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Abstract

Problems of pattern formation have been extensively studied in distributed
computing. One of this problems is the gathering problem: agents must
gather at a same position in a distributed manner. When gathering is not
possible, a close problem is the convergence problem.

In this article, we investigate the two following questions: (1) Can pro-
cesses gather when each process cannot see more that one other process at
the same time? (2) Can a gathering behavior be learned by processes?

Regarding the first point, we introduce a new model with an extremely
restricted visibility: each process can only see one other process (its clos-
est neighbor). Our goal is to see if (and to what extent) the gathering and
convergence problems can be solved in this setting. We first show that, sur-
prisingly, the problem can be solved for a small number of processes (at
most 5), but not beyond. This is due to indeterminacy in the case where
there are several “closest neighbors” for a same process. By removing this
indeterminacy with an additional hypothesis (choosing the closest neighbor
according to an order on the positions of processes), we then show that the
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problem can be solved for any number of processes. We also show that up
to one crash failure can be tolerated for the convergence problem.

Regarding the second point, we present the first experimental evidence
that a gathering behavior can be learned without explicit communication
in a partially observable environment. The learned behavior has the same
properties as a self-stabilizing distributed algorithm, as processes can gather
from any initial state (and thus tolerate any transient failure). Besides, we
show that it is possible to scale and then tolerate the brutal loss of up to 90%
of agents without significant impact on the behavior.

1 Introduction
An interesting natural phenomenon is the ability of swarms of simple individuals
to form complex and very regular patterns: swarms of fishes [78], birds [32], ants
[37]. . . They do so in a totally distributed manner, without any centralized or irre-
placeable leader. Such behaviors are a great source of inspiration for distributed
computing.

Problems of pattern formation have been extensively studied by the distributed
computing community [72, 74, 11, 2]. In order to prove mathematical results, the
model is of course simplified: the individuals (called agents, robots or processes)
are usually geometric points in a Euclidean space, operating in “look – compute –
move” cycles. A famous example is the circle formation algorithm by Suzuki and
Yamashita [74]. Another family of papers considers robots moving on a graph
(eg. [34, 39, 54]).

In particular, a pattern formation problem which has been extensively studied
is the gathering problem [4, 24, 26, 40, 57]: processes must gather at a same point
in a finite time. When gathering is impossible, a close problem is the convergence
problem [28, 7]: processes must get always closer to a same point.

This apparently simple problem can become surprisingly complex, depending
on the model and hypotheses. We give a few examples below (the list, of course,
in not exhaustive).

• Asynchronous system. A first idea is to relax the synchronicity hypothesis.
In [66, 23, 25, 29] for instance, the cycles are executed asynchronously –
e.g., the “look” operation of a robot can happen during the “move” opera-
tion of another robot. [53] studies the feasibility of asynchronous gathering
on a ring topology, depending on the level of symmetry of the initial config-
uration. [41] showed that gathering was possible in the asynchronous model
when robots have the same common orientation.

• Fault tolerance. Another idea is to make the system fault tolerant. The
faults can be transient [6, 35] or permanent [5] – e.g., when a robot stops



moving forever. [5] and [33] show several impossibility results in the case of
Byzantines failures – i.e., a robot exhibiting an arbitrary malicious behavior.
[15] proves the necessary and sufficient conditions for convergence in a 1D
space in the presence of Byzantine robots.

• Limited visibility. One can assume that robots only have a limited visi-
bility range [41, 8]. The usual hypothesis is that the robots can only see
other robots within a bounded radius. Another possible limit to visibility
are opaque robots [13, 3]: if a robot C is between two robots A and B, A
cannot see B. [14] considers a setting with both constraints simultaneously
(opacity and bounded visibility radius).

• Limited multiplicity detection. When several robots are allowed to oc-
cupy the same position, the robots may (or may not) know the multiplicity
of a given position, that is: the number of robots at this position. When total
multiplicity detection is available, a gathering strategy is, for each robot,
to move to the position with the highest multiplicity. A weaker multiplic-
ity detection hypothesis is that robots can only know if there are “one” or
“more than one” robots at a given position (global multiplicity detection)
[52, 53]. In [49, 50], this capacity is restricted to the current position (local
multiplicity detection). [31] studies gathering on a grid without multiplicity
detection.

• Fat robots. It is often assumed that robots are geometrical points, without
a volume. Some paper consider the model of “fat robots”, where robots
actually do have a volume. [3] considers the problem of gathering 4 robots
modeled as discs. [30] generalizes this result to n robots. [14] considers the
problem of gathering fat robots with a limited visibility.

In this article, we explore two new settings for the gathering problem. Basi-
cally, we ask ourselves the two following questions:

1. Can processes gather when each process cannot see more that one other
process at the same time? (In the following, we call this setting “extremely
restricted visibility”.)

2. Can a gathering behavior be learned by processes?

Gathering with extremely restricted visibility. Consider the following assump-
tion: each process can only see its closest neighbor (i.e., the closest other process),
and ignores the total number of processes. To our knowledge, no paper has yet
considered such a minimalist setting. We study to what extent the gathering and



convergence problems can be solved in this setting. We assume a synchronous
scheduler and memoryless processes that cannot communicate with messages.

There is an indeterminacy in the case where there are several “closest neigh-
bors” (i.e., two or more processes at the same distance of a given process). We
first assume that, in this situation, the closest neighbor is arbitrarily chosen by an
external adversary (worst-case scenario).

In this scenario, we show that, surprisingly, the problems can only be solved
for a small number of processes. More precisely, if n is the number of processes
and d is the number of dimensions of the Euclidean space, then the gathering
(resp. convergence) problem can be solved if and only if d = 1 or n ≤ 2 (resp.
d = 1 or n ≤ 5). Indeed, for larger values of n, there exists initial configurations
from which gathering or convergence is impossible, due to symmetry. The proof
is constructive: for the small values of n, we provide an algorithm solving the
problems. The proof is non-trivial for n = 4 and n = 5, as several families of
cases need to be considered.

Therefore, to solve the problems for larger values of n, one additional hypoth-
esis must necessarily be added. We remove the aforementioned indeterminacy by
making the choice of the closest neighbor (when there is more than one) deter-
ministic instead of arbitrary (according to an order on the positions of processes).
Then, we show that the gathering problem is always solved in at most n − 1 steps
by a simple “Move to the Middle” (MM) algorithm.

We finally consider the case of crash failures, where at most f processes lose
the ability to move. We show that the gathering (resp. convergence) problem can
only be solved when f = 0 (resp. f ≤ 1). When the convergence problem can be
solved, the MM algorithm solves it.

The technical details are presented in Section 2. Beyond this first work, we
believe that this minimalist model can be the ground for many other interesting
results.

Learning to gather. In previous works, the gathering behavior was obtained by
giving an explicit algorithm to each (correct) agent. An alternative approach is
machine learning [71], that is: automatically extracting a model from a dataset,
or from its interactions with the environment. More particularly, Reinforcement
learning [77, 73] is the specific machine learning paradigm that enables to ob-
tain a desired behavior with the simplest feedback from the environment. It is
particularly useful in network related problems [67, 12, 47]. In short, reinforce-
ment learning consists, for the program, in receiving rewards and penalties from
the environment, and learning which behavior leads to rewards and which behav-
ior leads to penalties. To our knowledge (see the state of the art in Section 3),
the question whether the agents can learn to gather with only simple rewards and



penalties from the environment (and with no other form of communication than
“seeing each other”) remains open.

We present the first experimental evidence that the answer to this question is
affirmative: agents can indeed learn a gathering behavior. We show that agents
can learn to gather on a one-dimensional ring. The agents are rewarded for being
in a group and penalized for being isolated.

A technical difficulty lies in the “combinatorial explosion” of the number of
states. To overcome this difficulty, the agents approximate the environment by
grouping close positions into clusters: each agent only perceives an approximation
of the distribution of other agents in each cluster. This enables to keep the learning
space constant (i.e., independent of the number of agents and the size of the ring).
We show that, surprisingly, the agents manage to gather almost perfectly despite
this very rough approximation.

We then consider the problem of increasing the number of agents. A natural
belief would be that the agents have to “re-learn” to gather in this case. Inter-
estingly, we show that the learned behavior can directly apply to a much larger
number of agents – namely, if agents have learned to gather in groups of 10, we
show that they immediately know how to gather in groups of up to 100. Aside
from saving learning time, the interest of this approach is that such a group of
100 agents is inherently and deeply robust (fault-tolerant), because it can toler-
ate the loss of up to 90 agents1. We also compare the learned behavior with a
hardcoded algorithm that moves towards the barycenter of the agents. We thus
show that, even with a relatively simple learning scheme, we can reach the same
performances as this hardcoded behavior.

The technical details are presented in Section 3.

2 Gathering with extremely restricted visibility

In Section 2.1, we define the model and the problems. In Section 2.2, we charac-
terize the class of algorithms allowed by our model, and define a simple algorithm
to prove the positive results. In Section 2.3, we prove the aforementioned lower
bounds. In Section 2.4, we remove indeterminacy and show that the gathering
problem can be solved for any n. In Section 2.5, we consider the case of crash
failures.

1We do not claim that training a group of 100 agents makes it robust, but that we can easily
build a robust group of 100 agents after training a group of 10 agents (which, by the way, is less
costly).



2.1 Model and problems

Model. We consider a Euclidean space S of dimension d (d ≥ 1). The position
of each point of S is described by d coordinates (x1, x2, . . . , xd) in a Cartesian
system. For two points A and B of coordinates (a1, . . . , ad) and (b1, . . . , bd), let

d(A, B) =

√
Σi=d

i=1(ai − bi)2 be the distance between A and B.
Let P be a set of n processes. ∀p ∈ P, let Mp be the position of p in S . Let

Ω be the set of positions occupied by the processes of P. As several processes
can share the same position, 1 ≤ |Ω| ≤ |P|. The time is divided in discrete steps
t ∈ {0, 1, 2, 3, . . . }.

If |Ω| = 1, the processes are gathered (they all have the same position). If
|Ω| ≥ 2, ∀p ∈ P, let D(p) = minK∈Ω−{Mp} d(Mp,K), and let N(p) be the set of
processes q such that d(Mp,Mq) = D(p). At a given time t, the closest neighbor
of a process p is a process of Np arbitrarily chosen by an external adversary. We
denote it by C(p).

We consider a synchronous execution model. At a given time t, a process p
can only see Mp and MC(p) (without global orientation), and use these two points
to compute a new position K. Then, the position of p at time t + 1 is K.

The processes are oblivious (they have no memory), mute (they cannot com-
municate) and anonymous (they cannot distinguish each other with identifiers).
Note that this model does not assume multiplicity detection (the ability to count
the processes at a same position). The processes do not know n. At t = 0, the n
processes can have any arbitrary positions.

Problems. For a given point G ∈ S and a given constant ε, we say that the
processes are (G, ε)-gathered if, ∀M ∈ Ω, d(G,M) ≤ ε.

An algorithm solves the convergence problem if, for any initial configuration,
there exists a point G ∈ S such that, ∀ε > 0, there exists a time T such that the
processes are (G, ε)-gathered ∀t ≥ T .

An algorithm solves the gathering problem if, for any initial configuration,
there exists a point G and a time T such that the processes are (G, 0)-gathered
∀t ≥ T .

2.2 Algorithm

In this section, we describe all possible algorithms that our model allows. Doing
so enables us to show lower bounds further – that is, showing that no algorithm
can solve some problems in our model. This is not to confuse with the MM
algorithm (a particular case, defined below), which is only used to prove positive
results.



Here, an algorithm consists in determining, for any process p, the position of
p at the next step, as a function of Mp and MC(p).

First, let us notice that, if the processes are gathered (|Ω| = 1), the processes
have no interest in moving anymore. This corresponds to the case where each
process cannot see any “closest neighbor”. Thus, we assume that any algorithm is
such that, when a process p cannot see any closest neighbor, p does not move.

Now, consider the case where the processes are not gathered (|Ω| ≥ 2). Let p
be the current process, let D = D(p), and let ~x be the unit vector (||~x|| = 1) directed
from Mp to MC(p). There are 2 possible cases.

Case 1: d = 1. The next position of p is Mp + fx(D)~x, where fx is an arbitrary
function.

Case 2: d ≥ 2. Let ∆ be the axis defined by Mp and MC(p). If d ≥ 2, as there is
no global orientation of processes (Mp can only position itself relatively to MC(p)),
the next position of p can only be determined by (1) its position on axis ∆ and
(2) its distance to ∆. The difference here is that, for two given parameters (1)
and (2), there are several possible positions (2 positions for d = 2, an infinity of
positions for d ≥ 3). Thus, we assume that the next position (among these possible
positions) is arbitrarily chosen by an external adversary.

More formally, the next position of p is Mp + fx(D)~x + fy(D)~y, where fx and fy

are arbitrary functions, and where ~y is a vector orthogonal to ~x which is arbitrarily
chosen by an external adversary.

Move to the Middle (MM) algorithm. We finally define one particular algo-
rithm to show some upper bounds. The Move to the Middle (MM) algorithm con-
sists, for each process p and at each step, in moving to the middle of the segment
defined by Mp and MC(p).

More formally, if d = 1, the MM algorithm is defined by fx(D) = D/2. If
d ≥ 2, the MM algorithm is defined by fx(D) = D/2 and fy(D) = 0.

2.3 Lower bounds
In this section, we show the two following results.

• The gathering problem can be solved if and only if d = 1 or n ≤ 2. When it
can be solved, the MM algorithm solves it (Theorem 1).

• The convergence problem can be solved if and only if d = 1 or n ≤ 5. When
it can be solved, the MM algorithm solves it (Theorem 2).



2.3.1 Gathering problem

Let us prove Theorem 1.

Lemma 1. If d = 1, the MM algorithm solves the gathering problem.

Proof. Let us show that, if |Ω| ≥ 2, then |Ω| decreases at the next step.
As d = 1, let x(K) be the coordinate of point K. Let (K1,K2, . . . ,Km) be the

points of Ω ranked such that x(K1) < x(K2) < · · · < x(Km). ∀i ∈ {1, . . . ,m}, let
xi = x(Ki). Then, according to the MM algorithm, the possible positions at the
next step are: (x1 + x2)/2, (x2 + x3)/2, . . . , (xm−1 + xm)/2 (at most m− 1 positions).
Thus, |Ω| decreases at the next step. Therefore, after at most n − 1 steps, we have
|Ω| = 1, and the gathering problem is solved. �

Lemma 2. If d ≥ 2 and n ≥ 3, the gathering problem is impossible to solve.

Proof. First, consider the case d = 2. Consider an initial configuration where Ω

contains three distinct points K1, K2 and K3 such that d(K1,K2) = d(K2,K3) =

d(K3,K1) = D.
Let G be the gravity center of the triangle K1K2K3. Let s(1) = 2, s(2) = 3 and

s(3) = 1. ∀i ∈ {1, 2, 3}, let Ai and Bi be the two half-planes delimited by the axis
(KiKs(i)), such that G belongs to Bi. Let ~vi be the unit vector orthogonal to (KiKs(i))
such that the point Ki + ~vi belongs to Ai. Let ~yi = ~vi if fy(D) ≥ 0, and ~yi = −~vi

otherwise.
Let p be a process, and let i be such that Mp = Ki. The external adversary can

choose a closest neighbor C(p) and a vector ~y such that MC(p) = Ks(i) and ~y = ~yi.
Thus, at the next step, it is always possible that Ω contains three distinct points

also forming an equilateral triangle. The choice of vectors~y prevents the particular
case where all processes are gathered in point G. We can repeat this reasoning
endlessly. Thus, the gathering problem cannot be solved if d = 2.

Now, consider the case d > 2. The external adversary can choose the ~y vectors
such that the points of Ω always remain in the same plane, and their behavior is
the same as for d = 2. Thus, the gathering problem cannot be solved if d > 2. �

Theorem 1. The gathering problem can be solved if and only if d = 1 or n ≤ 2.
When it can be solved, the MM algorithm solves it.

Proof. If d = 1, according to Lemma 1, the MM algorithm solves the gathering
problem. If n = 1, the gathering problem is already solved by definition. If n = 2,
the MM algorithm solves the gathering problem in at most one step. Otherwise,
if d ≥ 2 and n ≥ 3, according to Lemma 2, the gathering problem cannot be
solved. �



2.3.2 Convergence problem

Let us prove Theorem 2.
We first introduce some definitions. For a given set of points X ⊆ S , let

Dmax(X) = max{A,B}⊆X d(A, B). Let Ω(t) be the set Ω at time t. Let dmax(t) =

max{A,B}⊆Ω(t) d(A, B) and dmin(t) = min{A,B}⊆Ω(t) d(A, B). Let m(A, B) be the middle
of segment [AB]. Let α(K) =

√
1 − 1/(4K2).

Let R(t) = arg minG∈S maxM∈Ω(t) d(G,M) (the radius of the smallest enclosing
ball of all processes’ positions). Let Xi(t) be the smallest ith coordinate of a point
of Ω(t). We say that a proposition P(t) is true infinitely often if, for any time t,
there exists a time t′ ≥ t such that P(t) is true.

Lemma 3. If there exists a time t such that |Ω(t)| ≤ 3, the MM algorithm solves
the convergence problem.

Proof. If |Ω(t)| = 1, the processes are and remain gathered. If |Ω(t)| = 2, then
|Ω(t + 1)| = 1.

If |Ω(t)| = 3, consider the following proposition P: there exists t′ > t such that
|Ω(t′)| ≤ 2. If P is true, the gathering (and thus, convergence) problem is solved.
Now, consider the case where P is false.

Let Ω(t) = {A, B,C}. As |Ω(t + 1)| = 3, Ω(t + 1) = {m(A, B),m(B,C),m(C, A)}.
The center of gravity G of the triangle formed by the three points of Ω always
remains the same, and dmax(t) is divided by two at each step. Thus, ∀ε > 0, there
exists a time T such that the processes are (G, ε)-gathered ∀t ≥ T . �

Lemma 4. Let K ≥ 1. If R(t) ≤ Kdmin(t), then R(t + 1) ≤ α(K)R(t).

Proof. If the processes move according to the MM algorithm, then Ω(t + 1) ⊆⋃
{A,B}⊆Ω(t) {m(A, B)}. Let G be such that, ∀M ∈ Ω(t), d(G,M) ≤ R(t). Let A and

B be two points of S such that d(G, A) = d(G, B) = R(t) and d(A, B) = dmin(t)
(two such points A and B exist, as dmin(t) ≤ 2R(t)). Let C = m(A, B). Then,
∀M ∈ Ω(t + 1), d(G,M) ≤ d(G,C). Thus, R(t + 1) ≤ d(G,C).

Let x = d(G,C), y = dmin(t)/2 and z = R(t). Then, z2 = x2 + y2 and x/z =√
1 − (y/z)2. As R(t) ≤ Kdmin(t), y/z ≥ 1/(2K) and x/z ≤

√
1 − 1/(4K2) = α(K).

Thus, R(t + 1) ≤ d(G,C) ≤ α(K)R(t). �

Lemma 5. Let A, B, C, D and E be five points (some of them may be identi-
cal). Let x = d(A,D)/100. Assume d(A, B) ≤ x, d(A,C) ≤ x, d(A, E) ≤ 100x
and d(D, E) ≥ 40x. Let S = {A, B,C,D, E} and S ′ =

⋃
{A,B}⊆S {m(A, B)}. Then,

Dmax(S ′) ≤ 0.99Dmax(S ).

Proof. As d(A,D) = 100x, Dmax(S ) ≥ 100x.
Let M1 = m(A,D), M2 = m(A, E) and M3 = m(D, E). We have d(A,M1) =

50x and d(A,M2) ≤ 50x. The maximal value of y = d(A,M3) is reached when



d(A,D) = d(A, E) = 100x and d(D, E) = 40x. In this case, with the Pythagorean
theorem, we have (100x)2 = y2 + (20x)2, and thus y ≤ 98x.

Thus, maxi∈{1,2,3} d(A,Mi) ≤ 98x. Now, suppose that Dmax(S ′) > 99x. Let
M4 = m(A, B) and M5 = m(A,C). This would imply that there exists i ∈ {1, 2, 3}
such that either d(Mi,M4) > 99x or d(Mi,M5) > 99x, and thus, that either
d(A, B) > x or d(A,C) > x, which is not the case. Thus, Dmax(S ′) ≤ 99x ≤
0.99Dmax(S ). �

Lemma 6. Let t be a given time. If n = 5 and |Ω(t)| = 5, then one of the following
propositions is true:
(1) |Ω(t + 1)| ≤ 4
(2) R(t + 1) ≤ α(1000)R(t)
(3) dmax(t + 1) ≤ 0.99dmax(t)

Proof. Suppose that (1) and (2) are false. According to Lemma 4, (2) being false
implies that R(t) > 1000dmin(t). Let A0 and B0 be two points of Ω(t) such that
d(A0, B0) = dmin(t). As |Ω(t + 1)| = 5, it implies that the processes at A0 and B0

did not both move to m(A0, B0). Therefore, there is a point C of Ω(t) such that
d(A0,C) = dmin(t) or d(B0,C) = dmin(t). If d(A0,C) = dmin(t), let A = A0 and
B = B0. Otherwise, let A = B0 and B = A0.

As R(t) > 1000dmin(t), there exists a point D0 of Ω(t) such that d(A,D0) ≥
100dmin(t). Let E0 be the fifth point of Ω(t). If d(A,D0) ≥ d(A0, E0), let D = D0

and E = E0. Otherwise, let D = E0 and E = D0.
Finally, let x = d(A,D)/100. Thus, we have d(A, B) ≤ x, d(A,C) ≤ x and

d(A, E) ≤ 100x. If d(D, E) < 40x, then the processes at positions D and E
both move to m(D, E), and |Ω(t + 1)| = 4: contradiction. Thus, d(D, E) ≥ 40x.
Let S = Ω(t), and let S ′ =

⋃
{A,B}⊆S {m(A, B)}. Then, according to Lemma 5,

Dmax(S ′) ≤ 0.99Dmax(S ).
As the processes move according to the MM algorithm, Ω(t + 1) ⊆ S ′, and

dmax(t + 1) ≤ Dmax(S ′) ≤ 0.99Dmax(S ) = 0.99dmax(t). Thus, (3) is true.
Therefore, either (1) or (2) are true, or (3) is true. �

Lemma 7. Let t be a given time. If |Ω(t)| = 4, then one of the following proposi-
tions is true:
(1) |Ω(t + 1)| ≤ 3
(2) R(t + 1) ≤ α(1000)R(t)
(3) dmax(t + 1) ≤ 0.99dmax(t)

Proof. Suppose that (1) and (2) are false. According to Lemma 4, (2) being false
implies that R(t) > 1000dmin(t). Let A and B be two points of Ω(t) such that
d(A, B) = dmin(t).



As R(t) > 1000dmin(t), there exists a point D0 of Ω(t) such that d(A,D0) ≥
100dmin(t). Let E0 be the fourth point of Ω(t). If d(A,D0) ≥ d(A0, E0), let D = D0

and E = E0. Otherwise, let D = E0 and E = D0.
Let C = A and x = d(A,D)/100. Thus, we have d(A, B) ≤ x, d(A,C) ≤ x and

d(A, E) ≤ 100x. If d(D, E) < 40x, then the processes at D and E (resp. A and B)
both move to m(D, E) (resp. m(A, B)), and |Ω(t + 1)| = 2: contradiction. Thus,
d(D, E) ≥ 40x.

Let S = Ω(t), and let S ′ =
⋃
{A,B}⊆S {m(A, B)}. Then, according to Lemma 5,

Dmax(S ′) ≤ 0.99Dmax(S ).
As the processes move according to the MM algorithm, |Ω(t + 1)| ⊆ S ′, and

dmax(t + 1) ≤ Dmax(S ′) ≤ 0.99Dmax(S ) = 0.99dmax(t). Thus, (3) is true.
Therefore, either (1) or (2) are true, or (3) is true. �

Lemma 8. At any time t, R(t + 1) ≤ R(t).

Proof. Suppose the opposite: R(t + 1) > R(t). Let G be a point such that, ∀M ∈
Ω(t), d(G,M) ≤ R(t). If, ∀M ∈ Ω(t + 1), d(G,M) ≤ R(t), then we do not have
R(t+1) > R(t). Thus, there exists a point A of Ω(t+1) such that d(G, A) > R(t). Let
B be the previous position of processes at position A. As the processes at position
B moved to A, according to the MM algorithm, there exists a point C of Ω(t) such
that A = m(B,C). As d(G, B) ≤ R(t) and d(G, A) > R(t), we have d(G,C) > R(t).
Thus, there exists a point C of Ω(t) such that d(G,C) > R(t): contradiction. �

Lemma 9. At any time t, dmax(t + 1) ≤ dmax(t).

Proof. Suppose the opposite: dmax(t + 1) > dmax(t). Let A and B be two points
of Ω(t + 1) such that d(A, B) = dmax(t + 1). According to the MM algorithm,
there exists four points A1, A2, B1 and B2 of Ω(t) such that A = m(A1, A2) and
B = m(B1, B2).

Let L be the line containing A and B. Let A′1 (resp. A′2, B′1 and B′2) be the
projection of A1 (resp. A2, B1 and B2) on L. Then, there exists i ∈ {1, 2} and
j ∈ {1, 2} such that d(A′i , B

′
j) ≥ d(A, B). Thus, d(Ai, B j) ≥ d(A, B) = dmax(t):

contradiction. �

Lemma 10. Let n ≤ 5. Let P1(t) (resp. P2(t)) be the following proposition:
R(t + 1) ≤ α(1000)R(t) (resp. dmax(t + 1) ≤ 0.99dmax(t)). Let P(t) = P1(t) ∨ P2(t).
If, for any time t, |Ω(t)| ≥ 4, then P(t) is true infinitely often.

Proof. Let P∗ be the following proposition: “|Ω(t)| = 4” is true infinitely often.
If P∗ is false, there exists a time t′ such that ∀t ≥ t′, |Ω(t)| = 5. Thus, the

result follows, according to Lemma 6. If P∗ is true, there exists an infinite set
T = {t1, t2, t3 . . . } such that ∀t ∈ T , |Ω(t)| = 4. Then, according to Lemma 7,
P(t + 1) is true ∀t ∈ T . Thus, the result follows. �



Lemma 11. Let n ≤ 5. Suppose that, for any time t, |Ω(t)| ≥ 4. Then, for any time
t, there exists a time t′ > t such that R(t′) ≤ α(1000)R(t).

Proof. Suppose the opposite: there exists a time t0 such that, ∀t > t0, R(t) >
α(1000)R(t0).

Consider the propositions P1(t) and P2(t) of Lemma 10. Then, ∀t ≥ t0, P1(t)
is false. Thus, according to Lemma 10, it implies that P2(t) is true infinitely often.

Let t′ > t0 be such that, between time t0 and time t′, P2(t) is true at least 200
times. According to Lemma 9, for any time t, we have dmax(t + 1) ≤ dmax(t).
Thus, dmax(t′) ≤ 0.99200dmax(t0) ≤ dmax(t0)/4. For any time t, dmax(t) ≥ R(t) and
dmax(t) ≤ 2R(t). Thus, R(t′) ≤ R(t0)/2 ≤ α(1000)R(t0): contradiction. Thus, the
result follows. �

Lemma 12. Let G be a point such that, ∀M ∈ Ω(t), d(G,M) ≤ R(t). Then,
∀M ∈ Ω(t + 1), d(G,M) ≤ R(t).

Proof. Suppose the opposite: there exists a point K of Ω(t+1) such that d(G,K) >
R(t). According to the MM algorithm, there exists two points A and B of Ω(t) such
that K = m(A, B). Then, as d(G,K) > R(t), either d(G, A) > R(t) or d(G, B) > R(t):
contradiction. Thus, the result follows. �

Lemma 13. ∀i ∈ {1, . . . , d} and for any two instants t and t′ > t, |Xi(t′) − Xi(t)| ≤
2R(t).

Proof. For any point M, let xi(M) be the ith coordinate of M. Let G be a point such
as described in Lemma 12. According to Lemma 12, ∀M ∈ Ω(t + 1), |xi(M) −
xi(G)| ≤ R(t). By induction, ∀t′ > t and ∀M ∈ Ω(t′), |xi(M) − xi(G)| ≤ R(t). In
particular, |Xi(t) − xi(G)| ≤ R(t) and |Xi(t′) − xi(G)| ≤ R(t). Thus, |Xi(t′) − Xi(t)| ≤
2R(t). �

Lemma 14. Let (uk)k be a sequence, Let α ∈]0, 1[ and let N be an integer. If
∀k ≥ N, |uk+1 − uk| ≤ α

k, then (uk)k converges.

Proof. As α ∈]0, 1[, S α = 1 + α + α2 + α3 + . . . converges. Let ε > 0. Let
K = log(ε/S α)/ logα Then, αKS α = ε.

Let k ≥ max(K,N) and let m > k. |um − uk| ≤ Σi=m−1
i=k |ui+1 − ui| ≤ Σi=m−1

i=k αi ≤

αkS α ≤ α
KS α = ε

Thus, (uk)k is a Cauchy sequence and it converges. �

Lemma 15. Let α ∈]0, 1[. If, for any time t, there exists a time t′ > t such that
R(t′) ≤ αR(t), then the MM algorithm solves the convergence problem.

Proof. Let t0 be an arbitrary time. ∀k ≥ 0, we define tk+1 > tk as the first time
such that R(tk+1) ≤ αR(tk). By induction, ∀k ≥ 0, R(tk) ≤ αkR(t0).



Let i ∈ {1, . . . , d}. According to Lemma 13, ∀k ≥ 0, we have |Xi(tk+1)−Xi(tk)| ≤
2R(tk) ≤ 2αkR(t0). ∀k ≥ 0, let uk = Xi(tk)/(2R(t0)). Then, ∀k ≥ 0, |uk+1 − uk| ≤ α

k.
According to Lemma 14, the sequence (uk)k converges and so does (Xi(tk))k.

Let Li be the limit of (Xi(tk))k, and let G be the point of coordinates (L1, L2, . . . , Ld).
R(tk) decreases exponentially with k. Then, ∀ε > 0, there exists an integer k

such that R(tk) < ε/2. According to Lemma 8, ∀t > tk, R(t) ≥ R(tk). Therefore, the
processes are (G, ε)-gathered ∀t ≥ tk, and the convergence problem is solved. �

Lemma 16. If d = 1 or n ≤ 5, the MM algorithm solves the convergence problem.

Proof. If d = 1, according to Lemma 1, the MM algorithm solves the gathering
problem, and thus the convergence problem. Now, suppose that n ≤ 5.

Suppose that, for any time t, |Ω(t)| ≥ 4. Then, according to Lemma 11 and
Lemma 15, the MM algorithm solves the convergence problem. Otherwise, i.e., if
|Ω(t)| ≤ 3, then according to Lemma 3, the MM algorithm solves the convergence
problem. �

Lemma 17. If d ≥ 2 and n ≥ 6, the convergence problem is impossible to solve.

Proof. Assume the opposite: there exists an algorithm that always solves the con-
vergence problem for d ≥ 2 and n ≥ 6.

First, assume that Ω contains 3 points, as described in the proof of Lemma 2.
Consider the infinite execution described in the proof of Lemma 2. Let G be the
barycenter of these 3 points.

Let P be the following proposition: there exists a constant D such that the
distance between G and any of the 3 points of Ω is at most D.

If P is false, then by definition, the convergence problem cannot be solved.
We now consider the case where P is true.

If P is true, then consider the following case: Ω contains 6 points K1, K2, K3,
K4, K5 and K6. K1, K2 and K3 are arranged such as described in the proof of
Lemma 2, and so are K4, K5 and K6. Let G (resp G′) be the barycenter of the
triangle formed by K1, K2 and K3 (resp. K4, K5 and K6). Assume that d(G,G′) =

10D.
Now, assume that the points of the two triangles respectively follow the infinite

execution described in the proof of Lemma 2. Then, the distance between any two
of the 6 points is always at least 8D, and the convergence problem cannot be
solved. �

Theorem 2. The convergence problem can be solved if and only if d = 1 or n ≤ 5.
When it can be solved, the MM algorithm solves it.

Proof. The result follows from Lemma 16 and Lemma 17. �



2.4 Breaking symmetry
We showed that the problems were impossible to solve for n ≥ 6. This is due to
particular configurations where a process p has several “closest neighbors” (i.e.,
|Np| > 1). Until now, we assumed that the actual closest neighbor C(p) of p was
chosen in Np by an external adversary.

We now assume that, whenever |Np| > 1, C(p) is chosen deterministically,
according to an order on the positions of processes. Namely, we assume that
there exists an order “<” such that any set of distinct points can be ordered from
“smallest” to “largest” (A1 < A2 < A3 < · · · < Ak).

Let L(p) be the largest element of Np, that is: ∀q ∈ Np − {L(p)}, Mq < ML(p).
We now assume that, for any process p, C(p) = L(p). With this new hypothesis,
we show the following result: ∀n ≥ 2, the MM algorithm solves the gathering
problem in n − 1 steps, and no algorithm can solve the gathering problem in less
that n − 1 steps (Theorem 3).

Proof

Lemma 18. ∀n ≥ 2, no algorithm can solve the gathering problem in less than
n − 1 steps.

Proof. Suppose the opposite: there exists an algorithm X solving the gathering
problem in less than n − 1 steps.

First, consider a case with two processes, initially at two distinct positions.
Then, eventually, the two processes are gathered. Let t be the first time where the
two processes are gathered. Let A and B be their position at time t − 1, and let
D = d(A, B). By symmetry, the two processes should move to m(A, B) at time t.
Thus, with algorithm X, whenever a process p is such that d(Mp,MC(p)) = D, p
moves to m(Mp,MC(p)) at the next step.

Let K(x) be the point of coordinates (x, 0, 0, . . . , 0). Now consider n processes,
a set Ω(0) =

⋃
i∈{0,...,n−1} {K(iD)}, and an order such that, ∀x < y, K(x) < K(y).2

Let us prove the following property Pk by induction, ∀k ∈ {0, . . . , n − 1}:
Ω(k) =

⋃
i∈{0,...,n−k−1}{K((i + k/2)D)}.

• P0 is true, as Ω(0) =
⋃

i∈{0,...,n−1}{K(iD)}.

• Suppose that Pk is true for k ∈ {0, . . . , n − 2}. Then, according to algorithm
X, the processes at position K((n−k−1+k/2)D) moves to K((n−k−1+(k−
1)/2)D), and ∀i ∈ {0, . . . , n − k − 2}, the processes at position K((i + k/2)D)
move to K((i + (k + 1)/2)D). Thus, Pk+1 is true.

2As this is a lower bound proof, our goal here is to exhibit one particular situation where no al-
gorithm can solve the problem in less than n−1 steps. Thus, we choose a worst-case configuration
with a worst-case order.



Therefore, ∀t ∈ {0, . . . , n − 2}, |Ω(t)| ≥ 2, and the processes are not gathered:
contradiction. Thus, the result follows. �

We now assume that the processes move according to the MM algorithm.

Lemma 19. Let p and q be two processes. If there exists a time t where Mp = Mq,
then at any time t′ > t, Mp = Mq.

Proof. Consider the configuration at time t. According to our new hypothesis,
C(p) = C(q). Let K = m(Mp,MC(p)) = m(Mq,MC(q)). According to the MM
algorithm, p and q both move to K. Thus, at time t + 1, we still have Mp = Mq.
Thus, by induction, the result. �

Lemma 20. At any time t, if the processes are not gathered, there exists two
processes p and q such that Mp , Mq, p = C(q) and q = C(p).

Proof. Let δ = min{A,B}⊆Ω(t) d(A, B). Let Z be the set of processes p such that
d(Mp,MC(p)) = δ. Let Z′ =

⋃
p∈Z{p,C(p)}.

Let A be the point of Z′ such that, ∀M ∈ Z′ − {A}, M < A. Let p be a process
at position A.

Let q be the largest element of Np, that is: ∀q′ ∈ Np − {q}, Mq′ < Mq. By
definition, Mp , Mq. Thus, according to our new hypothesis, q = C(p).

Then, note that p is also the largest element of Nq: ∀p′ ∈ Nq − {p}, Mp′ < Mp.
Thus, p = C(q). Thus, the result follows. �

Lemma 21. At any time t, if the processes are not gathered, then |Ω(t + 1)| ≤
|Ω(t)| − 1.

Proof. Let p and q be the processes described in Lemma 20. Let K = m(Mp,Mq).
Then, according to Lemma 20, the processes at position Mp and Mq both move
to position K. Let X = Ω(t) − {Mp,Mq}. According to Lemma 19, the processes
occupying the positions of X cannot move to more than |X| new positions. Thus,
|Ω(t + 1)| is at most |Ω(t)| − 1. Thus, the result follows. �

Lemma 22. ∀n ≥ 2, the MM algorithm solves the gathering problem in at most
n − 1 steps.

Proof. According to Lemma 21, there exists a time t ≤ n − 1 such that |Ω(t)| =
1. Let A be the only point of Ω(t). Then, according to the MM algorithm, the
processes do not move from position A in the following steps. Thus, the result
follows. �

Theorem 3. ∀n ≥ 2, the MM algorithm solves the gathering problem in n − 1
steps, and no algorithm can solve the gathering problem in less that n − 1 steps.

Proof. The result follows from Lemma 18 and Lemma 22. �



2.5 Fault tolerance
We now consider the case of crash failures: some processes may lose the ability
to move, without the others knowing it. Let C ⊆ P be the set of crashed processes
(the other processes are called “correct”), and let S c =

⋃
p∈C{Mp} (i.e., the set of

positions occupied by crashed processes). Let f = |S c|.
We prove the two following results.

• The gathering problem can only be solved when f = 0 (Theorem 4).

• The convergence problem can be solved if and only if f ≤ 1. When f ≤ 1,
the MM algorithm solves it (Theorem 5).

Proof

We say that a process p is attracted if there exists a sequence of processes (p1, . . . ,
pm) such that p = p1, pm ∈ C, and ∀i ∈ {1, . . . ,m − 1}, C(pi) = pi+1. A
loop is a sequence of correct processes (p1, . . . , pm) such that C(pm) = p1 and,
∀i ∈ {1, . . . ,m − 1}, C(pi) = pi+1. A pair is a loop with 2 processes. Let
Ω′ =

⋃
p∈P−C{Mp} (i.e., the set of positions occupied by correct processes). Let

Ω′(t) be the state of Ω′ at time t.

Lemma 23. Consider an algorithm for which there exists w such that fx(w) = w
and fy(w) = 0. Then, this algorithm cannot solve the gathering nor the conver-
gence problem.

Proof. Assume the opposite. Consider a situation where Ω = {A, B}, with d(A, B)
= w. Then, according to the algorithm, the processes at position A and B switch
their positions endlessly, and neither converge nor gather: contradiction. Thus,
the result follows. �

Theorem 4. The gathering problem can only be solved when f = 0.

Proof. If f ≥ 2, by definition, the processes cannot be gathered. Now, suppose
f = 1.

Suppose the opposite of the claim: there exists an algorithm solving the gath-
ering problem when f = 1. Let P be the following proposition: there exists two
points A and B such that all crashed processes are in position A, and all correct
processes are in position B.

Consider an initial configuration where P is true. As the algorithm solves the
gathering problem, according to Lemma 23, the next position of correct processes
cannot be A. Thus, P is still true at the next time step, with a different point B.

Therefore, by induction, P is always true, and the processes are never gathered:
contradiction. Thus, the result follows. �



Lemma 24. If there exists a process p which is not attracted, then there exists a
loop.

Proof. Suppose the opposite: there is no loop. Let p1 = p. ∀i ∈ {1, . . . , n}, let
pi+1 = C(pi). We prove the following property Pi by induction, ∀i ∈ {1, . . . , n+1}:
(p1, . . . , pi) are i distinct processes.

• P1 is true.

• Suppose that Pi is true for some i ∈ {1, . . . , n}. As there is no loop, we
cannot have pi+1 ∈ {p1, . . . , pi}. Thus, Pi+1 is true.

Thus, Pn+1 is true, and there are n + 1 distinct processes: contradiction. Thus,
the result follows. �

Lemma 25. All loops are pairs.

Proof. Let (p1, . . . , pm) be a loop. Let δ = mini∈{1,...,m} d(Mpi ,MC(pi)). Let Z be
the set of processes of {p1, . . . , pm} such that d(Mpi ,MC(pi)) = δ. Let Z′ =

⋃
p∈Z

{p,C(p)}.
Let p be the process such that, ∀q ∈ Z′ such that Mp , Mq, Mp > Mq. Let

q = C(p). As C(q) is the closest neighbor of p, C(q) ∈ Z′. Then, according to the
definition of p, C(q) = p.

Therefore, (p1, . . . , pm) is either (p, q) or (q, p). Thus, the result follows. �

Lemma 26. If there exists a pair, then |Ω′(t + 1)| ≤ |Ω′(t) − 1|.

Proof. According to the algorithm, two processes at the same position at time
t are at the same position at time t + 1. Let (p, q) be a pair. Then, according
to the algorithm, the processes at positions Mp and Mq move to m(Mp,Mq), and
|Ω′(t + 1)| ≤ |Ω′(t) − 1|. �

Lemma 27. There exists a time tA such that, for any time t ≥ tA, all correct
processes are attracted.

Proof. Suppose the opposite. Then, after a finite number of time steps, at least
one correct process is not attracted. Thus, according to Lemma 24, there exists a
loop. According to Lemma 25, this loop is a pair. Then, according to Lemma 26,
|Ω′| decreases.

We can repeat this reasoning n + 1 times, and we then have |Ω′| < 0: contra-
diction. Thus, the result follows. �

Lemma 28. Suppose f = 1. Let p be an attracted process, and let L be the
distance between p and the crashed processes. Then, d(Mp,MC(p)) ≥ L/n.



Proof. Suppose the opposite: d(Mp,MC(p)) < L/n. As p is attracted, there exists
a sequence of processes (p1, . . . , pm) such that p = p1, pm ∈ C, and ∀i ∈ {1, . . . ,
m − 1}, C(pi) = pi+1.
∀i ∈ {1, . . . ,m − 2}, we have d(Mpi ,Mpi+1) ≥ d(Mpi+1 ,Mpi+2). Indeed, sup-

pose the opposite. Then, C(pi+1) = pi+2, d(Mpi+1 ,MC(pi+1)) > d(Mpi+1 ,Mpi), and
C(pi+1) is not a closest neighbor of pi+1: contradiction. Thus, d(Mpi ,Mpi+1) ≥
d(Mpi+1 ,Mpi+2).

Thus, ∀i ∈ {1, . . . ,m − 1}, d(pi, pi+1) < L/n. Therefore, d(p1, pm) ≤ (m −
1)L/n < L: contradiction. Thus, the result follows. �

Lemma 29. Let f = 1, and let X be the position of crashed processes. Let L =

maxp∈P d(X,Mp). Let L(t) be the value of L at time t. Suppose that all correct
processes are attracted. Then, for any time t, L(t + 1) ≤ k(n)L(t), where k(n) =√

1 − 1/(2n)2.

Proof. At time t + 1, let p be a process such that d(X,Mp) = L(t + 1). Let K be
the position of p at t + 1. Then, according to the algorithm, at time t, there exists
two processes q and r at position A and B such that K = m(A, B).

Let L′ = max(d(X, A), d(X, B)). Let q′ ∈ {q, r} be such that d(X,Mq′) = L′.
Then, according to Lemma 28, d(Mq′ ,MC(q′)) ≥ L′/n. Let r′ be the other process
of {q, r}. Then, the position of r maximizing d(X,K) is such that d(X,Mr′) = L′.

Therefore, according to the Pythagorean theorem, (L(t + 1))2 is at most L′2 −
(L′/(2n))2, and L(t + 1) ≤ k(n)L′ ≤ k(n)L(t). Thus, the result follows. �

Lemma 30. If f = 1, the MM algorithm solves the convergence problem.

Proof. According to Lemma 27, there exists a time tA after which all correct pro-
cesses are attracted. We now suppose that t ≥ tA. Let ε > 0. Let X be the position
of crashed processes, and let L = maxp∈P d(X,Mp). As k(n) =

√
1 − 1/(2n)2 < 1,

let M be such that k(n)ML < ε. Then, according to Lemma 29, at time tA + M, all
processes are at distance at most ε from X. Thus, the result follows. �

Theorem 5. The convergence problem can be solved if and only if f ≤ 1. When
f ≤ 1, the MM algorithm solves it.

Proof. When f ≥ 2, there exists at least two crashed processes that will stay at
the same position forever. Thus, the convergence problem cannot be solved.

When f ≤ 1, according to Lemma 30, the MM algorithm solves the conver-
gence problem. Thus, the result follows. �

2.6 Future works
This first work can be the basis for many extensions. For instance, we could
consider a more general scheduler (e.g. asynchronous). We could investigate how



resilient this model is to crash or Byzantine failures. We could also consider the
case of voluminous processes, that cannot be reduced to one geometrical point.

3 Learning to gather

In Section 3.1, we give a state of the art of reinforcement learning in multi-agent
systems w.r.t. the gathering problem. In Section 3.2, we present the Q-learning
technique (with eligibility trace), then a precise formulation of the gathering prob-
lem in a Q-learning framework. In particular, we describe which state and actions
are used to model the gathering problem in Q-learning. In Section 3.3, we explicit
the numerical parameters used to implement our model. For pedagogical reasons,
we first present results for a default setting; then, we show that the learned behav-
iors can be reused with more agents.

3.1 State of the art
Reinforcement learning [73, 46] consists in taking simple feedback from the envi-
ronment to guide learning. The general idea is to associate rewards and penalties
to past situations in order to learn how to act in future ones. The principle differs
from that of supervised learning [42, 46] by the nature of the feedback. In super-
vised learning, an agent is taught how to perform precisely on several examples.
In reinforcement learning, the agent only gets an appreciation feedback from the
environment. For instance, in dog training, dogs are rewarded when doing correct
actions and punished when behaving badly. The advantage here is the possibility
to have a feedback in situations where the correct behavior is unknown. Several
successful AI approaches use reinforcement learning, one spectacular example
being the performance of AlphaGo [70] defeating the world Go champion Lee
Sedol.

So far, reinforcement learning has mainly been used in situations with only
one learning agent (single-agent systems), with important results [44, 38, 43, 48,
60, 68].

Multi-agent systems involve numerous independent agents interacting with
each other. Many works on multi-agent reinforcement learning consider problems
where only 2 or 3 agents are involved [10, 16, 27, 59, 65, 76, 80]. Some deal with
competitive games (e.g. zero-sum games) [1], where agents are rewarded at the
expense of others. Other tackle collaborative problems, but the reward is global
and centralized [75]. The algorithm proposed in [21] achieves convergence, safety
and targeted optimality against memory-bounded adversaries in arbitrary repeated
games. [63] presents the first general framework for intelligent agents to learn to
teach in a multiagent environment.



The domain of evolutionary robotics [36] studies how the behavior of agents
can evolve through “natural selection” mechanisms, with [18] or without [56]
communication. In this paper, we focus on behaviors than can be learned “within
a lifetime”, through rewards and punishments.

In general, communication mechanisms are used to share information among
agents [17, 51, 55, 62, 67, 69, 81] in order to increase the learning speed. Still, in
some cases, communication between independent agents is difficult, impossible,
or at least very costly [79, 9]. In these situations, it might be useful to devise a
learning process that does not rely on communication.

Yet, so far, very few approaches considered a genuinely distributed setting
where each agent is rewarded individually, and where agents do not communicate.
In [61], the problem and the constraints are similar to our work, but the rewards
are given for taking an action instead of reaching a state. Consequently, the final
behavior is predetermined by the model itself. In [19], even if the constraints are
similar (cooperative task, no communication and individual rewards), the problem
tackled is fundamentally different: the task only requires the cooperation of agents
by groups of two (not of all agents simultaneously).

3.2 Model

3.2.1 Q-learning

As recalled in the previous section, the goal of reinforcement learning is to make
agents learn a behavior from reward-based feedback. In this paper, we work with
a widely used reinforcement learning technique called Q-learning [77, 73, 80, 51,
20, 38]. More specifically, we use Q-learning with eligibility trace [58, 73] as
explained in what follows.

Q-learning was initially devised for single agent problems. Here, we consider
a multi-agent system where each agent has it own learning process. We describe
in the following the learning model of one agent taken independently.

Let A be a set of actions, and let S be a set of states (representing all the
situations in which the agent can be). The sets A and S contain a finite number of
elements. In each state s, the agent may chose between different actions a ∈ A.
Each action a leads to a state s′, in which the agent receives either a positive
reward, a negative reward or no reward at all. The objective of Q-learning is to
compute the cumulative expected reward for visiting a given state. Intuitively,
this is materialized by the fact that learning, in Q-learning, is all about updating
the Q-value using the mismatch between the previous Q-value and the observed
reward.

Let π : S → A be the policy function of an agent – i.e., a function returning an
action to take in each state.



Let Xπ,s0
t be the state in which the agent is after t steps, starting from state s0

and following the policy π. In particular, Xπ,s
0 = s.

Let r : S → R be the reward function associating a reward to each state.
The cumulative expected reward over a period I = ~0,N� of state s is∑

t∈I

E(γtr(Xπ,s
t ))

where γ ∈ [0, 1] is a discount parameter modulating the importance of long term
rewards. The long term rewards become more and more important when γ is close
from 1.

When predicting the best transition from one state to another (by taking a given
action) is difficult or impossible, it is useful to compute a cumulative expected
reward of a couple (s, a).

Under the assumption that each couple (s, a) is visited an infinite number of
time, it is possible, following the law of large numbers, to estimate without bias
the expected cumulative reward by sampling [77], i.e by trying state-action cou-
ples and building an estimator of the expected reward. We denote this estimator
Q(s, a), and call it the Q-value of the state-action couple (s, a). The following
formula is the usual update rule to compute an estimator of the Q-value.

Qt+1(s, a) = (1 − η)Qt(s, a) + η(r(Xt + 1) + γmax
a′

(Qt(s, a′)))

if action a is taken in state s at step t.

Qt+1(s′, a′) = Qt(s′, a′)

otherwise.
Here, η is a parameter called the learning rate that modulates the importance

of new rewards over old knowledge. Qt is the estimate of the cumulative expected
reward after t samples.

A complementary approach to get better estimations of Q-values with fewer
samples is to use eligibility trace [58, 73]. The idea is to keep trace of older
couples (s, a) until a reward is given, and to propagate a discounted reward to the
couples (s, a) that led to the reward several steps later. Formally, for each state s,
a value (eligibility) et(s) is attributed. e is initialized at e0(s) = 0 for every state s
then updated as follows:

if st = s,
et+1(s) = γλ ∗ et(s) + 1

otherwise,
et+1(s) = γλ ∗ et(s).



Using the eligibility trace, Q-values are updated by the scaling of the update
rule described above with eligibility values. The factor γλ used in the update of
the eligibility acts as a discount in time: older visited states get less reward than
recent visited states.

In addition to update rules for learning, we need a policy for choosing actions.
An ε-greedy policy π is a stochastic policy such that: (1) with probability (1 − ε),
π(s) = a when (s, a) yields the highest expected cumulative reward from state
s, and (2) with probability ε, a random action is chosen in A. The parameter ε
is called the exploration rate and modulates the trade-off between exploration of
new and unknown states (to obtain new information) and exploitation of current
information (to sample valuable states more precisely and thus be rewarded).

3.2.2 Setting

We consider a ring topology. This is a simple topology for a bounded space that
avoids non-realistic borders effects (i.e no need to "manually" replace an agent in
the middle of the states-space if the agent reaches the border in the case of a square
for example). There are n positions {0, . . . , n − 1}. ∀k ∈ {0, . . . , n − 2}, positions k
and k+1 are adjacent, and positions n−1 and 0 are also adjacent. Each agent has a
given position on the ring. This space has only one dimension, but our results may
be extended to higher dimension spaces by applying the approach independently
on each dimension.

The time is divided into discrete steps 1, 2, 3, . . .. At the beginning of a given
step t, an agent is at a given position. The possible actions are: go left (i.e. increase
position), go right (i.e. decrease position) or do not move.

The current state of each agent is determined by the relative positions of other
agents. However, we cannot associate a state to each combination of position of
other agents, because of “combinatorial explosion”. Thus, in order to limit the
maximal number of states, each agent perceives an approximation of the positions
of other agents. Besides, a state must not depend on the number of agents, in order
to have a scalable model and to tolerate the loss of agents.

Thus, our state model is the following. The space is divided into groups of
close positions called sectors. Each agent does not perceive the exact number of
agents per sector, but the fraction of the total population in each sector. A state
is given by the knowledge of the fractions of the total population in each sector
with a precision of 10% (i.e. the possible values are multiples of 10%, rounded so
that the sum of the fractions equals 100%). The choice of 10% precision here is
an arbitrary value to reduce computational cost, this value can be optimized as an
hyper-parameter.

The delimitation of the sectors is not absolute but relative to the position of
each agent: each agent has its own sector delimitation centered around itself.



Figure 1: Default sector delimitation (on a ring of size 13). The Central sector
contains 3 positions centered around 0 (i.e., the position of the current agent).
Near sectors contain two positions each, adjacent to the Central sector. Same for
Far sectors and the Opposite sector.

This delimitation is set to 6 sectors (as for the precision value of 10% described
above, this choice can be left as an hyper-parameter, but optimizing it is out of the
scope of this work). The first sector is centered around the agent position (its size
corresponds to the size of the neighborhood where we expect the other agents to
gather). This sector is the Central sector. The agents in the central sector of a given
agent are called its neighbors. Two more sectors are adjacent to the central sector,
the Near Right and Near Left sectors. The Far left and Far Right are a second
layer after the near sectors. Finally, the Opposite sector is the sector diametrically
opposed to the Central one. The exact size of each sector is a parameter of the
problem, as well as the number of agents and the number of positions.

An example of sectors delimitation is given in Figure 1, for a ring of size 13.

3.2.3 Rewards

Each agent is rewarded if it has a large enough number of neighbors (i.e., more
than a certain fraction of the total population is in its central sector). Each agent
is penalized if it has not enough neighbors (i.e., less than a certain fraction of the
population is in its central sector).



3.2.4 Learning process

The learning phase is organized as follows:

• The initial positions of agents are random, following a uniform distribution.

• At each step, each agent decides where to go with a ε-greedy policy.

• When all the decisions are taken, all the agents move simultaneously.

• After moving, they consider their environment, get rewards and update their
Q-values with respect to these rewards.

• The learning phase is subdivided in cycles of several steps. At the end of
each cycle, the position of agents is reset to random positions. This ensure
that the environment is diverse enough to learn a robust behavior. After
position reset, the agents can move again for another cycle.

The duration of a cycle is set proportional to the size of the ring (e.g. 5 times
the size of the ring) in order to give enough time to the agents to gather: this
time depends on the distance they have to travel, and this distance depends on the
size of the ring. To update Q-values, Q-learning with eligibility traces is used.
Eligibility traces are reset at the end of each cycle, and each time, a reward is
given to an agent.

3.2.5 Problem

Intuitively, the goal is to make the agents learn a gathering behavior, that is: within
a reasonable time in a same cycle, the agents become (and remain) reasonably
close to each other. This criteria is voluntarily informal, and its satisfaction will
be evaluated with several metrics in the next section.

More precisely, the problem consists in computing, for each agent, a value
Q(s, a) for each couple state-action (s, a). This value indicates which action a
to take in state s in order to increase the likelihood of obtaining a reward. For
instance, the description given in subsection A states that, with probability 1 − ε,
action a is chosen if it maximizes Q(s, a) among all possible actions from state s.

Our objective is to verify experimentally that the Q-values learned in this fash-
ion lead to an efficient gathering of the agents, i.e, that reinforcement learning,
with rewards being given to actions that improve an agents’ neighbourhood situa-
tion, lead to efficient gathering behaviours at the level of the group.
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Figure 2: Time needed to form a group from random initial positions for 10 agents
on a ring of size 13. Each point is the mean over 5 cycles of the average time to
form a group (in the following, we simply say “average over X cycles”).

3.3 Results
We consider a ring of size 13, with a sector division such as described in Figure 1.
A group exists if at least one agent has more than 80% of the population as neigh-
bors. An agent is given a reward of value 100 if the fraction of neighbors is more
than 80% of the population, and a penalty of value −5 if it is 10% or less.

The exploration rate is ε = 0.1, the learning rate is η = 0.1 and the discount
factor is γ = 0.95. The duration of a cycle is 65 steps (around 5 times the size of
the ring), and the duration of the learning phase is 5000 cycles.

3.3.1 Results for 10 agents

We first consider a population of 10 agents. To assess the quality of the learned
behavior, we compute several metrics. We first consider the time needed to form
a group from random initial positions, and see how it evolves during the learn-
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Figure 3: Maximum and minimum number of neighbors, in percent of the total
population, during learning, for 10 agents on a ring of size 13. Maximum is black
squares and minimum is white triangles. The dashed line is the minimum number
of neighbors needed to be considered in the group: 80% of the total number of
agents. Each point is an average over 325 steps, including time before creation of
the first group.
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Figure 4: Evolution over time of the number of neighbors at each position of the
ring during a cycle. Larger dots represent a higher number of neighbors. Positions
where agents are considered to be in the group are in black, others in white.
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Figure 5: Time needed to form a group from random initial position for 10 agents
on a ring of size 13. Each point is an average over 75 cycles. Learning phase is
75 000 cycles long.
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Figure 6: Maximum and minimum number of neighbors, during learning, for 10
agents on a ring of size 13. Maximum is black squares and minimum is white
triangles. The dashed line is the minimum number of neighbors needed to be
considered in the group (i.e. 80% of the total number of agents). Each point is
an average over 75 cycles (4875 steps), including time before creation of the first
group. The learning phase is 75 000 cycles long.



ing phase. Then, to ensure that groups are not only formed but also maintained,
we observe the evolution of the number of neighbors among the population. To
evaluate the learning qualitatively, we look at the exact behavior of agents at the
beginning, middle and end of the learning phase. Finally, we study the impact of
a longer learning phase.

Time to form a group. Figure 2 shows the time that agents need to gather and
form the first group (i.e., at least one agent is rewarded), starting from random
initial positions. We observe that this time decreases during the learning phase
and stabilizes around 10 steps.

Number of neighbors. Figure 3 shows the minimal and maximal number of
neighbors over all agents. When the maximal number of neighbors is above 80%,
it means that a group exists. When the minimal number of neighbors is above
10%, it means that no agent is isolated; when it is above 80%, it means that all
agents are in the group. We observe that the agents learn, not only to gather, but
also to maintain the group and avoid being isolated. Indeed, the maximum number
of neighbors is higher than 80% of the total number of agents, and the minimum
is higher than 10%. We also observe that the minimum number of neighbors is
close to 80% at the end of the learning phase. It means that even the agents that
are not always in the group are often in it.

Note that these average values include the iterations starting from the begin-
ning of each cycle, where the agents are not yet gathered (i.e. around 10 iterations
at the end of the learning phase).

Qualitative evolution. Figure 4 contains three plots that show the qualitative
evolution of the learning for three cycles, at the beginning, middle and end of the
learning phase.

In the first figure (beginning of the learning phase), we observe that the agents
are quite uniformly distributed: the circles are white and small, indicating few
neighbors and no significant group formation.

In the second figure (middle of the learning phase), we observe that the agents
converge to a same position, forming a group in approximately 10 steps. The large
black circle indicate that at least 80% of the total number of agents are neighbors
of the position, i.e. that a group exists. We can see that this group is maintained
after its formation until the end of the cycle. We also observe that the group itself
is slowly moving during the cycle, while being maintained. We notice that there
are very few agents outside the group after its formation.

In the third figure (end of the learning phase), we observe that agents still
converge to form a group, but the group is formed earlier than before (around 7



steps). The group is still maintained and still moves during the cycle. We can
notice even less agents outside the group than before.

Longer learning phase. We finally study the impact of a longer learning phase:
75 000 cycles instead of 5000.

Figure 5 is the equivalent of Figure 2 for a longer learning phase. At the end
of the learning, the agents are gathering faster (around 5 steps) and are less often
outside of the group.

Figure 6 is the equivalent of Figure 3 for a longer learning phase. We observe
that the minimum number of neighbors goes above 80%, which means that all the
agents are in the group most of the time.

3.3.2 Scalability and comparison with a hardcoded algorithm

In the section, we explore the scalability and robustness properties of the afore-
mentioned learning scheme. We show that the agents that have learned Q-values
with default parameters in 75 000 cycles are able to gather with more agents with-
out any new learning: we can take several agents that have learned in groups of
10 until we obtain a group of 100.

In a second time, we compare this behavior with a hardcoded gathering algo-
rithm (i.e., where the behavior is written in advance and not learned).

• First, we compare the learned behavior to an algorithm that uses the exact
and absolute positions of all the agents (by opposition to relative positions
and approximations used during learning). With this algorithm, agents al-
ways move towards the barycenter [22, 64] of all the agents. As this al-
gorithm has an exact view on the environment, the performances are 50%
better.

• We then make a fairer and more meaningful comparison with an algorithm
that uses the same perceptions as the learning algorithm. With an equally
constrained perception of the environment, we get results that are similar
to the learned algorithm (the learned algorithm even slightly better in terms
of “time to form a group”). We thus show that, even with a relatively sim-
ple learning scheme, we can reach the same performances as a hardcoded
behavior.

Note that, since the agents have already learned a behavior, there is no more
“progression” visible on the plots.
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Figure 7: Time needed to form a group from random initial positions for 100
agents on a ring of size 13 with (hardcoded algorithm). Average is 5.4 steps,
median is 5.0 steps and standard deviation is 0.6.
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Figure 8: Maximum and minimum number of neighbors for 100 agents on a ring
of size 13 (hardcoded algorithm). Maximum is black squares and minimum is
white triangles. The dashed line is the minimum number of neighbors needed to
be considered in the group. Each point is an average over a cycle (65 steps). Av-
erage is 90.6%, median is 91.1% and standard deviation is 6.1% for the minimum
number of neighbors. Average is 96.3%, median is 96.3% and standard deviation
is 0.7% for the maximum number of neighbors.
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Figure 9: Time needed to form a group from random initial positions for 100
agents on a ring of size 13 (learned behavior). Average is 10.4 steps, median is
10.0 steps and standard deviation is 5.1.
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Figure 10: Time needed to form a group from random initial positions for 100
agents on a ring of size 13 (Q-hardcoded algorithm). Average is 12.1 steps, me-
dian is 11.0 steps and standard deviation is 4.9.
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Figure 11: Maximum and minimum number of neighbors for 100 agents on a ring
of size 13. Maximum is black squares and minimum is white triangles (learned
behavior). The dashed line is the minimum number of neighbors needed to be
considered in the group. Each point is an average over a cycle (65 steps). Average
is 40.4%, median is 16.3% and standard deviation is 31.0% for min neighbor. Av-
erage is 87.1%, median is 86.0% and standard deviation is 5.1% for max neighbor.
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Figure 12: Maximum and minimum number of neighbors for 100 agents on a ring
of size 13 (Q-hardcoded algorithm). Maximum is black squares and minimum is
white triangles. The dashed line is the minimum number of neighbors needed to
be considered in the group. Each point is an average over a cycle (65 steps). Av-
erage is 27.8%, median is 27.8% and standard deviation is 2.3% for the minimum
number of neighbor. Average is 79.9%, median is 80.0% and standard deviation
is 2.3% for the maximum number of neighbor.



Time to create a group for 100 agents. On Figure 9, we can see the time needed
to form a group for 100 agents on a ring of size 13. Compared to the case with 10
agents, the time needed to form a group including 80% of the population is higher
(around 10 steps in average). But the agents are still able to gather in a short time
(the worst case is no more than 50 steps) most of the time: 997 times over 1000.

Number of neighbors for 100 agents. On Figure 11, we observe that the max-
imum number of neighbors is higher than 80% most of the time, which means
that a group exists most of the time. We also observe that the minimum number
of neighbors is often low. This means that a few agents, even if not isolated, are
unable to join the main group.

Performances of the hardcoded algorithm. On Figure 73 and 8, we can ob-
serve that the hardcoded algorithm is better than the learned behavior. In average,
the agents gather in 5 steps with a standard deviation of 0.6. Moreover, the max-
imum and minimum number of neighbors are very high (average: resp. 96% and
91%). However, these good results are only possible because this algorithm uses
the exact and absolute positions of other agents.

Fairer comparison. To make a fairer comparison between hardcoded algorithm
an learned behavior, we try to impose to the hardcoded algorithm the same con-
straints that were imposed to the learning algorithm: relative position, sector ap-
proximation and action choice with Q-values. To do so, we compute Q-values
with the help of the hardcoded algorithm. Each agent decide how to act accord-
ing to the hardcoded algorithm, and Q-values are computed along the sequence of
actions determined by the hardcoded algorithm. It allows each agent to compute
Q-values for couples (s, a) of states and actions. We call this algorithm the Q-
hardcoded algorithm: the desired behavior is known in advance, but we imposes
the same perception constraints to the agents than the learned behavior.

In Figure 10, we observe that the time needed to form a group has the same
distribution as the learned behavior in Figure 9. The average time is even slightly
better for the learned behavior (10 steps) than for the Q-hardcoded algorithm (12
steps). However, the standard deviation is slightly higher for learned behavior
(5.1) than for the Q-hardcoded algorithm (4.9).

In Figure 10, we represent the distribution of the number of neighbors. Here
again, we observe that the distribution is better for the learned behavior (Fig-
ure 11) than for the Q-hardcoded algorithm (Figure 12): the average of the maxi-
mum number neighbors is better (87% versus 80%) as well as the average of the

3Note that the figures are intentionally numbered to keep figures 9 and 10 (resp. 11 and 12)
side by side, in order to have a clearer comparison between these figures.



minimum number of neighbors (40% versus 28%)4. However, the distribution of
the number of neighbors is more sparse for the learned behavior.

3.4 Future works
In order to extend this work, it might be interesting to investigate how this multi-
agent behavior emerges from the individual behavior of each agent, the difference
of behavior between agents, and to quantify the importance of diversity in the
behavior of agents.

Another direction to continue this work would be to devise a way for agents
to design or learn their own approximations of their environment. This could be
done through unsupervised learning [45], or with the help of the reward feedback
from the environment (or by a combination of both). This automatic design of the
perception approximation could allow to systematically find a good compromise
between the reduction of the learning space and the capacity to perceive meaning-
ful differences and learn complex tasks. Neural networks may be a good modular
framework to model these approximations functions.

A major challenge would be to find a way to reuse the behavior learned with
the old approximation, instead of re-learning the behavior from scratch whenever
a change occurs in the approximation. The relative dynamics of the two timescales
(one for the evolution of the approximation, and one for the evolution of the be-
havior) would also be of a particular importance.
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Abstract

Since its introduction by M. Herlihy in 1991, consensus number has be-

come a central notion to capture and understand the agreement and synchro-

nization power of objects in the presence of asynchrony and any number of

process crashes. This notion has now become fundamental in shared mem-

ory systems, when one is interested in the design of universal constructions

for high level objects defined by a sequential specification.

The aim of this survey is to be a guided tour in the wonderful land of

consensus numbers. In addition to more ancient results, it also presents

recent results related to the existence of an infinity of objects –of increasing

synchronization/agreement power– at each level of the consensus hierarchy.

Keywords: Agreement, Asynchronous read/write system, Atomic opera-

tion, Concurrent object, Consensus, Consensus hierarchy, Crash failure, De-

terministic object, Distributed computability, Progress condition, Sequential

specification, k-Set agreement, Universal construction, Wait-freedom.

1 Introduction

Concurrent objects and asynchronous crash-prone read/write systems A

concurrent object is an object that can be accessed (possibly simultaneously) by

several processes. From both practical and theoretical point of views, a funda-

mental problem of concurrent programming consists in implementing high level

concurrent objects, where “high level” means that the object provides the pro-

cesses with a higher abstraction level than the atomic hardware-provided oper-



ations. While this notion of “high abstraction level” is well-known and well-

mastered since a long time in the context of (sequential and parallel) failure-free

systems [7], it is far from being trivial in failure-prone systems where it is still an

important research domain.

This paper considers systems made up of n sequential asynchronous processes

which, at the hardware level, communicate through memory locations (memory

words also called registers) which can be accessed by atomic operations [32, 34],

including the basic read and write operations. Moreover, it is assumed that, in any

run, any number of processes may crash (a crash is an unexpected halting).

On progress conditions Deadlock-freedom and starvation-freedom are well-

known progress conditions in failure-free asynchronous systems. As their im-

plementation is based on lock mechanisms, they are not suited to asynchronous

crash-prone systems. This is due to the fact that it is impossible to distinguish a

crashed process from a slow process, and consequently a process that acquires a

lock and crashes before releasing it can entail the blocking of the entire system.

Hence, new progress conditions for concurrent objects suited to crash-prone

asynchronous systems have been proposed. The strongest progress condition,

which is the one considered in this paper1, is wait-freedom [22] (abbreviated WF

in the following). Let O be the object that is built. This progress condition states

that each invocation of an operation on O issued by a process that does not crash

terminates, whatever the behavior of the other processes, which can be arbitrarily

rapid, slow, or even crashed2.

Universal object in failure-free systems Read/write registers are universal in

sequential computing, which (according to Church-Turing thesis) means that ev-

erything that can be mechanically computed, can be computed from read/write

registers (those are actually the cells of the tape of a Turing machine [50]). They

are also universal in failure-free parallel systems. This comes from the fact that

concurrent processes can cooperate thanks to mutual exclusion [16], which can be

realized (in failure-free systems) on top of read/write registers [27, 40, 47].

Universal construction in the presence of asynchrony and process crashes

The notion of a universal construction, for asynchronous crash-prone shared mem-

ory systems was introduced by M. Herlihy [22]. This notion addresses the con-

struction of high level objects (a) defined from a sequential specification and (b)

1Other progress conditions, such as non-blocking [28] or obstruction-freedom [23] have been

proposed for failure-prone systems. They are not considered in this article. The interested reader

will consult appropriate textbooks, such as [27, 40, 47].
2This progress condition can be seen as an extension suited to failure-prone systems of the

starvation-freedom progress condition defined for failure-free systems.



whose operations are total, i.e., any object operation returns a result (as an exam-

ple, a push() operation on an empty stack returns the default value ⊥).

A WF-compliant universal construction is an algorithm that, given the sequen-

tial specification of an object O (or a sequential implementation of it), provides

a concurrent implementation of O satisfying the wait-freedom progress condi-

tion for all its operations, despite asynchrony and any number of process crashes

(Fig. 1).

Sequential specification

universal construction
WF-compliant WF-compliant implementation

of an object Z of object Z

Figure 1: WF-compliant universal construction

It has been shown in [22, 33] that the design of a WF-compliant universal

construction is impossible in asynchronous read/write systems where any number

of processes may crash3.

In failure-prone asynchronous (read/write or message-passing) distributed sys-

tems, the computability issues have a different nature than in failure-free asyn-

chronous systems. As written in [25]: “In sequential systems, computability is

understood through the Church-Turing Thesis: anything that can be computed,

can be computed by a Turing Machine. In distributed systems, where computa-

tions require coordination among multiple participants, computability questions

have a different flavor. Here, too, there are many problems which are not com-

putable, but these limits to computability reflect the difficulty of making decisions

in the face of ambiguity, and have little to do with the inherent computational

power of individual participants.”

This means that asynchronous failure-prone systems need to be enriched with

additional objects whose computability power is strictly stronger than the one

of atomic read/write registers [41]4. The objects that, together any number of

read/write registers5, allow to build a WF-compliant universal construction are

said to be universal. As shown below the consensus object is universal.

3The first proof of such an impossibility was done in the context of asynchronous message-

passing systems where even a single process may crash [18].
4Given a computing model (for example the finite state automaton model or the Turing machine

model in sequential computing), the notion of computability power is on what can and what cannot

be computed in this model. Differently, given a computing model, the notion of computing power

refers to efficiency.
5It is show in [4] that any non-trivial object can implement atomic read/write registers in the

wait-free task model.



Remark 1 As atomic read/write registers can be built on top of asynchronous

message-passing n-process systems where up to t < n/2 processes may crash, the

results presented in this article apply in these systems as soon as a majority of

processes do not crash (see pages 75-169 of [42] for more details).

Remark 2 This article considers the classical shared memory distributed system

model in which the concurrent objects to be implemented are deterministic. The

case of non-deterministic objects is addressed in [38].

Remark 3 This article is no more than an informal introduction to the consen-

sus number notion. The reader will find more precise developments of associ-

ated concepts and notions (such as distributed task, long-lived task, computing

model, oblivious object, object binding mode, robustness, deterministic vs. non-

deterministic object, etc.) in articles listed at the end of this article.

Content of the paper This paper is made up of five sections. Section 2 presents

the consensus object and the associated consensus hierarchy notion (which allows

us to capture the computability power of computing objects)6. Section 3 shows

that there is an infinity of objects whose consensus number is 1, while their com-

putability power is strictly increasing7. Section 4 shows that for any x ≥ 2, there

is an infinity of objects whose consensus number is x, while their computability

power is strictly increasing8. Historically, the case x ≥ 2 was investigated before

the case x = 1 (respectively 2016 and 2018). The parlance “life beyond consen-

sus” was introduced in [2]. Section 5 concludes the paper.

2 The Consensus Object

and the Consensus Hierarchy

2.1 Consensus

Consensus object As already indicated, the notion of a universal object with

respect to fault-tolerance was introduced by M. Herlihy [22]. An object type T

is universal if it is possible to wait-free implement any object (defined by a se-

quential specification) in the asynchronous read/write model, where any number

of processes may crash, enriched with any number of objects of type T . An al-

gorithm providing such an implementation is called a universal construction. It

is shown in [22] that consensus objects are universal. These objects, introduced

6The reference article is [22].
7The reference article is [14].
8The reference article is [2].



in [37], allow the processes to propose values and agree on one of them. More

precisely, such an object provides the processes with a single operation, denoted

propose(), that a process can invoke only once. This operation returns a value to

the invoking process. When pi invokes propose(vi) we say that it “proposes the

value vi”, and if v is the returned value we say that it “decides v”. The consensus

object is defined by the three following properties:

• Validity. The value decided by a process was proposed by a process.

• Agreement. No two processes decide different values.

• Termination. If a correct process invokes propose(), it decides a value.

Termination states that if a correct process invokes propose(), it decides a

value whatever the behavior of the other processes (wait-freedom progress condi-

tion). Validity connects the output to the inputs, while Agreement states that the

processes cannot decide differently. A sequence of consensus objects is used in

the following way in a universal construction. According to its current view of

the operations invoked on (and not yet applied to) the object O of type T that is

built, each process proposes to the next consensus instance a sequence of opera-

tions to be applied to O, and the winning sequence is actually applied. A helping

mechanism [8, 40] is used to ensure that all the operations on O (at least by the

processes that do not crash) are eventually applied to O.

k-Set agreement A k-set agreement object (in short k-SA) is a simple an natural

weakening of the consensus object [12]. It has the same Validity and Termination

properties, but a weaker Agreement property, namely:

• Agreement. At most k different values are decided.

Hence, consensus is 1-set agreement. It is shown in [6, 26, 45] that it is impossible

to implement k-set agreement on top of read/write registers, in the presence of

asynchrony and any number of process crashes.

2.2 From consensus objects to a universal construction

Many algorithms have been proposed, which build a wait-free implementation of

any object defined by a sequential specification (e.g. see [27, 40, 47]). This

section presents a WF-compliant consensus-based universal construction inspired

from the state machine replication paradigm (introduced in [31] in the context of

failure-free systems), the process crash-tolerant total order broadcast algorithm

presented in [9]9, and a helping mechanism implemented from atomic read/write

registers. The reader will find a proof of it in [40]. As already said, and to make

the presentation easier, it is assumed that the object O that is built is deterministic.

9Incidentally, the reader may notice that both the articles [9, 31] consider message-passing

systems.



Sequential specification of the object The object O is assumed to be defined

by a transition function δ(). Let s be the current state of O and op(in) be the

invocation of an operation op() on O, with input parameter in; δ(s, op(in)) outputs

a pair 〈s′, r〉 such that s′ is the state of O after the execution of op(in) on s, and r

is the result of op(in).

Local variables A process pi manages locally a copy of the object, denoted

statei, an array sni[1..n] where sni[ j] denotes the sequence number of the last

operation on O issued by p j locally applied to statei. The local variables donei,

resi, propi, ki, and listi, are auxiliary variables whose meaning is clear from the

context; listi is a list of pairs of (operation, process identity); |listi| is its size, and

listi[r] is its r-th element; hence, listi[r].op is an object operation and listi[r].proc

the process that issued it.

when pi invokes op(in) do

(1) donei ← false; BOARD[i]← 〈op(in), sni[i] + 1〉;

(2) wait (donei); return(resi).

Underlying local task T : % background server task %

(3) while (true) do

(4) propi ← ǫ; % empty list %

(5) for j ∈ {1, . . . , n} do

(6) if (BOARD[ j].sn > sni[ j]) then

(7) append (BOARD[ j].op, j) to propi

(8) end if

(9) end for;

(10) if (propi , ǫ) then

(11) ki ← ki + 1;

(12) listi ← CONS[ki].propose(propi);

(13) for r = 1 to |listi| do

(14) 〈statei, resi〉 ← δ(statei, listi[r].op);

(15) let j = listi[r].proc; sni[ j]← sni[ j] + 1;

(16) if (i = j) then donei ← true end if

(17) end for

(18) end if

(19) end while.

Figure 2: A wait-free consensus-based universal construction (code for process

pi)

Shared Objects The shared memory contains the following objects.

• An array BOARD[1..n] of single-writer/multi-reader atomic registers. Each

entry is a pair such that the pair 〈BOARD[ j].op,BOARD[ j].sn〉 contains



the last operation issued by p j and its sequence number. Each read/write

register BOARD[ j] is initialized to 〈⊥, 0〉.

• An unbounded array CONS[1..] of consensus objects.

Process behavior When a process pi invokes an operation op(in) on O, it reg-

isters this operation together with its associated sequence number in BOARD[i]

(line 1). Then, it waits until the operation has been executed, and returns its result

(line 2).

The array BOARD constitutes the helping mechanism used by the background

task of each process pi. This task is made up two parts, which are repeated forever.

First, pi build a proposal propi, which includes the last operations (at most one

per process) not yet applied to the object O, from its local point of view (lines 4-9

and predicate of line 6). Then, if the sequence propi is not empty, pi proposes

it to the next consensus instance CONS[ki] line 12). The resulting value listi is a

sequence of operations proposed by a process to this consensus instance. Process

pi then applies this sequence of operations to its local copy statei of O (line 14),

and updates accordingly its local array sni (line 15). If the operation that was

applied is its own operation, pi sets the Boolean donei to true (line 16), which will

terminate its current invocation (line 2).

Bounded wait-freedom versus unbounded wait-freedom Let us observe that

this construction ensures that the operations issued by the processes are wait-free,

but does not guarantee that they are bounded wait-free, namely, the number of

steps (accesses to the shared memory) executed before an operation terminates is

finite but not bounded. Consider a process pi that issues an operation op(), while

k1 is the value of ki. let and k2 = k1+α be such that op() is output by the consensus

instance CONS[k2]. The task T of pi must execute α times the lines 4-18 in order

to catch up the consensus instance CONS[k2] and return the result produced by

op(). It is easy to see that the quantity (k2 − k1) is always finite but cannot be

bounded.

A bounded construction is described in [22]. Instead of requiring each pro-

cess to manage a local copy of the object, O is kept in shared memory and is

represented by a list of cells including an operation, the resulting state, the result

produced by this operation, and a consensus object whose value is a pointer to the

next cell. The last cell defines the current value of the object.

2.3 The consensus hierarchy

Consensus numbers and consensus hierarchy The consensus number [22] as-

sociated with an object type T (denoted CN(T ) in the following) is the greatest



positive integer n such that a consensus object can be built in an asynchronous

crash-prone n-process system from any number of atomic read/write registers and

any number of objects of type T . If there is no such finite n, the consensus number

of T is +∞. Hence, a type T such that CN(T ) ≥ n is universal in a system of n (or

less) processes.

It appears that the consensus numbers define an infinite hierarchy (also called

”Herlihy’s hierarchy”) in which atomic read/write registers have consensus num-

ber 1, object types such as Test&Set, Fetch&Add, and Swap, have consensus

number 2, etc., until object types such as Compare&Swap, Linked Load/Store

Conditional (and a few others) that have consensus number +∞. In between,

read/write registers provided with m-assignment10 with m > 1 have consensus

number (2m − 2).

Notations The following notations are used in the rest of the article.

• For x ≥ 1, CN(x) denotes the set all the object types T whose such that

CN(T ) = x.

• If an object type has a single operation op(), CN(op) denotes its consensus

number.

• If T1 and T2 are two object types such that CN(T1)< CN(T2), we also write

T1 < T2.

• If CN(T ) = x and O is an object of type T , we say that O is an x-consensus

object (i.e., O allows consensus to be solved in an x-process system, but not

in an (x + 1)-process system).

• Let T be an object type. T < CN(x) means that CN(T ) < x, and similarly

for T > CN(x).

• Let A < B denote the fact that object A can be built in an n-process system

where the processes communicate through read/write registers and objects

B, while object B cannot be built from object A and read/write registers.

An object family covering the whole consensus hierarchy The object named

k-sliding read/write register (in short RWk) was introduced in [35] (a similar ob-

ject was independently introduced in [17]). It is a natural generalization of an

atomic read/write register, which corresponds to the case k = 1). Let KREG be

such an object. It can be seen as a sequence of values, accessed by two atomic

operations denoted KREG.write() and KREG.read().

10Such an assignment updates atomically m read/write registers. It is sometimes written

X1, X2, · · · , Xm ← v1, · · · , vm where the Xi are the registers, and each vi the value assigned to

Xi.



The invocation of KREG.write(v) by a process adds the value v at the end

of the sequence KREG, while an invocation of KREG.read() returns the ordered

sequence of the last k written values (if only x < k values have been written, the

default value ⊥ replaces each of the (k − x) missing values).

Hence, conceptually, an RWk object is a sequence containing all the values

that have been written (in their atomicity-defined writing order), and whose each

read operation returns the k values that have been written just before it, according

to the atomicity order. As already indicated, it is easy to see that, for k = 1, RWk

is a classical atomic read/write register. For k = +∞, each read operation returns

the whole sequence of values written so far. Let us notice that RW∞ is nothing

else than a ledger object [42].

It is shown in [35] that the consensus number of RWk is k. Hence, from a

computability point of view we have

R/W registers = RW1 < RW2 < · · · < RWk < RWk+1 < · · · < RW∞.

2.4 A glance inside the consensus number land

Multiplicative power of consensus numbers The notion named multiplicative

power of consensus numbers was introduced in [29]. It considers system mod-

els made up of n processes prone to up to t crashes, and where the processes

communicate by accessing read/write atomic registers and x-consensus objects

(with x ≤ t < n). Let AS M(n, t, x) denote such a system model. While the BG

simulation [6] shows that the models AS M(n, t, 1) and AS M(t + 1, t, 1) are equiv-

alent from a (colorless task) computability power point of view, the work pre-

sented in [29] focuses on the pair (t, x) of the system model parameters. Its main

result is the following: the system models AS M(n1, t1, x1) and AS M(n2, t2, x2)

have the same computability power if and only if ⌊ t1
x1
⌋ = ⌊

t2
x2
⌋. This contribu-

tion, which complements and extends the BG simulation, shows that consensus

numbers have a multiplicative power with respect to failures, namely the system

models AS M(n, t′, x) and AS M(n, t, 1) are equivalent (for colorless decision tasks)

if and only if (t × x) ≤ t′ ≤ (t × x) + (x − 1).

Combining object types The consensus hierarchy considers that consensus must

be built from read/write registers and objects of a given type T only. Hence the

question “is it possible to combine objects with a small consensus number to ob-

tain a new object with a greater consensus number?” As an example, let us con-

sider thee two following object types T1 and T2, whose consensus number is 2

(see [17] for more developments).

• An object of type T1 can be read and accessed by the operation test&set(),

which returns its current value and sets it to 1 if it contained 0.



• An object of type T2 can be read and accessed by the operation fetch&add2(),

which returns the current value of the object, and increases it by 2.

Let us now consider an object type T12 which provides three operations:

read(), test&set(), and fetch&add2(). The algorithm described in Fig. 3 (due

to [17]) shows that a binary consensus object can be built from read/write regis-

ters and objects T12 in a crash-prone system of any number of processes. Binary

consensus means that only the values 0 and 1 can be proposed11. We consequently

have CN(T12) = +∞.

when pi invokes propose(v) do

(1) if (v = 0) then X.fetch&add2();

(2) if (X is odd) then return(1) else return(0) end if

(3) else x← X.test&set();

(4) if (x is odd) ∨ (x = 0) then return(1) else return(0) end if

(5) end if.

Figure 3: A wait-free binary consensus algorithm from object type T12 (code for

process pi)

The internal representation of the binary consensus object is an object X of

type T12, initialized to 0. According to the value it proposes (0 or 1), a process

executes the statements of lines 2-3 or the statements of lines 4-5. The value

returned by the consensus object is sealed by the first atomic operation that is

executed. It is 0 if the first operation on X is X.fetch&add2(), and 1 if first op-

eration on X is X.test&set(). The reader can check that, if the first operation on

X is fetch&add2(), X becomes and remains even forever. If it is test&set(), X

becomes and remains odd forever. In the first case, only 0 can be decided, while

in the second case, only 1 can be decided.

Relaxing object operations In [46] the authors consider many classical objects

(such as queues, stacks, sets) and relax the semantics of their operations in order

to see if these relaxations modify the consensus number of the relaxed object,

and consequently are more tolerant to the net effect of asynchrony and process

failures.

As an example let us consider the well-known type Q (queue) defined the three

following operations: enqueue(), which adds a value at the end of the queue,

dequeue(), which returns the oldest value of the queue and suppresses it from the

queue, and peek(), which returns the oldest value without modifying the content

of the queue. The following relaxed queue type, denoted Qa,b,c, was introduced

11This is not a problem as it is possible to build a multivalued consensus object from binary

consensus objects, see [40].



and investigated in [46]. Each possible (statically defined) triple of the type pa-

rameters a, b, and c gives rise to an instance of a relaxed queue type, defined the

three following atomic operations:

• enqueuea(v) inserts the value v at any one of the a positions at the end of

the queue12.

• dequeueb() returns and removes one of the values at the b positions at the

end of the queue.

• peekc() returns (without removing it) one of the values at the b positions at

the end of the queue.

Whatever the operation, it returns a default value ⊥ if the queue is empty. when

the type parameter a, b, or c is equal to 0, the corresponding operation is not

supported. When it is ∞ it means that the corresponding operation can add, re-

move/return a value at any position. It is easy to see that the object type Q1,1,0

is the usual queue object (without peek() operation), whose consensus number is

2 [22]. Let us observe that the smaller the value of the parameter a ≥ 1, b ≥ 1,

or c ≥ 1, the stronger the constraint imposed by the corresponding operation.

Among many others, the following results are shown in [46].

• The consensus number of Q1,1,1 is∞, while the consensus number of Q∞,1,1
is 2. This come from the fact that enqueue∞() allows a value to be inserted

at any position, while enqueue1() imposes a very constrained order on value

insertions.

• The consensus number of Q1,1,2 is 2 (this follows from the relaxed operation

peek2()).

• For a > 0, the consensus number of Qa,0,1 is +∞.

The notion of power number of an object Obstruction-freedom is a progress

condition progress condition (hence a termination property) introduced in [23].

It was later extended to k-obstruction-freedom in [48] as follows (k = 1 gives

obstruction-freedom):

• Termination. If a set of at most k processes execute alone during a long

enough time and do not crash, each of them terminates its operation.

Hence, k-obstruction-freedom states that, during long enough period during which

the concurrency degree does not bypass k, the operations terminate. While wait-

freedom is independent of both the concurrency pattern and the failure pattern,

obstruction-freedom depend on them. More general asymmetric progress con-

ditions have been introduced in [30]. The computational structure of progress

conditions is investigated in [48].

12The position of an item (value) in a queue is the number of items that precede it plus 1.



The notion of the power number of an object type T (denoted PN(T )) was

introduced in [48]. It is the largest integer k such that it is possible to imple-

ment a k-obstruction-free consensus object for any number of processes, using

any number of atomic read/write registers, and any number of objects of type T

(the registers and the objects of type T being wait-free). If there is no such largest

integer k, PN(T ) = +∞.

Hence, the power number of an object type T establishes a strong relation

linking k-obstruction-freedom and wait-freedom, when objects of type T are used.

Let us remind that CN(T ) is the consensus number of the objects of type T . It is

shown in [48] that CN(T ) = PN(T ).

The notion of set agreement power As defined in [15], the set agreement

power of an object type T is the infinite sequence 〈n1, ..., nk, nk+1, ...〉, such that for

any ≥ 1, nk is the greatest number of processes for which it is possible to wait-free

solve k-set agreement with any number of objects of type T and read/write regis-

ters. As an example, for n ≥ 2, the set agreement power of the (n − 1)-consensus

object type is 〈n1, ..., nk, nk+1, ...〉, where for all k ≥ 1, nk = k(n − 1) [13].

It is shown in [10] that at each level ℓ ≥ 2 of the consensus hierarchy, there

are objects that, while they have the same set agreement power, are not equiva-

lent (i.e., at least one of them cannot implement the other). This result has been

extended to deterministic objects in [11].

From the process crash model to the crash-recovery model The consensus

hierarchy in a crash-recovery model has first been addressed in [5]. This model

assumes that a failure resets the local variables of a process to their initial values

(the local variables include the program counter of the process), and preserves the

state of the shared objects. It is shown in [5] that consensus remains sufficently

powerfull to implement (in this model) any sequentially defined concurrent object.

The notion of recoverable consensus has been introduced in [21]. Such a con-

sensus is defined by the classical Validity and Agreement properties of consensus

and the following Termination property: Each time a process invokes a recov-

erable consensus instance, it returns a decision or crashes. This means that if a

process invokes a recoverable consensus instance and, while executing it, crashes

a finite number of times, it decides. It is shown in [21] that the consensus number

of the Test&Set() operation (which is 2 in the crash failure model) is still 2 in

the crash-recovery model if failures are simulataneous, but drops to 1 if failures

are independent. As stated in [21], this captures the fact that, “when failures are

simultaneous, a process recovers with more information regarding the states of

other processes, than when failures are independent”.



3 Life in the “Consensus Number 1” Land

This section presents an infinite family of deterministic objects, denoted WRN3,

WRN4, ..., WRNk, WRNk+1, etc., such that

• none of them can be wait-free built from atomic read/write registers only,

• WRNk+1 can be wait-free built from WRNk but cannot build it, and

• none of these objects can wait-free implement a 2-consensus in an n-process

asynchronous crash-prone system.

It follows that this infinite countable family of objects are totally ordered by

their computability power, are stronger than read/write registers (whose consen-

sus number is 1), and are weaker than all the objects whose consensus number is

greater or equal to 2. The results presented in this section are due to E. Daian,

G.Losa, Y. Afek, and E. Gafni [14] and concern deterministic objects. The case

of non-deterministic objects, for which there are similar results, was addressed

in [38].

3.1 The family of “Write and Read Next” objects

The WRN object family (where WRN stands for Write and Read Next) is a generic

family, in which each instance of the genericity parameter k (k > 2) gives rise to a

specific object type denoted WRNk.

A WRNk object has a single atomic operation denoted wrnk(), which can be

invoked at most once by a process. From an conceptual point of view, this object

can be seen as an array A[0..k − 1] initialized to [⊥, · · · ,⊥]. A process pi invokes

wrnk(i, v) where i ∈ {0, · · · , k− 1} and v is a value to be stored in the WRN object.

The effect of the invocation of wrnk(i, v) is defined by the atomic execution of

Algorithm 1, where it is assumed that v , ⊥. The ring structure 〈i, (i+1), ..., (k−

1), 0, 1, ..., i〉, and its use in the write of A[i] followed by the read of A[(i +

1) mod k] is the key providing the computability power of a WRNk object.

operation wrnk(i, v) is % i ∈ {1, · · · , k − 1}, v , ⊥

(1) A[i]← v;

(2) return(A[(i + 1) mod k]).

Algorithm 1: The operation wrnk(i, v) (invoked by pi)

It is easy to see that the object WRNk is deterministic (namely, the value re-

turned by wrnk() and the new value of A depend on the previous value of A and

the input parameters of the wrnk() operation only).



3.2 Computability power of WRNk in a k-process system

This section shows that a WRNk object (k > 2) cannot be built from read/write

registers (and is consequently stronger than them), and cannot solve consensus

for two processes in a set of k processes. To this end it shows that, for any k > 2,

it is possible to solve (k, k − 1)-set consensus (i.e., (k − 1)-set consensus in a set

of k processes) from a WRNk object, and WRNk can be built from (k, k − 1)-set

consensus and atomic read/write registers. The result then follows from the fact

that (k − 1)-set consensus cannot be wait-free solved from read/write registers [6,

26, 45], and cannot solve consensus for two processes.

From a WRNk object to (k, k − 1)-set consensus Algorithm 2 realizes such a

construction. It uses an underlying object WRNk, accessed by k processes p0, ...,

pk−1 (where i is the index/identity of pi). A process pi first invokes WRNk.wrnk(i, vi)

where vi is the value it proposes (line 1). Hence, it writes the entry i of the under-

lying WRNk object and reads its next entry, namely (i + 1) mod k (Algorithm 1).

Then (line 2), if the value it obtains from WRNk is different from ⊥, it returns it.

Otherwise, it returns the value vi it proposed.

operation propose(i, vi) is % code for pi

(1) aux← WRNk.wrnk(i, vi);

(2) if (aux , ⊥) then r ← aux else r ← vi end if;

(3) return(r).

Algorithm 2: The operation propose(i, vi) of (k, k−1)-set agreement in a k-process

system

Algorithm 2 is trivially wait-free. Let us also observe that, as the process

indices are in {0, · · · , (k − 1) and no two processes have the same index, any entry

of WRNk can be written by a single process. Moreover, due to the content of

WRNk and line 2, it follows that only proposed values can be returned.

Let us consider any process p j that decides. Such a process returns the value

written by p( j+1) mod k, or its own value v j if p( j+1) mod k crashed before deposit-

ing its proposed value in WRNk. As the invocations of WRNk.wrnk() are atomic

(i.e., they appear as if they have been executed one after the other in a real time-

compliant order), it follows that, the first process that invokes WRNk.wrnk() al-

ways returns its own value. Moreover, if all the processes decide, all the entries of

WRNk have been filled in, and the last process, say px, that executes WRNk.wrnk(),

returns the value written by p(x+1) mod k. Hence, the value proposed by px is not

decided, and consequently at most (k − 1) values are decided.



From (k, k − 1)-set consensus to a WRNk object This construction (not pre-

sented here, see [14]) starts from a solution to (k, k − 1)-set consensus, which is

first transformed into a (k, k−1)-strong set election object. This object is such that

if a process pi decides the value v j proposed by a process p j, then, if p j decides, it

decides also v j (implementations are described in [6, 20]). The construction of a

WRNk object from a (k, k − 1)-strong set election object uses additional snapshot

objects [1], the consensus number of which is 1.

What has been shown The previous discussion has shown that, in an asyn-

chronous k-process system, where any number of processes may crash, (k, k −

1)-set agreement and WRNk objects are computationally equivalent. Hence, as

the computability power of (k, k − 1)-set agreement is stronger than the one of

read/write registers and is weaker than the one of objects whose consensus num-

ber is 2, the same follows from WRNk objects in a k-process system.

3.3 When there are more than k processes

Where is the difficulty Let us now assume that there are n > k processes, p0,

..., pn−1, and WRNk objects, each being accessed by a specific set of k processes,

e.g., pi1 , ..., pik . There are two cases according to the fact, for each WRNk object,

the subset of k processes that access it is statically or dynamically defined. We

consider here the case where this set is statically defined. The reader interested in

the dynamic case will consult [14].

Whatever the case, the important issue that has to be solved comes from the

fact that the k entries 0, 1, ..., (k − 1) of the WRNk object, do not necessarily

correspond to the k indexes (belonging to the set {0, ..., n − 1}) of the k that access

the considered WRNk object. This means that addressing issues must be solved to

pair-wise associate the indexes of the k concerned processes with the k entries of

a WRNk object.

Index addressing in the static case Let comb(k, n) be the number of subsets of

k elements taken from a set of n > k elements. There are consequently comb(k, n)

possible WRNk objects, namely an object per subset of k different processes. Let

us order all these subsets from 1 to comb(k, n), obtaining the subsets sbs1, ...,

sbscomb(k,n). Moreover, let us order the process indexes in each subset sbsx, ac-

cording to their increasing values. Finally, for each x ∈ {1, ..., comb(k, n)}, let

fx(i), where i is a process index belonging to sbsx, the position of i (starting from

position 0) in the ordered subset sbsx. Hence fx(i) is an index in {0, ..., k − 1}, and

for any two different indexes i, j ∈ sbsx we have fx(i) , fx( j).



(k, k − 1)-Set agreement in an n-process system A construction of a (k, k − 1)-

set agreement object in a system of n processes, is described in Algorithm 3.

This construction is a simple “index reduction”. Let sbsx be the set of processes

that invoke the considered WRNk(sbsx) object, which is consequently denoted

WRNk(sbsx). The index mapping function fx() is known by the processes in sbsx.

operation propose(i, vi) is % code for pi, i ∈ sbsx

(1) i′ ← fx(i);

(2) aux← WRNk(sbsx).wrn(i′, vi);

(3) if (aux , ⊥) then r ← aux else r ← vi end if;

(4) return(r).

Algorithm 3: The operation propose(i, vi) of (k, k − 1)-set agreement in an n-

process system

3.4 Infinite hierarchy inside the “Consensus Number 1” land

The object family {WRNk}k≥3 defines an infinite hierarchy As already said, it

has been shown in [6, 26, 45]13 that it is not possible for n processes, n ≥ k ≥ 2, to

build (k, k − 1)-set agreement objects from atomic read/write registers. Moreover,

as just seen, (k, k − 1)-set agreement objects and WRNk objects are equivalent

(from a computability point of view) in an n-process system where n ≥ k ≥ 3. It

follows that WRNk objects cannot either be built from atomic read/write registers.

On another side, given n processes communicating through atomic read/write

registers and (k, k−1)-set agreement objects where k ≥ 3, it is not possible to solve

consensus for two processes [13, 24, 30]. Hence it follows that it is not possible

to solve consensus for two processes from WRNk objects when n ≥ k ≥ 3, and

consequently their consensus number is 1.

Finally, considering an n-process system, where n ≥ k+ x and x ≥ 1, (k+ x, k−

1+ x)-set agreement objects can be built from (k, k− 1)-set agreement objects and

read/write registers, while (k, k − 1)-set agreement objects cannot be built from

(k + x, k − 1 + x)-set agreement objects [13, 24]. It follows from the previous

observations that, in an n-process system where n ≥ k ≥ 3, WRNk+1 objects can

be built from WRNk objects, while WRNk objects cannot be built from WRNk+1

objects.

Let us remind that CN(2) denote any object whose consensus number is 2.

The meaning of the symbol “<” was introduced in Section 2.3. Piecing together

the previous observations we have:

R/W Register < · · · <WRNk+1 <WRNk < · · · <WRN3 < CN(2).

13These articles were foundational in introducing topology to capture the behavior of distributed

computations.



The object WRN2 Let p0 and p1 be two processes that access the object WRN2.

The value returned by process pi, i ∈ {0, 1} when it invokes wrn(i, vi) depends

on the fact it is or not the first process to invoke it. According to the atomic-

ity of WRN2, if pi is the first, its invocation wrn(i, vi) returns the value it pro-

poses, namely vi, otherwise it returns the value previously deposited in WRN2,

by the other process. Hence, WRN2 allows two processes to solve consensus,

i.e., CN(WNR2) = 2. From a consensus number hierarchy’s point of view, we

consequently have WRN3 <WRN2.

4 Life in Each “Consensus Number ≥ 2” Land

For each value of m ≥ 2, this section presents a countable infinite family of ob-

jects, denoted AEGm,2, AEGm,3, ..., AEGm,k, etc., such that, for k ≥ 2, we have

• the consensus number of AEGm,k is m,

• AEGm,k can be wait-free implemented from AEGm,k+1,

• AEGm,k+1 cannot be wait-free implemented from AEGm,k objects and atomic

read/write register in a system of = mk + m + k processes.

It follows that, at each level m ≥ 2 of the consensus hierarchy, there is an in-

finite countable family of objects that are totally ordered by their computability

power. All the results presented in this section are due to Y. Afek, F. Ellen, and E.

Gafni [2] (hence, the name “AEG” of these objects forged from the first letter of

their surnames).

4.1 The family of AEGm,k objects

Let m, k ≥ 2. The AEGm,k object seems partly inspired from the construction

of k-set agreement objects in an n-process system from j-set agreement objects

provided for free for any subset of m-processes. More precisely, an important

result in this context is the following theorem due to [13, 24]14.

Theorem 1. Let n > k and m > j be positive integers. It is possible to wait-

free build k-set agreement objects in a system of n processes from j-set agreement

objects accessed by m processes if and only if:
(

k ≥ j
)

∧
(

n j ≤ m k
)

∧
(

k ≥ min( j⌈ n
m
⌉, j⌊ n

m
⌋ + n − m⌊ n

m
⌋)
)

.

14This theorem was also instrumental in the design of an optimal k-set agreement algorithm

in synchronous crash-prone message-passing systems [36], and in the establishment of a strong

relation linking adaptive renaming and k-set agreement [20].



The AEG object family is a generic family, with two genericity parameter

n, k ≥ 2. Each value of m gives rise to a sub-family AEGm,k, in which each

instance of the parameter k ≥ 2 give rise to a specific object.

An AEGm,k object has a single atomic operation denoted aeg_write(), which

is invoked at most once by each process. From a conceptual point of view, this

object can be seen as an array with k entries, namely A[1..k], plus a counter. A pro-

cess invokes aeg_writem,k(v), where v is the value it wants to write in the AEGm,k

object. The first (mk+ k− 1) invocations of aeg_writem,k(v) return a value that has

been written in A, while all the following invocations return the default value ⊥.

More precisely, we have the following. Let us partition the sequence of the first

(mk + k − 1) invocations of aeg_writem,k() into k sub-sequences of m invocations

each, and a last sub-sequence of (k − 1) invocations (see Fig. 4). Given the j-th

invocation of aeg_writem,k(), Let CNT be an number of invocations aeg_writem,k()

previously executed (hence, CNT = j − 1).

• Considering the first sub-sequence of m invocations of aeg_write(), let a1 be

the input parameter of its first invocation. This value is written in A[1]. The

other (m− 1) invocations do not write. Moreover, all these m invocations of

this first sub-sequence return a1 Fig. 4).

• The same occurs for each sub-sequence of m invocations of aeg_write(),

For the x-th sub-sequence, 2 ≤ x ≤ k, let ax be the input parameter of

its first invocation. This value is written in A[x]. The remaining (m − 1)

invocations of this sub-sequence do not write, and all the m invocations of

this x-th sub-sequence return ax.

• Finally, For mk + 1 ≤ j ≤ mk + k − 1, the j-th invocation of aeg_write()

does not write and returns the value in A[mk + k − 1 −CNT], where CNT is

the number of invocations of aeg_write() previously executed.

a1 a1

mk + 1 ≤ j ≤ mk + k − 1

a1 ax a1ak−1ax ax

1 ≤ j ≤ m (x − 1)m + 1 ≤ j ≤ xm (k − 1)m + 1 ≤ j ≤ mk

2 ≤ x ≤ k − 1Case x = 1 Case x = k

a(k−1)m a(k−1)m

1 ≤ j ≤ mk + k − 1

Figure 4: Value returned by the j-th invocation of aeg_writem,k()

Algorithm 4 is a simple translation of the previous description of aeg_writem,k().

Let us remind that this operation is atomic. It is easy to see that an AEGm,k object

is deterministic.



operation aeg_writem,k(vi) is % code for pi

(1) if (CNT = mk + k − 1) then return(⊥) end if;

(2) if (CNT < mk)

(3) then x← ⌊CNT
m
⌋ + 1;

(4) if CNT = (x − 1)m then A[x]← v end if

(5) else x← km + k − (CNT + 1)

(6) end if;

(7) CNT ← CNT + 1;

(8) return(A[x]).

Algorithm 4: The operation aeg_writem,k(vi) invoked by pi

4.2 The consensus number of an AEGm,k object is m

Assuming m ≥ 2, let us consider the operation described in Algorithm 5, which

uses an underlying AEGm,k object denoted AEGm,k. It is easy to see that this algo-

rithm solves consensus in an m-process system, and consequently the consensus

number of AEGm,k is at least m.

operation proposem,k(vi) is % code for pi

(1) r ← AEGm,k.aeg_write(vi);

(2) return(r).

Algorithm 5: m-Process consensus on top of an AEGm,k object

In a very interesting way, replacing in Algorithm 5 the set of m processes by a

larger set of n = mk + k − 1 processes, we obtain the more general theorem.

Theorem 2. Let n = mk + k − 1 and m, k ≥ 2. A k-set agreement object can be

implemented from an AEGm,k object in an n-process system.

While it is simple to show that the consensus number of the AEGm,k object

is at least m, to show that it is exactly m is much more difficult, see [2] where is

proved the following theorem.

Theorem 3. Let m, k ≥ 2. There is no deterministic algorithm implementing

binary consensus from AEGm,k objects and read/write registers in an (m + 1)-

process system.

It follows from Algorithm 5 and Theorem 3 that the consensus number of

AEGm,k is m.

Theorem 4. Let n ≥ mk + k − 1 and m, k ≥ 2. An AEGm,k object cannot be

implemented from m-consensus objects and read/write registers in an n-process

system.



This theorem can be easily proved by contradiction. Consider n = mk + k −

1, let us assume the contrary, namely, an AEGm,k object can be built from m-

consensus objects in an n-process system. Using this AEGm,k object, It follows

from Theorem 2 that a k-set agreement object can be built in an (km+k−1)-process

system enriched with m-consensus objects. But, as mk+k−1
k
= m+1− 1

k
> 1

m
, which

contradicts Theorem 1.

4.3 An infinite hierarchy

inside each “Consensus Number m” land, m ≥ 1

AEGm,k can be implemented from AEGm,k+1 Algorithm 6 presents a simple

construction of an AEGm,k object from an AEGm,k+1, from which it follows that

(while they have the same consensus number, namely m) AEGm,k+1 objects are

at least as powerful as AEGm,k objects. This implementation is based on a spe-

cific initialization of the internal read/write registers implementing the underlying

AEGm,k+1 object. It is assumed that the value proposed by a process is a positive

integer.

internal ad hoc initialization of the underlying AEGm,k+1 object:

CNT ← m; A[1]← 0.

operation aeg_writem,k(v) is % code for any pi

(1) aux← AEGm,k+1.aeg_writem,k+1(v + 1);

(2) if (aux > 0) then r ← aux − 1 else r ← ⊥ end if;

(3) return(r).

Algorithm 6: AEGm,k object from AEGm,k+1 object

This algorithm consists in a simple “elimination” of the first entry of the un-

derlying array A[1..k + 1] implementing the AEGm,k+1 object.

AEGm,k+1 with respect to AEGm,k The following theorem is proved in [2],

which states that an AEGm,k+1 object is stronger than an AEGm,k object.

Theorem 5. Let m, k ≥ 2. An AEGm,k+1 object cannot be implemented from

AEGm,k objects and read/write registers in an (mk + m + k)-process system.

An infinite hierarchy inside each “consensus number m” land, m ≥ 2 It

follows from the previous discussion that, at each level m ≥ 2 of the consensus

hierarchy, that, we have

CN(m − 1) < AEGm,2 · · · < AEGm,k < · · · < AEGm,k+1 < · · · < CN(m + 1).



5 Conclusion

The article constitutes a short visit to the notion of consensus number, which is a

central notion as soon as one is interested in universal wait-free constructions of

objects defined by a sequential specification. The reader interested in more devel-

opments can consult [41] for asynchronous crash-prone shared memory systems,

and [43] for asynchronous crash-prone message-passing systems.

The following intriguing issue remains open: “is 1 a special number?” More

precisely, the family of objects WRNk was introduced to show there is life in the

land of consensus number 1, while the family of objects AEGm,k was introduced

to show there is life in each level m ≥ 2 of the consensus hierarchy. The question

is then “is there a single object family –instead of two– that show there is life at

all the levels of the consensus hierarchy?”

Distributed universality is a fascinating topic. A more general notion of a

k-universal construction was introduced in [19]. Such a construction considers

the simultaneous construction of k objects (instead of only one), each defined by a

specific type, and ensures that at least one of these objects progresses forever. This

construction relies on k-SC objects (defined in [3]) instead of consensus objects.

A still more general notion of (k, ℓ)-universal construction was proposed in [44]

where 1 ≤ ℓ ≤ k, considers the case where, not at least one but at least ℓ objects

progress forever, where ℓ is any predefined constant in [1..k].

It follows from the results exposed in this introductory survey that, neither the

notion of consensus number, nor the notion of set agreement power, characterizes

the exact computability power of all the deterministic (and non-deterministic [38])

objects. On a close topic, the reader interested in the evolution of synchronization

in the past fifty years can consult [39]. The interested reader will also find in [49]

a study on the computability power of anonymous registers15.
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