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Dear EATCS members,

I hope my letter finds you and your family
safe and in good health. We are living in
the times marked by the global coronavirus
pandemic and this has a major impact on our
lives and our scientific activities. Most
of our research activities are still run
remotely and online, and it seems that this
will stay with us for the next months.
However, with the improved pandemic
situation and progress in global
vaccination, we all hope to see a return to
better times soon; already now, there are
some conferences announced to be run in the
hybrid mode, with some physical
participation as early as this summer.
While the current situation is a major
challenge for our scientific community, on
a bright side, our community has been
developing many new and exciting
initiatives: we see more online seminars
and workshops, a lot of remote
collaborative research, and for many of us
free or low-cost online conferences provide
a great opportunity for broader
participation and the increase of
visibility of our research through these
events. And most importantly, we see some
fantastic research done by our community;
and so I take the opportunity to wish you
all the best and much success for your
work.

This will be the first issue of the
Bulletin under the new leadership of Stefan
Schmid (University of Vienna), who has
recently replaced Kazuo Iwama as a new
editor in chief. Kazuo Iwama has been the
editor in chief of the Bulletin for almost
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eight years, since the October 2013 issue.
During Kazuo’s energetic leadership our
flagship publication has consistently been
of excellent quality, supporting the
theoretical computer science community in
many ways. I have learned much from Kazuo,
and let me use this opportunity to thank
him for many fantastic years in running the
Bulletin.

And as for the new leadership, I wish
Stefan the best of luck with his new
position. I trust that you will offer your
assistance in Stefan’s efforts to continue
improving the quality and the impact of the
flagship publication of the EATCS, in
cooperation with the Council of the EATCS
and following on Kazuo’s footsteps.

As usual, the June issue of the Bulletin
will be available just before ICALP, the
flagship conference of the EATCS and an
important meeting of the theoretical
computer science community world-wide. The
48th International Colloquium on Automata,
Languages, and Programming (ICALP 2021),
will be held July 12—16, 2021 (URL:
http://easyconferences.eu/icalp2021/).
While we originally all hoped to meet at
ICALP in Glasgow, Scotland, at the end the
conference will be run online/virtually, as
in the last year. Still, the conference
chair Simon Gay, supported by his
colleagues in Glasgow, promises us an
exciting scientific event. I am very
grateful to Simon Gay and his team
(including Ornela Dardha, Gethin Norman,
Oana Andrei, Michele Sevegnani, Jess
Enright, Sofiat Olaosebikan, David Manlove,
Kitty Meeks, Alice Miller) for the
extraordinary work they have done in
organizing ICALP 2021.
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The Programme Committee chairs Nikhil
Bansal (track A) and James Worrell (track
B) and their PCs have done fantastic job
selecting an impressive collection of
papers, 108 accepted papers in track A and
29 in track B out of 463 submissions (362
for track A and 101 for track B). The
acceptance rate was 29.6 percent. The
programme of ICALP 2021 will highlight
research across many areas within
theoretical computer science. I invite you
to watch the talks even outside your own
research field.
The best paper awards at ICALP 2021 will go
to the following two articles:

• Track A: Sayan Bhattacharya and Peter
Kiss. Deterministic Rounding of
Dynamic Fractional Matchings;

• Track B: Antoine Amarilli, Louis
Jachiet and Charles Paperman. Dynamic
Membership for Regular Languages.

The best student paper award for a paper
that is solely authored by a student will
go to the following paper from track A:

• Or Zamir. Breaking the 2n barrier for
5-coloring and 6-coloring.

Congratulations to the authors of the
award-receiving papers!

In addition to regular research talks,
ICALP 2021 will feature six invited talks
delivered by Christel Baier (Technical
University of Dresden), Andrei Bulatov
(Simon Fraser University), Keren
Censor-Hillel (Technion), Toniann Pitassi
(University of Toronto), Adi Shamir
(Weizmann Institute of Science), and David
Woodruff (Carnegie Mellon University).
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Apart from the invited and contributed
talks, ICALP 2021 will feature two special
presentations:

• of the EATCS Award 2021 to Toniann
Pitassi (University of Toronto) and

• of the Presburger Award 2021 to Shayan
Oveis Gharan (University Washington).

Moreover, during the conference, we will
honor the recipients of the 2020 EATCS
Distinguished Dissertation Award and the
new group of EATCS Fellows.
The recipients of the 2020 EATCS
Distinguished Dissertation Award are

• Talya Eden, Tel Aviv University
(advisor: Dana Ron),

• Marie Fortin, Université Paris-Saclay
(advisors: Paul Gastin and Benedikt
Bollig),

• Vera Traub, University of Bonn
(advisor: Jens Vygen).

The new group of EATCS Fellows (class 2021)
recognized for their scientific
achievements in the field of Theoretical
Computer Science consists of

• Luca Aceto (Reykjavik University and
Gran Sasso Science Institute),

• Rajeev Alur (University of
Pennsylvania),

• Samir Khuller (Northwestern
University),

• David Peleg (Weizmann Institute of
Science),
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• Davide Sangiorgi (University of
Bologna), and

• Saket Saurabh (The Institute of
Mathematical Sciences, Chennai).

Congratulations to the award winners and
new EATCS Fellows!

On behalf of the EATCS, I also heartily
thank the members of the awards,
dissertation and fellow committees for
their work in the selection of this stellar
set of award recipients and fellows. It
will be a great honor to celebrate the work
of these colleagues during ICALP 2021.
(More details about the EATCS Award 2021,
the Presburger Award 2021, the 2020 EATCS
Distinguished Dissertation Award, and the
EATCS Fellows are presented on the later
pages of this issue of the Bulletin.)

Finally, let me also mention that ICALP has
joined the SafeToC (http://safetoc.org/)
initiative, aiming to help prevent and
combat harassment in the Theory of
Computing community. As the result, all
ICALP 2021 participants will be required to
agree to follow an appropriate SafeToC Code
of Conduct. I believe this is a very
important initiative that supports our
scientific community and we all should
endorse it.

ICALP 2021 will also have seven satellite
workshops co-located with the main
conference, taking place (online) on Sunday
and Monday before the main event:

• Algorithmic Aspects of Temporal
Graphs IV,

• VEST: Verification of Session Types,
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• 2nd Workshop on Programming Research in
Mainstream Languages (PRiML 2021),

• Graph Width Parameters: from Structure
to Algorithms (GWP 2021),

• Combinatorial Reconfiguration,

• Formal Methods Education Online: Tips,
Tricks & Tools, and

• Flavours of Uncertainty in
Verification, Planning and Optimization
(FUNCTION).

As usual, a more detailed report on the
ICALP 2021 conference will be published in
the October 2021 issue of the Bulletin.

Also, please allow me to remind you about
three other EATCS affiliated conferences
that will be taking place later this year.

• MFCS 2021, the 46th International
Symposium on Mathematical Foundations
of Computer Science, will be held in
Tallinn, Estonia, August 23–27, 2021
(https://compose.ioc.ee/mfcs/).

• ESA 2021, the 29th Annual European
Symposium on Algorithms, will be held
in Lisbon, Portugal, September 6–8,
2021 (http://algo2021.tecnico.ulisboa.
pt/ESA2021/).

• DISC 2021, the 34th International
Symposium on Distributed Computing,
will be held in Freiburg, Germany,
October 4–8, 2021 (http://www.
disc-conference.org/wp/disc2021/).

We still do not know whether these
conferences will take place online or as
hybrid conference, or maybe even
physically.
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In the recent months we have seen
announcements of numerous further awards
given to the members of theoretical
computer science. While more details about
many of these awards can be found on the
pages of this Bulletin, let me list the
main highlights here.

The Gödel Prize for outstanding papers in
the area of theoretical computer science is
sponsored jointly by the EATCS and the ACM
SIGACT. This year it has been awarded for
the seminal work on the constraint
satisfaction problem to the following three
papers:

• Andrei Bulatov. The Complexity of the
Counting Constraint Satisfaction
Problem. J. ACM 60(5): 34:1–34:41,
2013.

• Martin E. Dyer and David Richerby. An
Effective Dichotomy for the Counting
Constraint Satisfaction Problem. SIAM
J. Computing 42(3): 1245–1274, 2013.

• Jin-Yi Cai and Xi Chen. Complexity of
Counting CSP with Complex Weights.
J. ACM 64(3): 19:1—19:39, 2017.

The Edsger W. Dijkstra Prize in Distributed
Computing is awarded for outstanding papers
on the principles of distributed computing,
and is sponsored jointly by the ACM
Symposium on Principles of Distributed
Computing (PODC) and the EATCS Symposium on
Distributed Computing (DISC). The 2021
Dijkstra Prize has been awarded to the
following seminal paper

• Paris C. Kanellakis and Scott A.
Smolka. CCS Expressions, Finite State
Processes, and Three Problems of
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Equivalence, Information and
Computation 86(1):43—68, May 1990.

The Alonzo Church Award for outstanding
contributions to logic and computation is
awarded annually in a collaboration of the
European Association for Theoretical
Computer Science (EATCS), the ACM Special
Interest Group on Logic (SIGLOG), the
European Association for Computer Science
Logic (EACSL), and the Kurt Gödel Society
(KGS). The 2021 Alonzo Church Award has
been awarded to Georg Gottlob, Christoph
Koch, Reinhard Pichler, Klaus U. Schulz,
and Luc Segoufin for fundamental work on
logic-based web data extraction and
querying tree-structured data, published in
the following papers:

• Georg Gottlob and Christoph Koch.
Monadic Datalog and the Expressive
Power of Languages for Web Information
Extraction. J. ACM 51(1): 74–113,
2004,

• Georg Gottlob, Christoph Koch, and
Klaus U. Schulz. Conjunctive Queries
Over Trees. J. ACM 53(2): 238–272,
2006,

• Georg Gottlob, Christoph Koch, and
Reinhard Pichler. Efficient Algorithms
for Processing XPath Queries. ACM TODS
30(2): 444–491, 2005, and

• Georg Gottlob, Christoph Koch, Reinhard
Pichler, and Luc Segoufin. The
Complexity of XPath Query Evaluation
and XML Typing. J. ACM 52(2): 284–335,
2005.

EATCS also sponsors the Best ETAPS Paper
Award 2021 for the best theory paper at
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ETAPS, which this year was awarded to the
following two papers:

• Robin Piedeleu and Fabio Zanasi, A
String Diagrammatic Axiomatisation of
Finite-State Automata, and

• Bartek Klin, Sławomir Lasota, and
Szymon Toruńczyk, Nondeterministic and
co-Nondeterministic Implies
Deterministic, for Data Languages.

Finally, I am very happy to report that
this year, the Norwegian Academy of Science
and Letters awarded the Abel Prize for 2021
to two giants of the theoretical computer
science community,

• László Lovász (Alfréd Rényi Institute
of Mathematics and Eötvös Loránd
University in Budapest) and

• Avi Wigderson (Institute for Advanced
Study, Princeton).

The Abel Prize is one of the biggest and
most prestigious prizes in mathematics,
awarded annually by the King of Norway to
one or more outstanding mathematicians, and
is directly modeled after the Nobel Prizes.
I am especially thrilled by the citation,
which closely links the advances in
mathematics with our field: “for their
foundational contributions to theoretical
computer science and discrete mathematics,
and their leading role in shaping them into
central fields of modern mathematics.”

As usual, let me close this letter by
reminding you that you are always most
welcome to send me your comments,
criticisms and suggestions for improving
the impact of the EATCS on the Theoretical
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Computer Science community at
president@eatcs.org. We will consider all
your suggestions and criticisms carefully.

I look forward to seeing many of you at
ICALP 2021 and to discussing ways of
improving the impact of the EATCS within
the theoretical computer science community
at the general assembly.

Artur Czumaj
University of Warwick, UK

President of EATCS
president@eatcs.org

June 2021
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Dear Reader,

With this 134th issue of the Bulletin of
the EATCS, I will take over the
editor-in-chief position from Kazuo Iwama,
who led the Bulletin for almost 10 years
now. On this occasion, I would like to
thank Kazuo for his fantastic efforts to
run the Bulletin so successfully for so
many years. I still remember well when
Kazuo visited Berlin during one of his
numerous travels in Europe, probably around
2014, and invited me to have a coffee with
him at Ernst Reuter Platz. I think he
visited Rolf Niedermeier at that time, and
used the opportunity to find a new editor
for the Distributed Computing column. When
Kazuo asked me whether I like to join his
team, I immediately accepted, and 6 years
and 17 issues later, I am grateful for all
the opportunities the position opened for
me and for the great collaboration I had
with Kazuo and all the authors who
contributed wonderful articles to the
Bulletin.

I am very much looking forward to working
together with Artur, the president of the
EATCS, with Giovanni, Juraj, Nobuko,
Thomas, Vikraman, and Yuri, our column
editors, with Efi from the secretary office
of the EATCS, as well as with everyone else
involved in the Bulletin.

My plan is to build upon the successful
model and continue the Bulletin in a
similar format. In parallel, I also start
exploring innovative ideas on how the
Bulletin can be evolved and rendered even
more attractive for the community. While I
already have some ideas myself, I am
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grateful about any suggestions and inputs
you may have. Accordingly, if something
comes to your mind, please do not hesitate
to contact me at schmiste@gmail.com.

Thank you for your interest in the Bulletin
and I would like now to give the word to
Kazuo!

Stefan Schmid, Vienna
June 2021
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Many thanks, Stefan, for giving me this
extra space in your first Letter.
Congratulations and I am confident that our
BEATCS will continue, and enter a new stage
of, its further enrichment under your
editorship.

I have served three EATCS Presidents, Luca,
Paul, and Artur for almost a decade, many
thanks for their continuous support and for
providing me a full sense of
accomplishment. I would like to express my
sincere appreciation to our readers,
hundreds of authors, and especially to
Column Editors, Vikraman Arvind, Thomas
Erlebach, Panagiota Fatourou, Yuri
Gurevich, Juraj Hromkovic, Giovanni
Pighizzini, Gerhard Woeginger, Nobuko
Yashida, and of course to you, Stefan.
Technical Columns are definitely the most
important part of BEATCS and their
contribution is beyond description.
Finally Efi, without your great
cooperation, it would have been totally
impossible for me to make this achievement.
Thank you, everyone, again and again.

Kazuo Iwama, Kyoto
June 2021
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The EATCS Award 2020
Laudatio for Toniann (Toni) Pitassi

The EATCS Award 2021 is awarded to

Toniann (Toni) Pitassi

University of Toronto, as the recipient of the 2021 EATCS Award for her fun-
damental and wide-ranging contributions to computational complexity, which in-
cludes proving long-standing open problems, introducing new fundamental mod-
els, developing novel techniques and establishing new connections between dif-
ferent areas. Her work is very broad and has relevance in computational learning
and optimisation, verification and SAT-solving, circuit complexity and communi-
cation complexity, and their applications.

The first notable contribution by Toni Pitassi was to develop lifting theorems:
a way to transfer lower bounds from the (much simpler) decision tree model for
any function f, to a lower bound, the much harder communication complexity
model, for a simply related (2-party) function f’. This has completely transformed
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our state of knowledge regarding two fundamental computational models, query
algorithms (decision trees) and communication complexity, as well as their rela-
tionship and applicability to other areas of theoretical computer science. These
powerful and flexible techniques resolved numerous open problems (e.g., the su-
per quadratic gap between probabilistic and quantum communication complex-
ity), many of which were central challenges for decades.

Toni Pitassi has also had a remarkable impact in proof complexity. She in-
troduced the fundamental algebraic Nullstellensatz and Ideal proof systems, and
the geometric Stabbing Planes system. She gave the first nontrivial lower bounds
on such long-standing problems as weak pigeon-hole principle and models like
constant-depth Frege proof systems. She has developed new proof techniques for
virtually all proof systems, and new SAT algorithms. She found novel connections
of proof complexity, computational learning theory, communication complexity,
circuit complexity, LP hierarchies, graph theory and more.

In the past few years Toni Pitassi has turned her attention to the field of algo-
rithmic fairness, whose social importance is rapidly growing, in particular provid-
ing novel concepts and solutions based on causal modelling.

Summarising, Toni Pitassi’s contributions have transformed the field of com-
putational complexity and neighbouring areas of theoretical computer science,
and will continue to have a lasting impact. Furthermore, she is an outstanding
mentor, great teacher and a dedicated TCS community member.

The EATCS Award Committee 2021

• Johan Håstad

• Marta Kwiatkowska (chair)

• Éva Tardos

The EATCS Award is given to acknowledge extensive and widely recognized
contributions to theoretical computer science over a life-long scientific career.

The Award will be assigned during a ceremony that will take place during
ICALP 2021, where the recipient will give an invited presentation during the
Award Ceremony.

The following is the list of the previous recipients of the EATCS Awards:
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2020 Mihalis Yannakakis 2009 Gérard Huet
2019 Thomas Henzinger 2008 Leslie G. Valiant
2018 Noam Nisan 2007 Dana S. Scott
2017 Éva Tardos 2006 Mike Paterson
2016 Dexter Kozen 2005 Robin Milner
2015 Christos Papadimitriou 2004 Arto Salomaa
2014 Gordon Plotkin 2003 Grzegorz Rozenberg
2013 Martin Dyer 2002 Maurice Nivat
2012 Moshe Y. Vardi 2001 Corrado Böhm
2011 Boris (Boaz) Trakhtenbrot 2000 Richard Karp
2010 Kurt Mehlhorn
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2021 Alonzo Church Award for
Outstanding Contributions to Logic

and Computation

The European Association for Theoretical Computer Science (EATCS), the
ACM Special Interest Group on Logic (SIGLOG), the European Association for
Computer Science Logic (EACSL), and the Kurt Goedel Society (KGS) are pleased
to announce that

• Georg Gottlob, Christoph Koch, Reinhard Pichler, Klaus U. Schulz,
and Luc Segoufin

have been selected as the winners of the 2021 Alonzo Church Award for Outstand-
ing Contributions to Logic and Computation for fundamental work on logic-based
web data extraction and querying tree-structured data, published in:

1. Georg Gottlob and Christoph Koch. Monadic Datalog and the Expressive
Power of Languages for Web Information Extraction. Journal of the ACM
51(1): 74–113, January 2004 (DOI: 10.1145/962446.962450),

2. Georg Gottlob, Christoph Koch, and Klaus U. Schulz. Conjunctive Queries
Over Trees. Journal of the ACM 53(2): 238–272, March 2006
(DOI: 10.1145/1131342.1131345),

3. Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient Algorithms
for Processing XPath Queries. ACM Transactions on Database Systems
30(2): 444–491, June 2005 (DOI: 10.1145/1071610.1071614), and

4. Georg Gottlob, Christoph Koch, Reinhard Pichler, and Luc Segoufin. The
Complexity of XPath Query Evaluation and XML Typing. Journal of the
ACM 52(2): 284–335, March 2005 (DOI: 10.1145/1059513.1059520).

Paper (1) establishes a comprehensive logical theory of Web data extraction.
At its core, this is the problem of selecting relevant nodes (subtrees) from HTML
text. While the set of relevant nodes can be expressed in Monadic Second-Order
logic (MSO) over finite trees, MSO has high computationally complexity. The au-
thors prove that Monadic Datalog on trees has exactly the same expressive power
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as full MSO and that, surprisingly, evaluating Monadic Datalog is feasible in time
linear in the size of query and input tree. These results greatly influenced theoret-
ical and applied research, and gave rise to logic-based systems for data extraction
that have been successfully used in industry.

Papers (2,3,4) present deep investigations into logical queries over tree-structured
data. The complexity of evaluating XPath, a key technology in Web browsers and
other systems, was unclear, and available implementations required exponential
time. Paper (2) gives a full characterization of, and a dichotomy theorem for, the
complexity of conjunctive queries on various representations of trees. Paper (3)
shows that the full XPath standard can be evaluated in PTIME and proposes a
logical core which has become seminal to research efforts at the intersection of
Web data processing and (modal) logics. Finally, paper (4) establishes the precise
complexity of evaluating XPath fragments.

The 2021 Alonzo Church Award Committee:

• Mariangiola Dezani,

• Thomas Eiter,

• Javier Esparza (chair),

• Radha Jagadeesan, and

• Igor Walukiewicz.

The list of the previous recipients of the Alonzo Church Award for Outstanding
Contributions to Logic and Computation is available at https://siglog.org/
awards/alonzo-church-award/.
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The Presburger Award 2021
Laudatio for Shayan Oveis Gharan

The 2021 Presburger Committee has unanimously selected

Shayan Oveis Gharan

as the recipient of the 2021 EATCS Presburger Award for Young Scientists
for his creative, profound, and ambitious contributions to the Traveling Salesman
problem.

Traveling Salesman is a drosophilia of theoretical computer science: immedi-
ately accessible, intellectually appealing, computationally difficult, and extremely
well-studied. It serves as a milestone and showcase for progress in our scientific
understanding of the design and analysis of algorithms.

Oveis Gharan’s work began during his PhD thesis, in a paper that presents an
asymptotically sublogarithmic approximation guarantee for the Traveling Sales-
man problem for the general (or, “asymmetric”) case. The primary tool is the neg-
ative dependence between the presence of edges in a certain distribution on ran-
dom spanning trees of a graph, a theme that has matured and expanded throughout
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much of the recipient’s work. In a remarkable tour de force, Oveis Gharan and
his coauthors followed this up with a (3/2 − ε)-approximation for the symmetric
graphic case, and later also for the metric case. These results rely on a deeper
understanding of negative dependence through the lens of strongly Rayleigh mea-
sures and real-stable polynomials, the polyhedral structure of the Held–Karp poly-
tope, and the combinatorics of near-minimum cuts in a graph.

Besides his work on TSP, Oveis Gharan exhibits an amazingly consistent abil-
ity to make progress on many other problems that had remained open for decades.
For example, a Cheeger inequality proved by Oveis Gharan and co-authors was
the main technical tool in Miclo’s proof of a 40-year old conjecture of Simon and
Høegh-Krohn in the field of mathematical physics. The interplay between analy-
sis, probability, and combinatorics is a hallmark of his research programme and a
sterling example of how questions arising from theoretical computer science lead
to profound progress in related fields.

The Presburger Committee 2021

• Mikołaj Bojańczyk

• Thore Husfeldt (chair)

• Meena Mahajan

The Presburger Award is given to a young scientist (in exceptional cases to
several young scientists) for outstanding contributions in theoretical computer sci-
ence, documented by a published paper or a series of published papers. The award
is named after Mojzesz Presburger who accomplished his path-breaking work on
decidability of the theory of addition (which today is called Presburger arithmetic)
as a student in 1929.

The award includes an amount of 1000 € and an invitation to ICALP 2021 for
a lecture.

The following is the list of the previous recipients of the EATCS Pressburger
Awards:

2020 Dmitriy Zhuk 2014 David Woodruff
2019 Karl Bringmann and Kasper Green Larsen 2013 Erik Demaine
2018 Aleksander Mądry 2012 Venkatesan Guruswami and Mihai Patrascu
2017 Alexandra Silva 2011 Patricia Bouyer-Decitre
2016 Mark Braverman 2010 Mikolaj Bojanczyk
2015 Xi Chen
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2021 EdsgerW. Dijkstra Prize in
Distributed Computing

The Edsger W. Dijkstra Prize in Distributed Computing is awarded for out-
standing papers on the principles of distributed computing, whose significance
and impact on the theory or practice of distributed computing have been evident
for at least a decade. It is sponsored jointly by the EATCS Symposium on Dis-
tributed Computing (DISC) and the ACM Symposium on Principles of Distributed
Computing (PODC). The prize is presented annually, with the presentation taking
place alternately at DISC and PODC. The committee decided to award the 2021
Edsger W. Dijkstra Prize in Distributed Computing to

• Paris C. Kanellakis and Scott A. Smolka

for their paper:

• CCS Expressions, Finite State Processes, and Three Problems of Equiva-
lence, Information and Computation, Volume 86, Issue 1, pages 43—68,
1990.

A preliminary version of this paper appeared in the Proceedings of the Second
Annual ACM Symposium on Principles of Distributed Computing (PODC 1983),
pages 228—240.

This paper was a foundational contribution to the fundamental challenge of
assigning semantics to concurrent processes, for specification and verification. It
addressed the computational complexity of the previously introduced celebrated
notion of behavioral equivalence, a cornerstone of Milner’s Calculus of Commu-
nicating Systems (CCS), aimed at tackling semantics by considering equivalence
classes.

With the publication of their PODC 1983 paper, Kanellakis and Smolka pi-
oneered the development of efficient algorithms for deciding behavioral equiv-
alence of concurrent and distributed processes, especially bisimulation equiva-
lence, which is the cornerstone of the process-algebraic approach to modeling and
verifying concurrent and distributed systems. Specifically, the main result of their
paper is what has come to be known as the K-S Relational Coarsest Partitioning
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algorithm, which at the time was a new combinatorial problem of independent
interest.

The paper also presented complexity results that showed certain behavioral
equivalences are computationally intractable. Collectively, Kanellakis and Smolka’s
results founded the subdiscipline of algorithmic process theory, and helped jump-
start the field of Formal Verification.

The 2021 Edsger W. Dijkstra Prize Award Committee:

• Keren Censor-Hillel (chair), Technion

• Pierre Fraigniaud, Université de Paris and CNRS

• Cyril Gavoille, LaBRI — Université de Bordeaux

• Seth Gilbert, National University of Singapore

• Andrzej Pelc, Université du Québec en Outaouais

• David Peleg, Weizmann Institute of Science

The list of the previous recipients of the Edsger W. Dijkstra Prize in Dis-
tributed Computing is available at https://www.podc.org/dijkstra/.
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EATCS Distinguished Dissertation
Award for 2020

EATCS is proud to announce that, after examining the nominations received
from our research community, the EATCS Distinguished Dissertation Award Com-
mittee 2020, has selected the following three theses as recipients of the EATCS
Distinguished Dissertation Award for 2020:

Counting, Sampling and Testing Subgraphs in Sublinear-Time,
by Talya Eden, (talyaa01@gmail.com), Tel Aviv University.
Advisor: Dana Ron (danaron@tauex.tau.ac.il),

Expressivity of first-order logic, star-free propositional dy-
namic logic and communicating automata, by Marie Fortin,
(Marie.Fortin@liverpool.ac.uk), l’Université Paris-Saclay Ad-
visors, Paul Gastin (gastin@lsv.fr) and Benedikt Bollig (bol-
lig@lsv.fr),

Approximation Algorithms for Traveling Salesman Problems,
by Vera Traub, (vera.traub@ifor.math.ethz.ch), University of
Bonn Advisor: Jens Vygen (vygen@or.uni-bonn.de)
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The EATCS Distinguished Dissertation Award Committee 2020 consisted of

• Susanne Albers

• Nikhil Bansal

• Elvira Mayordomo

• Jaroslav Nesetril

• Damian Niwinski

• David Peleg (chair)

• Vladimiro Sassone

• Alexandra Silva

The EATCS Distinguished Dissertation Award has been established to promote
and recognize outstanding dissertations in the field of Theoretical Computer Sci-
ence. Any PhD dissertation in the field of Theoretical Computer Science success-
fully defended in 2020 has been eligible. The dissertations were evaluated on the
basis of originality and potential impact on their respective fields and on Theo-
retical Computer Science. Each of the selected dissertations will receive a prize
of 1000 Euro. The award receiving dissertations will be published on the EATCS
web site, where all the EATCS Distinguished Dissertations will be collected.

The three recipients will be presented during the ICALP 2021 conference.

The list of the previous recipients of the EATCS Distinguished Dissertation
Award is available at https://eatcs.org/index.php/dissertation-award.
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EATCS-Fellows 2021

The EATCS has recognized six of its members for their outstanding contribu-
tions to theoretical computer science by naming them as recipients of an EATCS
fellowship.

The EATCS Fellows for 2021 are:

Luca Aceto, Reykjavik University, Iceland, and Gran Sasso Sci-
ence Institute, Italy: for his fundamental contributions to con-
currency theory, and outstanding merits for the community of
theoretical computer science, in particular as an inspiring presi-
dent of EATCS.

Rajeev Alur, University of Pennsylvania, USA: for his funda-
mental contributions to the theory of verification, especially of
timed and hybrid, concurrent and multi-agent, and hierarchical
and recursive systems.

Samir Khuller, Northwestern University, USA: for his funda-
mental contributions to combinatorial approximation algorithms
– specifically for work in graph algorithms and scheduling, and
for mentoring and building community.

David Peleg, Weizmann Institute of Science, Israel: for his
fundamental contributions to the areas of distributed graph al-
gorithms, wireless networks, robotics and social networks, and
his longstanding support for the development of theoretical com-
puter science in Europe.
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Davide Sangiorgi, University of Bologna, Italy : for his fun-
damental contributions to concurrency and the foundations of
programming languages, contributing notably to the π-calculus
and to coinduction-based proofs.

Saket Saurabh, The Institute of Mathematical Sciences, Chen-
nai, India: for his fundamental contributions to algorithms, in-
cluding parameterized algorithms and kernelization.

The aforementioned members of the EATCS were selected by the EATCS
Fellow Selection Committee, after examining the nominations received from our
research community.

The EATCS Fellow Selection Committee consisted of

• Christel Baier

• Mikołaj Bojanczyk (chair)

• Mariangiola Dezani

• Josep Diaz

• Giuseppe F. Italiano

The EATCS Fellows Program was established by the association in 2014 to
recognize outstanding EATCS members for their scientific achievements in the
field of Theoretical Computer Science. The Fellow status is conferred by the
EATCS Fellows-Selection Committee upon a person having a track record of in-
tellectual and organizational leadership within the EATCS community. Fellows
are expected to be “model citizens” of the TCS community, helping to develop
the standing of TCS beyond the frontiers of the community.

The EATCS is very proud to have the above-mentioned members of the asso-
ciation among its fellows.

The list of EATCS Fellows is available at http://www.eatcs.org/index.php/eatcs-
fellows.
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Gödel Prize 2021

The Gödel Prize for outstanding papers in the area of theoretical computer
science is sponsored jointly by the EATCS and the ACM SIGACT. The Prize is
named in honor of Kurt Gödel in recognition of his major contributions to math-
ematical logic and of his interest, discovered in a letter he wrote to John von
Neumann shortly before Neumann’s death, in what has become the famous "P
versus NP" question. The Prize includes an award of $5000 (US). This award
is presented annually, with the presentation taking place alternately at the Inter-
national Colloquium on Automata, Languages, and Programming (ICALP) and
ACM Symposium on the Theory of Computing (STOC); it will be presented at
STOC this year.

The 2021 Gödel Prize is jointly awarded to the following three papers

• Andrei Bulatov: The Complexity of the Counting Constraint Satisfaction
Problem. J. ACM 60(5): 34:1-34:41 (2013).
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•Martin E. Dyer and David Richerby: An Effective Dichotomy for the Counting
Constraint Satisfaction Problem. SIAM J. Computing. 42(3): 1245-1274 (2013).

• Jin-Yi Cai and Xi Chen: Complexity of Counting CSP with Complex Weights
J. ACM 64(3): 19:1– 19:39 (2017).

Constraint satisfaction is a subject of central significance in computer science,
since a very large number of combinatorial problems, starting from Boolean Sat-
isfiability and Graph Coloring, can be phrased as constraint satisfaction problems
(CSP). The papers above, taken together, are the culmination of a large body
of work on the classification of counting complexity of CSPs and prove an all-
encompassing Complexity Dichotomy Theorem for counting CSP-type problems
that are expressible as a partition function.

The class of problems that the final form of this dichotomy classifies is exceed-
ingly broad. It includes all counting CSPs, all types of graph homomorphisms
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(undirected or directed, unweighted or weighted), and spin systems (and thus a
large variety of problems from statistical physics). Examples include counting
vertex covers, independent sets, antichains, graph colorings, the Ising model, the
Potts model, the q-particle Widom-Rowlinson model, the q-type Beach model,
and more. For all these problems this theorem gives a complexity dichotomy
classification: Every problem in the class is either solvable in polynomial time or
is #P-hard.

Award Committee:

• Samson Abramsky (University of Oxford)

• Nikhil Bansal (CWI Amsterdam)

• Robert Krauthgamer (Weizmann Institute)

• Ronitt Rubinfeld (Massachusetts Institute of Technology)

• Daniel Spielman, Chair (Yale University)

• David Zuckerman (University of Texas at Austin)

The list of the previous recipients of the Gödel Prize is available at
https://eatcs.org/index.php/goedel-prize.
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Ackermann Award 2021

The EACSL Outstanding Dissertation Award for

Logic in Computer Science 2021

Call for Nominations

Deadline: 1 July 2021

Nominations are now invited for the 2021 Ackermann Award. PhD dissertations in
topics specified by the CSL and LICS conferences, which were formally accepted
as PhD theses at a university or equivalent institution between 1 January 2019 and
31 December 2020 are eligible for nomination for the award. The deadline for
submission is 1 July 2021. Submission details follow below.

The 2021 Ackermann Award will be presented to the recipient(s) at CSL 2022,
the annual conference of the EACSL.

The award consists of

• a certificate,

• an invitation to present the thesis at the CSL conference,

• the publication of the laudatio in the CSL proceedings,

• an invitation to the winner to publish the thesis in the FoLLI subseries of
Springer LNCS, and

• financial support to attend the conference.

The jury consists of:

• Christel Baier (TU Dresden);

• Michael Benedikt (Oxford University);
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• Mikolaj Bojanczyk (University of Warsaw);

• Jean Goubault-Larrecq (ENS Paris-Saclay);

• Prakash Panangaden (McGill University);

• Simona Ronchi Della Rocca (University of Torino), the vice-president of
EACSL;

• Thomas Schwentick (TU Dortmund) , the president of EACSL;

• Alexandra Silva, (University College London), ACM SigLog representa-
tive.

The jury is entitled to give the award to more (or less) than one dissertation in a
year.

The candidate or his/her supervisor should submit

1. the thesis (ps or pdf file);

2. a detailed description (not longer than 20 pages) of the thesis in ENGLISH
(ps or pdf file); it is recommended to not squeeze as much material as possi-
ble into these 20 pages, but rather to use them for a gentle introduction and
overview, stressing the novel results obtained in the thesis and their impact;

3. a supporting letter by the PhD advisor and two supporting letters by other
senior researchers (in English); supporting letters can also be sent directly
to Thomas Schwentick (thomas.schwentick@tu-dortmund.de);

4. a short CV of the candidate;

5. a copy of the document asserting that the thesis was accepted as a PhD thesis
at a recognized University (or equivalent institution) and that the candidate
has received his/her PhD within the specified period.

The submission should be sent by e-mail as attachments to the chair of the jury,
Thomas Schwentick: thomas.schwentick@tu-dortmund.de

The e-mail should have the subject line Ackermann Award 21 Submission and
as text the name of the candidate and the list of attachments. Submissions can be
sent via several e-mail messages. If this is the case, please indicate it in the text.
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CTI, Computer Technology Institute & Press "Diophantus"
Patras, Greece

CWI, Centum Wiskunde & Informatica
Amsterdam, The Netherlands

MADALGO, Center for Massive Data Algorithmics
Aarhus, Denmark

Microsoft Research Cambridge
Cambridge, United Kingdom

Springer-Verlag
Heidelberg, Germany
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Yuri Gurevich

Computer Science and Engineering
University of Michigan, Ann Arbor, MI 48109, USA

gurevich@umich.edu
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Reversify any sequential algorithm

Yuri Gurevich

Abstract

To reversify an arbitrary sequential algorithm A, we gently instrument A
with bookkeeping machinery. The result is a step-for-step reversible algo-
rithm that mimics A step-for-step and stops exactly when A does.

Without loss of generality, we presume that algorithm A is presented as
an abstract state machine that is behaviorally identical to A. The existence
of such representation has been proven theoretically, and the practicality of
such representation has been amply demonstrated.

Darn the wheel of the world! Why must it
continually turn over? Where is the reverse gear?

— Jack London

1 Introduction

In 1973, Charles Bennett posited that an“irreversible computer can always be
made reversible” [2, p. 525]. To this end, he showed how to transform any one-
tape Turing machine M that computes a function F(x), into a reversible three-tape
Turing machine MR computing the function x 7→ (x, F(x)). First, MR emulates
the computation of M on x, saving enough information to ensure step-for-step re-
versibility. If and when the output is computed, the emulation phase ends, and MR

proceeds to erase all saved information with the exception of the input.
Bennett’s construction shows that, in principle, every sequential algorithm, is

reversifiable1. In practice, you don’t want to compile your algorithms to a one-
tape Turing machine M and then execute the three-tape Turing machine MR.

1We attempt to give a new useful meaning to the word reversify. To reversify an algorithm
means to transform it into a reversible form (rather than to formulate it anew in verse, which is the
current dictionary meaning of reversify).
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It had been discussed in the programming community, in particular by Edsger
Dijkstra [8, pp 351–354] and David Gries [10, pp 265–274], which programs are
reversible, but Bennett’s reversification idea was either unknown to or neglected
by programming experts.

The progress was led by physicists. They reversified Boolean circuits and
other computation models. “We have shown”, wrote Edward Fredkin and Tom-
maso Toffoli [9, p 252], “that abstract systems having universal computing ca-
pabilities can be constructed from simple primitives which are invertible”. The
interest in reversible computations and especially in reversible circuit computa-
tions soared with the advent of quantum computing. This is related to the fact that
pure (involving no measurements) quantum computations are reversible. There
are books on reversible computations [1, 6, 17, 18]. The International Conference
on Reversible Computation will have its 13th meeting in 2021 [19]

In this paper, we use sequential abstract state machines, in short sequential
ASMs, to address the problem of practical reversification of arbitrary sequential
algorithms. Why ASMs? Let us explain.

ASMs were introduced to faithfully simulate arbitrary algorithms on their nat-
ural abstraction levels [11]. One instructive early result was the formalization of
the C programming language [14].

In [12], an ambitious ASM thesis was formulated: For every algorithm A,
there is an ASM B that is behaviorally equivalent to A. If A is sequential, then B
has the same initial states as A and the same state transition function. In [13], we
axiomatized sequential algorithms and proved the ASM thesis for them2. Thus,
semantically, sequential algorithms are sequential ASMs. In the meantime, sub-
stantial evidence has been accumulated to support the practicality of faithful ASM
modeling. Some of it is found in the 2003 book [3].

The main result of the present paper is a simple construction, for every se-
quential ASM A, of a reversible sequential ASM B that step-for-step simulates A
and stops when A does. B does exactly what A does plus some bookkeeping. If
A uses some input and output variables and computes some function, then B uses
the same input and output variables and computes the same function.

2Later these results were generalized to other species of algorithms, e.g. to synchronous parallel
algorithms [4] and interactive algorithms [5].
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2 Preliminaries

The purpose of this section is to make the current paper self-contained.

2.1 Sequential algorithms

By sequential algorithms we mean algorithms as the term was understood before
modern computer science generalized the notion of algorithm in various direc-
tions, which happened in the final decades of the 20th century. In this connection,
sequential algorithms are also called classical.

While the term “sequential algorithm" is short and convenient, it also is too
laconic. Some explication is in order. “Algorithms,” said Andrei Kolmogorov
in a 1953 talk [16], “compute in steps of bounded complexity.” Let’s look more
closely at the two aspects mentioned by Kolmogorov. One aspect is computing in
steps, one step after another. Kolmogorov didn’t say “one step after another.” He
didn’t have to. That was understood at the time.

The other aspect is a somewhat vague constraint: the bounded complexity of
any one step of the algorithm. We prefer a related constraint, arguably a version of
Kolmogorov’s constraint: the bounded resources of any one step of the algorithm.
The bounded resources constraint, still informal, seems to us clearer and more
suitable. It might have been Kolmogorov’s intention all along. We do not know
exactly what Kolmogorov said during that talk3.

To summarize, sequential algorithms can be characterized informally as tran-
sition systems that compute in bounded-resources steps, one step after another.

In our axiomatization of sequential algorithms [13], the bounded resources
constraint gives rise to the crucial bounded-exploration axiom. It is also used to
justify that a sequential algorithm doesn’t hang forever within a step; time is a
bounded resource.

In the following subsections, we recall some basic notions of mathematical
logic in the form appropriate to our purposes.

3Vladimir Uspensky, who chaired the Logic Department of Moscow State University after
Kolmogorov’s death, admitted to me that the abstract [16] of Kolmogorov’s talk for the Moscow
Mathematical Society was written by him (Uspensky) after many unsuccessful attempts to squeeze
an abstract from Kolmogorov.
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2.2 Vocabularies

A vocabulary is a finite collection of function symbols where each symbol f is
endowed with some metadata according to the following clauses (V1)–(V4). We
interleave the four clauses with auxiliary definitions and explanations.

(V1) Each symbol f is assigned a natural number, the arity of f .

Define terms (or expressions) by induction. If f is an r-ary symbol in and
t1, . . . , tr are terms, then f (t1, . . . , tr) is a term. (The case r = 0 is the basis of
induction.)

(V2) Some symbols f are marked as relational.

Clauses (V1) and (V2) are standard in logic, except that, traditionally, relations
are viewed as separate category, not as a special functions.

(V3) f may be marked as dynamic; if not then f is called static. Nullary static
symbols are called constants; nullary dynamic symbols are called variables.

Clause (V3) is related to our use of structures as states of algorithms. The
intention is that, during computation, only dynamic functions may be assigned
new values. We say that a term is static if it involves only static functions.

We presume that every vocabulary contains the following obligatory symbols
which are all static.

• Constants > and ⊥ (read “true” and “false”), unary Bool, and the standard
propositional connectives. All these symbols are relational.

• Constant 0, and unary Num, increment, and decrement. Of these four sym-
bols, only Num is relational.

• Constant nil (called undef in [13] and other early papers) and the (binary)
equality sign =. Of these two symbols, only the equality sign is relational.
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(V4) Every dynamic symbol f is assigned a static term, the default term of f . If
f is relational then so is its default term.

Clauses (V2) and (V4) constitute rudimentary typing which is sufficient for our
purposes in this paper. As a rule, the default term for any relational symbol is ⊥.
If a variable v is supposed to take numerical values, then typically the default term
for v would be 0, but it could be 1. This concludes the definition of vocabularies.

If Υ and Υ′ are vocabularies, we write Υ ⊆ Υ′, and we say that Υ is included
in Υ′ and that Υ′ includes or extends Υ, if every Υ symbol belongs to Υ′ and has
the same metadata in Υ′.

2.3 Structures

A structure X of vocabulary Υ is a nonempty set |X|, the universe or base set
of X, together with interpretations of the function symbols in Υ. The vocabulary
Υ may be denoted Voc(X).

An r-ary function symbol f is interpreted as a function f : |X|r → |X| and is
called a basic function of X. If f is nullary then f is just a name of an element of
(the universe of) X. If f is dynamic and d is the default term for f , then the value
(denoted by) d is the default value of f .

If f is relational, then the elements > are ⊥ are the only possible values of f .
If f (x̄) = >, we say that f is true (or holds) at x̄; otherwise we say that f is false
(or fails) at x̄. If f , g are relations of the same arity r, then f , g are equivalent in X
if their values at every r-tuple of elements of X are the same.

Any basic relation f is the characteristic function of the set {x : f (x) = >}. It
is often convenient to treat f as that set. We will do that in §5.

Remark 2.1 (Names and denotations). Syntactic objects often denote semantical
objects. For example, vocabulary symbols denote basic functions. Different con-
ventions may be used for disambiguation, e.g. a basic function may be denoted
fX. We will use no disambiguation convention in this paper. It should be clear
from the context whether a symbol means a syntactic or semantic object. /
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The equality sign has its usual meaning. Bool comprises (the values of) >, ⊥
which, together with the propositional connectives, form a two-element Boolean
algebra.

Given a structure X, the value VX
(
f (t1, . . . , tr)

)
of a Voc(X) term f (t1, . . . , tr)

in X is defined by induction:

VX
(
f (t1, . . . , tr)

)
= f

(
VX(t1), . . . ,VX(tr)

)
. (1)

Again, the case r = 0 is the base of induction.
Instead of increment(x), we will write x + 1 and x − 1. Num comprises the

values of terms 0, 0 + 1, (0 + 1) + 1, . . . which are all distinct. These values are
denoted 0, 1, 2, . . . respectively; we call them the natural numbers of structure X,
and we say that these values are numerical. decrement is interpreted as expected
as well. Instead of decrement(x), we write x − 1. decrement(0) = nil. The
value of nil is neither Boolean nor numerical.

Remark 2.2 (Totality). In accordance with §2.1, all basic functions are total. In
applications, various error values may arise, in particular timeout. But, for our
purposes in this paper (as in [13]), an error value is just another value.

A location in a structure X is a pair ` = ( f , x̄) where f is a dynamic symbol in
Voc(X) of some arity r and x̄ is an r-tuple of elements of X. The value f (x̄) is the
content of location `.

An update of location ` = ( f , x̄) is a pair (`, y), also denoted (` � y), where
y an element of X; if f is relational then y is Boolean. To execute an update
(` � y) in X, replace the current contentVX( f (x̄)) of ` with y, i.e., set fX(x̄) to y.
An update (`� y) of location ` = ( f , x̄) is trivial if y = f (x̄).

An update of structure X is an update of any location in X. A set ∆ of updates
of X is contradictory if it contains updates (` � y1) and (` � y2) with distinct
y1, y2; otherwise ∆ is consistent.

2.4 Sequential abstract state machines

Fix a vocabulary Υ and restrict attention to function symbols in Υ and terms
over Υ.
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Definition 2.3 (Syntax of rules). Rules over vocabulary Υ are defined by induc-
tion.

1. An assignment rule or simply assignment has the form

f (t1, . . . , tr) := t0 (2)

where f , the head of the assignment, is dynamic, r = Arity( f ), and t0, . . . , tr

are terms. If f is relational, then the head function of t0 is relational. The
assignment (2) may be called an f assignment.

2. A conditional rule has the form

if β then R1 else R2 (3)

where β is a Boolean-valued term and R1,R2 are Υ rules.

3. A parallel rule has the form

R1 ‖ R2 ‖ · · · ‖ Rk (4)

where k is a natural number and R1, . . . ,Rk are Υ rules. In case k = 0, we
write Skip. /

Definition 2.4 (Semantics of rules). Fix an Υ structure X. Every Υ rule R gener-
ates a finite set ∆ of updates in X. R fails in X if ∆ is contradictory; otherwise R
succeeds in X. To fire (or execute) rule R that succeeds in structure X means to
execute all ∆ updates in X.

1. An assignment f (t1, . . . , tr) := t0 generates a single update (`,VX(t0)) where
` =

(
f , (VX(t1), . . . ,VX(tr)

)
.

2. A conditional rule if β then R1 else R2 works exactly as R1, if β = > in
X, and exactly as R2 otherwise.

3. A parallel rule R1 ‖ R2 ‖ · · · ‖ Rk generates the union of the update
sets generated by rules R1, . . . ,Rk in X. /

Definition 2.5. A sequential ASM A is given by the following three components.
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1. A vocabulary Υ, denoted Voc(A).

2. A nonempty collection of Voc(A) structures, closed under isomorphisms.
These are the initial states of A. /

3. A Voc(A) rule, called the program of A and denoted Prog(A).

As we mentioned in §1, every sequential algorithm A is behaviorally identical
to some sequential ASM B; they have the same initial states and the same state-
transition function.

In the rest of the paper, by default, all ASMs are sequential.
Consider an ASM A. A Voc(A) structure X is terminal for A if Prog(A) pro-

duces no updates (not even trivial updates4) in X. A partial computation of A is a
finite sequence X0, X1, . . . , Xn of Υ structures where

• X0 is an initial state of A,

• every Xi+1 is obtained by executing Prog(A) in Xi, and

• no structure in the sequence, with a possible exception of Xn, is terminal.

If Xn is terminal, then the partial computation is terminating. A (reachable) state
of A is an Voc(A) structure that occurs in some partial computation of A.

A Boolean expression γ is a green light for an ASM A if it holds in the non-
terminal states of A and fails in the terminal states.

Lemma 2.6. Every ASM has a green light.

Proof. By induction on rule R, we construct a green light γR for any ASM with
program R. If R is an assignment, set γR = >. If R is the parallel composition of
rules Ri, set γR =

∨
i γRi . If R = if β then R1 else R2, set γR =

(
β ∧ γR1

)
∨(

¬β ∧ γR2

)
. �

In examples and applications, typically, such conditions are easily available.
Think of terminal states of finite automata or of halting control states of Turing
machines. In a while-loop program, the while condition is a green light.

4In applications, trivial updates of A may mean something for its environment.
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3 Reducts and expansions

In mathematical logic, a structure X is a reduct of a structure Y if Voc(X) ⊆
Voc(Y), the two structures have the same universe, and every Voc(X) symbol f
has the same interpretations in X and in Y . If X is a reduct of Y , then Y is an ex-
pansion of X. For example, the field of real numbers expands the additive group
of real numbers.

We say that an expansion Y of a structure X is uninformative if the additional
basic functions of Y (which are not basic functions of X) are dynamic and take
only their default values in Y . (The default values are defined in §2.3.) Clearly, X
has a unique uninformative expansion to Voc(B).

Definition 3.1. An ASM B is a faithful expansion of an ASM A if the following
conditions hold.

(E1) Voc(A) ⊆ Voc(B). The symbols in Voc(A) are the principal symbols of
Voc(B), and their interpretations in Voc(B) structures are principal basic
functions; the other Voc(B) symbols and their interpretations are ancillary.

(E2) All ancillary symbols are dynamic, and the initial states of B are the unin-
formative expansions of the initial states of A.

(E3) If Y is a Voc(B) structure and X the Voc(A) reduct of Y , then the principal-
function updates (including trivial updates) generated by Prog(B) in Y co-
incide with the those generated by Prog(A) in X, and the ancillary-function
updates generated by Prog(B) in Y are consistent. /

Corollary 3.2. Suppose that B is a faithful expansion of an ASM A, then the
following claims hold.

1. If X0, . . . , Xn is a partial computation of A then there is a unique partial com-
putation Y0, . . . ,Yn of B such that every Xi is the Voc(A) reduct of the corre-
sponding Yi.

2. If states Y0, . . . ,Yn of B form a partial computation of B, then their Voc(A)
reducts form a partial computation X0, . . . , Xn of A.

3. The Voc(A) reduct of a state of B is a state of A.
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If an ASM A computes a function F, one would expect that any faithful expan-
sion of A computes function F as well. To confirm this expectation, we need to
formalize what it means to compute a function. In the context of this paper, every
ASM state is endowed with a special copy of the set N of natural numbers. This
makes the desired formalization particularly easy for numerical partial functions
F : Nk → N.

Corollary 3.3. Suppose that an ASM A computes a partial numerical function
F : Nk → N in the following sense:

1. A has input variables ι1, . . . , ιn taking numerical values in the initial states,
and A has an output variable o,

2. all initial states of A are isomorphic except for the values of the input vari-
ables, and

3. the computation of A with initial state X eventually terminates if and only if
F is defined at tuple x̄ =

(
VX(ι1), . . . ,VX(ιn)

)
, in which case the final value of

o is F(x̄).

Then every faithful expansion of A computes F in the same sense. /

Corollary 3.3 can be generalized to computing more general functions and to
performing other tasks, but this is beyond the scope of this paper.

An ASM may be faithfully expanded by instrumenting its program for moni-
toring purposes. For example, if you are interested how often a particular assign-
ment σ fires, replace σ with a parallel composition

σ ‖ κ := κ + 1

where a fresh variable κ, initially zero, is used as a counter. A similar counter is
used in our Reversibility Theorem below.

4 Reversibility

Definition 4.1. An ASM B is reversible (as is) if there is an ASM C which re-
verses all B’s computations in the following sense. If Y0,Y1, . . . ,Yn is a partial
computation of B, then Yn,Yn−1, . . . ,Y0 is a terminating computation of C.
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Theorem 4.2 (Reversification Theorem). Every ASM A has a faithful reversible
expansion.

Proof. Enumerate the (occurrences of the) assignments in Prog(A) in the order
they occur:

σ1, σ2, . . . , σN

It is possible that σi, σ j are identical even though i , j. The metavariable n
will range over numbers 1, 2, . . . ,N. For each n, let f n be the head of σn, rn =

Arity( f n), and tn
0, tn

1, . . . , tn
rn

the terms such that

σn =
(

f n(tn
1, . . . , t

n
rn

) := tn
0

)
.

We construct an expansion B of A. The ancillary symbols of B are as follows.

1. A variable κ.

2. For every n, a unary relation symbol Firen.

3. For every n, unary function symbols f n
0 , f n

1 , . . . , f n
rn

.

The default term for κ is 0. The default term for all relations Firen is ⊥. The
default term for all functions f n

0 , f n
1 , . . . , f n

rn
is nil. Accordingly, the initial states

of B are obtained from the initial states of A by setting κ = 0, every Firen(x) = ⊥,
and every f n

i (x) = nil,
The intention is this. If X0, X1, . . . , Xl is a partial computation of B, then for

each k = 0, . . . , l we have the following.

1. The value of κ in Xk is k, so that κ counts the number of steps performed until
now; we call it a step counter.

2. Firen(κ) holds in Xk+1 if and only if σn fires in Xk.

3. The values of f n
1 (κ), . . . , f n

rn
(κ) in Xk+1 record the values of the terms tn

1, . . . , tn
rn

in Xk respectively, and the value of f n
0 (κ) in Xk+1 records the value of the term

f n(tn
1, . . . , t

n
rn

) in Xk.

The program of B is obtained from Prog(A) by replacing every assignment σn

with Instr(n) (an allusion to “instrumentation”) where
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Instr(n) =

σn ‖ κ := κ + 1 ‖ Firen(κ + 1) := > ‖

f n
0 (κ + 1) := f n(tn

1, . . . , t
n
rn

) ‖

f n
1 (κ + 1) := tn

1 ‖ . . . ‖ f n
rn

(κ + 1) := tn
rn

It is easy to check that the conditions (E1)–(E3) of Definition 3.1 hold, and B
is indeed a faithful expansion of A. In particular, if Y and X are as in (E3) and X
is terminal, then no assignment σn fires in X, and therefore no Instr(n) fires in Y ,
so that Y is terminal as well.

Lemma 4.3. If Y0, . . . ,Yk is a partial computation of B, then

• κ = k in Yk and

• if j > k then Firen( j), f n
0 ( j), . . . , f n

rn
( j) have their default values in Yk.

Proof of lemma. Induction on k. �

Now, we will construct an ASM C which reverses B’s computations. The
vocabulary of C is that of B, and any Voc(C) structure is an initial state of C. The
program of C is

if κ > 0 then
(
κ := κ − 1 ‖ PAR

n
Undo(n)

)
where PAR is parallel composition, n ranges over {1, 2, . . . ,N}, and

Undo(n) =

if Firen(κ) = > then

Firen(κ) := ⊥ ‖

f n
(

f n
1 (κ), . . . , f n

rn
(κ)

)
:= f n

0 (κ) ‖ f n
0 (κ) := nil ‖

f n
1 (κ) := nil ‖ . . . ‖ f n

rn
(κ) := nil

Lemma 4.4. Let Y be an arbitrary nonterminal Voc(B) structure such that all
functions Firen and f n

i have their default values at argument k = VY(κ) in Y. If
Prog(B) transforms Y to Y ′, then Prog(C) transforms Y ′ back to Y, i.e., Prog(C)
undoes the updates generated by Prog(B) and does nothing else.
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Proof of lemma. The updates generated by Prog(B) in Y are the updates generated
by the rules Instr(n) such that σn fires in Y . Since k = VY(κ), we have VY′(κ) =

k + 1 > 0, and therefore Prog(C) decrements κ. It also undoes the other updates
generated by the rules Instr(n). Indeed, suppose that σn fires in Y .

To undo the update Firen(k + 1)� >, Prog(C) sets Firen(k + 1) back to ⊥.
To undo the update f n(tn

1, . . . , t
n
rn

)
� tn

0, generated by σn itself, Prog(C) sets
f n

(
f n
1 (k + 1), . . . , f n

rn
(k + 1)

)
to f n

0 (k + 1). Recall that f n
1 (k + 1), . . . , f n

rn
(k + 1) record

tn
1, . . . , t

n
rn

in Y and f n
0 (k +1) records the value of f n(tn

1, . . . , t
n
rn

)
in Y . Thus, Prog(C)

sets f n(tn
1, . . . , t

n
rn

)
back to its value in Y .

To undo the updates of f n
0 (k + 1), f n

1 (k + 1), . . . , f n
rn

(k + 1), Prog(C) sets f n
0 (k +

1), f n
1 (k + 1), . . . , f n

rn
(k + 1) back to nil.

Thus, being executed in Y ′, Prog(C) undoes all updates generated by the rules
Instr(n) in Y . A simple inspection of Prog(C) shows that it does nothing else.
Thus, Prog(C) transforms Y ′ to Y . �

Now suppose that Y0, . . . ,Yn is a computation of B, k < n, Y = Yk, and Y ′ =

Yk+1. Then Y is nonterminal and, by Lemma 4.3, all Firen(κ) and f n
i (κ) have their

default values in Y . By Lemma 4.4, Prog(C) transforms Yk+1 to Yk. The Y0 is a
terminal state of C. Thus, C reverses all B’s computations. �

The proof of Reversification Theorem uses notation and the form of Prog(B)
which is convenient for the proof. In examples and applications, notation and
Prog(B) can be simplified.

Remark 4.5 (Notation). Let σn be an assignment
(
g(tn

1, . . . , t
n
r ) := tn

0
)

so that f n is
g. If σn is the only g assignment in Prog(A) or if every other g assignment σm in
Prog(A) is just another occurrence of σn, then the ancillary functions f n

i may be
denoted gi; no confusion arises. /

Recall that a green light for an ASM A is a Boolean-valued expression that
holds in the nonterminal states and fails in the terminal states.

Remark 4.6 (Green light and step counter). In Prog(B), every Instr(n) has an
occurrence of the assignment κ := κ + 1. A green light for A provides an efficient
way to deal with this excess. Notice that B increments the step counter exactly
when the green light is on.
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Case 1: Prog(A) has the form if γ then (k := k + 1 ‖ Π).
In this case, γ is a green light for A, and A has already a step counter, namely k.

Without loss of generality, k is the step counter κ used by Prog(B); if not, rename
one of the two variables. Notice that the assignment σ1 = (k := k + 1) needs
no instrumentation. There is no need to signal firings of σ1 because σ1 fires at
every step. And, when a step is completed, we know the previous value of the
step counter; there is no need to record it.

Let Instr−(Π) be the rule obtained from Π by first replacing every assignment
σn with the rule Instr(n) defined in the proof of the program, and then removing
all occurrences of k := k + 1. Then the program

if γ then
(
k := k + 1 ‖ Instr−(Π)

)
has only one occurrence of k := k + 1 and is equivalent to Prog(B).

Case 2: Prog(A) =
(
if γ then Π

)
where γ is a green light for A and the step

counter κ of Prog(B) does not occur in Prog(A).
The modified program if γ then

(
κ := κ + 1 ‖ Π

)
,

where κ is the step counter of B, is a faithful expansion of Prog(A), and thus Case 2
reduces to Case 1.

Case 3 is the general case.
By Lemma 2.6, every ASM program has a green light. If γ is a green light for

A and Π = Prog(A), then the program if γ then Π is equivalent to Prog(A),
and thus Case 3 reduces to Case 2. /

The rules Instr(n) and Undo(n), described in the proof of the theorem, are the
simplest in the case when rn = 0. In such a case, σn has the form v := t where v is
a variable, so that f n = v and tn

0 = t. Then

Instr(n) =

σn ‖ κ := κ + 1 ‖ Firen(κ + 1) := > ‖ v0(κ + 1) := v,

Undo(n) =

if Firen(κ) = > then

Firen := ⊥ ‖ v := v0(κ) ‖ v0(κ) := nil.
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Lemma 4.7. Suppose that an assignment σn to a variable v can fire only at the
last step of A and that the update generated by σn is never trivial. Then, Instr(n)
and Undo(n) can be simplified to

Instr(n) = σn ‖ κ := κ + 1

Undo(n) = if v , d then v := d

where d is the default term for v in Voc(A).

We do not assume that σn fires at the last step of every computation of A, and
so the expression v , d is not necessarily a green light for A.

Proof. Suppose that σn fires in state Y of B. Then Y is nonterminal, v = d in
Y , the next state Y ′ is terminal, and v , d in Y ′. It is easy to see the simplified
version of Undo(n) indeed undoes the updates generated by the simplified version
of Instr(n) in Y . �

5 Examples

To illustrate the reversification procedure of §4, we consider three simple exam-
ples. By the reversification procedure we mean not only the constructions in the
proof of Reversification Theorem, but also Remarks 4.5 and 4.6 and Lemma 4.7.
Unsurprisingly, in each case, the faithful reversible expansion produced by the
general-purpose procedure can be simplified.

5.1 Bisection algorithm

The well-known bisection algorithm solves the following problem where R is
the field of real numbers. Given a continuous function F : R→ R and reals a, b, ε
such that F(a) < 0 < F(b) and ε > 0, find a real c such that |F(c)| < ε. Here is a
draft program for the algorithm:

if |F
(
(a + b)/2

)
| ≥ ε then

if F
(
(a + b)/2

)
< 0 then a := (a + b)/2

elseif F
(
(a + b)/2

)
> 0 then b := (a + b)/2

elseif c = nil then c := (a + b)/2
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The condition c = nil in the last line ensures that computation stops when c
is assigned a real number for the first time.

The Boolean expression |F
(
(a + b)/2

)
| ≥ ε is not quite a green light for the

algorithm. When it is violated for the first time, c is still equal to nil. But the
equality c = nil is a green light. With an eye on using Remark 4.6, we modify
the draft program to the following program, our “official” program of an ASM A
representing the bisection algorithm.

if c = nil then

if F
(
(a + b)/2

)
< −ε then a := (a + b)/2

elseif F
(
(a + b)/2

)
> ε then b := (a + b)/2

else c := (a + b)/2

Voc(A) consists of the obligatory symbols, the symbols in Prog(A), and the
unary relation symbol Real. In every initial state of A, Real is (a copy of) the set
of real numbers, the static functions of Prog(A) have their standard meaning, and
c = nil.

Notice that Lemma 4.7 applies to Prog(A) with σn being c := (a+b)/2. Taking
this into account, the reversification procedure of §4 gives us a reversible expan-
sion B of A with the following program.

if c = nil then

κ := κ + 1 ‖

if F
(
(a + b)/2

)
< −ε then

a := (a + b)/2 ‖ Fire1(κ + 1) := > ‖ a0(κ + 1) := a

elseif F
(
(a + b)/2

)
> ε then

b := (a + b)/2 ‖ Fire2(κ + 1) := > ‖ b0(κ + 1) := b

else c := (a + b)/2

This program can be simplified (and remain reversible). Notice that

• if Fire1(k + 1) = >, then Fire2(k + 1) = ⊥, the previous value of b is the
current value of b, and the previous value of a is 2a − b where a, b are the
current values; and

• if Fire1(k + 1) = ⊥, then Fire2(k + 1) = >, the previous value of a is the
current value of a, and the previous value of b is 2b − a where a, b are the
current values.
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Thus, there is no need for functions a0, b0, recording the previous values of vari-
ables a, b, and there is no need for Fire2. We get:

if c = nil then

κ := κ + 1 ‖

if F
(
(a + b)/2

)
< −ε then

a := (a + b)/2 ‖ Fire1(κ + 1) := >

elseif F
(
(a + b)/2

)
> ε then b := (a + b)/2

else c := (a + b)/2

The corresponding inverse algorithm may have this program:

if κ > 0 then

κ := κ − 1 ‖ if c , nil then c := nil

‖ if Fire1(κ) = > then
(
Fire1(κ) := ⊥ ‖ a := 2a − b

)
else b := 2b − a

5.2 Linear-time sorting

The information needed to reverse each step of the bisection algorithm is rather
obvious; you don’t have to use our reversification procedure for that. Such infor-
mation is slightly less obvious in the case of the following sorting algorithm.

For any natural number n, the algorithm sorts an arbitrary array f of distinct
natural numbers < n in time ≤ 2n. Let m be the length of an input array f , so
that m ≤ n. The algorithm uses an auxiliary array g of length n which is initially
composed of zeroes.

Here is a simple illustration of the sorting procedure where n = 7 and f =

〈3, 6, 0〉. Traverse array f setting entries g[ f [i]] of g to 1 for each index i of f , i.e.,
setting g[3], g[6] and g[0] to 1, so that g becomes 〈1, 0, 0, 1, 0, 0, 1〉. Each index j
of g with g[ j] = 1 is an entry of the input array f . Next, traverse array g putting
the indices j with g[ j] = 1 — in the order that they occur — back into array f , so
that f becomes 〈0, 3, 6〉. Voila, f has been sorted in m + n steps.

We describe an ASM A representing the sorting algorithm. Arrays will be
viewed as functions on finite initial segments of natural numbers. The nonobliga-
tory function symbols in Voc(A) are as follows.
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0. Constants m, n and variables k, l.

1. Unary dynamic symbols f and g.

2. Binary static symbols <,+,− where < is relational.

In every initial state of A,

0. m and n are natural numbers such that m ≤ n, and k = l = 0,

1. f , g are arrays of lengths m, n respectively, the entries of f are distinct natural
numbers < n, and all entries of g are zero,

2. the arithmetical operations +,− and relation < work as expected on natural
numbers.

In the following program of A, k is the step counter, and l indicates the current
position in array f to be filled in.

if k < m + n then

k := k + 1 ‖

if k < m then g( f (k)) := 1

elseif g(k − m) = 1 then
(
f (l) := k − m ‖ l := l + 1

)
The reversification procedure of §4 plus some simplifications described below

give us a faithful reversible expansion B of A with a program

if k < m + n then

k := k + 1 ‖

if k < m then
(
g( f (k)) := 1 ‖ g1(k + 1) := f (k)

)
elseif g(k − m) = 1 then

f (l) := k − m ‖ l := l + 1 ‖ f0(k + 1) := f (l)

We made some simplifications of Prog(B) by discarding obviously unnecessary
ancillary functions.

• It is unnecessary to record the firings of assignment σ2 =
(
g( f (k)) := 1

)
be-

cause, in the states of B, the condition Fire2(k) = > is expressed by the in-
equality k ≤ m.
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• The ancillary function g0 recording the previous values of g is unnecessary
because those values are all zeroes.

• The final two assignments in Prog(A) fire simultaneously, so that one fire-
recording function, say Fire3, suffices. But even that one ancillary function
is unnecessary because, in the states of B, the condition Fire3(k) = > is ex-
pressed by m < k ∧ g(k − m − 1) = 1.

• The ancillary functions f1 and l0 recording the previous value of l are unneces-
sary because we know that value, it is l − 1.

The desired inverse algorithm C may be given by this program:

if k > 0 then

k := k − 1
‖ if k ≤ m then

(
g(g1(k)) := 0 ‖ g1(k) := nil

)
‖ if m < k and g(k − m − 1) = 1 then

f (l) := f0(k) ‖ l := l − 1 ‖ f0(k) := nil

Obviously, A is not reversible as is; its final state doesn’t have information for
reconstructing the initial f . But do we need both remaining ancillary functions?
Since f0 is obliterated after the first n steps of C, f0 seems unlikely on its own to
ensure reversibility. But it does. The reason is that, after the first n steps of C,
the original array f is restored. Recall that g1(k) records the value f (k − 1) of the
original f for each positive k ≤ m, but we can discard g1 and modify Prog(C) to

if k > 0 then k := k − 1
‖ if k ≤ m then g( f (k − 1)) := 0
‖ if m < k and g(k − m − 1) = 1 then

f (l) := f0(k) ‖ l := l − 1 ‖ f0(k) := nil

Alternatively, we can discard f0 but keep g1. Indeed, the purpose of the as-
signment f (l) := f0(k) in Prog(C) is to restore f (l) to its original value. But recall
that every f (l) is recorded as g1(l + 1). So we can modify Prog(C) to

if k > 0 then k := k − 1
‖ if k ≤ m then

(
g(g1(k)) := 0 ‖ g1(k) := nil

)
‖ if m < k and g(k − m − 1) = 1 then

f (l) := g1(l + 1) ‖ l := l − 1
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5.3 External functions and Karger’s algorithm

Until now, for simplicity, we restricted attention to algorithms that are isolated
in the sense that their computations are not influenced by the environment. Actu-
ally, the analysis of sequential algorithms generalizes naturally and easily to the
case when the environment can influence the computation of an algorithm [13,
§8]. To this end, so-called external functions are used.

Syntactically, the item (V3) in §2.2 should be refined to say that a function
symbol f may be dynamic, or static, or external. Semantically, external functions
are treated as oracles5 When an algorithm evaluates an external function f at some
input x̄, it is the environment (and typically the operating system) that supplies the
value f (x̄). The value is well defined at any given step of the algorithm; if f is
called several times, during the same step, on the same input x̄, the same value is
given each time. But, at a different step, a different value f (x̄) may be given.

To illustrate reversification involving an external function, we turn attention to
Karger’s algorithm [15]. In graph theory, a minimum cut of a graph is a cut (split-
ting the vertices into two disjoint subsets) that minimizes the number of edges
crossing the cut. Using randomization, Karger’s algorithm constructs a cut which
is a minimum cut with a certain probability. That probability is small but only
polynomially (in the number of vertices) small. Here we are not interested in the
minimum cut problem, only in the algorithm itself.

Terminology 5.1. Let G = (V, E) be a graph and consider a partition P of the
vertex set V into disjoint subsets which we call cells; formally P is the set of the
cells. The P-ends of an edge {x, y} are the cells containing the vertices x and y.
An edge is inter-cell (relative to P) if its P-ends are distinct. /

Now we describe a version of Karger’s algorithm that we call KA. Given a
finite connected graph (V, E), KA works with partitions of the vertex set V , one
partition at a time, and KA keeps track of the set Inter of the inter-cell edges.
KA starts with the finest partition P =

{
{v} : v ∈ V

}
and Inter = E. If the

current partition P has > 2 cells, then Inter is nonempty because the graph (V, E) is
connected. In this case, KA selects a random inter-cell edge e, merges the P-ends

5In that sense, our generalization is similar to the oracle generalization of Turing machines.



BEATCS no 134

62

p, q of e into one cell, and removes from Inter the edges in
{
{x, y} : x ∈ p∧ y ∈ q

}
.

The result is a coarser partition and smaller Inter. When the current partition has
at most two cells, the algorithm stops.

Next we describe an ASM A representing KA. There are many ways to rep-
resent KA as an ASM. Thinking of the convenience of description rather than
implementation of KA, we chose to be close to naive set theory. Let U be a set
that includes V and all subsets of V and all sets of subsets of V (which is much
more than needed but never mind). The relation ∈ on U has its standard meaning;
the vertices are treated as atoms (or urelements), not sets.

The nonobligatory function symbols of Voc(A) are as follows.

0. Nullary variables P and Inter.

1. Unary static symbols V, E, |.|, and a unary external symbol R.

2. Binary static symbols >,−, Merge, and Intra, where > is relational.

In every initial state of A,

• V , U and ∈ are as described above (up to isomorphism). |s| is the cardinality
of a set s, and − is the set-theoretic difference. The relation > is the standard
ordering of natural numbers

• E is a set of unordered pairs {x, y} with x, y ∈ V such that the graph (V, E) is
connected. P is the finest partition

{
{v} : v ∈ V

}
of V . Inter = E.

• If e ∈ E, S is a partition of V , and p, q are the S -ends of e, then

– Merge(e, S ) = (S − {p, q}) ∪ {p ∪ q}, and

– Intra(e, S ) =
{
{x, y} : x ∈ p ∧ y ∈ q

}
.

The external function R takes a nonempty set and returns a member of it. The
program of A can be this:

if |P| > 2 then

P := Merge(R(Inter), P)
‖ Inter := Inter − Intra(R(Inter), P)
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Now we apply the reversification procedure of Theorem 4.2, taking Re-
mark 4.6 into account. We also take into account that both assignments fire at
every step of the algorithm and so there is no need to record the firings. This gives
us a faithful reversible expansion B of A with a program

if |P| > 2 then
κ := κ + 1 ‖

P := Merge(R(Inter), P) ‖ P0(κ + 1) := P ‖

Inter := Inter − Intra(R(Inter), P) ‖ Inter0(κ + 1) := Inter

The corresponding inverse ASM C may be given by the program

if κ > 0 then
κ := κ − 1 ‖

P := P0(κ) ‖ P0(κ) := nil ‖
Inter := Inter0(κ) ‖ Inter0(κ) := nil

Remark 5.2. A custom crafted faithful expansion may be more efficient in various
ways. For example, instead of recording the whole P, it may record just one of
the two P-ends of R(Inter). This would require a richer vocabulary.

6 Conclusion

We have shown how to reversify an arbitrary sequential algorithm A by gently
instrumenting A with bookkeeping machinery. The result is a step-for-step re-
versible algorithm B whose behavior, as far as the vocabulary of A is concerned,
is identical to that of A.

We work with an ASM (abstract state machine) representation of the given
algorithm which is behaviorally identical to it. The theory of such representation
is developed in [13], and the practicality of it has been amply demonstrated.
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Abstract

We report on major progress in integer programming in variable dimension, asserting
that the problem, with linear or separable-convex objective, is fixed-parameter tractable pa-
rameterized by the numeric measure and sparsity measure of the defining matrix.

Integer linear programming, with data w, l, u ∈ Zn, A ∈ Zm×n, and b ∈ Zm, is the problem

min{wx : Ax = b, l ≤ x ≤ u, x ∈ Zn} . (1)

It has a very broad expressive power and numerous applications, but is generally NP-hard. A
well known result [4] asserts that integer linear programming is fixed-parameter tractable (see
[1]) when parameterized by the dimension (number of variables) n, but this does not help in
typical situations where the dimension is large and forms a variable part of the input.

Here we report on a recent powerful result in integer programming in variable dimension,
asserting that the problem is fixed-parameter tractable when parameterized by the numeric mea-
sure a := ‖A‖∞ := maxi, j |Ai, j| and the sparsity measure d := min{td(A), td(AT )} of A. Here td(A)
is the tree-depth of A, defined below, and AT is the transpose. The result holds more generally
for integer nonlinear programming where the objective function is separable-convex, that is, of
the form f (x) =

∑n
i=1 fi(xi) where each fi is a univariate convex function which takes on integer

values on integer arguments and which is given by an evaluation oracle. Below we denote by
L := log(‖u − l‖∞ + 1) the bit complexity of the lower and upper bounds, and the times are in
terms of the number of arithmetic operations and oracle queries.

Theorem The linear or separable-convex program (2) is fixed-parameter tractable on a, d; and
if d = td(AT ) and is fixed, it is polynomial time solvable even if unary encoded a is variable:

min{ f (x) : Ax = b, l ≤ x ≤ u, x ∈ Zn} . (2)

More specifically, there exist computable functions h1 and h2 such that the following hold:
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1. [3] When f (x) = wx is linear, the problem is solvable in fixed-parameter tractable time

h1(a, d)poly(n) if d = td(A) and (a + 1)h2(d)poly(n) if d = td(AT ) ;

2. [2] When f (x) is separable-convex, it is solvable in fixed-parameter tractable time

h1(a, d)poly(n)L if d = td(A) and (a + 1)h2(d)poly(n)L if d = td(AT ) .

The theorem concerns sparse integer programming in the sense that at least one of A and
AT has small tree-depth, a parameter which plays a central role in sparsity, see [5], and which
is defined as follows. The height of a rooted tree is the maximum number of vertices on a path
from the root to a leaf. Given a graph G = (V, E), a rooted tree on V is valid for G if for each
edge { j, k} ∈ E one of j, k lies on the path from the root to the other. The tree-depth td(G) of G is
the smallest height of a rooted tree which is valid for G. The graph of an m × n matrix A is the
graph G(A) on [n] where j, k is an edge if and only if there is an i ∈ [m] such that Ai, jAi,k , 0.
The tree-depth of A is the tree-depth td(A) := td(G(A)) of its graph.

Here is a very rough outline of the proof. The complete details are in [2, 3].

1. Few Graver-best steps suffice. Define a partial order v on Rn by x v y if xiyi ≥ 0 and
|xi| ≤ |yi| for all i. The Graver basis of the integer m × n matrix A is defined to be the finite set
G(A) ⊂ Zn of v-minimal elements in {z ∈ Zn : Az = 0, z , 0}. Given a feasible point x in (2), a
Graver-best step at x is a step s ∈ Zn such that y := x + s is again feasible and has objective value
at least as good as any feasible x + cz with c ∈ Z+ and z ∈ G(A).

It can be shown that, starting from any feasible point, an optimal point can be reached using
a suitably bounded number of Graver-best steps. And, an initial feasible point can be found, or
infeasibility detected, by a suitable auxiliary integer program. See [6] for details.

2. Graver norm bounds. The parametrization by a = ‖A‖∞ and d = min{td(A), td(AT )} of the
matrix A enables to bound the norm of elements in its Graver basis G(A) as follows. It can be
shown that there exist functions g1 and g2 such that, if d = td(A) then ‖x‖∞ ≤ g1(a, d) for all
x ∈ G(A), whereas if d = td(AT ) then ‖x‖1 ≤ (a + 1)g2(d) for all x ∈ G(A).

3. Finding Graver-best steps. Let x be a feasible point in (2) and let c ∈ Z+ be a given step size.
Then a best step with step size c is a solution of one of the following auxiliary integer programs
in variables z, for each of the cases d = td(A) and d = td(AT ) respectively,

min{ f (x + cz) : Ax = 0, l ≤ x + cz ≤ u, ‖z‖∞ ≤ g1(a, d), z ∈ Zn} , (3)

min{ f (x + cz) : Ax = 0, l ≤ x + cz ≤ u, ‖z‖1 ≤ (a + 1)g2(d), z ∈ Zn} . (4)

Since the variables in these programs are bounded by functions of the parameters only, it can be
shown that each of these programs can be solved efficiently by recursion on a suitable tree of
small height, which certifies that either d = td(A) or d = td(AT ) respectively, is small. It can also
be shown that a small list of potential step sizes c ∈ Z+ can be produced, and then the suitable
program (3) or (4) is repeatedly solved for each step size in the list. Finally, the Graver-best step
at x is taken to be that s := cz which gives the best improvement over all.
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Report on BCTCS 2021

The 37th British Colloquium for Theoretical Computer Science

29–31 March 2021, University of Liverpool

Patrick Totzke and Michele Zito

The British Colloquium for Theoretical Computer Science (BCTCS) is an annual
forum in which researchers in Theoretical Computer Science can meet, present
research findings, and discuss developments in the field. It also provides a wel-
coming environment for PhD students to gain experience in presenting their work
to a broader audience, and to benefit from contact with established researchers.

BCTCS 2021 was hosted by the University of Liverpool and held from 29th

to 31st March, 2021. Due to the on-going COVID-19 pandemic, all talks were
presented over Zoom, and Gather.town was used to encourage virtual network-
ing. The meeting was well attended, attracting 128 registered participants, and
featured an interesting and wide-ranging programme of five invited talks and 25
contributed talks.

The meeting spanned three days, with each morning session and each after-
noon session opening with an invited keynote lecture. The meeting opened on the
first morning with an invited talk by Eleni Akrida (Durham) on algorithmic prop-
erties of temporal graphs, and the afternoon session opened with an invited talk
by Herbert Edelsbrunner (Vienna) on the properties of random polytopes inscribed
on the 2-sphere. The second day opened with an invited talk by Alessandra Russo
(London) on logic-based machine learning,. and the afternoon session opened
with the LMS Keynote Lecture in Discrete Maths delivered by Professor Jan Kra-
jíček (Prague), who gave an engaging presentation on proof complexity. The third
and final day of the meeting opened with an invited lecture by Kousha Etessami
(Edinburgh) on computing fixed points of monotone functions.

BCTCS 2022 will be hosted by Swansea University. Researchers and PhD
students wishing to contribute talks concerning any aspect of Theoretical Com-
puter Science are cordially invited to do so. Further details are available from the
BCTCS website at www.bctcs.ac.uk.
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Invited Talks

Eleni Akrida (Durham University)
Temporal graphs: Algorithms and complexity
We discuss here the notion of temporal graphs, which are abstract models of net-
works that change as time progresses. In particular, a temporal graph on an un-
derlying graph G is such that the edges of G have labels that are positive integers
indicating discrete times (moments) of availability. A basic notion that arises
from that definition is that of a journey, which extends the notion of a path in
static graphs: it is a path in which subsequent edges appear with increasing la-
bels. In this talk, we present recent work on temporal graphs through the lens
of algorithms and complexity. We examine foremost journeys, design issues of
temporal networks, as well as issues of traversal including temporal variants of
the Travelling salesman Problem.

Herbert Edelsbrunner (IST Vienna)
Random triangles and random inscribed polytopes
Given three random points on a circle, the triangle they form is acute with proba-
bility 1/4. In contrast, the triangle formed by three random points in the 2-sphere
is acute with probability 1/2. Both of these claims have short geometric proofs.
We use the latter fact to prove that a triangle in the boundary of a random inscribed
3-polytope is acute with probability 1/2.

Picking n points uniformly at random on the 2-sphere, we take the convex
hull, which is an inscribed 3-polytope. The expected mean width, surface area,
and volume of this polytope are 2(n−1)/(n+1), 4π[(n−1)(n−2)]/[(n+1)(n+2)],
and (4π/3)[(n − 1)(n − 2)(n − 3)]/[(n + 1)(n + 2)(n + 3)]. These formulas are not
new but our combinatorial proofs are.

This is joint work with Arseniy Akopyan and Anton Nikitenko.

Kousha Etessami (University of Edinburgh)
The complexity of computing a fixed point of a monotone function, and some
applications
The task of computing a fixed point of a monotone function arises in a variety
of applications. In this talk I describe recent work in which we have studied
the computational complexity of computing a fixed point of a given monotone
function that maps a finite d-dimensional grid lattice with sides of length N =

2n to itself, where the monotone function is presented succinctly via a boolean
circuit with d · n input gates and d · n output gates, and the underlying ordering is
the standard coordinate-wise partial order on d-dimensional vectors in [N]d. By
Tarski’s theorem, any monotone function has a fixed point.

We refer to the search problem of either finding a fixed point or finding a wit-
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ness pair for non-monotonicity as the Tarski problem. It turns out that Tarski
subsumes a number of important computational problems. In particular, it is es-
sentially computationally equivalent to the task of computing a pure Nash Equi-
librium for (succinctly presented) super-modular games, or games with strategic
complementarities, which are very widely studied classes of games in economics.
Also, computing the value of Condon’s turn-based simple stochastic (reachabil-
ity) games, as well as the more general problem of computing the value of Shap-
ley’s original stochastic games to within a given accuracy, is reducible to Tarski.
Tarski is contained in both the total search complexity classes PLS and PPAD.

This is joint work with C. Papadimitriou, A. Rubinstein, and M. Yannakakis.

Jan Krajíček (Charles University, Prague)
LMS Keynote Lecture in Discrete Maths
Proof complexity
Proof complexity is an area connecting mathematical logic and computational
complexity theory. It has several facets and I try to explain what some of these
are. In particular, I discuss a few ways proof complexity relates to the existence
of algorithms of various types.

Alessandra Russo (Imperial College London)
Logic-based learning for interpretable AI
Learning interpretable programs from data is one of the main challenges of AI.
Over the last two decades there has been a growing interest in logic-based learn-
ing, a field of machine learning aimed at developing algorithms and systems for
learning programs that can explain labelled data in the context of given back-
ground knowledge. Contrary to the black-box Deep Learning methods, logic-
based learning systems learn programs that can be easily expressed into plain En-
glish and explained to human users, so facilitating a closer interaction between
humans and machines. In this talk, I present recent advances in the field of
logic-based learning. I introduce frameworks and algorithms for learning dif-
ferent classes of programs, ranging from definite programs under the Least Her-
brand model semantics, to highly expressive non-monotonic programs under the
Answer Set semantics. Such programs include normal rules, non-determinism,
choice rules, hard and weak constraints, which are particularly useful for mod-
elling human preferences. I discuss the relationship between these frameworks
and illustrate a range of real-world problems that have been addressed using these
systems, and open challenges in this area.
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Contributed Talks

Duncan Adamson (University of Liverpool)
Ranking bracelets in polynomial time
Ranking and unranking combinatorial objects is a well studied problem, with
classical results for words, trees and partitions. More recently polynomial time
algorithms have been provided for necklaces, also known as cyclic words. De-
spite this, the problem of ranking and unranking bracelets (also known as turnover
necklaces) has remained a noted open problem. In this talk the first polynomial
time algorithms for ranking and unranking bracelets are presented.

Benjamin Bumpus (University of Glasgow)
Spined categories: generalising tree-width beyond graphs
Problems that are NP-hard in general are often tractable on inputs that have a re-
cursive structure. For instance consider classes defined in terms of “graph decom-
positions” such as of bounded tree- or clique-width graphs. Given the algorithmic
success of graph decompositions, it is natural to seek analogues of these notions in
other settings. What should a “tree-width-k” digraph or lattice or temporal graph
even look like?

Since most decomposition notions are defined in terms of the internal struc-
ture of the decomposed object, generalizing a given notion of decomposition to
a larger class of objects tends to be an arduous task. In this talk I show how this
difficulty can be reduced significantly by finding a characteristic property formu-
lated purely in terms of the category that the decomposed objects inhabit, which
defines the decomposition independently of the internal structure. I introduce an
abstract characterisation of tree-width as a vast generalisation of Halin’s definition
of tree-width as the maximal graph parameter sharing certain properties with the
Hadwiger number and chromatic number. Our uniform construction of tree-width
provides a roadmap to the discovery of new tree-width-like parameters simply by
collecting the relevant objects into our new notion of a spined category.

This is joint work with Zoltan A. Kocsis.

Marcel Dall’Agnol (University of Warwick)
Quantum proofs of proximity
With the prevalence of massive datasets and small computing devices, offloading
computation becomes increasingly important. One may model this problem as
follows: a weak device (the verifier) holds an input string and communicates with
an all-powerful computer (the prover) so as to verify the validity of this string.
Since the verifier cannot perform the verification on its own, the prover provides
a digest of the computational task, allowing the verifier to check that it was per-
formed correctly. In the extreme setting of property testing, the verifier cannot
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even read all of its input, and must decide whether it is valid or far from any valid
string; in this case, the the digest is called a proof of proximity. We formalise
the notion of quantum proofs of proximity, where prover and verifier are quantum
computers, and show that a large class of properties admits quantum speedups.
We also begin to chart the complexity landscape of the quantum/classical as well
as the interactive/non-interactive variants of these proof systems.

This is joint work with Tom Gur and Subhayan Roy Moulik.

Bhaskar DasGupta (University of Illinois at Chicago)
Maximizing coverage while ensuring fairness: a tale of conflicting objectives
Ensuring fairness in computational problems has emerged as a key topic during
recent years, buoyed by considerations for equitable resource distributions and so-
cial justice. It is possible to incorporate fairness in computational problems from
several perspectives, such as using optimization, game-theoretic or machine learn-
ing frameworks. In this talk we address the problem of incorporating fairness from
a combinatorial optimization perspective. We formulate a combinatorial optimiza-
tion framework, suitable for analysis by researchers in approximation algorithms
and related areas, that incorporates fairness in maximum coverage problems as
an interplay between two conflicting objectives. Fairness is imposed in coverage
by using colouring constraints that minimizes the discrepancies between num-
ber of elements of different colors covered by selected sets; this is in contrast to
the usual discrepancy minimization problems studied extensively in the literature
where (usually two) colors are not given a priori but need to be selected to mini-
mize the maximum color discrepancy of each individual set. Our main results are
a set of randomized and deterministic approximation algorithms that attempts to
simultaneously approximate both fairness and coverage in this framework.

This is joint work with A Asudeh, T Berger-Wolf and A Sidiropoulos.

Andrei-Cristian Diaconu (University of Oxford)
Controlling control: functional language design and implementation
The design and implementation of functional languages is a problem that has been
tackled from many perspectives. Generally, one starts with a formal specification
of the semantics, after which this is used to derive an implementation of the lan-
guage (e.g., an interpreter). The usual (operational) approaches to giving seman-
tics are small-step, big-step and definitional interpreters, the last one capturing
both a formal specification of the language and an actual implementation. How-
ever, the presentation of a functional language should aim to use a mixture of
these (e.g., provide a small-step semantics, and then implement a definitional in-
terpreter). This becomes a problem when languages with more complex control
mechanisms such as exception handling and concurrency are considered, because
the mentioned approaches generally do not scale well.
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In this talk, we present a unified view of semantics and implementation, that
scales well with the complexity of the language, whilst still giving one the ability
to reason about it. We first present a simple and powerful way to specify small-
step operational semantics using evaluation contexts, which allow us to succinctly
capture complex control mechanisms. We then show how the idea of evaluation
contexts is tightly linked to delimited continuations. Furthermore, delimited con-
tinuations can then be used to implement a definitional interpreter, which is both
concise and highly extensible. To achieve this, we make use of various control
operators and employ multi-prompt delimited continuations. Finally, we explore
how the delimited continuation approach relates to other similar approaches of
implementing interpreters, such as effects-and-handlers and monadic reflection.

Alejandro Flores-Lamas (Royal Holloway, University of London)
Solving the distance k-clique problem in 1-outerplanar graphs
A clique is a subset of vertices of a simple graph G in which each vertex in the set
is adjacent to all other vertices in it; in other words, any pair of such vertices are
connected. Similarly, a distance k-clique is a subset of vertices in which any pair
of vertices in the set are connected by at most k-edges; thus, a clique is a distance
1-clique set. A common formulation of these sets as a problem asks to find a Max-
imum Distance k-Clique, MDkC, from a given graph; i.e., the largest cardinality
set. This problem is NP-hard in arbitrary graphs. In this work, we address the
MDkC problem in 1-outerplanar graphs; i.e., graphs that admit a drawing on the
plane such that its edges only intersect at the vertices, and each vertex lies on the
outer face of the drawing. Our approach to solving this problem was first finding
an MDkC set in a tree. Then, we adapted this algorithm to run in 1-outerplanar
graphs. The proposed algorithm uses dynamic programming, and it goes through
two phases. In the first phase, the algorithm follows a postorder traversal on a tree
decomposition of G to compute the size of an MDkC set. Then, during a second
traversal (top-bottom) it identifies the vertices that belong to the set. The run-
ning time of this algorithm is O

(
(k + 1) · 2τ+1 · n

)
, where k comes from the MDkC

problem, while τ and n are the treewidth and order of G, respectively.

Arved Friedemann (Swansea University)
Propagator networks for unification and proof search
Logical languages have often shown to be useful as they give compact code for
a huge variety of search problems. However, their performance highly depends
on the underlying search engine. Propagator networks have been developed that
combine the principles of SAT , SMT and CSP solvers all in one formalism. These
networks can be used to get a general notion of what unit propagation means for
more than just boolean functions and they can be easily parallelised. Here, we
present a framework for propagator networks that can be used to easily model
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unification and branching and create a logical language to perform proof search
for PROLOG-like languages.

This is joint work with Philipp Dargel.

Cameron Hargreaves (University of Liverpool)
The earth movers’ distance as a metric for inorganic compositions
Computational chemists have an intuitive grasp of what makes two compositions
“chemically similar”, but this concept is surprisingly difficult to capture using
standard numeric techniques. Here we present the earth movers’ distance (EMD)
as a measure of similarity between two compounds, which operates by optimally
pairing elements in a source composition to their most similar elements in a target
composition and scoring the resultant similarities. This is akin to the cognitive
process by which humans judge chemical similarity and as such, the resultant
distances consistently align with human understanding. The chemical formula
gives a mathematically abstract representation of the inorganic material which is
typically difficult to work with. By contrast, we can use a well-formed distance
in a wide range of analytical techniques, allowing us to cement these abstrac-
tions into tangible information. This is demonstrated effectively on the 12,567
binary structures of the ICSD, where we use this distance to plot detailed chem-
ical maps which separate compositions into families of clear similarity both on a
global and local scale. These maps can be clustered using unsupervised machine
learning techniques to automatically partition our compounds into digestible sub-
groups which enables us to identify and distil critical chemical trends that would
otherwise have been overlooked. We can additionally use these distances for the
automated retrieval of structures from chemical databases, where an exact formu-
lation may never have been reported but a closely related structure provides the
reference needed. This metric is fast to compute between two compositions in
practice, making it a strong candidate for many other applications in data driven
materials discovery. We discuss how the EMD is calculated between two compo-
sitions, and demonstrate strengths against the standard metric.

Alexandros Hollender (University of Oxford)
The complexity of gradient descent: CLS = PPAD ∩ PLS
We study search problems that can be solved by performing gradient descent on
a bounded convex polytopal domain and show that this class is equal to the in-
tersection of two well-known classes: PPAD and PLS. As our main underlying
technical contribution, we show that computing a Karush-Kuhn-Tucker (KKT)
point of a continuously differentiable function over the domain [0, 1]2 is PPAD
∩ PLS-complete. This is the first natural problem to be shown complete for this
class. Our results also imply that the class CLS (Continuous Local Search) –
which was defined by Daskalakis and Papadimitriou as a more "natural" counter-
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part to PPAD ∩ PLS and contains many interesting problems – is itself equal to
PPAD ∩ PLS.

This is joint work with John Fearnley, Paul Goldberg and Rahul Savani.

Finnbar Keating (University of Warwick)
Resolving data flow dependencies of concurrent programs with a graded monad
In concurrent programs that interact with memory, it is important to know that
variables are read from and written to in the correct order to prevent race condi-
tions or inconsistent data. To this end, we introduce a graded monad for identi-
fying the exact memory locations read and written by a given function. With this
we can replace Haskell’s IO monad with a variant indexed by a representation of
the operations performed. This new information allows us to identify data-flow
dependencies between functions at the type-level; that is, if one function reads a
memory cell that is written to by another function we might wish to evaluate the
latter before the former or vice-versa depending on the context.

With these dependencies known at compile-time, we then provide a function
that establishes the correct order of execution for these program parts at compile-
time with respect to their data-flow dependencies. This compile-time sort even
allows us to identify functions that can be run in parallel, and can skip evaluation
of code that relies on state that has not changed. We also prevent compilation
in the presence of two errors: race conditions via multiple functions writing to
the same memory cell, and dependency loops from functions writing to cells that
other functions read from.

Peter Kiss (University of Warwick)
Dynamic matchings
We present a framework for deterministically rounding a dynamic fractional match-
ing. Applying our framework in a black-box manner on top of existing fractional
matching algorithms, we derive the following new results: the first determinis-
tic algorithm for maintaining a (2−δ)-approximate maximum matching in a fully
dynamic bipartite graph, in arbitrarily small polynomial update time; the first de-
terministic algorithm for maintaining a (1+δ)-approximate maximum matching in
a decremental bipartite graph, in polylogarithmic update time; and the first de-
terministic algorithm for maintaining a (2+δ)-approximate maximum matching in
a fully dynamic general graph, in small polylogarithmic (specifically, O(log4 n))
update time.

Our rounding scheme works by maintaining a good matching-sparsifier with
bounded arboricity, and then applying the algorithm of Peleg and Solomon to
maintain a near-optimal matching in this low arboricity graph. To the best of our
knowledge, this is the first dynamic matching algorithm that works on general
graphs by using an algorithm for low-arboricity graphs as a black-box subroutine.
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Nina Klobas (Durham University)
Fast recognition of some parametric graph families
Understanding the cycle (or anticycle) structure of a graph is fundamentally re-
lated to graph families such as trees, perfect graphs, bipartite graphs, chordal
graphs, pancyclic graphs, and many others. A particularly strong cycle-related
property is the notion of cycle-regularity, introduced by Mollard, which has been
used to better understand the structure of graph families such as hypercubes or
generalized Petersen graphs. In this talk we present three graph families, namely
I-graphs, double generalized Petersen graphs and folded cubes and show how their
cyclic structure helped us devise linear time recognition algorithms for them.

Joe Livesey (University of Liverpool)
Propositional gossip protocols
Gossip protocols are programs that can be used by a group of agents to synchro-
nise what they know. Assuming each agent holds a secret, the goal of a protocol is
to reach a situation in which all agents know all secrets. Distributed epistemic gos-
sip protocols use epistemic formulas in the component programs for the agents.

We investigate open problems regarding propositional gossip protocols, in
which whether an agent wants to make a call depends only on their currently
known set of secrets. Specifically, we show that all correct propositional gossip
protocols, i.e., ones that always terminate in a situation where all agents know
all secrets, require the communication graph to be complete, whilst investigating
the minimum number of calls required. We also investigate the complexity of the
problem of checking correctness of a given propositional gossip protocol, before
discussing implementing such a check with model checker NuSMV.

Lily Major (Aberyswyth University)
Developments with manipulating Lyndon factorizations using evolutionary com-
putation methods
String factorization is an important tool for partitioning data for parallel process-
ing and other algorithmic techniques often found in the context of big data applica-
tions such as bioinformatics or compression. Duval’s well-known linear algorithm
uniquely factors a string over an ordered alphabet into Lyndon words, patterned
strings which are strictly smaller than all of their cyclic rotations. While Du-
val’s algorithm produces a pre-determined factorization, modern applications mo-
tivate the demand for factorizations with specific properties, e.g., those that mini-
mize/maximize the number of factors, or consist of factors with similar lengths.

We considered the problem of finding an alphabet ordering that yields a Lyn-
don factorization with such properties. For problems with no known heuristics,
evolutionary computation methods may be useful, as such, we produced a flexible
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evolutionary framework and evaluated it on biological sequence data. For the min-
imization case, we proposed a new problem-specific heuristic, Flexi-Duval, and
a problem-specific mutation operator for Lyndon factorization. We have shown
that for individual amino acid sequences, very long (often single) Lyndon factors
can be produced using Flexi-Duval, and in comparison with Duval’s algorithm, a
much more balanced length for each Lyndon factor is achievable for specific texts.

We also consider the balancing problem for a much larger range of input texts,
including random sequences, repetitions with some introduced noise, and natural
language text corpora. We consider improvements to the Flexi-Duval algorithm
and evaluate it with the broader input texts, and consider the problem of maximiz-
ing the number of Lyndon factors via evolutionary computation methods.

Diptapriyo Majumdar (Royal Holloway, University of London)
Tractability of Konig edge deletion problems
A graph is said to be a Konig graph if the size of its maximum matching is equal
to the size of its minimum vertex cover. The Konig edge deletion problem asks
if a graph has a set of at most k edges whose deletion results in a Konig graph.
While the vertex deletion version of this problem was shown to be fixed-parameter
tractable (FPT) more than a decade ago, the FPT status of Konig edge deletion
has remained open since then. It has been conjectured to be W[1]-hard in several
papers. In this paper, we settle the conjecture by proving it W[1]-hard. In addition,
we prove that a variant of this problem, where we are given a graph G and a
maximum matching M, and we want a Konig edge deletion set of size at most k
that is disjoint from M, is fixed-parameter tractable.

This is joint work with Rian Neogi, Venkatesh Raman, and S. Vaishali.

Michael McKay (University of Glasgow)
A non-trivial polynomial time algorithm for a 3D stable roommates problem
In this talk we consider possible formalisations of the three-dimensional stable
roommates problem (3D-SR). Players specify preference lists over their peers,
and the task is to partition the players into triples based on their preferences. A
number of hardness results exist under various schemes of preference represen-
tation. We consider a formalisation of 3D-SR in which agents’ preferences are
additively separable and binary, named 3D-SR-AS-BIN. The decision problem
then asks whether we can partition the players into triples so that no three players
would prefer to be in a set together than remain in their current triples. We show
that 3D-SR-AS-BIN is NP-complete and consider its restriction in which prefer-
ences are symmetric, named 3D-SR-SAS-BIN. We show that every instance of
3D-SR-SAS-BIN contains a stable matching that can be found using a non-trivial
algorithm in polynomial time. These results help us explore the boundary between
NP-hardness and polynomial-time solvability in problems of coalition formation.
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Jay Morgan (Swansea University)
Trustable machine learning systems
Machine Learning (ML) has had a remarkable impact on society. Everything from
the phones in our pockets, to the cars that we drive, are being increasingly out-
fitted with this progressively sophisticated suite of algorithms. But while many
of the most basic and fundamental algorithms from ML can be formally veri-
fied and tested for safety without much trouble, the same may not be said for
Deep Learning (DL) – a prominent forerunner in the state-of-the-art for ML re-
search. These DL models, while performing simple matrix-to-matrix operations
at a micro-level, have evolved in scale far past what is tractable for current formal
verification methods – all in the pursuit of improving accuracy and performance.
This issue of tractability is unsettling considering that the existence of adversar-
ial examples is well known in the ML community. These adversarial examples
occur when very small changes to the input space result in a large change in the
output space and cause a misclassification made by the DL model. In the context
of self-driving vehicles, small defects and visual artefacts in the sensor input of
the DL model, could lead the vehicle to wrongly conclude a stop sign indicates
to continue driving where it should have stopped. While the manufacturers will
need to put safeguards in place to prevent this from happening, we should formally
prove the (non)-existence of these adversarial examples in the DL model itself. In
this presentation, I present the foundational knowledge for understanding adver-
sarial examples, how we can use the input space to dictate the search space for
the existence of these examples, and demonstrate their presence with the use of
SAT-solving. This work, as a free and open-source project, provides a framework
for ML practitioners to verify their own architectures.

Eric Munday (University of Edinburgh)
Forcing infinite memory for lim inf total payoff objectives in countable MDPs
We look at an example of a countable MDP with integer-valued transition rewards.
Every infinite run induces a sequence of total payoffs (the sequence of sums of all
rewards seen so far). The objective is to maximise the probability that the lim
inf is non negative. We present a counterexample to show that infinite memory
is required in order to satisfy the lim inf objective for epsilon-optimal strategies.
Furthermore, this holds even if the step-counter is implicit in the state and the
MDP is finitely branching.

Kheeran Naidu (University of Bristol)
A unifying class of algorithms for semi streaming bipartite maximum matching
In the semi-streaming model of Feigenbaum et al., a graph with n vertices is pre-
sented to an algorithm as a stream of edges where the storage space of the algo-
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rithm is bounded by O(n polylog n). It provides an efficient model for processing
massive graphs which have quickly become widespread. An algorithm in this
model typically takes anywhere from one pass up to logarithmically many passes
of the stream, in the same order.

A long-standing open problem is to improve upon a 1
2 -approximation for max-

imum cardinality matching (MCM) in one pass of the stream (in adversarial or-
der). Currently, a simple greedy algorithm achieves the state-of-the-art approx-
imation factor. Improving upon a 1

2 -approximation in two passes for bipartite
MCM, however, was achieved by Konrad et al. with a (1

2+0.0192)-approximation.
Kale and Tirodkar, and Esfandiari et al. independently improved these bounds to a
( 1

2 +0.0625)- and (1
2 +0.0833)-approximation, respectively. Most recently, Konrad

set the state-of-the-art for bipartite MCM at a ( 1
2 + 0.0858)-approximation in two

passes of the stream.
We present a wider class of two-pass bipartite MCM algorithms of which the

above algorithms are special cases. We show that there are two optimal algorithms
in this class which achieve the state-of-the-art, one of which is a novel algorithm.
Finally, we construct a worst-case example which achieves the analytical lower
bound, proving that: the analysis is indeed tight; a (1

2 + 0.0858)-approximation is
best for this class of algorithms; and a completely different algorithmic approach
will be needed to further improve this bound.

This is joint work with Christian Konrad.

Adam Ó Conghaile (University of Cambridge)
Partition games, compositionally: Structure and power of linear algebraic games
Spoiler-duplicator games have been a crucial tool for proving expressibility upper
bounds on logical languages. Recently, a large body of work on game comon-
ads has exposed a fascinating compositional structure lying beneath the surface of
many of these games, relating games to each other and to relevant structural pa-
rameters such as treewidth. This has helped to better understand the pebble game,
modal bisimulation game and games for generalised quantifiers. One class of
games whose category theoretic structure is not yet understood is that of partition
games. As explored in the thesis of Bjarki Holm, partitions give a rich grammar
for constructing spoiler-duplicator games for various logics including the matrix
equivalence and invertible maps games for linear algebraic logics. In this talk, I
briefly review recent developments in game comonads before introducing parti-
tion games and describing where they might fit into this compositional picture.

This is joint work with Anuj Dawar.

Bruno Pasqualotto Cavalar (University of Warwick)
Monotone circuit lower bounds from robust sunflowers
Monotone Boolean circuits form one of the largest natural circuit classes for which
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we are able to prove exponential size lower bounds. Such lower bounds play a
pivotal role in complexity theory, being a proxy for lower bounds on communica-
tion complexity, proof complexity and optimization. For over 20 years, the best
known lower bound on the size of monotone circuits computing an explicit n-bit
monotone Boolean function was exp(n1/3−o(1)).

In this talk, we motivate the study of monotone circuits and their applications,
and present the first lower bound for monotone circuit size of order exp(n1/2−o(1)).
The proof employs the classical approximation method of Razborov and recent
robust sunflower bounds of Alweiss, Lovett, Wu and Zhang, and of Rao.

This is joint work with Mrinal Kumar and Benjamin Rossman.

Nicos Protopapas (University of Liverpool)
Impartial selection, additive guarantees, and prior information
We study the problem of impartial selection, a topic that lies in the intersection
of computational social choice and mechanism design. The goal is to select the
most popular individual among a set of community members. The input can be
modelled as a directed graph, where each node represents an individual, and a di-
rected edge indicates nomination or approval of a community member to another.
An impartial mechanism is robust to potential selfish behaviour of the individuals
and provides appropriate incentives to voters to report their true preferences by
ensuring that the chance of a node to become a winner does not depend on its out-
going edges. Our goal is to design impartial mechanisms that select a node with
an in-degree that is as close as possible to the highest in-degree. Recent progress
has identified impartial selection rules with optimal approximation ratios. It was
noted though that worst-case instances are graphs with few vertices. Motivated
by this fact, we propose the study of additive approximation, the difference be-
tween the highest number of nominations and the number of nominations of the
selected member, as an alternative measure of quality. We present randomized
impartial selection mechanisms with additive approximation guarantees of o(n),
where n is the number of nodes in the input graph. We furthermore demonstrate
that prior information on voters’ preferences can be useful in the design of simple
(deterministic) impartial selection mechanisms with good additive approximation
guarantees. In this direction, we consider different models of prior information
and analyze the performance of a natural selection mechanism that we call ap-
proval voting with default.

Benjamin Smith (University of Liverpool)
Fixed-parameter tractability of pinwheel scheduling
The pinwheel scheduling problem asks if it is possible to construct a perpetual
schedule for a set of k tasks of unit length where the maximum gap between repe-
titions of the same task is limited by an ordered multiset A of n constraints, one per
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task. We demonstrate that pinwheel scheduling is fixed-parameter tractable with
respect to the parameter k. We also show that, for any given value of n, a finite
set of schedules can solve all solvable pinwheel scheduling instances. We then in-
troduce exhaustive-search algorithms for both pinwheel scheduling instances and
partial pinwheel scheduling instances (where only a prefix of A is known and gaps
have to be left in the schedule), and use that to construct the Pareto surfaces over
all possible schedules for k tasks, for k ≤ 5. These results have implications for
the bamboo garden trimming problem of Gasieniec et al.

Siani A. Smith (Durham University)
The complexity of acyclic, star and injective colouring for H-free graphs
Colouring is among the best known problems in computer science. One direction
of study has been to consider the complexity of colouring for H-free graphs, that
is graphs which do not contain H as an induced subgraph. A full dichotomy is
known in the case where the number of available colours, k, is part of the input
whereas infinitely many open cases remain where k is fixed.

We study three variants of the colouring problem, acyclic, star and injective
colouring. An acyclic colouring of a graph G is a proper colouring in which the
union of any two colour classes induces a forest. Similarly a star colouring of G
is a proper colouring in which the union of any two colour classes is P4-free, in
other words it induces a star forest. Finally, an injective colouring, also known
as a distance 2 colouring or an L(1, 1)-labelling, is a proper colouring in which
the union of any two colour classes is P3-free. In each case we combine new and
known results to obtain a full complexity dichotomy where k is fixed and classify
all but at most finitely many graphs H where k is part of the input. In fact, for both
star and injective colouring, we show that only one open case remains.

This is joint work with J Bok, N Jedlic̆ková, B Martin and D Paulusma.

Federico Vastarini (University of York)
Random graph generation using hyperedge replacement grammars
This work addresses the problem to satisfy the necessity of graph based applica-
tions when requesting random test data. May they involve classical algorithms,
software testing, pointer manipulation, pattern recognition or even complex net-
works, the proposed solution, allows for the specification of any graph domain.
Such approach, that, to the best of our knowledge has never been followed by any
pre-existing method, uses context-free hyperedge replacement grammars to define
graph classes, over which, elements are sampled uniformly at random.

In order to achieve this, a generalised efficient version of Mairson’s algorithms
for the sampling of strings over non-ambiguous context-free grammars in Chom-
sky normal form is adapted to the setting of hyperedge replacement. The presented
method is correct in that given a non-ambiguous hyperedge replacement grammar
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G in Chomsky normal form and a size n, a n-hypergraph in the language L(G) is
generated uniformly at random.

Pavel Vesely (University of Warwick)
Relative error streaming quantiles
Approximating distributions and quantiles is a fundamental task in data analysis.
We consider streaming algorithms that make just one pass over a massive dataset
and must use a small amount of memory, polylogarithmic in the input size. The
problem of approximating the median and other quantiles with an additive error
is sufficiently well-understood, however, the case of the stronger relative error is
still open. Such an error guarantee provides more accurate estimates for extreme
quantile queries (such as the 99.5th percentile), thus helping to understand the tails
of the distribution. We describe a new streaming algorithm providing the relative
error guarantee with a nearly optimal trade-off between space usage and accuracy.

This is joint work with G Cormode, Z Karnin, E Liberty, and J Thaler.
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Report from EATCS Japan Chapter
Yukiko Yamauchi (Kyushu University)

EATCS-JP/LA Workshop on TCS and Presentation Awards
The 19th EATCS/LA Workshop on Theoretical Computer Science was held online
February 1st to 3rd, 2021. (The details can also be found, although this website is
written in Japanese, at
http://www-ppl.ist.osaka-u.ac.jp/la2020/winter.php.)

Every year, we choose the best presenter and the best student presenter. This
year, we celebrated the following presentation as the 19th LA/EATCS-Japan Pre-
sentation Award:

“Spanning trees with the maximum number of leaves of grid graphs”,
Masahisa Goto and Koji M. Kobayashi (University of Tokyo)

We celebrated the following presentation as the 10th LA/EATCS-Japan Student
Presentation Award:

“NP-completeness of k Generalized Lunar Lockout Variant”, Kosuke
Kagaya, Masaki Tomisawa, and Hiroaki Tohyama (Maebashi Insti-
tute of Technology)

The awards were recognized publicly on the last day, February 3rd, 2021.

Congratulations!

This workshop is jointly organized by LA symposium, Japanese association
of theoretical computer scientists. Its purpose is to give a place to discuss topics
on all aspects of theoretical computer science. This workshop is an unrefereed
meeting. All submissions are accepted for the presentation. There should be no
problem of presenting these papers at refereed conferences and/or journals. This
meeting is unofficial, familiar, and widely open for everyone who is interested
in theoretical computer science. It is held twice a year (January/February and
July/August). If you have a chance, I recommend that you attend it. Check the
website http://www.ecei.tohoku.ac.jp/alg/EATCS-J/ for further details.
The list of the presentations is as below; you can see the activity of the Japanese
society of theoretical computer science.
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Program of EATCS-JP/LA workshop on TCS (February 1–3, 2021)

In the following program, “*” indicates ordinary speakers, while “**” indi-
cates student speakers. The number [Sxx] means it is in student session, namely,
it is shorter talk than ordinary one.

[S1] On the strongest die in a set of dice with equal expected values
**Shang Lu, Shuji Kijima (Kyushu University)

[S2] Computational complexity of partitioning a weighted tree into subtrees of almost
equal weights with exceptions

**Masashi Ito (Nagoya University), Shuichi Miyazaki (Kyoto University), Shin-
saku Nakajima (Meiji University), Hirotaka Ono, Yota Otachi (Nagoya Univer-
sity)

[S3] NP-completeness of k Generalized Lunar Lockout Variant
Kosuke Kagaya , Masaki Tomisawa, Hiroaki Tohyama (Maebashi Institute of
Technology)

[S4] Computer experiments for Single Pile NIM with prohibition rule
**Shota Asaba, Koichi Yamazaki (Gunma University)

[S5] Max-Min Approximation Algorithms for the 3-Item Bin Packing Problem
**Rina Atsumi, Hiroshi Fujiwara, Hiroaki Yamamoto (Shinshu University)

[S6] Searching algorithm of quantum phase estimation using optical interferometer
**Takuto Ozu, Ryuhei Mori (Tokyo Institute of Technology)

[S7] Optimal Online Bin Packing Algorithms for Certain Classes of Two Item Sizes
**Masaya Kawaguchi, Hiroshi Fujiwara, Hiroaki Yamamoto (Shinshu Univer-
sity)

[S8] Distributed Complexity of k-Maximal Independent Set Verification
**Ryosuke Sato, Naoki Kitamura, Ryota Eguchi, Yonghwan Kim (Nagoya Insti-
tute of Technology), Taisuke Izumi (Osaka University)

[S9] Search and evacuation by a modular robotic system in a 3D grid field
**Ryonosuke Yamada, Yukiko Yamauchi (Kyushu University)

[S10] Compact index for full-text search using factor oracle
**Akihide Sato, Hiroaki Yamamoto, Hiroshi Fujiwara (Shinshu University)

[S11] Implementation of CA150 on Turing Tumble
**Keigo Shimonozono, Shuichi Inokuchi (Fukuoka Institute of Technology)

[S12] Containment of a mobile fault by blocking communication links and connec-
tivity of communication graph

**Hinata Hanzawa, Yukiko Yamauchi (Kyushu University)
[S13] Distributed Complexity of Minimum Spanning Tree in Unit Disk Graphs with
Euclidean Edge Weights

**Aru Hokodate, Naoki Kitamura, Ryota Eguchi, Yonghwan Kim (Nagoya Insti-
tute of Technology), Taisuke Izumi (Osaka University)

[S14] Physical Zero-Knowledge Proof for Kurodoko
**Ryo Itoyama (Kumamoto University), Yota Otachi (Nagoya University)

[S15] A Match-Three Game with Continuous Moves is NP-Complete
**Keitaro Kawagoe, Yasuhiko Takenaga (The University of Electro-
Communications)

[S16] Mathematical Studies of Deadlock in Adaptive Match Scheduling
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**Yuta Tanaka, Hiroshi Fujiwara, Hiroaki Yamamoto (Shinshu University)
[S17] Spanning spiders in bubble-sort graphs

Yosuke Kikuchi, **Chinatsu Sakamoto (NIT, Tsuyama College)
[1] Cake Cutting: A Simple Envy-Free and Truthful Mechanism with a Small Num-
ber of Cuts

*Takao Asano (Chuo University)
[2] A graphical generalization of SEVENS

*Hironori Kiya (Nagoya University), Koki Suetsugu (National Institute of Infor-
matics), Hirotaka Ono (Nagoya University)

[3] Structural properties of graphs containing many minimal ab separators
*Koichi Yamazaki (Gunma University)

[4] Spanning trees with the maximum number of leaves of grid graphs
*Masahisa Goto, Koji M. Kobayashi (University of Tokyo)

[5] Reconfiguration problem based on re-unfolding of polyhedra
*Tonan Kamata, Ryuhei Uehara (Japan Advanced Institute of Science and Tech-
nology)

[6] On particle complexity of number conserving cellular automata
*Gil-Tak Kong, Katsunobu Imai (Hiroshima University)

[7] A reduction of the DTW distance to the LIS length
*Yoshifumi Sakai (Tohoku University), Shunsuke Inenaga (Kyushu University)

[8] Tighter lower bounds for the error probability of quantum algorithms discriminat-
ing multiple quantum channels

*Ryo Ito, Ryuhei Mori (Tokyo Institute of Technology)
[9] Communication Complexity of Quantum Private Simultaneous Messages Proto-
cols

*Akinori Kawachi (Mie University), Harumichi Nishimura (Nagoya University)
[10] Research on Rep-cube — dissection of net of cube to nets

*Tamami Okada, Ryuhei Uehara (Japan Advanced Institute of Science and Tech-
nology)

[11] Indexing structures for labeled trees
*Shunsuke Inenaga (Kyushu University)

Forthcoming Events
ISAAC 2021
International Symposium on Algorithms and Computation (ISAAC) is intended to provide
a forum for researchers working in algorithms and theory of computation. The 32nd
edition of this symposium will be held in Fukuoka, Japan (+ Online) from December 6 to
8, 2021. See https://tcs.inf.kyushu-u.ac.jp/isaac2021/ for more information
on ISAAC 2021.

WALCOM 2022
The 16th International Conference and Workshops on Algorithms and Computation (WAL-
COM 2022) will be held at University of Jember, Indonesia from March 24th to 26th,
2022. This conference has been established to encourage the researchers of theoretical
computer science in Asia, especially, India and Bangladesh. Nowadays, there are many
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participants not only from a wide range of Asia but also from Europe and North America.
See https://walcom2022.unej.ac.id for more information on WALCOM 2022.

EATCS Japan Chapter

Chair: Ryuhei Uehara

Vice Chair: Takehiro Ito

Secretary: Yukiko Yamauchi

email: eatcs-jp@grp.tohoku.ac.jp

URL: http://www.ecei.tohoku.ac.jp/alg/EATCS-J/index.html
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EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the EATCS Distinguished Dissertation Award, the Nerode
Prize (joint with IPEC) and best papers awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

Benefits offered by EATCS to Young Researchers also include:
- Database for Phd/MSc thesis
- Job search/announcements at Young Researchers area
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(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Jerusalem, Israel 1994
- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997

- Aalborg, Denmark 1998
- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013
- Copenhagen, Denmark 2014
- Kyoto, Japan 2015
- Rome, Italy 2016
- Warsaw, Poland 2017
- Prague, Czech Republic 2018
- Patras, Greece 2019
- Saarbrücken, Germany (virtual conference) 2020

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-
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mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Vienna), J. Hromkovič
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are D. Sannella (Edinburgh), L. Kari and P.G. Spirakis
(Patras).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Paul Spirakis,
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues are e 40 for a period of one year (two years for students / Young Researchers ). Young
Researchers, after paying, have to contact secretary@eatcs.org, in order to get additional
years. A new membership starts upon registration of the payment. Memberships can always be
prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 35 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 35 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.
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HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, contact the Secretary Office of EATCS:

Mrs. Efi Chita,
Computer Technology Institute & Press (CTI)
1 N. Kazantzaki Str., University of Patras campus,
26504, Rio, Greece
Email: secretary@eatcs.org,

Tel: +30 2610 960333, Fax: +30 2610 960490
If you are an EATCS member and you wish to prolong your membership or renew the subscription
you have to use the Renew Subscription form. The dues can be paid via paypal and all major credit
cards are accepted.
For adittional information please contact the Secretary of EATCS:

Prof. Emanuela Merelli
via Madonna delle Carceri, 9
Computer Science Build. 1st floor
University of Camerino,
Camerino 62032, Italy
Email: secretary@eatcs.org,

Tel: +39 0737402567


