm for MST appeared very re-
cently in [21]. Table 1 summarizes the known upper bounds on the complexity of
distributed MST.

8Throughout, with high probability (w.h.p.) means with probability ≥ 1 − 1/nΩ(1).



Reference Time Messages Computation

Gallager et al. [15] O(n log n) O(m + n log n) Deterministic
Awerbuch [3] O(n) O(m + n log n) Deterministic
Garay et al. [16] O(D + n0.614 log∗ n) O(m + n1.614) Deterministic
Kutten and Peleg [36] O(D +

√
n log∗ n) O(m + n1.5) Deterministic

Elkin [10] Õ(µ(G,w) +
√

n) O(m + n1.5) Randomized
Pandurangan et al. [45] Õ(D +

√
n) Õ(m) Randomized

Elkin [12] Õ(D +
√

n) Õ(m) Deterministic
Haeupler et al. [21] Õ(D +

√
n) Õ(m) Deterministic

Table 1: Summary of upper bounds on the complexity of distributed MST. Nota-
tion Õ(·) hides polyogarithmic factors in n.

4 Overview of Classical MST Algorithms
The recent singularly optimal distributed MST algorithm of [45, 12] that we
discuss in Section 5 build on prior distributed MST algorithms that were either
message-optimal or time-optimal but not both. We now provide a brief overview
of three well-known previous MST algorithms: (1) The Gallager-Humblet-Spira
(GHS) algorithm; (2) The Pipeline algorithm; (3) Garay-Kutten-Peleg (GKP) al-
gorithm. This overview is based on [43], to which we refer to for a more detailed
description of these algorithms.

4.1 The Gallager-Humblet-Spira (GHS) algorithm
The first distributed algorithm for the MST problem was given by Gallager, Hum-
blet, and Spira in 1983 [15].

We are given an undirected, connected, weighted graph G = (V, E,w). Let
n be the number of nodes and m be the number of edges of G. Let T be the
(unique) MST on G. An MST fragment (or simply a fragment) F of T is defined
as a connected subgraph of T , that is, F is a subtree of T . An outgoing edge of
an MST fragment is an edge in E where one adjacent node to the edge is in the
fragment and the other is not. The minimum-weight outgoing edge (MOE) of a
fragment F is the edge with minimum weight among all outgoing edges of F. As
an immediate consequence of the cut property of MSTs, the MOE of a fragment
F = (VF , EF) is an edge of the MST.

The synchronous GHS algorithm is essentially a distributed implementation
of the classical Borůvka’s MST algorithm [5]. The GHS algorithm operates in
phases. In the first phase, it starts with each individual node as a fragment by
itself and continues until there is only one fragment left. That is, at the beginning,



there are |V | fragments, and at the end of the last phase, a single fragment which is
exactly the sought MST. All fragments find their MOE simultaneously in parallel.

In each phase, the algorithm maintains the following invariant: Each MST
fragment has a leader and all nodes know their respective parents and children.
The root of the tree will be the leader. Initially, each node (a singleton fragment)
is a root node; subsequently each fragment will have one root (leader) node. Each
fragment is identified by the identifier of its root, called the fragment ID, and each
node in the fragment knows its fragment ID.

4.1.1 One phase of GHS

We describe one phase of the GHS algorithm. Each fragment’s operation is co-
ordinated by the respective fragment’s root (leader). Each phase consists of two
major operations: (1) Find MOE of all fragments and (2) Merging fragments via
their MOEs.

Find MOE of all fragments In a phase, all fragments find their MOE simul-
taneously in parallel. To find the MOE of a fragment, the root in the fragment
broadcasts a message (“find MOE”) to all nodes in the fragment using the edges
in the fragment. Once a node receives “find MOE” message, it finds its minimum
outgoing incident edge (i.e, the minimum weight outgoing edge among all the in-
cident edges). To find the minimum weight outgoing incident edge, a node checks
its neighbors in increasing order of weight. If the fragment ID of its neighbor is
different from its own, then the edge is an outgoing edge. Note that since edges
are checked in increasing order of weight, the first neighbor whose fragment ID
is different from its own is the minimum outgoing incident edge. Also, note that
the checking can be done (in increasing weight order) starting from the neighbor
that was checked last in the previous phase. This is because, all edges that were
checked earlier would belong to the same fragment and will continue to be in the
same fragment until the end of the algorithm. Then, each node sends its minimum
outgoing incident edge to the root by convergecasting the minimum; the root then
finds the MOE, which is the minimum among all the edges convergecast. Note
that the convergecast process uses the fragment (tree) edges only.

Merging fragments via their MOEs Next, fragments are merged via their
MOEs. Recall that MOEs belong to the MST (by the cut property).

Once the leader finds the MOE, it broadcasts a “Merge” message to all its
fragment nodes (the broadcast is sent along the tree edges); the message contains
the MOE edge of the fragment. Hence upon receiving the MOE edge, a node
knows whether it is the same as its minimum outgoing incident edge or not. If a



node is incident to the fragment’s MOE edge, then the node attempts to combine
with its neighbor (which belongs to a different fragment). It sends a “Request to
combine” message to its neighbor. If the neighbor has also selected the same edge
as its MOE then the two neighboring nodes agree to combine through this edge;
i.e., both neighboring nodes receive “Request to combine” message from each
other. (Otherwise, if only of them receives this message, it ignores it. However,
the MOE edge is not ignored: the neighbor marks the edge over which it receives
the message as the MOE edge of its neighboring fragment). The node with the
higher identifier becomes the root of the combined fragment. The (combined) root
broadcasts a “new-fragment” message through the fragment edges and the MOE
edges chosen by all the fragments. Each node updates its parent, children, and
fragment identifier (which will be the ID of the new root).

To see that the above process correctly combines the fragments, we ascribe a
direction to all the MOEs (towards the outgoing way). This creates a “directed
tree” of fragments (think of fragments as “super-nodes”). Note that since each
fragment has only one outgoing edge, there can at most one pair of neighboring
nodes (in this directed tree). One of these nodes in the pair will be the root of the
combined fragment as described above.

Analysis of GHS algorithm It is easy to argue that the total number of phases is
O(log n). This is because, in each phase, the total number of fragments is reduced
by at least half: in the worst case, each MOE will be the MOE of both neighboring
fragments and they combine into one.

We next argue that each phase takes O(n) time. Hence, overall time complexity
is O(n log n). This is because in each phase, both the major operations take O(n)
time (these include broadcast and convergecast), since they happen along the MST
edges and the diameter of the MST can be as large as Θ(n).

We next argue that each phase takes O(n) messages (for convergecast and
broadcast) plus the messages needed to find the MOE. The latter takes a total
of O(m + n log n) messages because in each phase a node checks its neighbor in
increasing order of weight starting from the last checked node. Thus, except for
the last checked node (which takes one message per phase) all other neighbors are
checked at most once. Hence, the total message complexity is∑

v∈V

2d(v) +

log n∑
i=1

∑
v∈V

1 = O(m + n log n).

4.2 The Pipeline Algorithm
Next we discuss the Pipeline algorithm due to Peleg [46], which is slightly better
than the GHS algorithm, i.e., it runs in O(n) rounds. Note that this is existentially



optimal, since we know that the diameter is a lower bound for MST (even for ran-
domized algorithms) [35] and hence there exists graphs of diameter Θ(n), where
any MST algorithm will require Ω(n) rounds.

The Pipeline algorithm is essentially an upcast algorithm, where we build a
BFS tree over the graph and each node upcasts edges to the root of the BFS tree;
the root ends up having (enough) global knowledge of the network topology and
locally computes the MST and downcasts the MST edges to all nodes in the net-
work. Of course, a naive upcast is for each node to send all its incident edges and
this upcast can take Θ(m) rounds, since there are as many edges. The main idea of
the Pipeline MST algorithm is to filter the number of edges broadcast so that the
running time is reduced to O(n) rounds. However, the message complexity of the
Pipeline algorithm can be as much as Θ(n2).

The pipeline algorithm uses the cycle property of MST to filter edges at in-
termediate nodes. Each node v, except the root r, maintains two lists of edges, Q
and U. Initially, Q contains only the edges adjacent to v, and U is empty. At each
round, v sends the minimum-weight edge in Q that does not create a cycle with the
edges in U to its parent and moves this edge from Q to U. If Q is empty, v sends
a terminate message to its parent. The parent after receiving an edge from a child,
adds the edge in its Q list. A leaf node starts sending edges upwards at round 0.
An intermediate node starts sending at the first round after it has received at least
one message from each of its children.

4.2.1 Analysis

We give the high-level idea behind the correctness and running time.

Correctness The algorithm’s correctness follows from the cycle property. Us-
ing the cycle property, since only non-MST edges are filtered (note that an edge
at node v is not sent upward if it closes a cycle with edges in U, i.e., the already
sent edges—since edges are sent in non-increasing order, the filtered edges are
the respective heaviest edge in a cycle) it can be shown that the root receives all
the MST edges (plus possible additional edges) required to compute the MST
correctly.

Running time It is easy to show that the edges reported by each node to its
parent in the tree are sent in non-decreasing weight order, and each node sends at
most n − 1 edges upward to its parent. This is because if more than n − 1 edges
are sent through a node, then at least one edge will form a cycle with the edges
sent previously and will be filtered by the cycle property. To build the BFS tree,
it takes O(D) time. Since the depth of the BFS tree is D and each node sends at



most n− 1 edges upward, the pipeline algorithm takes O(D + n) = O(n) time. The
analysis shows that there is not too much delay (more than n) overall before the
root receives all the edges that it needs for computing the MST.

The complexity of the Pipeline algorithm is stated in Table 1; for a detailed
proof we refer to [43].

4.3 The Garay-Kutten-Peleg (GKP) Algorithm
The GKP algorithm [36] runs in O(D +

√
n log∗ n) time, where D is the diameter

of the graph G, which is essentially optimal (up to logarithmic factors), due to
the existence of the time lower bound of Ω̃(D +

√
n) [48, 11, 7]. Note that in

graphs with diameter smaller than
√

n, this algorithm can be much faster than the
Pipeline algorithm.

We give a high-level overview of the GKP algorithm; for full details we refer
to [43].

The GKP algorithm consists of two parts: it combines the GHS algorithm and
the Pipeline algorithm in a judicious way.

4.3.1 First part: Controlled-GHS Algorithm

The first part, called the controlled-GHS algorithm is similar to the GHS algo-
rithm, with the crucial property of ensuring that the diameter of fragments do not
become too big. (Note that in the GHS algorithm, even after the first phase, there
can be fragments with diameter as large as n). The controlled-GHS begins with
each node as a singleton fragment. In every phase, as in the GHS algorithm, each
fragment finds its MOE. However, not all fragments are merged along their MOE
edges. Only a subset of MOE edges are selected for merging. A crucial prop-
erty of the merging is the following: in every phase, the number of fragments is
reduced by at least a factor of two, while the diameter is not increased by more
than a constant factor. The controlled-GHS algorithm continues for about log(

√
n)

phases. At the end of the first part, the following property is guaranteed: the di-
ameter of each fragment is O(

√
n) and there are at most

√
n fragments. The first

part of the algorithm takes O(
√

n log∗ n) time.
We note that Controlled-GHS as implemented in the time-optimal algorithm

of [36] is not message-optimal—the messages exchanged can be Õ(m+n1.5); how-
ever, a modified version can be implemented using Õ(m) messages [43].

4.3.2 Second part: Pipeline algorithm

The second part of the algorithm uses the Pipeline algorithm to find the remaining
(at most)

√
n − 1 MST edges (since there are ≤

√
n fragments left). As in the



Pipeline algorithm, a breadth-first tree B is built on G. Let r(B) be the root of
B. Using the edges in B, root r(B) collects weights of the inter-fragment edges,
computes the minimum spanning tree T ′ of the fragments by considering each
fragment as a super node. It then broadcasts the edges in T ′ to the other nodes
using the breadth-first tree B. Since the depth of B is O(D) and each node sends
at most

√
n edges upward, the Pipeline algorithm takes O(D +

√
n) time; this

analysis is very similar to the one of the Pipeline algorithm (by replacing n with
√

n). Thus the overall time complexity of the GKP algorithm is O(D +
√

n log∗ n).
The message complexity can be shown to be O(m + n1.5).

The overall algorithms consists of running the controlled-GHS first and then
switching to the Pipeline algorithm after O(

√
n log∗ n) rounds. Combining the two

parts, the complexity bounds as stated in Table 1 follow.

5 Toward Singular Optimality: Round- and Message-
Optimal Distributed MST Algorithms

As mentioned in Section 1, up until recently, all known distributed MST algo-
rithms achieved either optimal time or optimal message complexity, but not both.
In this section, we describe the recent progress toward achieving singular opti-
mality, as defined in Section 1. We begin by describing the algorithm of [45]
in Section 5.1, on which the subsequent work of Elkin is based [12], which is
discussed in Section 5.2.

5.1 A Randomized Singularly-Optimal Algorithm

We now describe the algorithm of [45] that attains singular optimality, i.e., Õ(m)
messages and Õ(D+

√
n) time. The first part of the algorithm consists of executing

Controlled-GHS, described in Section 4.3.1. At the end of this procedure, at most
O(
√

n) distinct MST fragments remain, each of which has diameter O(
√

n); we
call these base fragments.

The second part of the algorithm is different from the existing time-optimal
MST algorithms. The existing time-optimal MST algorithms [36, 10], as well
as the algorithm of [16], are not message-optimal since they use the Pipeline
procedure of [46, 16].

The algorithm of [45] uses a different strategy to achieve optimality in both
time and messages. The main novelty is how the (at most)

√
n base fragments

which remain at the end of the Controlled-GHS procedure are merge into one re-
sulting fragment (the MST). Unlike previous time-optimal algorithms [36, 10, 16],
this algorithm does not use the Pipeline procedure of [46, 16], since it is not



message-optimal. Instead, it continues to merge fragments and uses two main
ideas to implement a Borůvka-style merging strategy efficiently. The first idea
is a procedure to efficiently merge when D is small (i.e., D = O(

√
n)) or when

the number of fragments remaining is small (i.e., O(n/D)). The second idea is to
use sparse neighborhood covers and efficient communication between fragments
to merge fragments when D is large and the number of fragments is large. Ac-
cordingly, the second part of the algorithm can be conceptually divided into three
phases, which are described next. The description in the remainder of this subsec-
tion closely follows Section 2 in [45].

5.1.1 Phase 1: When D is O(
√

n):

At the start of this phase, a BFS tree of the entire network is constructed, and then
merging is performed as follows: Each base fragment finds its minimum-weight-
outgoing edge (MOE) by convergecasting within each of its fragments. This takes
O(
√

n) time and O(
√

n) messages per base fragment, leading to O(n) messages
overall. The O(

√
n) MOE edges are sent by the leaders of the respective base

fragments to the root by upcasting (see, e.g., [47]). This takes O(D +
√

n) time
and O(D

√
n) messages, as each of the at most

√
n edges has to be sent along

up to D edges to reach the root. The root merges the fragments and sends the
renamed fragment IDs to the respective leaders of the base fragments by downcast
(which has the same time and message complexity as upcast [47]). The leaders
of the base fragments broadcast the new ID to all other nodes in their respective
fragments. This takes O(

√
n) messages per fragment and hence O(n) messages

overall. Thus one iteration of the merging can be done in O(D +
√

n) time and
using O(D

√
n) messages. Since each iteration reduces the number of fragments

by at least half, the number of iterations is O(log n). At the end of this iteration,
several base fragments may share the same label. In subsequent iterations, each
base fragment finds its MOE (i.e., the MOE between itself and the other base
fragments which do not have the same label) by convergecasting within its own
fragment and (the leader of the base fragment) sends the MOE to the root; thus
O(
√

n) edges are sent to the root (one per base fragment), though there is a lesser
number of combined fragments (with distinct labels). The root node finds the
overall MOE of the combined fragments and initiates the merging. Since the time
and message complexity per merging iteration is O(D+

√
n) and O(D

√
n) = O(n),

respectively, the overall complexity is still within the sought bounds.

5.1.2 Phase 2: When D and the Number of Fragments are Large:

When D is large (e.g. n1/2+ε, for some 0 < ε ≤ 1/2) and the number of frag-
ments is large (e.g. Θ(

√
n)) the previous approach of merging via the root of the



global BFS tree does not work directly, since the message complexity would be
O(D

√
n). A second idea addresses this issue by merging in a manner that respects

locality. That is, we merge fragments that are close by using a local leader, such
that the MOE edges do not have to travel too far. The high-level idea is to use a
hierarchy of sparse neighborhood covers due to [10] to accomplish the merging.
9 Intuitively, a sparse neighborhood cover is a decomposition of a graph into a set
of overlapping clusters that satisfy suitable properties.

The main intuitions behind using a cover are the following: (1) the clusters
of the cover have relatively smaller diameter (compared to the strong diameter
of the fragment and is always bounded by D) and this allows efficient commu-
nication for fragments contained within a cluster (i.e., the weak diameter of the
fragment is bounded by the cluster diameter); (2) the clusters of a cover overlap
only a little, i.e., each vertex belongs only to a few clusters; this allows essen-
tially congestion-free (overhead is at most polylog(n) per vertex) communication
and hence operations can be done efficiently in parallel across all the clusters of
a cover. This phase continues till the number of fragments reduces to O(n/D),
when we switch to Phase 3. We next give more details on the merging process in
Phase 2.
Communication-Efficient Paths. An important technical aspect in the merging
process is constructing efficient communication paths between nearby fragments,
which are maintained and updated by the algorithm in each iteration. The algo-
rithm requires fragments to be communication-efficient, in the sense that there is
an additional set of short paths between the fragment leader f and fragment mem-
bers, which may use “shortcuts” through vertices that are not part of the fragment
to reduce the distance. A fragment F is communication-efficient if, for each ver-
tex v ∈ F, there exists a path between v and f (possibly including vertices in
V(G) \V(F)) of length O(diamG(F) +

√
n), where diamG(F) is the weak diameter

of F.
It can be shown that, in each iteration, all fragments find their respective MOE

in time Õ(
√

n + D) and Õ(m) messages. Note that it is difficult to merge all
fragments along their respective MOE, as this might create long fragment-chains.
Instead, [45] compute a maximal matching in the fragment graph Fi induced by
the MOE edges to merge fragments in a controlled manner. The crucial part is to
use time- and message communication between the fragment leader and the nodes
in the fragment (while finding MOEs) as well as between fragment leaders of ad-
jacent fragments, which is made possible by the existence of the communication-
efficient paths.

9Neighborhood covers were used by Elkin [10] to improve the running time of the Pipeline
procedure of his distributed MST algorithm; on the other hand, in [45] they are used to replace the
Pipeline part entirely.



In more detail, [45] use a hierarchy of sparse neighborhood covers to construct
communication-efficient fragments. Each cover in the hierarchy consists of a col-
lection of clusters of a certain radius, where the lowest cover in the hierarchy con-
tains clusters of radius O(

√
n) and subsequent covers in the hierarchy have clusters

of geometrically increasing radii, whereby the last cover in the hierarchy is simply
the BFS tree of the entire graph. Initially, it is easy to construct communication-
efficient paths in base fragments, since they have strong diameter O(

√
n). In sub-

sequent iterations, when merging adjacent fragments, the algorithm finds a cluster
that is (just) large enough to contain both fragments. The neighborhood prop-
erty of the cluster allows the algorithm to construct communication-efficient paths
between merged fragments (that might take shortcuts outside the fragments, and
hence have small weak diameter), assuming that the fragments before merging
are efficient. Note that it is important to make sure that the number of fragments
in a cluster is not too large in relation to the radius of the cluster—otherwise the
message complexity would be high. Hence, a key invariant maintained through
all the iterations is that the cluster depth times the number of fragments that are
contained in the cluster of such depth is always bounded by Õ(n). This invariant is
maintained by making sure that the number of fragments per cluster reduces suf-
ficiently to compensate for the increase in cluster radius: At the end of the phase,
when the cluster radius is D, the number of fragments is Õ(n/D).

5.1.3 Phase 3: When the Cluster Radius is D:

Phase 3 employs a merging procedure similar to the one used in Phase 1. Recall
that, in Phase 1, in every merging iteration, each base fragment finds their respec-
tive MOEs (i.e., MOEs between itself and the remaining fragments) by converge-
casting to their respective leaders; the leaders send at most O(

√
n) edges to the

root by upcast. The root merges the fragments and sends out the merged infor-
mation to the base fragment leaders. In Phase 3, it is possible to treat the O(n/D)
fragments remaining at the end of Phase 2 as the “base fragments” and repeat the
above process. An important difference to Phase 1 is that the merging leaves the
leaders of these base fragments intact: in the future iterations of Phase 3, each of
these base fragments again tries to find an MOE, whereby only edges that have
endpoints in fragments with distinct labels are considered as candidate for the
MOE.

Note that the fragment leaders communicate with their respective nodes as
well as the BFS root via the hierarchy of communication-efficient routing paths
constructed in Phase 2; these incur only a polylogarithmic overhead. This takes
Õ(D + n/D) time (per merging iteration) since O(n/D) MOE edges are sent to the
root of the BFS tree via communication-efficient paths (in every merging iteration)
and a message complexity of Õ(D · n/D) = Õ(n) (per merging iteration) since, in



each iteration, each of the O(n/D) edges takes Õ(D) messages to reach the root.
Since there are O(log n) iterations overall, the overall bound follows.

5.2 Deterministic Singularly-Optimal Algorithms
Shortly after the work of Pandurangan et al. [45], Elkin[12] presented a new
simultaneously optimal distributed MST algorithm which 1) is deterministic, thus
answering an explicit question raised in [45], and 2) is simpler and allows for a
simpler analysis [12].

The main novelty in Elkin’s algorithm is to grow fragments up to (strong)
diameter O(D), as opposed to O(

√
n), in the first phase of the algorithm. This

results in an (O(n/D),O(D))-MST forest as the base forest, as opposed to an
(O(
√

n),O(
√

n))-MST forest. The algorithm in [45] is then executed on top of
this base forest.

This simple change brings benefits to the case D ≥
√

n, for which now the
complexities of finding minimum-weight outgoing edges and of their subsequent
upcast to the root of the auxiliary BFS tree of the network are within the desired
time and message bounds. Hence Phase 2 of Part 2 of Pandurangan et al.’s algo-
rithm can be bypassed, and since this phase contains the sole randomized portion
of the algorithm (that is, the randomized cover construction of [10]), the final
result is a fully deterministic algorithm.

A different approach toward singular-optimality has been given recently by
Haeupler et al. [21], who provide a new deterministic distributed algorithm for
MST which is simultaneously time- and message-optimal, and also achieve the
same goal for some other problems.

6 Time and Message Lower Bounds
In this section, we provide some intuition behind the complexity lower bounds
that have been shown for the distributed MST problem.

The Peleg-Rubinovich Lower Bound. In a breakthrough result, Peleg and Ru-
binovich [48] showed that Ω(D +

√
n/B) time is required by any distributed al-

gorithm for constructing an MST, even on networks of small diameter (at least
Ω(log n)), when assuming that at most B bits can be sent across an edge in a round.
As a consequence, this result established the asymptotic (near) time-optimality of
the algorithm of [36]. Peleg and Rubinovich introduced a novel graph construction
that forces any algorithm to trade-off dilation with communication bottlenecks.
While the original lower bound of Peleg and Rubinovich applies to deterministic
algorithms for exact MST computation, the more recent work of [11, 7] extend
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Figure 1: The simplified Peleg-Rubinovich lower bound graph of [48]. The shaded
bottom path between vertices s and t represents the highway path and the rest of the
other horizontal paths between the two nodes represent the vertex-disjoint long paths.
The weight of each blue edge incident to s is chosen to be either 1 or 3. The spoke edges
connect each highway vertex to the appropriate vertices of each long path and have weight
4.

this result by showing a lower bound of Ω̃(D+
√

n) for randomized (Monte Carlo)
and approximation algorithms as well.

The (simplified) lower bound graph construction considers two designated
nodes, s and t, which are connected by Θ(

√
n) vertex-disjoint long paths, each

of length Θ(
√

n), and one highway path consisting of D = Θ(n1/4) highway ver-
tices, which determines the graph diameter. To ensure that the resulting graph
does indeed have diameter O(D), spoke edges are added from each i-th highway
vertex to the respective (iD)-th vertex of each long path. Figure 1 depicts the
weighted variant of the above graph; the assignment of the weights is explained
below.

So far, the constructed graph Ḡ is unweighted and, as an intermediate step,
[48] consider the mailing problem on Ḡ, where node s is given as input a Θ(

√
n)-

length bit string. An algorithm solves the mailing problem if eventually node t
outputs the same bit string. The way Ḡ is constructed, one strategy is to send the
input bits held by s in parallel along the Θ(

√
n) long paths; another strategy is

to send them along the (single) highway path of length Θ(n1/4) towards t, which
means the bits are essentially forced to travel in sequence since each (highway)
edge can carry at most B bits per round. Of course, we cannot make any assump-
tions on how exactly these bits are being sent from s to t: In fact, an algorithm
is not bound to send these bits explicitly (i.e. one by one) along the edges but
might attempt to somehow compress the bit string to speed up the process. To



rule out such shortcuts, [48] show that any algorithm that correctly solves the
mailing problem, must ensure that the size of the possible state space of node t
is large enough upon termination. That is, since there are 2Θ(

√
n) choices for the

input bit string given to s, the number of distinct states that node t can be in upon
termination must also be at least 2Θ(

√
n). Otherwise, there are at least 2 distinct

input bit strings of s for which t is in the same state upon termination and hence
t (wrongly) outputs the same bit string for both inputs. Initially, only s holds the
input string and hence all other nodes (including t) have a state space of size 1.
Taking into account the possibility of remaining silent, there are 2B + 1 possible
ways that any given edge can be used in any given round. It follows that, after r
rounds, the “information” delivered by the highway edges can increase the state
space by a factor of at most (2B + 1)r. Given that r ≥ Θ(

√
n/B) must hold upon

termination, [48] obtain an Ω(
√

n/B) lower bound for the mailing problem. They
also extend the above idea to graphs of diameter as small as Θ(log n).

To obtain a time lower bound for the MST problem, Peleg and Rubinovich
consider a weighted version of the graph, where all path edges have weight 0 and
all spoke edges are given weight 4. The edges connecting t to the paths have
weight 2, whereas the weights of edges incident to s have weight either 1 or 3.
The crucial property of this construction is that node t must add to the MST edges
its edge incident to the j-th slow path if and only if the weight of the edge that
connects s to the j-th slow path is 3. See Figure 1 for an example. Intuitively
speaking, this means that node t can only add the correct MST edges if there is
an algorithm that solves the corresponding mailing problem, hence implying the
sought Ω(D +

√
n/B) time lower bound.

The Das Sarma et al. [7] Lower Bound. The work of Das Sarma et al.[7]
established that Ω̃(D +

√
n) rounds is a fundamental time lower bound for several

important distributed network problems including MST, shortest paths, minimum
cut etc., and showed that this lower bound holds even for Monte-Carlo randomized
algorithms. More importantly, they show that the bound holds for approximation
algorithms as well, i.e., those that compute a solution that is within any non-trivial
approximation factor to the optimal.

The approach of Das Sarma et al is to prove lower bounds by establishing an
interesting connection between communication complexity and distributed com-
puting. A key concept that facilitates this connection is the notion of distributed
verification. In distributed verification, we are given a network G and a subgraph
H of G where each vertex of G knows which edges incident on it are in H. The
goal is to verify whether H has some properties, e.g., if it is a tree or if it is
connected (every node knows at the end of the process whether H has the spec-
ified property or not). Das Sarma et al. [7] initiate a systematic study of dis-



tributed verification, and give almost tight lower bounds on the running time of
distributed verification algorithms for many fundamental problems such as con-
nectivity, spanning connected subgraph, and s − t cut verification. They show
applications of these results in deriving time lower bounds on the hardness of dis-
tributed approximation for many classical optimization problems including MST,
shortest paths, and minimum cut.

The lower bound proofs consider the family of graphs (similar to the one in
Figure 1) that was first used in [48, 10, 38]. However, while previous results
[48, 10, 38, 31] rely on counting the number of states needed to solve the mail-
ing problem (along with some sophisticated techniques for its variant, called cor-
rupted mailing problem, in the case of approximation algorithm lower bounds),
and use Yao’s method [51] to derive lower bounds for randomized algorithms, the
results of [7] used three main steps of simple reductions, starting from problems
in communication complexity, as follows:

In the first step, they reduce the lower bounds of problems in the standard com-
munication complexity model [33] to the lower bounds of the equivalent problems
in the “distributed version” of communication complexity. Specifically, they prove
the Simulation Theorem [7] which relates the communication lower bound from
the standard communication complexity model [33] to compute some appropri-
ately chosen function f , to the distributed time complexity lower bound for com-
puting the same function in a specially chosen graph G. In the standard two-party
communication complexity model[33], Alice and Bob can communicate directly
(via a bidirectional edge of bandwidth one). In the distributed model, we assume
that Alice and Bob are some vertices of G and they together wish to compute the
function f using the communication graph G. The choice of graph G is critical
and is the same as the graph used by Peleg and Rubinovich [48] (see Figure 1).

The connection established in the first step allows one to bypass the state
counting argument and Yao’s method, and reduces the task in proving lower
bounds of distributed verification problems (see below) to merely picking the
right function f to reduce from. The function f that is useful in showing ran-
domized lower bounds for many problems (including MST) is the set disjointness
function [33], which is the quintessential problem in the world of communication
complexity with applications to diverse areas. Following a result well known in
communication complexity [33], they show that the distributed version of the set
disjointness problem has an Ω̃(

√
n) lower bound on graphs of small diameter.

The second step is to reduce the concerned problem (such as MST or shortest
paths) to an appropriate verification problem using simple reductions similar to
those used in data streams [26]. The verification problem that is appropriate for
MST is the spanning connected subgraph verification problem, where the goal is
to verify if a given subgraph H of a graph G is spanning and connected.

Finally, in the third step, they reduce the verification problem to hardness of



distributed approximation for a variety of problems to show that the same lower
bounds hold for approximation algorithms as well. For this, they use a reduc-
tion whose idea is similar to the one used to prove hardness of approximating
TSP (Traveling Salesman Problem) on general graphs (see, e.g., [50]): Convert
a verification problem to an optimization problem by introducing edge weights
in such a way that there is a large gap between the optimal values for the cases
where H satisfies (or does not satisfy) a certain property. This technique is surpris-
ingly simple, yet yields strong unconditional hardness bounds — many hitherto
unknown, left open (e.g., minimum cut) [9] and some that improve over known
ones (e.g., MST and shortest path tree) [10]. As mentioned earlier, this approach
shows that approximating MST by any factor needs Ω̃(

√
n) time, while the previ-

ous result due to Elkin gave a bound that depends on α (the approximation factor),
i.e. Ω̃(

√
n/α), using more sophisticated techniques.

To summarize, the lower bound proof for MST that applies to Monte Carlo
randomized and approximation algorithms proceeds as follows. It starts by reduc-
ing the set disjointness problem in the standard two party communication com-
plexity setting to the distributed version of the set disjointness problem which has
to solved by communicating in a graph (the one in Figure 1). Then the distributed
version is in turn reduced to the spanning connected subgraph verification prob-
lem which is then finally reduced to MST or approximate MST. Hence starting
with the lower bound of the set disjointness problem (which is already known in
communication complexity) we obtain a lower bound for MST.

The lower bound proof technique via this approach is quite general and con-
ceptually straightforward to apply as it circumvents many technical difficulties by
using well-studied communication complexity problems. Nevertheless, this ap-
proach yields tight lower bounds for many problems. More specifically, a signifi-
cant advantage of this technique over previous approaches is that it avoids starting
from scratch every time we want to prove a lower bound for a new problem. For
example, extending the result from the mailing problem in [48] to the corrupted
mailing problem in [10] requires some sophisticated techniques. The new tech-
nique, on the other hand, allows one to use known lower bounds in communication
complexity to streamline such tasks. Another advantage of the approach by [7] is
that extending a deterministic lower bound to a randomized one is sometimes
technically difficult, when all that is available is a deterministic bound. By using
connection to communication complexity, the technique of [7] allows one to ob-
tain lower bounds for Monte Carlo randomized algorithms, while previous lower
bounds hold only for Las Vegas randomized algorithms. The general approach of
Das Sarma et al has been subsequently used to show many new lower bounds for
other distributed graph algorithms.



A Simultaneous Lower Bound. The prior time and message lower bounds for
MST are derived using two completely different graph constructions; the existing
lower bound construction that shows one lower bound does not work for the other.
Specifically, the existing graph constructions of [11, 7] used to establish the lower
bound of Ω̃(D +

√
n) rounds does not simultaneously yield the message lower

bound of Ω(m); similarly, the existing lower bound graph construction of [35] that
shows the message lower bound of Ω(m) (cf. Section 3.1) does not simultaneously
yield the time lower bound of Ω̃(D +

√
n).

In [45], the authors combine the two lower bound techniques — hardness of
distributed symmetry breaking, used to show the message lower bound of Ω(m)
for the KT0 model [35], and communication complexity, used to show the lower
bound on time complexity [7] — to show that, for any algorithm, there is some
graph where both the message and time lower bounds hold.

7 Conclusion and Open Problems
This article surveyed the distributed MST problem, a cornerstone problem in dis-
tributed network algorithms. It has received a rich and continuing interest since
the very first distributed MST algorithm was published more than 35 years ago.

On the algorithmic side, there has been a lot of work in trying to improve
the time complexity and more recently both time and message complexity with
the goal of obtaining singularly optimal algorithms. An important conceptual
contribution that research in distributed MST introduced is the notion of efficiency
with respect to specific graph parameters such as D, the network diameter. This
notion led to development of new algorithms — starting with that of [16] and
leading to the more recent singularly-optimal algorithms of [45, 12, 21]. More
importantly, it also led to a deeper understanding of lower bounds in distributed
network algorithms. The time lower bound of Ω̃(D +

√
n) for MST first shown

by Peleg and Rubinovich [48] led to similar lower bounds for distributed network
algorithms for various other problems, including for randomized algorithms and
approximation algorithms [7].

An open question is whether there exists a distributed MST algorithm with
near-optimal time and message complexities in the KT1 variant of the model, i.e.,
using Õ(n) messages and (̃D +

√
n) time. Very recently there has been some

progress on this question [20]. Another interesting question is improving the per-
formance of MST in special classes of graphs, e.g., in graphs of diameter two
(where it is not known if one can get o(log n)-round algorithms). There has been
recent progress in this direction (cf. Section 3.1).

Currently, it is not known whether other important problems such as shortest
paths, minimum cut, and random walks, enjoy singular optimality. These prob-



lems admit distributed algorithms which are (essentially) time-optimal but not
message-optimal [41, 25, 8, 42]. Some work in this direction recently started to
appear [21], but further research is needed to address these questions.
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Abstract

This paper presents a generalization of causal consistency suited to the

family of objects defined by a sequential specification. As causality is cap-

tured by a partial order on the set of operations issued by the processes on

shared objects (concurrent operations are not ordered), it follows that causal

consistency allows different processes to have different views of each object

history.

Keywords: Causality, Causal order, Concurrent object, Consistency con-

dition.

1 Processes and Concurrent Objects

Let us consider a set of n sequential asynchronous processes p1, ..., pn, which co-

operate by accessing shared objects. These objects are consequently called con-

current objects. A main issue consists in defining the correct behavior of concur-

rent objects. Two classes of objects can be distinguished according to way they

are specified.

• The objects which can be defined by a sequential specification. Roughly

speaking, this class of objects includes all the objects encountered in se-

quential computing (e.g., queue, stack, set, dictionary, graph). Different

tools can be used to define their correct behavior (e.g., transition function,

list of all the correct traces -histories-, pre and post-conditions, etc.).



It is usually assumed that the operations accessing these objects are total,

which means that, whatever the current state of the object, an operation

always returns a result.

As an example, let us consider a bounded stack. A pop() operation returns a

value if the stack is not empty, and returns the default value ⊥ if it is empty.

A push(v) operation returns the default value ⊤ if the stack is full, and

returns the default ok otherwise (v was then added to the stack). A simpler

example is a read/write register, where a read operation always returns a

value, and a write operation always returns ok.

• The objects which cannot be defined by a sequential specification. Example

of such objects are Rendezvous objects or Non-blocking atomic commit

objects [10]. These objects require processes to wait each other, and their

correct behavior cannot be captured by sequences of operations applied to

them.

In the following we consider objects defined by a sequential specification.

2 Strong Consistency Conditions

Strong consistency conditions are natural (and consequently easy to understand

and use) in the sense that they require each object to appear as if it has been

accessed sequentially. In a failure-free context, this can be easily obtained by

using mutual exclusion locks bracketing the invocation of each operation.

Atomicity/Linearizability The most known and used consistency condition is

atomicity, also called linearizability1. It requires that each object appears as if it

was accessed sequentially, this sequence of operations S belonging to the specifi-

cation of the object, and complying with the real-time order of their occurrences

(which means that, if an operation op1 terminates before an operation op2 starts,

op1 must appear before op2 in the sequence S ).

Sequential consistency This consistency condition, introduced in [16], is simi-

lar to, but weaker than, linearizability, namely, it does not require the sequence of

operations to comply with real-time order (which means that, while an operation

op1 terminates before an operation op2 starts, op2 may appear before op1 in the

sequence S ).

1Atomicity was formally defined in [17, 18] for basic read/write objects. It was then gen-

eralized to any object defined by a sequential specification in [13]. We consider these terms as

synonyms in the following.



Figure 1 presents an example of a sequentially consistent computation (which

is not atomic) involving two read/write registers R1 and R2, accessed by two pro-

cesses p1 and p2. The dashed arrows define the causality relation linking the read

and write operations on each object (also called read-from relation when the ob-

ject is a read/write register). It is easy to see that the sequence of operations made

up of all the operations issued by p2, followed by all the operations issued by p1,

satisfies the definition of sequential consistency.

R1.write(2)

R1.write(1) R2.write(5)

R2.read()→ 5

p1

p2

R1.read()→ 2

R1.read()→ 1

Figure 1: A sequentially consistent computation (which is not atomic)

Building objects satisfying a strong consistency condition in an asynchronous

message-passing system Shared memories usually provide processes with ob-

jects built on top of basic atomic read/write objects or more sophisticated objects

accessed by atomic operations such as Test&Set or Compare&Swap [11, 12, 23,

27]. This is no longer the case in message-passing systems where all the objects

(except communication channels) have to be built from scratch [5, 22].

Constructions of sequentially consistent objects and atomic objects in failure-

free message-passing systems can be found in [4, 5, 7, 21, 22]. These implemen-

tations rest on a mechanism which allows a total order on all operations to be built.

This can be done by a central server, or a broadcast operation delivering messages

in the same order at all the processes. Such an operation is usually called total

order broadcast (TO-broadcast) or atomic broadcast. It is shown in [21] that,

from an implementation point of view, sequential consistency can be seen as a

form of lazy linearizability. The “compositional” power of sequential consistency

is addressed in [8, 19].

The construction of objects satisfying a strong consistency condition (such as

atomicity) in failure-prone message-passing systems is more difficult. A few ob-

jects including read/write registers, renaming objects, and snapshot objects, can be

built in systems where, in each execution, a majority of processes do not crash [3]).

A communication abstraction devoted to this class of objects has recently been

proposed in [14]. This is no longer the case for a lot of common sequentially

defined objects (e.g., as stacks and queues) which cannot be built in the pres-

ence of asynchrony and (even a minority of) process crashes [9]. Systems have



to be enriched with additional computing power (such as randomization or fail-

ure detectors) to allow such objects to be built (see, for example [24], for more

developments on this subject).

3 Causal Consistency on Read/Write Objects

(Causal Memory)

Causality-based consistency condition A causal memory is a set of read/write

objects satisfying a consistency property weaker that atomicity or sequential con-

sistency. This notion was introduced in [1]. It relies on a notion of causality

similar to the one introduced in [15] for message-passing systems.

The main difference between causal memory and the previous strong consis-

tency conditions lies in the fact that causality is captured by a partial order, which

is trivially weaker than a total order. A total order-based consistency condition

forces all the processes to see the same order on the object operations. Causality-

based consistency does not. Each process can have its own view of the execution,

their ”greatest common view” being the causality partial order produced by the

execution. Said differently, an object defined by a strong consistency condition

is a single-view object, while an object defined by a causality-based consistency

condition is a multi-view object (one view per process).

Another difference between a causality-based consistency condition and a

strong consistency condition lies in the fact that a causality-based consistency

condition copes naturally with process crashes and system partitioning.

Preliminary definitions As previously indicated, a causal memory is a set of

read/write registers. Its semantics is based on the following preliminary defini-

tions (from [1, 13]). To simplify the presentation and without loss of generality,

we assume that (a) all the values written in a register are different, and (b) each

register has an initial value written by a fictitious write operation.

• A local (execution) history Li of a process pi is the sequence of read and

write operations issued by this process. If the operations op1 and op2 be-

long to Li and op1 appears before op2, we say “op1 precedes op2 in pi’s

process order”. This is denoted op1
i
→ op2.

• The write-into relation (denoted
wi
→) captures the effect of write operations

on the read operations. Denoted
wi
→, it is defined as follows: op1

wi
→ op2 if

op1 is the write of a value v into a register R and op2 is a read operation of

the register R which returns the value v.



• An execution history H is a partial order composed of one local history per

process, and a partial order, denoted
po
→, defined as follows: op1

po
→ op2 if

– op1, op2 ∈ Li and op1
i
→ op2 (process order), or

– op1
wi
→ op2 (write-into order), or

– ∃ op3 such that op1
po
→ op3 and op3

po
→ op2 (transitivity).

• Two operations not related by
po
→ are said to be independent or concurrent.

• The projection of H on a register R (denoted H|R) is the partial order H

from which are suppressed all the operations which are not on R.

• A serialization S of an execution history H (whose partial order is
po
→) is a

total order such that, if op1
po
→ op2, then op1 precedes op2 in S .

A remark on the partial order relation As we can see, the read-from rela-

tion mimics the causal send/receive relation associated with message-passing [15].

The difference is that zero, one, or several reads can be associated with the same

write. In both cases, the (write-into or message-passing) causality relation is a

global property (shared by all processes) on which is built the consistency condi-

tion. It captures the effect of the environment on the computation (inter-process

asynchrony), while process orders capture the execution of the algorithms locally

executed by each process.

Causal memory Let Hi+w be the partial order
po
→, from which all the read oper-

ations not issued by pi are suppressed (the subscript i + w means that only all the

operations issued by pi plus all write operations are considered).

As defined in [1], an execution history H is causal if, for each process pi, there

is a serialization S i of Hi+w in which each read from a register R returns the value

written in R by the most recent preceding write in R.

This means that, from the point of view of each process pi, taken indepen-

dently from the other processes, each register behaves as defined by its sequential

specification. It is important to see, that different processes can have different

views of a same register, each corresponding to a particular serialization of the

partial order
po
→ from which the read operations by the other processes have been

eliminated.

An example of a causal memory execution is depicted in Figure 2. Only one

write-into pair is indicated (dashed arrow). As R1.write(1) and R1.write(2) are

independent, each of the operations R1.read() by p2 and p3 can return any value,

i.e., u, v ∈ {1, 2}. For the same reason, and despite the write-into pair on the

register R2 involving p1 and p3, the operation R1.read() issued by p3 can return



p1

p2

p3

R1.write(2) R1.read() returns v

R1.write(1) R2.write(3)

R1.read() returns w

R1.read() returns u

R2.read() returns 3

Figure 2: Example of an execution of a causal read/write memory

w ∈ {1, 2}. This shows that different processes can obtain different “views” of the

same causal memory execution. Once a read returned a value, a new write-into

pair is established.

Implementations of a causal read/write memory (e.g., [2]) rest on an under-

lying communication algorithm providing causal message delivery [6, 26]. It is

shown in [1, 25] that, in executions that are data race-free or concurrent write-free,

a causal memory behaves as a sequentially consistent read/write memory.

4 Causal Consistency for any Object

The problem Although it was introduced more than 20 years ago, it appears

that, when looking at the literature, causal consistency has been defined and in-

vestigated only for read/write objects (the only exception we are aware of is [20]).

This seems to be due to the strong resemblance between read/write operations and

send/receive operations. Hence, the question: Is it possible to generalize causal

consistency to any object defined by a sequential specification? This section an-

swers positively this question.

Preliminary definitions The notations and terminology are the same as in the

previous section, but now the operations are operations on any object O of a set of

objects O, each defined by a sequential specification.

Considering a set of local histories and a partial order
po
→ on their operations,

let Assignmenti(
po
→) denote a function which replaces the value v returned by each

operation op() not issued by pi by a value v′, possibly different from v, the only

constraint being that v and v′ belong to the same domain (as defined by the cor-

responding operation op()). Let us notice that Assignmenti(
po
→) is not allowed to

modify the values returned by the operations issued by pi. Moreover, according

to the domain of values returned by the operations, a lot of different assignments

can be associated with each process pi.

Given a partial order
po
→, and an operation op, the causal past of op with



respect to
po
→ is the set of operations {op′ | op′

po
→ op}. A serialization S i of a

partial order
po
→ is said to be causal past-constrained if it is such that, for any

operation op issued by pi, only the operations of the causal past of op appear

before op.

Causal consistency for any object Let H = 〈L1, . . . , Ln〉 be a set of n local

histories (one per process) which access a set CO of concurrent objects, each

defined by a sequential specification. H is causally consistent if there is a partial

order
po
→ on the operations of H such that for any process pi:

• (op1
i
→ op2)⇒ (op1

po
→ op2), and

• ∃ an assignment Assignmenti and a causal past-constrained serialization S i

of Assignmenti(
po
→) such that, ∀ O ∈ CO, S i|O belongs to the sequential

specification of O.

The first requirement states that the partial order
po
→ must respect all process

orders. The second requirement states that, as far as each process pi is concerned,

the local view (of
po
→) it obtains is a total order (serialization S i) that, according to

some value assignment, satisfies the sequential specification of each object O.2

Let us remark that the assignments Assignmenti() and Assignment j() associ-

ated with pi and p j, respectively, may provide different returned values in S i and

S j for the same operation. Each of them represents the local view of the corre-

sponding process, which is causally consistent with respect to the global compu-

tation as captured by the relation
po
→.

When the objects are read/write registers The definition of a causal memory

stated in Section 3 is a particular instance of the previous definition. More pre-

cisely, given a process pi, the assignment Assignmenti allows an appropriate value

to be associated with every read not issued by pi. Hence, there is a (local to pi)

assignment of values such that, in S i, any read operation returns the last writ-

ten value. In a different, but equivalent way, the definition of a causal read/write

memory given in [1] eliminates from S i the read operations not issued by pi.

While such operation eliminations are possible for read/write objects, they are

no longer possible when one wants to extend causal consistency to any object

defined by a sequential specification. This come from the observation that, while

2This definition is slightly stronger than the definition proposed in [20]. Namely, in addition to

the introduction of the assignment notion, the definition introduced above adds the constraint that,

if an operation op precedes an operation op′ in the process order, then the serialization required for

op must be a prefix of the serialization required for op′. On the other hand, it describes precisely

the level of consistency achieved by Algorithm 1 presented below.



a write operation resets “entirely” the value of the object, “update” operations

on more sophisticated objects defined by a sequential specification (such as the

operations push() and pop() on a stack for example), do not reset “entirely” the

value of the object. The “memory” captured by such objects has a richer structure

than the one of a basic read/write object.

An example As an example illustrating the previous general definition of a

causally consistent object, let us consider three processes p1 p2 and p3, whose

accesses to a shared unbounded stack are captured by the following local histories

L1, L2, and L3. In these histories, the notation opi(a)r denotes the operation op()

issued by pi, with the input parameter a, and whose returned value is r.

• L1 = push1(a)ok, push
1
(c)ok, pop

1
()c.

• L2 = pop2()a, push2(b)ok, pop
2
()b.

• L3 = pop3()a, pop3()b.

Hence, the question: Is H = 〈L1, L2, L3〉 causally consistent? We show that

the answer is “yes”. To this end we need first to build a partial order
po
→ respecting

the three local process orders. Such a partial order is depicted in Figure 3, where

process orders are implicit, and the inter-process causal relation is indicated with

dashed arrows (let us remind that this relation captures the effect of the environ-

ment –asynchrony– on the computation).

p1

p2

p3

pop3()a

push2(b)ok

push1(a)ok push1(c)ok

pop3()b

pop2()a

pop1()c

pop2()b

Figure 3: Example of a partial order on the operations issued on a stack

The second step consists in building three serializations respecting
po
→, S 1 for

p1, S 2 for p2, and S 3 for p3, such that, for each process pi, there is an assignment

of values returned by the operations pop() (Assignmenti()), from which it is pos-

sible to obtain a serialization S i belonging to the specification of the stack. Such

assignments/serializations are given below.

• S 1 = push1(a)ok, pop
3
()a, pop2()⊥, push1(c)ok, push

2
(b)ok,

pop1()c, pop2()b, pop3()⊥.



• S 2 = push1(a)ok, pop
2
()a, push2(b)ok, pop

2
()b, pop3()⊥,

pop3()⊥, push1(c)ok, pop
1
()c.

• S 3 = push1(a)ok, pop
3
()a, pop2()⊥, push2(b)ok, pop

3
()b,

pop2()⊥, push1(c)ok, pop
1
()c.

The local view of the stack of each process pi is constrained only by the causal

order depicted in Figure 3, and also depends on the way it orders concurrent op-

erations. As far as p2 is concerned we have the following, captured by its seri-

alization/assignment S 2. (The serializations S 1 and S 3 are built similarly.) We

have considered short local histories, which could be prolonged by adding other

operations. As depicted in the figure, due to the last causality (dashed) arrows,

those operations would have all the operations in L1 ∪ L2 ∪ L3 in their causal past.

1. Process p2 sees first push1(a)ok, and consequently (at the implementation

level) updates accordingly its local representation of the stack.

2. Then, p2 sees its own invocation of pop2() which returns it the value a.

3. Then, p2 sees its own push2(b) and pop2() operations; pop2() returns con-

sequently b.

4. Finally p2 becomes aware of the two operations pop3() issued by p3, and the

operations push1(c) and pop1() issued by p1. To have a consistent view of

the stack, it considers the assignment of returned values that assigns the

value ⊥ to the two operations pop3(), and the value c to the operations

pop1(). In this way, p2 has a consistent view of the stack, i.e., a view which

complies with the sequential specification of a stack.

A universal construction Algorithm 1 is a universal construction which builds

causally consistent objects from their sequential specification. It considers de-

terministic objects. This algorithm is built on top of any underlying algorithm

ensuring causal broadcast message delivery [6, 26]3. Let “co_broadcast MSG(a)”

denote the causal broadcast of a message tagged MSG carrying the value a. The

associated causal reception at any process is denoted “co-delivery”. ”?” denotes a

control value unknown by the processes at the application level.

Each object O is defined by a transition function δO(), which takes as input

parameter the current state of O and the operation op(param) applied to O. It

returns a pair 〈r, new_state〉, where r is the value returned by op(param), and

new_state is the new state of O. Each process pi maintains a local representation

of each object O, denoted statei[O].

3Interestingly, the replacement of the underlying message causal order broadcast by a message

total order broadcast, implements linearizability.



when pi invokes O.op(param) do

(1) resulti ← ?;

(2) co_broadcast OPERATION(i,O, op(param));

(3) wait (resulti , ?);

(4) return (resulti).

when OPERATION( j,O, op(param)) is co-delivered do

(5) 〈r, statei[O]〉 ← δO(statei[O], op(param));

(6) if ( j = i) then resulti ← r end if.

Algorithm 1: Universal construction for causally consistent objects (code for pi)

When a process pi invokes an operation op(param) on an object O, it co-

broadcasts the message OPERATION(i,O, op(param)), which is co-delivered to

each process (i.e., according to causal message order). Then, pi waits until this

message is locally processed. When this occurs, it returns the result of the opera-

tion.

When a process pi co-delivers a message OPERATION( j,O, op(param)), it up-

dates accordingly its local representation of the object O. If pi is the invoking

process, it additionally locally returns the result of the operation.

5 Conclusion

This short article extended the notion of causal consistency to any object defined

by a sequential specification. This definition boils down to causal memory when

the objects are read/write registers.

The important point in causal consistency lies in the fact that each process has

its own view of the objects, and all these views agree on the partial order on the

operations but not necessarily on their results. More explicitly, while each pro-

cess has a view of each object, which locally satisfies its object specification, two

processes may disagree on the value returned by some operations. This seems to

be the “process-to-process inconsistency cost” that must be paid when weakening

consistency by considering a partial order instead of a total order. On another

side and differently from strong consistency conditions, causal consistency copes

naturally with partitioning and process crashes.
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Abstract

The need to handle large programs and to produce efficient compiled code
adds complexity to programming languages and limits their expressiveness.
Algorithms are not programs, and they can be expressed in a simpler and
more expressive language. That language is the one used by almost every
branch of science and engineering to precisely describe and reason about
the objects they study: the language of mathematics. Math is useful for
describing a more general class of algorithms than are studied in algorithm
courses.

1 Introduction

I have worked with a number of computer engineers—both hardware and software
engineers—and I have seen what they knew and what they didn’t know. I have
found that most of them do not understand some important basic concepts. These
concepts are obscured by programming languages. They are better understood by
a simple and powerful way of thinking about computation mathematically that is
explained here.

This note discusses what is called correctness in the field of program verifi-
cation: the requirement that each possible execution of a program satisfies some
precisely defined property. For brevity, I will use “correctness” only in this sense,
ignoring other common meanings of the word. For example, ease of use is not a
correctness condition because it isn’t precisely defined. That a program produces
the right output 99.9% of the time is also not a correctness condition because it
isn’t an assertion about an individual execution. However, producing the right
output is a correctness condition. A mathematical understanding of this concept
of correctness is useful beyond the field of program verification. It provides a way
of thinking that can improve all aspects of writing programs and building systems.



I will consider algorithms, not programs. It’s fruitless to try to precisely distin-
guish between them, but we all have a general idea that an algorithm is a higher-
level abstraction that is implemented by a program. For example, here is Euclid’s
algorithm for computing GCD(M ,N ), the greatest common divisor of positive
integers M and N :

Let x equal M and y equal N . Repeatedly subtract the smaller of x
and y from the larger. Stop when x and y have the same value, at
which point that value is GCD(M ,N ).

Implementing this algorithm in a programming language requires adding details
that are not part of the algorithm. For example, should the types of M and N
be single-precision integers, double-precision integers, or some class of objects
that can represent larger integers? Should the program assume that M and N are
positive or should it return an error if they aren’t?

The algorithms found in textbooks and studied in algorithm courses are rela-
tively simple ones that are useful in many situations. Most non-trivial programs
implement one or more algorithms that are used only in that program. Coding is
the task of implementing an algorithm in a programming language. However, pro-
gramming is too often taken to mean coding, and the algorithm is almost always
developed along with the code. The programmer is usually unaware of the exis-
tence of the algorithm she is developing. To understand why this is bad, imagine
trying to discover Euclid’s algorithm by thinking in terms of code rather than in
terms of mathematics.

The term algorithm is generally taken to mean only an algorithm that might
appear in a textbook on algorithms. The special-purpose algorithms implemented
by programs and systems are usually called something else, such as high-level
designs, specifications, or models. However, they differ from textbook algorithms
only in being special purpose and often more complicated. I will call them algo-
rithms to emphasize that they are fundamentally the same as what are convention-
ally called algorithms.

The benefit of thinking about algorithms mathematically is not limited to ob-
viously mathematical problems like computing the GCD. Here’s what I was told
in an email from the leader of a team that built a real-time operating system by
starting with a high-level design written in a mathematics-based language called
TLA+ [14]:

The [TLA+] abstraction helped a lot in coming to a much cleaner ar-
chitecture (we witnessed first-hand the brainwashing done by years
of C programming). One of the results was that the code size is about
10× less than in [the previous version].



The previous version of the operating system was flown in a spacecraft, where
one assumes reducing code size was important. The common obsession with lan-
guages might lead readers to think this result was due to some magical features of
TLA+. It wasn’t. It was due to TLA+ letting users think mathematically.

This note is written for sophisticated readers, but the mathematical approach
it presents is simple enough to be understood by undergraduates. The mathemat-
ics can be made as rigorous or as informal as we want. The discussion here is
informal, using only simple examples. Not explained are how to make the math-
ematics completely formal and how to handle the large formulas that describe
complex real-world algorithms. Also not explained is how to write and reason
about those mathematical formulas in practice. That would require a book.

2 Behaviors and Properties
An execution of an algorithm is represented mathematically as a sequence of
states, where a state is an assignment of values to variables. A sequence of states
is called a behavior. For example, the following three-state behavior represents
the one possible execution of Euclid’s algorithm for M = 12 and N = 18

[x ← 12, y ← 18] , [x ← 12, y ← 6] , [x ← 6, y ← 6]

where [x ← 12, y ← 18] is the state that assigns 12 to x and 18 to y . The
simplicity and power of this way of representing executions has led me to find it
the best one for studying correctness (as defined above).

A property is a predicate (Boolean-valued function) on behaviors. We say that
a behavior b satisfies a property P , or that P is true on b, iff (if and only if) P (b)
equals true. A correctness condition of an algorithm asserts that every behavior
that represents an execution of the algorithm satisfies a property.

Partial correctness of Euclid’s algorithm means that if it stops, then x and y
both equal GCD(M ,N ). The algorithm stops iff x and y have the same value.
Therefore, partial correctness of the algorithm is expressed by the property that is
true of a behavior iff every state of the behavior satisfies this condition:

If x and y have the same value, then that value equals GCD(M ,N ).

The state predicate (Boolean-valued function on states) that is true on a state iff
the state satisfies this condition can be written as the formula

(x = y) ⇒ (x = GCD(M ,N )) (1)

where ⇒ denotes logical implication. The property that is true on a behavior iff
(1) is true on every state of the behavior is written as

2((x = y)⇒ (x = GCD(M ,N ))) (2)



For M = 12 and N = 18, property (2) is true on this five-state behavior:1

[x ← 1, y ← 37] , [x ← 6, y ← 6] , [x ← 42, y ← 7] ,
[x ← 6, y ← 6] , [x ← 0, y ← 12]

Partial correctness of Euclid’s algorithm means that property (2) is true of every
behavior representing an execution of Euclid’s algorithm. Amir Pnueli introduced
2 into computer science as an operator of temporal logic [13], but we can con-
sider it here to be an ordinary mathematical operator that maps state predicates to
properties.

Observe that, like almost all mathematicians, I say that formula (2) is a prop-
erty, which is a Boolean-valued function. Pedants and logicians might say that the
property is the meaning of the formula, which is different from the formula itself.
Like almost all mathematicians, I will ignore this distinction.

A property of the form 2I for a state predicate I is called an invariance prop-
erty, and we say that 2I asserts that I is an invariant. Invariants play a crucial
role in understanding algorithms.

Another important property of Euclid’s algorithm is that it always terminates.
The algorithm terminates when x equals y . Therefore, an execution that termi-
nates is represented by a behavior containing a state in which the state predicate
x = y is true. A behavior contains such a state iff it is not the case that all of its
states satisfy x , y—that is, iff the property 2(x , y) is not true on the behav-
ior, which means that ¬2(x , y) is true on the behavior. Hence a terminating
behavior of the algorithm is one satisfying the property ¬2(x , y).

3 Algorithms are Properties
We usually think of an algorithm as generating possible executions. For exam-
ple, we can think of Euclid’s algorithm generating an execution for each pair of
positive integers M and N . (Nondeterminism is a more interesting source of mul-
tiple possible executions for an algorithm.) Each possible execution is represented
mathematically by a behavior. We can represent an algorithm as the set of all these
behaviors.

There is a natural correspondence between sets and predicates. A set S corre-
sponds to the predicate, let’s call it πS , that is defined by letting πS (e) equal true
iff e is an element of S . Thus, instead of representing an algorithm by a set S of
behaviors, we can represent it by the corresponding predicate πS on behaviors. A
predicate on behaviors is what we call a property, so corresponding to the set S of

1Note that a behavior is any sequence of states, not just one representing the execution of some
algorithm.



behaviors representing executions of the algorithm is the property πS that is true
of a behavior iff the behavior represents an execution of the algorithm.

I will usually represent an algorithm with set S of behaviors as the property πS

because I find that to be the most helpful way of thinking about algorithms. This
means that instead of thinking of an algorithm as a generator of executions, we
think of it as a rule for determining if a sequence of states is an execution of the
algorithm. (In computer science jargon, we think of the algorithm as a recognizer
rather than a generator of executions.) This way of thinking about algorithms may
strike you as either bizarre or an insignificant shift of viewpoint. However, I have
found it to be quite helpful for understanding algorithms.

Algorithms are properties, but not every property is an algorithm. We use the
term algorithm for a property that is satisfied by a set of behaviors representing
the possible executions of what we think of as an algorithm.

We saw in Section 2 that a correctness condition of an algorithm asserts that
every behavior representing an execution of the algorithm satisfies a property P .
Since the algorithm is a property A, this correctness condition asserts that if a
behavior satisfies A then it satisfies P — an assertion written mathematically as
A ⇒ P .2 The property P could be an algorithm that is a higher-level (more
abstract) version of the algorithm A. In that case, we say that A ⇒ P means
that A refines P . Thus, our mathematical view of computation provides a natural
definition of algorithm refinement as implication. Refinement is generalized in
Section 6.1 to include data refinement [6].

4 Describing Algorithms Mathematically

4.1 State Machines

The practical way to precisely describe algorithms is with state machines. A state
machine is usually described by a set of possible initial states and a next-state
relation that determines the possible steps, where a step is a pair of successive
states in a behavior. The possible executions of the state machine consist of all
sequences s1, s2, . . . of states such that (1) s1 is a possible initial state and (2) ev-
ery step (s i , s i+1) satisfies the next-state relation. A Turing machine is obviously
a state machine. An operational semantics of a programming language describes
every program in the language as a state machine. Nondeterminism is represented
by a next-state relation that is satisfied by more than one pair (s , t) of states for

2I am extending the operator⇒ on Boolean values to an operator on Boolean-valued functions.
Such extensions are ubiquitous in mathematics. For example, if f and g are numerical-valued
functions, then f + g is the function defined by (f + g)(x ) = f (x ) + g(x ).



the same state s . We’ll see in Section 4.4 that this definition of a state machine is
incomplete, but it will suffice for now.

If a state is an assignment of values to variables, then an execution of a state
machine is a behavior. The set of initial states can be represented as a state predi-
cate and the next-state relation can be represented as a predicate on pairs of states.
The state machine is represented as a property that is true on a behavior s1, s2, . . .
iff these two conditions are satisfied:

SM1 The initial-state predicate is true on s1.

SM2 The next-state predicate is true on every step (s i , s i+1).

4.2 State Machines in Mathematics
Let’s represent Euclid’s algorithm by a state machine. We described the algorithm
above for a single pair of input values M and N , so we considered Euclid’s algo-
rithm for different values of M and N to be different algorithms. Let’s do this in
our mathematical representation of the algorithm, so we describe Euclid’s algo-
rithm for a single fixed pair M , N of positive integers. The algorithm has a single
behavior; what that single behavior is depends on the (unspecified) values of the
positive integers M and N .

The initial predicate is true on a state iff x has the value M and y has the value
N . This state predicate can obviously be written

(x = M ) ∧ (y = N ) (3)

A predicate on pairs of states is often written as a formula containing primed
and unprimed variables, where an unprimed variable represents the value of the
variable in the first state and a primed variable represents its value in the second
state [5]. With this notation, the next-state predicate for Euclid’s algorithm is

( (x > y)
∧ (x ′ = x − y)
∧ (y ′ = y) )

∨ ( (y > x )
∧ (y ′ = y − x )
∧ (x ′ = x ) )

(4)

For example, the predicate (4) is true on the pair of states

( [x ← 18, y ← 12] , [x ← 6, y ← 12] )

because that formula equals true if x = 18, y = 12, x ′ = 6, and y ′ = 12. Formula
(4) equals false if the value of x equals the value of y . Hence, the next-state



predicate of Euclid’s algorithm equals false for any pair of states with x = y true
in the first state. This means that Euclid’s algorithm halts in such a state.

Let’s define InitE to equal the initial-state predicate (3) and NextE to equal
the next-state predicate (4). These two formulas describe Euclid’s algorithm—that
is, they describe the property that is our mathematical representation of Euclid’s
algorithm. It’s more convenient to describe this property with a single formula,
which we now do.

First, define [P , for any state predicate P , to be the property that is true on a
behavior iff P is true on the first state of the behavior. Then [InitE is the property
that expresses condition SM1 of the state machine.

Next, extend the operator 2 to predicates Q on pairs of states by letting 2Q
be true on a behavior iff Q is true on every step of the behavior. Thus, 2NextE is
the property that expresses condition SM2 of the state machine.

The property that is Euclid’s algorithm, which is the property satisfying con-
ditions SM1 and SM2, is represented by the formula [InitE ∧ 2NextE . For a
state predicate P , it’s customary to write [P as simply P , determining from con-
text whether P means the state predicate or the property [P . We thus write the
property that is Euclid’s algorithm as

InitE ∧ 2NextE (5)

Instead of defining Euclid’s algorithm for a specific pair of integers, we could
define it for an arbitrary pair of integers. The definition is the formula obtained
by existentially quantifying formula (5) over all positive integers M and N — a
formula I will write

∃ M ,N ∈ Z+. (InitE ∧ 2NextE )

where Z+ is the set of positive integers. Since M and N don’t occur in NextE ,
this formula can also be written

(∃ M ,N ∈ Z+. InitE ) ∧ 2NextE

However, let’s stick with our definition (5) of Euclid’s algorithm for a single pair
of positive integers M and N .

4.3 Proving Invariance
Let’s now prove partial correctness of Euclid’s algorithm, which is expressed as
the property (2). We first consider the general problem of proving that an algo-
rithm described by the formula Init ∧2Next satisfies an invariance property 2I .
We saw in Section 3 that this means proving the formula Init ∧2Next ⇒ 2I .



Since 2I asserts that the state predicate I is true on all states of a behavior,
the natural way to prove 2I is by induction: proving that (i) I is true on the first
state and (ii) for any j , if I is true on the j th state then it’s true on the (j +1)st state.

We can obviously prove (i) by proving Init ⇒ I . To prove (ii), it suffices to
prove that for any pair (s , t) of states, if I is true on s and Next is true on (s , t),
then I is true on t . Let’s define I ′ to be the formula obtained from I by priming all
its variables. The formula I ′ represents the predicate on pairs of states that is true
on (s , t) iff I is true on t . We can therefore prove (ii) by proving that I true on s
and N true on (s , t) implies that I ′ is true on (s , t) — an assertion expressed by the
formula I ∧ Next ⇒ I ′. We can encapsulate all this in the following proof rule,
which asserts that the truth of the two formulas above the line (the hypotheses)
implies the truth of the formula below the line (the conclusion).

Init ⇒ I
I ∧ Next ⇒ I ′

Init ∧ 2Next ⇒ 2I

(6)

A formula I satisfying the hypotheses of this rule is called an inductive invariant
of the algorithm Init ∧ 2Next . An inductive invariant is an invariant, but the
converse isn’t necessarily true. The invariant (1) of Euclid’s algorithm is not an
inductive invariant of the algorithm—for example, if M = 12 and N = 18, then
the second hypothesis equals false when x = 16 and y = x ′ = y ′ = 8. Define
InvE to equal formula (1). To prove that InvE is an invariant, we find an inductive
invariant I that implies it. The invariance of InvE then follows from the invariance
of I and the following proof rule, which asserts the obvious fact that if a state
predicate P implies a state predicate Q , then P true on all states of a behavior
implies that Q is true on all states of the behavior.

P ⇒ Q
2P ⇒ 2Q

(7)

The inductive invariant I for Euclid’s algorithm is

GCD(x , y) = GCD(M ,N )

The first hypothesis of rule (6) is trivially true. The truth of the second hypothesis
follows from the observation that for any integers a and b, an integer divides both
a and b iff it divides both a and a − b. That I implies InvE is obvious because
GCD(x , x ) equals x .

As illustrated by Euclid’s algorithm, partial correctness is an invariance prop-
erty. The Floyd/Hoare method of proving partial correctness is based on proof
rules (6) and (7), where the inductive invariant is written as a program annota-
tion [3, 7].



What an algorithm does next is determined by its current state, not by what
happened in the past. An algorithm does the right thing (for example, it termi-
nates only with the right answer) because something is true of every state—that
is, because it satisfies an invariance property. Understanding an algorithm requires
understanding that invariant. Years of experience has shown that the one reliable
method of proving the invariance of a state predicate is by finding an inductive
invariant that implies it.

4.4 Termination
For M = 12 and N = 18, the formula InitE∧2NextE is satisfied by the following
three behaviors:

1. [x ← 12, y ← 18]
2. [x ← 12, y ← 18], [x ← 12, y ← 6]
3. [x ← 12, y ← 18], [x ← 12, y ← 6], [x ← 6, y ← 6]

Those are the three behaviors that satisfy conditions SM1 and SM2. (Behavior 1
trivially satisfies SM2 because it has no steps.) We consider behavior 3 to be the
only correct one; we don’t want Euclid’s algorithm to allow behaviors 1 and 2,
which stop prematurely.

A common approach is to modify the definition of the executions of a state
machine by adding another condition to SM1 and SM2. Define a predicate N on
pairs of states to be enabled on a state s iff there is some state t such that N is true
on (s , t). The additional condition is:

SM3 The behavior does not end in a state in which the next-state predicate is
enabled.

The definition of 2Next could be modified to imply SM3. While this approach
is satisfactory for sequential algorithms that compute an answer and then stop,
we’ll see in Section 5.1 that it’s a bad idea for more general algorithms, including
concurrent ones.

Instead, we express the requirement that Euclid’s algorithm not stop before
it should by adding the requirement of weak fairness of the next-state relation—
expressed by the formula WF(NextE ). For any predicate N on pairs of states,
WF(N ) is true on a finite behavior iff the behavior doesn’t end in a state in which
N is enabled. It is true on an infinite behavior iff the behavior doesn’t end with an
infinite sequence of states such that (i) N is enabled on all states of the sequence
and (ii) N is not true on any of that sequence’s steps.

Euclid’s algorithm terminates iff it eventually reaches a state in which x = y
is true, and we saw in Section 2 that this is asserted by the property ¬2(x , y).



Thus, the assertion that every behavior of Euclid’s algorithm stops is expressed
mathematically by:

InitE ∧ 2NextE ∧ WF(NextE ) ⇒ ¬2(x , y) (8)

To prove (8) we prove two things:

1. x + y is non-negative in all states of a behavior of the algorithm, which is
expressed by:

InitE ∧ 2NextE ⇒ 2(x + y ≥ 0) (9)

2. Executing a step of the algorithm from a state with x , y decreases x + y ,
which is implied by

(x , y) ∧ NextE ⇒ (x ′ + y ′) < (x + y) (10)

We’ve seen how to prove an invariance property like (9). Formula (10) follows
from the fact that (a − b) + b < a + b for any positive numbers a and b.3 Since
a non-negative integer can be decreased only a finite number of times before it
becomes non-positive, and NextE is enabled iff x , y , (9) and (10) imply (8).

Termination of any sequential algorithm is proved in this way. In general, the
formula x + y is replaced by a suitable integer-valued function on states (usually
called a variance function), and x , y is replaced by the state predicate asserting
that the next-state predicate is enabled.

5 Concurrent Algorithms
Many computer scientists seem to believe that a concurrent algorithm must be
described by a collection of state machines that communicate in some way, each
state machine representing a separate process. In fact, a concurrent algorithm is
better understood as a single state machine. I will illustrate this with a simple
example: the N -buffer producer/consumer algorithm.

5.1 The Two-Process Algorithm
In the standard description of the algorithm, a producer process sends a sequence
of messages that are received by a consumer process. Messages are transmitted
using an array of N message buffers numbered 0 through N − 1, with N > 0.

3A more rigorous proof requires showing that (x > 0) ∧ (y > 0) is an invariant of Euclid’s
algorithm.



The producer sends messages by putting them in successive buffers starting with
buffer 0, putting the i th message in buffer i −1 mod N ; and the consumer removes
messages in the same order from the buffers. The producer can put a message in
a buffer only if that buffer is empty, and the consumer can remove a message only
from a buffer that contains one.

The algorithm is described by the formula

InitPC ∧ 2NextPC ∧ FPC (11)

where InitPC is the initial-state predicate, NextPC is the next-state predicate, and
FPC is a fairness property that is false on a behavior that ends before it should. I
won’t write the complete definitions of these formulas and will just briefly discuss
NextPC and FPC .

The obvious definition of NextPC has the form

NextPC ≡ Send ∨ Rcv

where Send is true on a pair (s , t) of states iff t represents the state obtained from
s by having the producer put its next message into a buffer; and similarly Rcv
is true on a pair of states iff that pair represents the consumer removing its next
message from a buffer.

There are three obvious choices for the property FPC , leading to three different
algorithms. We might want to require that messages keep getting sent and received
forever. This is expressed by letting FPC equal WF(NextPC ). We can write the
same algorithm by letting FPC equal WF(Send )∧WF(Rcv ). These two formulas
are not equivalent, but they produce equivalent formulas (11) because this formula
is true:

InitPC ∧ 2NextPC ⇒ (WF(NextPC ) ≡ WF(Send ) ∧WF(Rcv ))

Of course, we can’t prove this formula without knowing the definitions of InitPC ,
Send , and Rcv . However, it’s possible to see from the definition of WF in Sec-
tion 4.4 that it should be true because the informal description of the algorithm
means InitPC ∧2NextPC should imply of a behavior that:

• Send or Rcv is enabled in every state. (They can both be enabled.)

• The behavior can contain at most N consecutive steps that represent the
sending of a message, and at most N consecutive steps that represent the
receiving of a message.

The second obvious choice for FPC requires that the producer should keep trying
to send messages, but the consumer may stop receiving them. This is expressed
by letting FPC equal WF(Send ). Formula (11) then allows (but doesn’t require)



a behavior to end only in a state in which all message buffers are full. The third
obvious choice is to let FPC equal WF(Rcv ), allowing behaviors to end only in
a state in which all the buffers are empty. Note that modifying the definition of
2NextPC by adding condition SM3 of Section 4.4 would make it impossible to
write the last two versions of the algorithm.

5.2 Another View of the Algorithm
Because producer/consumer is a two-process algorithm, it’s natural to write NextPC

as the disjunction Send ∨Rcv of two formulas, each describing the steps that can
be taken by one of the processes. Let’s take a closer look at those formulas. Sen-
sible definitions of Send and Rcv will have the form

Send ≡ ∃ i ∈ {0, . . . ,N − 1} . S (i )
Rcv ≡ ∃ i ∈ {0, . . . ,N − 1} .R(i )

where S (i ) describes a step in which the producer puts a message in buffer i , and
R(i ) describes a step in which the consumer removes a message from buffer i .
Define SR(i ) to equal S (i ) ∨ R(i ). Elementary logic shows that NextPC equals

∃ i ∈ {0, . . . ,N − 1} . SR(i ) (12)

Formula (12) looks like the next-state predicate of an N -process algorithm, where
the processes are numbered 0 through N −1 and SR(i ) describes steps that can be
performed by process number i . Process i can put a message into buffer i when
it’s empty, and it removes a message from that buffer when it contains one.

Is the producer/consumer algorithm a 2-process algorithm or an N -process al-
gorithm? Mathematically, it’s neither. The algorithm is the formula/property (11).
We can view that formula as a 2-process algorithm or an N -process algorithm.
Each view gives us a different way of thinking about the algorithm, enabling us to
understand it better than we could with just one view.4

Formula (4), the next-state predicate of Euclid’s algorithm, is also the disjunc-
tion of two formulas. This means we can view Euclid’s algorithm not just as a
uniprocess algorithm, but also as a 2-process algorithm. One process tries to sub-
tract y from x , which it can do only when y < x is true; the other process tries to
subtract x from y , which it can do only when x < y is true.

4I’ve ignored the fairness property, so you may be tempted to think that FPC will tell us how
many processes there are in the algorithm. It won’t. For example, the algorithm we get by letting
FPC equal WF(Send ) is also obtained by letting it equal

∀ i ∈ {0, . . . ,N − 1} .WF(S (i ))

This formula looks like the conjunction of fairness conditions on N separate processes.



All programming languages that I know of force you to think of the pro-
ducer/consumer algorithm as either a 2-process algorithm or an N -process algo-
rithm. Few algorithms are better understood by decomposing them into processes
in different ways. But describing an algorithm with a programming language can
limit our ability to understand it in other ways as well.

5.3 Safety and Liveness
What does correctness of the producer/consumer algorithm mean? Since the al-
gorithm need not terminate, it doesn’t satisfy any partial correctness condition or
termination requirement. There’s an endless variety of correctness properties that
we might want to be satisfied by algorithms that need not terminate. Here are two
that we might require of the version of the algorithm with FPC equal to WF(Rcv ).

PC1 The sequence of messages received by the consumer is a prefix of the se-
quence of messages sent by the producer.

PC2 Every message sent is eventually received.

PC1 is a safety property, which intuitively is a property asserting what may hap-
pen. PC2 is a liveness property, which intuitively is a property asserting what must
happen. Here are the precise definitions. (Remember that every sequence of states
is a behavior.)

• A safety property is one that is false on an infinite behavior iff it is false on
some finite prefix of the behavior.

• A liveness property is one which, for any finite behavior, is true for some
(possibly infinite) extension of that behavior.

It can be shown that any property is equivalent to the conjunction of a safety
property and a liveness property. For any predicate I on states and predicate A on
pairs of states, the formula I ∧ 2A is a safety property, and WF(A) is a liveness
property.

The producer/consumer algorithm satisfies property PC1 iff InitPC∧2NextPC

implies that property. The fairness condition FPC is irrelevant for safety proper-
ties. In general, for any algorithm Init ∧ 2Next ∧ F , if F is the conjunction of
formulas WF(A) and each of the predicates A implies Next , then the algorithm
satisfies a safety property iff Init ∧2Next satisfies the safety property.5

5This is why we conjoin fairness conditions rather than other kinds of liveness conditions to
Init∧2Next . If F were not of this form, the formula Init∧2Next∧F would be hard to understand
because the liveness property F could forbid steps allowed by Next .



5.3.1 Proving Safety Properties

An invariance property 2I is a safety property, and we’ve seen how to prove
them. Stating PC1 as an invariance property would require being able to express
the sequences of all messages that have been sent and received in terms of the
formula’s variables. Whether this is possible depends on the definitions of InitPC ,
Send , and Rcv . If it’s not possible, there are two ways to proceed.

The simplest approach is to add a history variable to the producer/consum-
er algorithm that records the sequences of messages sent and received, so PC1
can be expressed as an invariance property. A history variable is a simple kind
of auxiliary variable—a variable that is added to an algorithm to produce a new
algorithm that is the same as the original one if the value of the added variable is
ignored [1]. (Auxiliary variables have other uses that I won’t discuss.) In general,
any safety property can be expressed as an invariance property by adding a history
variable. However, this is often not a good approach because it encodes in an
invariance proof the kind of unreliable behavioral reasoning that invariance proofs
were developed to replace.

The second approach is to write a higher-level algorithm that obviously im-
plies PC1, and then prove that the producer/consumer algorithm refines that algo-
rithm. The higher-level algorithm will of course have the form Init ∧2Next ; the
proof will use an invariance property 2InvPC of the producer/consumer algorithm
and the following proof rule.

Init1 ⇒ Init2

Next1 ∧ Inv 1 ∧ Inv ′1 ⇒ Next2

Init1 ∧2Next1 ∧2Inv 1 ⇒ Init2 ∧2Next2

5.3.2 Proving Liveness Properties

Proving liveness properties like PC2 requires more than the simple counting-down
argument used to prove termination. There is no single recipe for proving all live-
ness properties. Rigorous proofs are best done by generalizing 2 to an operator
on properties, where 2P asserts of a behavior that property P is true on all suf-
fixes of that behavior. For example, 2¬2(x , y) is true on an infinite behavior iff
x = y is true on infinitely many of its states. Weak fairness can be expressed with
2, as can another important type of liveness property that I won’t discuss called
strong fairness [4].

At the heart of most liveness proofs are counting down arguments. The count-
ing down argument used to prove termination of Euclid’s algorithm is based on
the fact that there is no infinite descending sequence n1 > n2 > . . . of natural
numbers. Proving liveness properties of concurrent algorithms requires a gener-
alization to counting down on a well-ordered set, which is a set S with partial



order � containing no infinite descending sequence s1 � s2 � . . . of elements.
For example, the set of all k -tuples of natural numbers, with the lexicographical
ordering, is well ordered.

We can regard 2 as an ordinary mathematical operator on properties. For
completely formal reasoning, I find it better to use temporal logic and to regard
2 as a temporal operator. The proofs of liveness one writes in practice can be
formalized with a small number of temporal-logic axioms [9]. However, temporal
logic is a modal logic and does not obey some important laws of traditional math,
so it must be used with care. An informal approach that avoids temporal logic
may be best for undergraduates.

6 Refinement

6.1 Data Refinement
Data refinement is a traditional method of refining sequential algorithms that com-
pute an output as a function of their input [6]. An example of data refinement is
refining Euclid’s algorithm by representing the natural numbers x and y with bit
arrays ax and ay of length k .

Mathematically, a k -bit array a is a function from {0, . . . , k − 1} to {0, 1}. It
represents the natural number AtoN (a), defined by

AtoN (a) ≡
k−1∑
i=0

a(i ) · 2i

Let’s write such a bit array a as a(k − 1) . . . a(0), so AtoN (01100) equals 12 for
k = 5.

Let AlgE be the formula InitE ∧2NextE ∧WF (NextE ) that is Euclid’s algo-
rithm, and let AlgAE be an algorithm whose variables are 5-bit arrays ax and ay .
For any state s that assigns values to ax and ay , let AEtoE (s) be the state that
assigns the value AtoN (ax ) to x and AtoN (ay) to y . For example,

AEtoE ( [ax ← 01100, ay ← 10010] ) = [x ← 12, y ← 18]

We extend AEtoE to behaviors by defining

AEtoE (s1, s2, . . .) ≡ AEtoE (s1), AEtoE (s2), . . .

For example, if b is the behavior

[ax ← 01100, ay ← 10010], [ax ← 01100, ay ← 00110],
[ax ← 00110, ay ← 00110]

(13)



then AEtoE (b) equals

[x ← 12, y ← 18], [x ← 12, y ← 6], [x ← 6, y ← 6] (14)

We say that algorithm AlgAE refines algorithm AlgE under the refinement map-
ping x ← AtoN (ax ), y ← AtoN (ay) iff, for every behavior b allowed by algo-
rithm AlgAE , the behavior AEtoE (b) is allowed by algorithm AlgE . For M = 12
and N = 18, algorithm AlgE allows only the single behavior (14), so if AlgAE

refines AlgE , it will allow only the single behavior (13).
The value of the state predicate x < 2 · y on a state AEtoE (s) equals the value

of the predicate AtoN (ax ) < 2 · AtoN (bx ) on the state s . For example, both the
value of x < 2 · y on the state

[x ← AtoN (10010), y ← AtoN (01100)]

and the value of AtoN (ax ) < 2 · AtoN (bx ) on the state

[ax ← 10010, ay ← 01100]

equal 18 < 2·12 (which equals true). In general, the value of any state predicate I
on AEtoE (s) is the same as the value on s of the formula obtained by substituting
AtoN (ax ) for x and AtoN (ay) for y in I . Mathematicians have no standard
notation for such a formula obtained by substitutions; I’ll write it

I with x ← AtoN (ax ), y ← AtoN (ay) (15)

So, the value of I on AEtoE (s) equals the value of formula (15) on s . Similarly,
the value of the algorithm/formula AlgE on a behavior AEtoE (b) is the same as
the value of

AlgE with x ← AtoN (ax ), y ← AtoN (ay) (16)

on the behavior b. We said above that AlgAE refines AlgE under the refinement
mapping described by this with clause iff, for any behavior b satisfying AlgAE ,
the behavior AEtoE (b) satisfies AlgE . We’ve just seen that the latter condition is
equivalent to b satisfying (16). Therefore, AlgAE refines AlgE under this refine-
ment mapping iff AlgAE implies (16). In general, we have:

Definition Algorithm Alg1 implements algorithm Alg2 under the re-
finement mapping v 1 ← e1, . . . vn ← en iff this formula is true:

Alg1 ⇒ (Alg2 with v 1 ← e1, . . . , vn ← en)



“The brainwashing done by years of C programming” may lead one to think that
there is little difference between the expression x ′ = x −y in the next-state relation
(4) of Euclid’s algorithm and the C assignment statement x = x-y. However,
expanding the definition of AlgE shows that formula (16) is an algorithm whose
next-state predicate contains the expression

(x ′ = x − y) with x ← AtoN (ax ), y ← AtoN (ay)

which equals

k−1∑
i=0

ax ′(i ) · 2i =

k−1∑
i=0

ax (i ) · 2i −

k−1∑
i=0

ay(i ) · 2i

No programming language allows you to write anything resembling this formula.
Data refinement is described by substitution, which is a fundamental operation

of mathematics. It cannot be properly understood in terms of the limited kinds of
substitution provided by programming languages.

6.2 Step Refinement
Another kind of refinement is step refinement, in which a single step of a high-
level algorithm is refined by multiple steps of a lower-level algorithm. Let’s con-
sider a very simple example.

Suppose we want to write a formula/algorithm/property representing a clock
that displays the hour and minute, ignoring the relation between the display and
physical time. We could write a formula AlgHM containing the variables hr and
min that represent the hour and minute displays. A behavior satisfying AlgHM

would contain this subsequence of three states:

[hr ← 4, min ← 58] , [hr ← 4, min ← 59] , [hr ← 5, min ← 0]

Suppose we also write a formula AlgHMS describing a clock that represents the
hour, minute, and second displays with variables hr , min, and sec.

If we ask for a clock that displays hours and minutes, without explicitly saying
that it does not display seconds, then our request is satisfied by a clock display-
ing hours, minutes, and seconds. In mathematics, writing a formula like AlgHM

containing the variables hr and min doesn’t imply that there is no variable sec.
The formula simply says nothing about sec or any other variable besides hr and
min. Therefore, the formula/property AlgHM should be satisfied by the algo-
rithm/property AlgHMS . In other words, every behavior satisfying AlgHMS should
also satisfy AlgHM . However, the way I’ve been writing our algorithms, a behav-
ior satisfying AlgHMS takes 60 steps to go from a state with hr = 4 and min = 59



to one with hr = 5 and min = 0, while a behavior satisfying AlgHM does it in a
single step. Therefore, I haven’t been writing algorithms the way they should be
written. Writing them properly requires a closer look at how mathematics is used
to describe the world.

I defined a state to be an assignment of values to variables, and in the examples
I’ve taken the variables to be the ones in the algorithm. Since writing the formula
AlgHM doesn’t preclude the existence of variables other than hr and min, for what
we are doing to make sense mathematically, a state should be an assignment of
values to all possible variables. (Mathematicians assume that there are an infinite
number of possible variables.) The formula AlgHM is not an assertion about a
universe consisting only of an hour-minute clock described by the variables hr
and min. It’s an assertion about a universe containing an hour-minute clock—a
universe that might also contain Euclid’s algorithm and the producer/consumer
algorithm. A behavior represents a possible “execution” of this entire universe.
The behavior satisfies formula AlgHM iff it represents a universe in which the
hour-minute clock is operating correctly. If AlgPC is a specification of the pro-
ducer/consumer algorithm, then a behavior satisfies AlgHM ∧ AlgPC iff it repre-
sents a universe in which both the hour-minute clock and the producer/consumer
algorithm are operating correctly.

It’s obviously absurd for a specification of the hour-minute clock to require
that, in a state with hr = 4 and min = 59, the next state of the entire universe
must be one with hr = 5 and min = 0. It should allow multiple successive states
with hr = 4 and min = 59 to precede a state with hr = 5 and min = 0 — perhaps
trillions of them. This means that the next-state predicate for the hour-minute
clock should have the form

TickHM ∨ (hr ′ = hr ∧min ′ = min) (17)

where TickHM describes how hr and min can change. Steps that leave hr and
min unchanged (allowed by the second disjunct) are called stuttering steps of the
algorithm. Steps allowed by AlgHMS that change only sec are stuttering steps of
AlgHM , allowed by the next-state predicate (17). Therefore, AlgHMS will imply
AlgHM .

All the formulas representing algorithms that we’ve written need to be modi-
fied to allow stuttering steps. Let’s write formula (17) as [Tick ]〈hr ,min 〉. We can
then change the safety part (5) of Euclid’s algorithm to InitE ∧2[NextE ]〈x ,y 〉 and
the safety part of the producer/consumer algorithm (11) to InitPC∧2[NextPC ]〈 ...〉,
where “. . .” is the list of all the algorithm’s variables.

The next-state predicate (17) allows behaviors that, from some point on, con-
tain only stuttering steps of the clock. Such a behavior represents one in which
the clock stops. Since the entire universe need never stop, termination of any al-
gorithm is represented by infinite stuttering. We can therefore simplify the math-



ematics by considering only infinite behaviors. Termination is still disallowed by
fairness properties. The fairness condition WF(TickHM ) asserts that the hour-
minute clock never stops, assuming that TickHM does not allow steps that leave
both hr and min unchanged.

In general, stuttering steps allow step refinement in which one step of a higher-
level version of an algorithm is implemented by multiple steps of a lower-level
version. One of those lower-level steps allows the higher-level step; the rest allow
stuttering steps of the higher-level algorithm.

6.3 Proving Correctness by Refinement
As we have seen in Section 5.3.1, a correctness property of an algorithm is often
best expressed as a higher-level algorithm. Proving correctness then means prov-
ing that the original algorithm refines the higher-level one. This usually involves
both data refinement and step refinement. For example, an algorithm that refines
Euclid’s algorithm by representing integers with bit strings might refine a step of
Euclid’s algorithm with a sequence of steps that read or modify only a single bit
at a time. The refinement mapping must be defined so that only one of those steps
refines a step of Euclid’s algorithm that modifies x or y . The rest must refine
stuttering steps.

I expect that this kind of refinement sounds like magic to most readers, who
won’t believe that it can work in practice. Seeing that it is a straightforward,
natural way to reason about algorithms requires working out examples, which I
will not attempt here. I will simply report that among the refinement proofs I have
written is a machine-checked correctness proof [11] of the consensus algorithm at
the heart of a subtle fault-tolerant distributed algorithm by Castro and Liskov [2]
that uses 3F + 1 processes, up to F of which may be malicious (Byzantine).
The proof shows that the Castro-Liskov consensus algorithm refines a version of
the 2F + 1 process Paxos consensus algorithm that tolerates F benignly faulty
processes [10]. Steps of malicious processes, as well as many steps taken by the
good processes to prevent malicious ones from causing an incorrect execution of
Paxos, refine stuttering steps of the Paxos algorithm. I found that viewing the
Castro-Liskov algorithm as a refinement of Paxos was the best way to understand
it.

7 Conclusion
Algorithms are usually described with programming languages or languages based
on programming-language concepts. The mathematical approach presented here
can be viewed as describing algorithms semantically. It may seem impractical to



people used to thinking in terms of programming languages, whose semantics are
so complicated. But programming languages are complicated because programs
can be very large and must be executed efficiently. Algorithms are much smaller
than programs, and they don’t have to be executed efficiently.6 This makes it prac-
tical to describe them in the much simpler and infinitely more expressive language
of mathematics.

The informal mathematics I have used has not been rigorous. For example,
GCD(x , y) = GCD(M ,N ) is not really an inductive invariant of Euclid’s algo-
rithm. To make it inductive, we must conjoin the assertion that x and y are in-
tegers. A completely rigorous exposition might be inappropriate for undergradu-
ates. However, their professors should understand how to reason rigorously about
algorithms.

A simple formal basis for mathematics, developed about a century ago and
commonly accepted by mathematicians today, is first-order logic and (untyped)
set theory. To my knowledge, this is an adequate formalization of the mathematics
used by scientists and engineers. (It has been found inadequate for formalizing the
long, complicated proofs mathematicians can write.) Many computer scientists
feel that types are necessary for rigor. Besides adding unnecessary complexity,
types can introduce problems for mathematical reasoning that become evident
only when one tries to provide a formal semantics for the language being used—
something textbook writers rarely do.

The ideas put forth here are embodied in the TLA+ specification language [8]
mentioned in the introduction. TLA+ is a formal language with tools that include
a model checker and a proof checker. It was designed for describing concurrent
algorithms, including high-level designs of distributed systems. Any attempt to
formalize mathematics in a practical language requires choices of notation and
underlying formalism that will not please everyone. Moreover, languages and
tools that are better than TLA+ for other application domains should be possible.
But TLA+ demonstrates that the approach described here is useful in engineering
practice [12].

Today, programming is generally equated with coding. It’s hard to convince
students who want to write code that they should learn to think mathematically,
above the code level, about what they’re doing. Perhaps the following observation
will give them pause. It’s quite likely that during their lifetime, machine learning
will completely change the nature of programming. The programming languages
they are now using will seem as quaint as Cobol, and the coding skills they are
learning will be of little use. But mathematics will remain the queen of science,
and the ability to think mathematically will always be useful.

6Tools for checking an algorithm may have to execute it, but the execution need not be as
efficient as that of a program implementing the algorithm.
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