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Dear EATCS members,

I hope my letter finds you and your family
safe and in good health. While the global
coronavirus pandemic still has a major
impact on our lives and limits some of our
scientific activities, I see many positive
signs that there are brighter days ahead of
us. Indeed, the pandemic situation seems
to be getting normalized in many places of
the world and I hope that with the progress
in global vaccination we will soon be
seeing better times. And so, even though
in the last year and a half almost all
scientific activities have been run in the
online setting, we now see more and more
activities taking places in the hybrid
setting or even as physical events. I see
also active plans for the return of
in-person research collaborations and
in-place workshops and conferences.

While the current situation is a major
challenge for our scientific community, it
is great to see that our community has been
developing many new and exciting
initiatives: we see more online seminars
and workshops, a lot of remote
collaborative research, and for many of us
free or low-cost online conferences provide
a great opportunity for broader
participation and the increase of
visibility of our research through these
events. And most importantly, we see some
fantastic research done by our community;
and so I take the opportunity to wish you
all the best and much success for your
work.

ICALP 2021, the EATCS flagship conference,
was run in the online format again. As
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always though, the conference had an
impressive scientific program highlighting
the strength of the research across many
areas within theoretical computer science.
On behalf of the entire community and the
EATCS I would like to thank the Programme
Committee led by the chairs Nikhil Bansal
and James Worrell, the organizers at the
University of Glasgow, led by Simon Gay,
and especially — all the participants, for
their fantastic efforts that helped to make
the ICALP 2021 conference a great success.
We plan to have a detailed report of ICALP
2021 in the next issue of the Bulletin.

We also had very successful three EATCS
partner conferences: ESA 2021, MFCS 2021,
and DISC 2021. While ESA ran fully online,
MFCS and DISC had been organized in a
hybrid format, with some local participants
— a very welcomed feature that we hope to
see more and more in the months to come.
Running all these four conferences in the
online or the hybrid setting allowed to
ensure free or low registration fees, and
this led to very good numbers of
participants and to the increase of
visibility of research in these events.

In this issue of the Bulletin, you will
find the calls for nominations for the
EATCS Award, the Presburger Award, the
EATCS Distinguished Dissertation Award, and
the EATCS Fellows. As usual, we are lucky
to have very strong committees for each of
the awards, and I thank all the award
committee members in advance for their
important service. I strongly encourage
you to send nominations for these
prestigious awards. I am aware of the fact
that we are all very busy and that it takes
time and efforts to prepare strong
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nominations, but our best researchers and
best papers can only win awards if they are
nominated. Moreover, awards put areas of,
as well as inspirational figures in,
theoretical computer science in the
spotlight and can serve to inspire young
researchers. I look forward to seeing who
the award winners will be and to working
with all of you to make the EATCS even more
influential than it already is.

As usual, the October issue of the Bulletin
has the first Call for Papers for ICALP
2022, the flagship conference of the EATCS
and an important meeting of the theoretical
computer science community world-wide. The
49th International Colloquium on Automata,
Languages, and Programming (ICALP 2021),
will be held on July 4–8, 2022 in Paris,
France, and online. The conference is
planned to be in the hybrid format, though
we hope the talks to be mostly delivered in
person and we hope for a very good in-place
audience. We have a great list of invited
speaker and expect a fantastic scientific
program selected by the PCs led by the
chairs David Woodruff and Mikołaj
Bojańczyk. Furthermore, ICALP 2022 edition
will be the occasion to celebrate the 50th
anniversary of both EATCS and the first
ICALP, which was first held in 1972 in
Rocquencourt, in the Paris area. I will
write more details about the planned
activities in the next issue of the
Bulletin, but as for now: please pencil
these dates in your diary and I hope to see
many of you joining us in these
celebrations.

As usual, let me close this letter by
reminding you that you are always most
welcome to send me your comments,
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criticisms and suggestions for improving
the impact of the EATCS on the Theoretical
Computer Science community at
president@eatcs.org. We will consider all
your suggestions and criticisms carefully.

I look forward to seeing many of you
around, online or maybe even in person
(hopefully we will be able to attend
conferences and workshops, or to conduct
research visits), and to discussing ways of
improving the impact of the EATCS within
the theoretical computer science community.

Artur Czumaj
University of Warwick, UK

President of EATCS
president@eatcs.org

October 2021
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Dear EATCS member,

This issue of the Bulletin of the EATCS
comes with several innovations.

First of all, I would like to welcome our
new editors: Seth Gilbert, Dennis Komm,
Michal Koucky, and Luca Trevisan! I am
thrilled to have you on board, and thank
you very much for accepting our invitation.
Seth will take over the Distributed
Computing Column from me. Dennis will join
the Educational Column by Juraj Hromkovic
as a co-editor. Michal will take over the
Computational Complexity Column from
Vikraman Arvind, whom I would like to thank
very much on this occasion for his great
work and contributions as an editor over
the last years.

And Luca Trevisan... well, this brings us
to our next innovation: in this issue of
the Bulletin, we experiment with some new
columns. In particular, in order to
complement the technical columns, we have
four new columns.

The first, is a “Theory Blogs Column” led
by Luca Trevisan, which revolves around
current trends on the web, including blogs
and social media. The idea for such a
column was brought up by Sebastian Forster
during my recent visit in Salzburg, and I
would like to thank Sebastian very much for
this suggestion. With the “Viewpoint
Column”, we introduce a column in which a
member of the community shares an opinion
or perspective on subjects of interest to
the community. Roger Wattenhofer kindly
offered to contribute a first such column.

Then, we have an “Interview Column”, in
which we introduce a “person behind the
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papers”. Our first interview is with Kurt
Mehlhorn, and I highly recommend you to
take a look at this column as well. On
this occasion, I would like to thank
especially Chen Avin, for his great help in
creating a set of interview questions; I
also thank Klaus-Tycho Foerster and Kathrin
Hanauer for feedback on the questions.

Last but not least, we have a “Memorial
Column”, in which a community member shares
some memories from her or his career. The
first column is contributed by Gregory
Chaitin.

I would like to thank all editors, authors,
and other contributors, for their help with
this issue. I hope you enjoy some of the
new formats, and I welcome any feedback on
the issue.

Stefan Schmid, Vienna
October 2021



9

The EATCS Award 2022

Call for Nominations

Deadline: December 31, 2021

The European Association for Theoretical Computer Science (EATCS) an-
nually honours a respected scientist from our community with the prestigious
EATCS Distinguished Achievement Award. The award is given to acknowledge
extensive and widely recognized contributions to theoretical computer science
over a life long scientific career. For the EATCS Award 2022, candidates may
be nominated to the Award Committee consisting of

• Éva Tardos (Chair)

• Johan Håstad and

• Thomas Henzinger

Nominations will be kept strictly confidential. They should include supporting
justification and be sent by e-mail to the chair of the EATCS Award Committee:

Éva Tardos
eatcs-award@eatcs.org

Previous recipients of the EATCS Award are:

R.M. Karp (2000) C. Böhm (2001) M. Nivat (2002)
G. Rozenberg (2003) A. Salomaa (2004) R. Milner (2005)
M. Paterson (2006) D.S. Scott (2007) L.G. Valiant (2008)
G. Huet (2009) K. Mehlhorn (2010) B. Trakhtenbrot (2011)
M.Y. Vardi (2012) M.E. Dyer (2013) G.D. Plotkin (2014)
C. Papadimitriou (2015) D. Kozen(2016) É. Tardos(2017)
N. Nisan (2018) T. Henzinger (2019) Mihalis Yannakakis(2020)
T. Pitassi (2021)

The next award will be presented during ICALP 2022 in Paris, France.
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The Presburger Award
for Young Scientists 2022

Call for Nominations

Deadline: 15 February 2022

The Presburger Award recognises outstanding contributions by a young scientist
in theoretical computer science, documented by a published paper or a series of
published papers. It is named after Mojzesz Presburger who accomplished his
ground-breaking work on decidability of the theory of addition (known today as
Presburger arithmetic) as a student in 1929. The award is conferred annually
by the European Association for Theoretical Computer Science (EATCS) at the
International Colloquium on Automata, Languages, and Programming (ICALP).

Nominated scientists can be at most 35 years old on January 1st of the year of
the award. Thus, for the 2022 award, the nominee should be born in 1986 or later.
Nominations for the Presburger Award can be submitted by any member or group
of members of the theoretical computer science community, but not by the nom-
inee themselves nor the advisors for their master’s thesis or doctoral dissertation.

The Presburger Award Committee of 2022 consists of
Meena Mahajan (The Institute of Mathematical Sciences, Chennai, Chair),

Mikołaj Bojańczyk (University of Warsaw) and Uriel Feige (The Weizmann Insti-
tute, Israel).

Nominations, consisting of a two page justification and (links to) the respective
papers, as well as additional supporting letters, should be sent by e-mail to:

presburger-award@eatcs.org

The subject line of every nomination should start with Presburger Award 2022,
and the message must be received before February 15th, 2022.

The award includes an amount of 1000 Euro and an invitation to ICALP 2022
for a lecture.
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Previous Winners:
Mikołaj Bojańczyk, 2010 Patricia Bouyer-Decitre, 2011
Venkatesan Guruswami, 2012 Mihai Pătraşcu, 2012
Erik Demaine, 2013 David Woodruff, 2014
Xi Chen, 2015 Mark Braverman, 2016
Alexandra Silva, 2017 Aleksander Mądry, 2018
Karl Bringmann, 2019 Kasper Green Larsen, 2019
Dmitriy Zhuk, 2020 Shayan Oveis Gharan, 2021

Official website: http://www.eatcs.org/index.php/presburger
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EATCS Distinguished
Dissertation Award 2021

Call for Nominations

Deadline: 31 December 2021

The EATCS establishes the Distinguished Dissertation Award to promote and rec-
ognize outstanding dissertations in the field of Theoretical Computer Science.

Any PhD dissertation in the field of Theoretical Computer Science that has been
successfully defended in 2021 is eligible.

Three dissertations will be selected by the committee for year 2021. The disser-
tations will be evaluated on the basis of originality and potential impact on their
respective fields and on Theoretical Computer Science.

Each of the selected dissertations will receive a prize of 1000 Euro. The award
receiving dissertations will be published on the EATCS web site, where all the
EATCS Distinguished Dissertations will be collected.

The dissertation must be submitted by the author as an attachment to an email mes-
sage sent to the address dissertation-award@eatcs.org with subject EATCS
Distinguished Dissertation Award 2021 by 31 December 2021. The body
of the message must specify:

• Name and email address of the candidate;

• Title of the dissertation;

• Department that has awarded the PhD and denomination of the PhD pro-
gram;

• Name and email address of the thesis supervisor;

• Date of the successful defense of the thesis.
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A five page abstract of the dissertation and a letter by the thesis supervisor cer-
tifying that the thesis has been successfully defended must also be included. In
addition, the author must include an endorsement letter from the thesis supervisor
and can include one more endorsement letter.

The dissertations will be selected by the following committee:

• Susanne Albers

• Nikhil Bansal

• Elvira Mayordomo

• Dale Miller

• Jaroslav Nešetřil

• Damian Niwiński

• David Peleg (chair)

• Vladimiro Sassone

• Alexandra Silva

The award committee will solicit the opinion of members of the research commu-
nity as appropriate.
Theses supervised by members of the selection committee are not eligible.
The EATCS is committed to equal opportunities, and welcomes submissions of
outstanding theses from all authors.
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EATCS-Fellows 2022

Call for Nominations

Deadline: December 31, 2021

• VERY IMPORTANT: all nominees and nominators must be EATCS Mem-
bers

• Proposals for Fellow consideration in 2021 should be submitted by DE-
CEMBER 31st, 2021 by email to the EATCS Secretary (secretary@eatcs.org).
The subject line of the email should read "EATCS Fellow Nomination -
<surname of candidate>".

The EATCS Fellows Program is established by the Association to recognize out-
standing EATCS Members for their scientific achievements in the field of Theo-
retical Computer Science. The Fellow status is conferred by the EATCS Fellows-
Selection Committee upon a person having a track record of intellectual and or-
ganizational leadership within the EATCS community. Fellows are expected to
be "model citizens" of the TCS community, helping to develop the standing of
TCS beyond the frontiers of the community. In order to be considered by the
EATCS Fellows-Selection Committee, candidates must be nominated by at least
four EATCS Members. Please verify your membership at www.eatcs.org.

The EATCS Fellows-Selection Committee consists of

• Christel Baier

• Mikołaj Bojańczyk

• Mariangiola Dezani (chair)

• Josep Diaz

• Giuseppe F. Italiano
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INSTRUCTIONS:

A nomination should consist of details on the items below. It can be co-signed
by several EATCS members. Two nomination letters per candidate are recom-
mended. If you are supporting the nomination from within the candidate’s field of
expertise, it is expected that you will be specific about the individual’s technical
contributions.
To be considered, nominations for 2021 must be received by December 31, 2021.

1. Name of candidate,
Candidate’s current affiliation and position,
Candidate’s email address, postal address and phone number,
Nominator(s) relationship to the candidate
2. Short summary of candidate’s accomplishments (citation – 25 words or less)
3. Candidate’s accomplishments: Identify the most important contributions that
qualify the candidate for the rank of EATCS Fellow according to the following
two categories:
A) Technical achievements

B) Outstanding service to the TCS community
Please limit your comments to at most three pages.
4. Nominator(s):
Name(s)
Affiliation(s), email and postal address(es), phone number(s)
Please note: all nominees and nominators must be EATCS Members
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CTI, Computer Technology Institute & Press "Diophantus"
Patras, Greece

CWI, Centum Wiskunde & Informatica
Amsterdam, The Netherlands

MADALGO, Center for Massive Data Algorithmics
Aarhus, Denmark

Microsoft Research Cambridge
Cambridge, United Kingdom

Springer-Verlag
Heidelberg, Germany
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The Interview Column
by

Chen Avin and Stefan Schmid

Ben Gurion University, Israel and TU Berlin, Germany
{chenavin,schmiste}@gmail.com
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Know the Person behind the Papers

Today: Kurt Mehlhorn

Bio: Kurt Mehlhorn was a vice president of the Max Planck Society and director
of the Max Planck Institute for Computer Science. He graduated from the Tech-
nical University of Munichand earned his Ph.D. from Cornell University. Among
other, Mehlhorn is known for his contributions to the development of algorithm
engineering and he played an important role in the establishment of several re-
search centres for computer science in Germany, including the MPI for Computer
Science, the research center for computer science at Dagstuhl and the European
Symposium on Algorithms.He won the Gottfried Wilhelm Leibniz Prize, among
many other prizes.

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

Kurt: I share two photos. The first shows me in my office; the picture was
taken in 2018. You can see that I enjoy my work, that our institute is located on
the border of a forest, and that I am quite effective in producing earth-shaking
results. The crumbled papers on the table are testament to this.
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The second picture is from 1973. It shows my wife Ena and me at a picnic of
the CS department of Cornell University, where I was a graduate student.

Can you please tell us something about you that probably most of the readers
of your papers don’t know?

Kurt: When I started to study computer science in 1968, I had never used a
computer. I had even never seen one except on pictures. Programming fascinated
me from the beginning; it is an act of creation.

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

Kurt: Let me start with a non-scientific paper. The book Summerhill by A.
S. Neill. We (my wife, I, many friends) read it in our twenties and it heavily
influenced how we raised our children and how I treat students.

I was a graduate student from 71 to 74. Cook’s paper on the NP-completeness
of the satisfiability problem appeared in 71 and Karp’s paper with the first 21 NP-
complete problems appeared in 72. A first draft of the book on Efficient Algo-
rithms by Aho, Hopcroft, and Ullman became available in 73. They were bibles.

Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

Kurt: Read the article “Trustworthy Graph Algorithms” by Mohammad Ab-
dulaziz, myself, and Tobias Nipkow (Invited Talk, MFCS 2019). It has a 30-year
story behind it. In 1989, Stefan Naeher and I started to develop the library of
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efficient data structures and algorithms LEDA. Some of our implementation were
incorrect. This experience shaped part of my research agenda until today. The pa-
per discusses what we have learned from this experience and how we have made
LEDA a reliable product.

When (or where) is your most productive working time (or place)?
Kurt: I am a morning person and try to be on my desk by 8 am. My mornings

are reserved for research. I keep my office door closed; I do not accept phone calls
and I do not tolerate interruptions. I read, think, and write. After lunch, my office
door is open, I interact with students and co-workers, teach and administrate, write
reports, and so on. By 5:30, I go home. I sometimes work in the evenings, but
never after 10pm.

Of course, the schedule is different when I travel. It was very different when I
was vice-president of the Max Planck Society.

My favorite work place is my office, but I can work almost everywhere. Earplugs
help a lot.

What do you do when you get stuck with a research problem? How do you
deal with failures?

Kurt: Failures are the rule not the exception; see the crumbled paper on the
picture. I keep on trying and trying, I discuss the problem with students and
colleagues, I put it aside and return to it later, and sometimes I give up on a
problem completely. However, I was lucky that most problems that I worked on
so far, gave in ultimately.

Is there a nice anecdote from your career you like to share with our readers?
Kurt: What brought me to Saarbruecken? I got my PhD from Cornell in 1974.

I wanted to stay in the US and had an offer from Carnegie Mellon, but my wife
wanted to return to Germany. Her degree was not valid in the US and she wanted
to go back to work. I asked my professors where I should apply. Juris Hartmanis
who knew Germany well recommended Bonn, Munich, and Saarbruecken. I ap-
plied at all three places and interviewed in the late spring of 1974. My meetings
with Rudolf Bayer in Munich and Guenther Hotz in Saarbruecken went well and
both offered me orally a position as a researcher. The written offer would follow
in a few days. I went back to Cornell, the written offer from Saarbruecken arrived
two weeks later, but the written offer from Munich did not come within the next
two months. Hence, I accepted the offer from Saarbruecken. I grew up near Mu-
nich and we would have decided otherwise, had the offer from Munich arrived in
time.

I actually received the offer from Munich after I started my position in Saar-
bruecken. The letter from Saarbruecken was sent by airmail and took a week to
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cross the Atlantic, the offer from Munich was sent by regular mail, crossed the At-
lantic on a ship twice (it arrived at our address in Cornell after we had left and then
was sent to our new address in Saarbruecken), and hence took months to arrive.
Thus, a missing airmail postage stamp had a decisive influence on our lives.

It never occurred to me at the time that I could call Rudolf Bayer to inquire.
And email did not exist yet.

Do you have any advice for young researchers? In what should they invest
time, what should they avoid?

Kurt: Try to develop depth and breadth. Only depth in a particular area will
make you famous, only breadth will allow you to switch topics easily.

What are the most important features you look for when searching for grad-
uate students?

Kurt: Their intellectual capabilities, their desire to understand, and interests
for topics beyond CS.

Do you see a main challenge or opportunity for theoretical computer scien-
tists for the near future?

Kurt: Theoretical computer science is striving and new questions and topics
arise all the time: fine-grained complexity, the convergence of continuous and
discrete optimization, the opening up to questions in economics and learning, to
name a few.

When I look back at my career, every 10 years I started to work on topics that
I had not known to exist a decade earlier.

How was your research affected by the pandemic? How do you think it will
affect us as a community?

Kurt: The pandemic did not affect my research much. In fact, I travelled
much less and in this way gained additional time for research. I found reasonably
efficient ways of interacting with my students and co-workers. What I miss most
is the informal interaction over lunch and coffee.
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Please complete the following sentences?

• My favorite movie is... I do not have one.

• Being a researcher... is my dream job. In fact, I do not consider it work.
It is pure pleasure.

• My first research discovery... turned out to be incorrect.

• Theoretical computer science in 100 years from now... will be going
strong, although, it will be very different from what it is now.
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Do Universities Have a Future?

Roger Wattenhofer

1 Introduction
Universities are among the oldest contemporary institutions of humankind. The
University of Bologna started teaching non-religious topics in 1088 already, and
even the first technical university (The Czech Technical University) is more than
300 years old. So we established that universities certainly have a past – but are
they relevant in the future?

The main purpose of universities is debatable. I would argue that fundamen-
tal research and higher education are the two core functionalities of a university.1

However, universities have also been dubbed “knowledge centres” or “compe-
tence hierarchies,” with research and education being mere side effects.

While universities surely changed a great deal since their beginnings, they are
“bipolar” regarding the ongoing digital transformation that is currently shaking
up so many aspects of humankind. While a lot of research at universities is often
directly studying the digitalization transition, education is generally considered
to be one of the least disrupted industries. So, ironically, while we as computer
science academics are in the center of the digitalization transition, our own jobs
have not changed much.

I started my PhD in 1995. Back then many university and research processes
still were “analog.” When submitting a paper, we had to send six actual copies
of the paper by postal mail2 to the editor or program committee chair, who then
forwarded a copy to each reviewer. Almost every day I headed to the library to
find a paper I wanted to read.3 But already 25 years ago, email started to be used
regularly, and then the first web based conference management systems appeared.
When I became a professor in 2000, all the obvious university processes were web
based already.4

One remarkable new development since 2000 are massive open online courses
(MOOCs). Coursera’s Machine Learning course has had 3 million enrolled stu-

1And in this article, I will consequentially focus on education and research.
2As today, submissions were often a last minute effort, to the delight of express mail companies.
3And like today, often the paper turned out to be less relevant than anticipated.
4At Microsoft Research, the library found and scanned any paper you wanted.
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dents so far. Yet, universities by and large operate as if MOOCs did not exist.
Apart from MOOCs, I am actually surprised how little has changed in the past
20 years. One may claim that one year of Covid-19 has probably affected higher
education more than 20 years of digitalization since 2000.

I believe that universities and the academic research environment are in need
of change in order to stay relevant. This is the topic of this viewpoint article, first
I will talk about education, then about research.

2 Professional Videos
When was the last time you watched a two-hour educational video on Youtube?
Assume you want to learn about an unfamiliar subject, and you decide to watch a
video.5 You can choose between a two-hour blackboard lecture by some famous
scholar, and a highly animated 5-15 minute video by a random person.6 What
do you choose? Well, I always go for the short video. The short video usually
feels like time well spent. So why are universities still following a rigid two-hour
lecture schedule?

Sure, actual university lectures are about interaction more than presentation.
When I teach, I ask a motivating question right off the bat, and the whole lecture
is really a discussion rather than a presentation. The students speak almost as
much as I do. However, Covid put a halt to these discussions. I still try to have
interactions, but in a video call interactions do not feel natural. So I produced
these 90-minute-long videos instead, being incredibly unhappy about them. Since
Covid, students watch a lot of these videos, and many students watch these lecture
videos at twice the speed. Indeed, a student told to me that he started watching not
only lectures at twice the speed, but also movies; now he is so used to watching
everything faster, regular conversations feel slow and boring to him.7

I also wonder whether academics like us stand a chance against professional
video producers. Youtube is full of excellent educational video channels. Here
are some of those that I subscribe in alphabetical order: 3Blue1Brown, CGP
Grey, Computerphile, Finematics, Kurzgesagt, Map Men, Numberphile, Ordinary
Things, Veritasium, Whatifalthist.8

While half of these channels are single person hobbyists, the production ef-
forts of the best channels is out of reach for an academic. The most professional
of these educational channels is probably Kurzgesagt. So far Kurzgesagt pre-
dominantly produces animated sci-fi and life science videos. However, eventually

5Personally, I almost always prefer reading to watching a video.
6Random as in no obvious academic merits.
7At this stage, this is affecting his social life.
8Okay, admittedly, many of these are heavily on the entertainment side of education.
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there will be a channel producing short videos that explain the fundamental topics
in Computer Science in a crisp and intuitive way. These videos will be more ap-
pealing than any of my blackboard gymnastics. As a consequence, many students
will prefer to watch these professional videos. In order to stay relevant, we need
to integrate these videos into our lectures, maybe focusing more on Q&A rather
than explaining the basics.9

TLDR: Professional 5-15 minute videos will replace 45 minute lectures.

3 MOOC vs. University
Lectures are the core element of education at a university. If lectures are being
outsourced to professional videos, universities lose a significant part of their cred-
ibility. But lectures come with theoretical and practical exercises, textbooks or
scripts,10 and labs and projects. What about these?

I believe that winning textbooks should be written collaboratively, by a team of
academics and illustrators. The cookbook Modernist Cuisine by Nathan Myhrvold
was a marvellous example for such a collaboration.11 Exercises could also be
shared between universities. MOOCs are leading the way here.

What about that famous “university spirit”? How do students and staff at a uni-
versity interact with each other? Do we have an environment where students can
be creative? Do students and staff engage in critical thinking? Does the university
have a lively discussion culture? Most MOOCs of course have discussion forums,
and the best are incredibly lively. I would claim that MOOCs can replicate a lot of
this fabulous university spirit12 by setting up local hubs if there is a large enough
audience attending the same MOOC.

Maybe another point to differentiate universities are exams. Some universities
simply ask knowledge questions at exams. Excellent universities however ask
demanding questions where students must apply the mindset of the lecture, even
to a completely fresh model. However, even exams can be standardized, maybe
there will be simpler and harder exams for the same kind of content.

But there is hope for universities: There are the advanced classes, for instance
on the Master level. This is content that will not be replaced by professional
videos anytime soon, since the market for such content is simply too narrow. If
a university has professors that are leading in their research area, this will be
an advantage for students. So is the future of the university a postgraduate-only

9I tried video plus flipped classroom in one of my lectures. The experience was mixed.
10To fully understand a topic, a combination of static text/graphics usually beats any video.
11For a more recent example, I recommend Philipp Dettmer’s book Immune.
12Well, Covid kind of killed a great deal of that spirit; let’s hope it comes back.
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institution a la Weizmann Institute? Ultimately this question will be answered
by people like ourselves in the form of this simple question: Would you rather
hire a MOOC graduate with a good selection of relevant courses, or one from
a foreign university you barely know (maybe you are even unfamiliar with the
grading scheme at that university)?13

TLDR: MOOCs will do all undergraduate education; universities will be postgrad
level only.

4 Organization of Research

Research is remarkably unorganized and chaotic. This may be a sign of our
times where Google taught us that they will organize any data for us. On the
other hand, Wikipedia also proved that organized data still has a lot of merit.
Wikipedia also includes scientific results, however, Wikipedia is quite restrictive
regarding content. As a consequence most academic papers are not mentioned in
Wikipedia, since these are only relevant to a small audience. I want a Wikipedia
for science. Such Science-Wikipedias already exist in certain areas. For instance,
there is the Compendium of NP Optimization Problems by Pierluigi Crescenzi
and Viggo Kann. The Compendium has not been updated in 20 years, yet it still
provides valuable information on various types of approximation algorithms and
non-approximability results.14 If I want to quickly learn about the state of an algo-
rithmic problem, the Compendium is a still a good alternative to “just googling.”

We should have such a Science-Wiki. Unlike Wikipedia, this Science-Wiki
should not be restrictive, and allow for including a summary of any (published)
scientific result.15 Everybody should be able to add and update information. The
Science-Wiki should be highly hierarchical, such that more obscure topics are
hidden away in sub-sub-pages. Of course the Science-Wiki would face some of
the same problems (wrong information, edit wars, etc.) as Wikipedia. But since
Wikipedia is able to contain these problems, we should as well. Being responsi-
ble for a domain will come with the same level of recognition and appreciation as
being editor in a prestigious journal. The closest thing we have to such a Science-
Wiki are some research blogs, where established scientists like Scott Aaronson
discuss new results and provide background information about their favorite sub-
ject.

13Greek theses grades for instance are downright malicious.
14Some information is clearly outdated, but weirdly enough still relevant.
15I believe that any relevant scientific result can be represented by a simple tagline.
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But maybe such organization attempts are outdated.1617 Alternatively, ma-
chine learning might come to the rescue. The best machine learning language
models are now at a level where they might help with literature search. We could
have an engine that has access to ArXiv and other repositories, and is able to an-
swer refined text queries like “Did anybody ever improve that result in Y?”, “Is
there a special case for which Z can be solved?”, or even “What are the open
problems in area X?”

TLDR: We must organize scientific knowledge with a Science-Wiki – or with
machine learning.

5 Conferences and Journals
Conferences came to a full stop during Covid, and we learned a great deal about
conferences during this time. We must question whether flying half around the
globe several times a year makes sense in light of the progress we made regarding
video conferencing tools. Instead we should consider the model of mathemati-
cians that meet in bigger but less frequent events once a year. Oded Goldreich
suggested such “festivals” many years ago,18 and now we have a unique opportu-
nity to implement them.

During Covid, I attended a bunch of virtual conferences. Some were a mere
bad copy of the original conference: just linear talks, sometimes in the middle
of the night because of an unfortunate time zone scheduling. Other conferences
fully embraced being virtual and deviated from the classic one-talk-after-another
scheme. They were free of charge, or at least almost-free if you did not present
a paper. Some were remarkably inclusive, and simply uploaded all presentation
videos to a Youtube channel, free for the whole world to watch. In this case, I
started watching every single presentation. I also ended most of them prematurely,
often already after only one minute. This may sound terrible, but is actually a
blessing compared to the linear organization of the usual conferences where I
have to sit through a presentation even though I am not interested anymore. In an
old school conference I usually fall into this pattern: I follow a talk, but sometimes
I get bored because I do not find the topic relevant, and then I get distracted by
the glorious internet.19 In the worst case, I might even miss the beginning of the
next talk! I also asked some colleagues and students about good talks that they
attended, and then watched (the beginning of) these videos.

16Some young colleagues probably ignore all proceedings, and simply google when needed.
17And in a large enough area such as machine learning, googling might be the only way.
18Go and check his essays and opinions on his web page if you have never done so.
19Back then conference organizers often turned off Wifi during talks. Very annoying.



The Bulletin of the EATCS

35

Festivals could be different. Video presentations should be available before the
festival. The actual festival would be all about connecting the dots, and discussing
the results. Not having an audience that must sit through an entire session should
also have the additional advantage of improved presentations. Speakers know
that they must captivate the audience to continue watching, and they will be more
careful with their presentations.

Some conferences might choose a fully virtual future, with or without Covid.
Lots of traveling might have made sense in the early days of computer science –
to establish the field. But now less travel is better, for the environment but also for
ourselves.

An already established trend is to merge conferences and journals. Many con-
ferences started behaving more and more like journals, with multiple deadlines
per year, and elaborate discussion rounds. In some communities, reviewing is
strictly better at conferences than journals. Some practical conferences send so
detailed reviews that all reviews back to back are longer than the actual submitted
paper. Machine learning conferences introduced open reviewing systems where
everybody could potentially analyze a submission. These are fascinating develop-
ments.

Back when I was a student, professors used to tell me that conference publi-
cations are not to be trusted: Only journal publication are correct, because they
only these are carefully reviewed. Well, journal reviewing is generally not getting
better. But more importantly, many publications are probably just not relevant
enough, so strangely enough it does not even matter whether their results are cor-
rect. If a publication becomes relevant, the author of the textbook who writes
about the result and the people citing the result will usually check again in great
detail. I would argue that a lot more mistakes in research were caught by inter-
ested readers instead of assigned (journal) reviewers. So distinguishing between
conferences and journals makes less and less sense. We should simply make all
conference journals, and journals conferences, or even better: both festivals.

TLDR: Conferences + Journals −→ Festivals.
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Introducing The Theory Blogs Column

Luca Trevisan
Bocconi University

lucatrevisan.github.io

Blogs are a format for sharing content online. In a blog, one writes essay-
like posts that are shared on the internet and are, typically, freely readable by
everybody. The posts are seen in reverse chronological order, and readers can add
their comments at the bottom of each post, respond to other comments, and so
on. This format, introduced in the late 1990s, quickly became popular in the first
decade of the 2000s for a variety of purposes.

Many people used blogs to share diary-like entries (this use peaked around
2010 and then migrated to social media apps like Facebook and Instagram). In ad-
dition, enthusiasts and hobbyists used blogging platforms to write in depth about
their passions (a type of writing that we now see on Reddit) and professional writ-
ers, such as journalists and commentators, used it to share unedited and informal
takes on timely issue (this type of writing migrated, in a very di↵erent form, to
Twitter, and now it is seeing a resurgence in the original long form via newslet-
ters).

Blogs also became popular in academia, including, so that we come to the
point of this column, among theoretical computer scientists. Academic blogs,
particularly in highly mathematical fields like ours, play a role that has not been
subsumed by newer social media apps, and, as far as I can tell, they remain popu-
lar.

They allow us to share widely and freely the kind of discussions and ideas
that are crucial to the development of our field and that are not fit to be published
and disseminated as widely in other formats. They allow the sharing of newly
formulated open questions, to discuss informally what is the fundamental new
idea of a newly announced technical breakthrough, they allow us to present new
and simplified proofs of old results, they allow the discussion and the analysis and
quick refutation of a new paper claiming P , NP, and so on. They also allow the
author to share (and collect comments on) course lecture notes, which has been
done for several courses, and has even led to published textbooks, such as Ryan
O’Donnell’s book on analysis of Boolean functions.

This kind of content (insights into new techniques, simplified proofs, new open
questions, drafts of lecture notes) has been shared, for a long time, in hallway con-
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versations in departments and in conferences, and in private conversations among
experts, or in certain graduate seminars. Having these discussion on blogs, how-
ever, makes them accessible and open in a completely di↵erent way, so that even
students and young researchers that do not have access to those hallway conversa-
tions and those graduate seminars can share in the “lore” and the “oral tradition”
of our field. Anecdotally, I have heard of a number of young theoretical computer
scientists that have been learning about our field from blogs since the time they
were undergraduates, or even high school students.

I have been thinking a lot about this issue of access to insights and ideas over
the past year and a half. Because of Covid-related restrictions, we did not have
conferences to go to and have hallway conversations at, and many of us did not
even have departments to go to. Most exchanges of ideas happened in scheduled
video calls, but one cannot bump into a colleague in a video call and start chat-
ting, or overhear someone else’s video call and join the conversation. The Covid
restrictions have increased the “privilege,” to use a currently fashionable word, of
those plugged in to certain academic networks, and they have made it harder for
new students to access knowledge, so that the openness of academic blogs is a
valuable resource.

Blog posts are also a medium to tell personal stories that relate to research,
something that has no place in technical papers and in textbooks, but is of great
value. Omer Reingold, for example, has invited a number of people to write on
his blog about “research life stories,” a project that is, to me, of great interest to
see what happens behind the scenes of great research and how other people think
about what they do. There is significant concern in our community about our
gender imbalance and other issues of representation and inclusion, and significant
pressure coming from university administrations to do better. University adminis-
trations address this problem with the tools that they have and that they know how
to use: top-down mandates and emphasis on process. There are several things that
our community can do to change in a bottom-up way, and one thing that I would
like to see more of is personal narratives of what it’s like to devote one’s life to
research and to embrace an academic community in which you do not see “peo-
ple like you,” whatever this means for that particular person. This is something
that can happen with a variety of media, including academic blogs, and I have
personally seen the impact of sharing personal stories concerning LGBT issues.

But enough about theoretical computer science blogs, what does the Bulletin
of the EATCS have to do with all this? This is a very good question, as people
say during a Q&A when they do not have a good answer. I was asked whether I
would like to edit a BEATCS column on theoretical computer science blogs: this
sounded like an open ended task with no clearly defined goals, that gave me a
good chance to make a fool of myself. So, as I have always done with similar
proposals, I said yes.
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My plan is to provide BEATCS readers with an access to TCS blog content
that adds something that could not be provided by simply linking to posts, and
to provide something that is complementary to blog content. For example, blogs
thrive in immediacy, and I plan to use some columns to take a broader, retrospec-
tive view, and blogs tend to have a distinct, individual voice while this column
will feature a variety of points of views and voices. Here is another di↵erence:
when a blogger runs out of things to say, the pace of publishing slows down and
eventually there is an indefinite hiatus. The regular publication pace of BEATCS
will be such that when we run out of interesting things to say to our readers, we
will close down this column, perhaps to be revived again in the future.
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Abstract

This expository article reviews recent and some not so recent results
on sorting integers in various models of computation: from word RAM
to Boolean circuits, with the main focus on the latter. We hope that even
seasoned researcher will find our perspective refreshing.

1 Sorting using comparisons
Sorting is one of the most ubiquitous and versatile algorithmic primitives. It is
taught in introductory computer science courses around the globe. The classical
algorithms such as Heapsort and Quicksort take time O(n log n) [13]. They are
comparison based algorithms which means that they rely only on operations that
move the input items around and compare two individual items which one is larger.
There is a well known Ω(n log n) lower bound on the number of comparisons
needed by any comparison based algorithm to sort n distinct items. The lower
bound is derived from the number of different permutations of the items.

It is often overlooked that the lower bound is merely linear in the bit-size of the
input. Indeed, any reasonable binary encoding of a sequence of n distinct items
will use Ω(n log n) bits. So in terms of the bit-size of the input the lower bound
is linear. This fact can be exemplified in the following scenario which seemingly
breaks the lower bound: sorting n items from a domain K of size 2k < n. Using
ordinary balanced search trees of depth O(k) we can sort such a sequence using
O(nk) comparisons. (Each node in the tree contains a list of items of the same
value.) For k ∈ o(log n), this gives sorting using o(n log n) comparisons. One can
show using the standard argument that Ω(nk) comparisons are needed. The bit-size
of the input is nk, so in this case sorting is linear in the bit-size of the input.

∗Partially supported by the Grant Agency of the Czech Republic under the grant agreement no.
19-27871X.
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In a more general setting we have n items x1, x2, . . . , xn, each item xi encoded
using wi bits by some prefix-free code. Encoding of the whole input sequence
gives input of bit-size m = w1 + w2 · · ·wn. We claim that the sequence can be
sorted using O(m) comparisons. If there are K distinct values in the input sequence,
each appearing q1, q2, . . . , qK times, sorting the sequence using Splay trees leads to
O(K +

∑K
j=1 q j log(n/q j)) comparisons [34]. It follows from standard information

theoretic arguments on the entropy of the sequence that m ≥
∑K

j=1 q j log(n/q j) [14].
The use of a prefix-free encoding is natural. If the items are encoded individu-

ally by a code that can be uniquely decoded then there is a prefix-free encoding of
the same efficiency [14]. For example a fixed-size encoding is prefix-free but some
sequences might be encoded more efficiently: Consider a sequence consisting of
n−
√

n copies of 0 together with one copy of each number from 1 to
√

n in arbitrary
order. A fixed-size encoding would use O(n log n) bits but the sequence can be
encoded by a prefix-free code using O(n) bits in total, and we can sort the sequence
using O(n) comparisons.

Hence, sorting arbitrary sequence of n items can be done using a number of
comparisons that is linear in the bit-size of the encoding of the sequence. This
matches our intuition well — each comparison can extract one bit of entropy from
the input and there are at most m bits of entropy to extract. Bit-size of the input
will become an important measure later when we consider Boolean circuits.

1.1 Sorting networks
A special class of comparison based sorting algorithms is represented by sorting
networks. A sorting network is a collection of n horizontal wires which carry the
input values from left to right. At various places, two wires can be connected by a
vertical comparator which switches the values carried along the wires so that the
larger value continues on the lower wire and the smaller value on the upper wire.
The comparators should be organized so that the values leave the network sorted
top to bottom. See Fig. 1 for an example.

2
3
1

2
3

2

1 1
2
3

Figure 1: An example of a sorting network with three inputs (the horizontal lines),
and three comparators (the vertical lines) [24].

The complexity of the network is the total number of comparators and the
depth of the network is the maximum number of comparators on any path from
left to right in the network. Comparator networks have been extensively studied
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and are used in various practical applications. Most notable constructions are the
well-known construction of Batcher [8] of size O(n log2 n) and depth O(log2 n), and
the famous construction of Ajtai, Komlós and Szemerédi [6] of size O(n log n) and
depth O(log n). Up-to a constant factor the network of Ajtai, Komlós and Szemerédi
(AKS network) is clearly optimal for sorting n distinct items by the above lower
bound. However, it is also optimal for sorting input sequences consisting of only
zeros and ones, as shown by the zero-one principle for sorting networks [25]: Any
sorting network correctly sorting inputs of zeros and ones correctly sorts arbitrary
inputs. Hence sorting items using sorting networks might be less efficient than
sorting them by ordinary comparison based sorting algorithms.

Sorting networks are an example of an oblivious algorithm in which the se-
quence of performed operations does not depend on the actual input. Later we will
see another example — Boolean circuits.

1.2 Beyond comparison

Beyond comparison based algorithms there is the well known Radixsort. This
is an example of an algorithm that runs on the word RAM. In the word RAM
model the memory is organized into cells of w bits each (w ≥ log n). At each time
step the program executes some operation with a fixed number of memory cells.
Which memory cells are involved in the operation can be determined by the content
of special address cells of the machine. Usually we place a restriction on how
complex each operation can be. Known algorithms usually involve relatively simple
operations such as bit-wise Boolean operations, integer addition, multiplication,
perhaps division. The input to the machine are n integers each of w bits presented
in the first n memory cells. The output is expected to be there as well. When
w ∈ O(log n), Radixsort can sort n integers in time O(n), i.e., using O(n) operations.

For large w, where w ∈ Ω(log2 n log log n), there are also algorithms for word
RAM that run in time O(n) [4, 9]. These algorithms are based on word level
parallelism. They compress multiple input values into a single memory cell, and on
the compressed input they run a comparison based sorting implemented in parallel.
The parallel execution of the sorting algorithm provides the necessary speed-up
to obtain a linear-time word RAM algorithm. The compression is usually quite
involved and proceeds in several stages as the original input values have w bits.

For w in the range from ω(log n) to o(log2 n log log n) the fastest known al-
gorithm of Han and Thorup [22] is randomized and operates in expected time
O(n
√

log log n) or more precisely in time O(n
√

log n w
log n). The algorithm is a

clever combination of several techniques used for sorting algorithms running in
time O(n log log n) [4, 18].

The first algorithm running in O(n log log n) time was given by Andersson et
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al. [4]. It is obtained by iterating a linear time reduction of sorting n items of
w bits each to sorting n items of w/2 bits each [4, 26]. The iteration stops when
the integers reach bit-size O(log n) and we can sort them in linear time using e.g.
Radixsort. The reduction splits the items into buckets based on their first w/2 most
significant bits, and then sorts each bucket based on the w/2 least significant bits.
The sorting of all the buckets can be done together by annotating each item by its
bucket index.

Han [17, 18] developed a different approach and gave a linear time splitting
procedure which takes n items of w bits and partitions them into sets X1, X2, . . . , Xt

each of size at most
√

n so that for any i < j, items in the set Xi are less or equal
to the items in X j. This procedure can be iterated for O(log log n) steps to sort the
integers completely. Han’s splitting technique is a clever traversal of the trie built
from the binary representations of the integers. The traversal is top to bottom and it
iteratively splits the formed buckets into smaller ones. The splitting is done using
hashing of prefixes into hash values of varying sizes depending on the entropy of
the emerging buckets. The splitting is done for many items in parallel using word
level parallelism which provides enough speed-up to finish the whole iterative
process in linear time.

If there were a technique that would split the integers into sets X1, X2, . . . , Xt of
size 2log1−ε n for some ε > 0, one could sort in linear time.

Another algorithm running in time O(n log log n) is presented in [27]. This
algorithm selects a random subset of the input items of size O(n/ log n) and sorts
them. For each input item it then finds the proper interval in the sorted sample where
the item belongs to. Finding the interval can be done using binary search on the
longest common prefix shared with any of the sampled items in time O(log log n).
This creates small buckets corresponding to different intervals of the sample.
Sorting each bucket gives a sorting algorithm running in time O(n log log n).

1.3 Turing machines
Perhaps the most fundamental model of computation beside word RAM are Tur-
ing machines. Sorting n integers of w bits each can be done using comparison
based sorting algorithm such as Quicksort on two-tape Turing machine in time
O(nw log n). In the same time one can also implement Mergesort on three-tape
Turing machine. On a single-tape Turing machine one cannot sort faster than
Ω(n2/ log2 n) as otherwise one would break the quadratic lower bound on recogniz-
ing palindromes by one-tape Turing machines of Hennie [20].

For w ≤ log n, one can use binary Radixsort to sort integers on two-tape Turing
machines in time O(nw2). (Splitting a list of integers into two based on a particular
bit can be done by passing over the list twice.) It is believed that sorting on two-tape
Turing machines requires time ω(nw). For restricted classes of algorithms this was
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proven by Stoss [35] and Paul [31].

2 Sorting by Boolean Circuits
Our main focus for the rest of the article is sorting using Boolean circuits. A
Boolean circuit is a directed acyclic graph in which each node (gate) has in-degree
at most two. Each node of in-degree zero is an input gate and it is labeled by one
of the input bits y1, . . . , ym. Each node of in-degree one is labeled by a Boolean
negation, and each node of in-degree two is labeled either by AND or OR. (The
in-degree of a node is the number of its incoming edges and the out-degree is the
number of its out-going edges.) On input y ∈ {0, 1}m the circuit is evaluated by
assigning values to gates and edges as follows: each edge of the circuit receives
the value of its starting node, each input gate labeled by an input bit yi is given the
value of yi, and each node labeled by a Boolean function g is assigned the value of
g applied on the values of edges incoming to the node. The output of the circuit is
given by the values of designated nodes.

The size of the circuit is the number of its gates and its depth is the length of
the longest path from an input gate to some output gate. We want to minimize
circuit size and depth. For more background on circuits see e.g. [23].

We will be interested in designing Boolean circuits computing the sorting
function SORTn,w : {0, 1}nw → {0, 1}nw which takes as its input n integers, each
encoded in binary using w bits, and outputs the same set of integers but sorted
according to the numerical order. A variant of this problem is a partial sorting
function according to k bits SORTn,w,k : {0, 1}nw → {0, 1}nw which takes the same
input as SORTn,w but outputs the set sorted according to the first k bits of the
integers. Integers with the same value of the first k bits can appear in arbitrary order.
Alternatively, one can think of a partial sort as sorting (key, value) pairs according
to k-bit keys with values being w− k bits long. Clearly, SORTn,w,w = SORTn,w. Our
goal is to design circuits computing those functions. Sorting circuits will refer to
such circuits.

Circuits are an oblivious model of computation as the sequence of performed
operations does not depend on the actual input. One can build a sorting circuit
from a sorting network by implementing each comparator by a small Boolean
circuit. Indeed, it is fairly easy to build a circuit of size O(w) and depth O(log w)
that compares two w-bit integers and outputs them in a sorted order. Replacing
each comparator in the AKS sorting network by a copy of such a circuit and
connecting the wires appropriately one can get a circuit of size O(nw log n) and
depth O(log n log w) that sorts n integers of w bits each. We will refer to this circuit
the AKS sorting circuit.

It was raised by Asharov et al. [7] whether one can design smaller circuits
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when w is small compared to log n. Because of the zero-one law for sorting
networks this will necessarily require a different technique than used by sorting
networks. For every ε > 0, Asharov et al. [7] give a construction of circuits of size
O(nw2(1 + log∗ n − log∗ w)2+ε) and polynomial depth sorting n integers of w bits
each.

Their construction relies on a circuit for SORTn,w,1 which partially sorts the
input according to a single bit. Using such circuits one can sort the integers
completely bit by bit starting from the most significant bit. This recursive approach
requires certain care. We describe next a different approach which gives a circuit
of size O(nw2) and depth O(log n + w log w).

2.1 Fast counting
Here we describe an approach to sorting based on Counting Sort from [24] which
first counts the number of occurrences (frequency) of each possible integer value
and then reconstructs the sorted integer sequence corresponding to the frequencies.
This will give a sorting circuit of size O(nw2) and depth O(log n + w log w).

Slow Counting. Let W = 2w, where W < n1/20. For a given value y ∈
{0, . . . ,W −1} we can determine the frequency of y among x1, . . . , xn using a circuit
of size O(nw) and of depth O(log n+ log w). This is done by comparing y with each
xi for equality, and then summing up the resulting indicator vector. Comparing
two w-bit strings can be done using a circuit of size O(w) and of depth O(log w).
Summing up n bits can be done using a circuit of size O(n) and of depth O(log n).
Hence we can calculate the frequency of all the values from 0 to W − 1 using a
circuit of size O(Wnw) and of depth O(log n + log w). However, such a circuit is
too big so we proceed differently.

Fast Counting. We divide the integer sequence into blocks of size W8, and
we sort each of the blocks by the AKS sorting circuit of size O(W8w log W8) and
of depth O(log W8 log w). Hence the total size of this stage of the algorithm is
O((n/W8) ·W8w log W8) = O(nw2) and the depth is O(w log w). This fits within
our budget.

Now we partition each block into parts of W4 integers. There are only W
distinct integer values so except for W parts, integers in each part are the same.
Any such part is called monochromatic. Since each part is sorted we can easily
check whether it is monochromatic by comparing its first and last item.

At this stage it is also relatively inexpensive to compute the frequency of
all the items in monochromatic parts: For each value, compute the number of
monochromatic parts containing it, and multiply the number by W4. Multiplication
by W4 only requires to pad each count by 4w zeros on the right. This will use a
circuit of total size O((n/W4) ·W · w) ⊆ O(n) and depth O(log(n/W4)) ⊆ O(log n)
which is negligible for us.
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It remains to count the number of items of each value in non-monochromatic
parts. In each block we replace all the values in monochromatic parts by 0 and we
sort each block again using the AKS sorting circuit. Except for the value 0, we
can count the frequency of each value in non-monochromatic parts by counting its
frequency in the last W5 items in all the blocks. This can be done using a circuit
of size O((n/W8) · W5 · wW) ⊆ O(n) and of depth O(log n). To properly count
the frequency of the value 0, we count zeros only in the first non-monochromatic
part of each block. Those zeros correspond to the original zeros in the first non-
monochromatic part of each originally sorted block. Counting those zeros can be
done easily using the same technique as for the other values. Hence, it does not
increase the circuit size beyond our budget.

At this point we have two frequency vectors, one counting all the values in
monochromatic parts and one counting them in non-monochromatic parts. We
can add them point-wise to obtain a vector of overall frequencies. This requires a
circuit of a negligible size and depth.

Decompression. Decompression of the frequency vector can be done in a mirror
fashion. We decompose the output positions into blocks of size n/W8. There will
be W8 blocks and at most W of them should become non-monochromatic. For
each output block we can determine whether it will be monochromatic and if so
what value it will contain. Given that W8 is substantially smaller than n this can be
done by a circuit of small size and depth.

To recreate the non-monochromatic blocks we subtract from the frequencies
the counts of items in monochromatic parts, and we use a naïve circuit of size
O((n/W7) · 2w · poly(w)) to recreate a sequence of (n/W7) integers corresponding
to those frequencies. We split this sequence into blocks of size (n/W8) and shuffle
them with the monochromatic blocks in correct order. This last step is done using
the AKS sorting circuit which sorts according to w bits but drags along each integer
a string consisting of (n/W8) integers. This last step requires a circuit of size
O(W8 · (nw/W8) log W8) and depth O(log W8 log w).

Hence, we obtain a circuit of size O(nw2) and depth O(log n + w log w) for
sorting n integers w bits each. Lin and Shi [29] give an incomparable result
discussed in the next section.

3 Partial Sorting
In this section we will focus on partial sorting of w-bit integers according to k
most significant bits. This corresponds to sorting (key, value) pairs where key has
k bits and value has w − k bits. Here, w can be large. Comparison based sorting
on such an input would use O(nk) comparisons as seen in the first section. Hence,
one could hope for partially sorting circuits of size O(nwk). When k ∈ Ω(w) the
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result of previous section already provides a circuit of size O(nw2). For small k,
one wants smaller circuits.

For arbitrary constant ε > 0, Asharov et al. [7] give a construction of circuits
of size O(nwk(1 + log∗ n − log∗ w)2+ε) sorting n integers of w bits each according
to their first k bits. First, they design a circuit of size O(nw(1 + log∗ n − log∗ w)2+ε)
that sorts the integers according to a single bit. Then they use the circuit to sort the
integers by successive bits from the most significant to the least significant. Koucký
and Král [24] use the same strategy to first build a circuit for sorting according to
one bit (see the next section) and then they apply it iteratively similarly to [7]. This
gives a circuit of size O(nwk(1 + log∗ n − log∗ w)) and depth O(log3 n) that sorts
w-bit integers according to their first k bits. In a subsequent work, Lin and Shi [29]
get circuits of depth O(log n + log k) and size O(nkw · poly(log∗ n − log∗ w)) for
k ∈ O(log n). Lin and Shi use for their construction the sorting strategy of Ajtai,
Komlós and Szemerédi [6] along with the techniques of Asharov et al. [7].

3.1 Sorting according to one bit
In this section we will look at sorting w-bit integers according to a single bit. Sorting
a sequence of w-bit integers according to one bit corresponds to the problem of
moving designated set of input integers to the beginning or end of the sequence.
The set is indicated by the bit according to which we sort. This problem is closely
related to routing in graphs and in particular, to routing in superconcentrators.

A superconcentrator is a directed acyclic graph with n input nodes and n output
nodes that satisfies the property: For any pair of subsets of A and B of input nodes
and output nodes, respectively, of the same size `, there are ` vertex disjoint paths
from vertices in A to vertices of B. Such a superconcentrator can serve as a skeleton
of a circuit sorting according to one bit as it can move designated items to their
desired positions.

Aho, Hopcroft and Ullman [5] were among the first to observe the connection
between routing and various algorithmic problems, and they defined the supercon-
centrators. Furst, Chandra and Lipton [11] have shown that many natural functions
such as addition of two n bit integers require Boolean circuits to have some weak su-
perconcentrator property. It follows from a simple information theoretic argument
that the same must be true for sorting circuits. The original motivation to study
superconcentrators was to prove lower bounds on their size (number of edges), and
hence derive non-linear lower bounds on the size of Boolean circuits for specific
functions. The hope was that the superconcentrator property requires graphs to
have super-linear number of edges. This turns out not to be the case as shown by
Valiant [36]. Indeed, there are superconcentrators with O(n) edges which allow to
route any set of items placed on selected inputs to any selected set of outputs (of
the same size) along non-intersecting vertex disjoint paths [32,36]. Moreover those
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graphs have in-degree and out-degree bounded by a constant. Known constructions
of superconcentrators rely heavily on expander graphs [21].

One could use any off-the-shelf superconcentrator to solve the sorting problem
according to one bit by turning the superconcentrator into a Boolean circuit: One
could replace each node of the superconcentrator by a selector circuit which would
select from among the values coming into the node the one which comes along
the edge of a routed path, and propagate the value further. Using a linear size
superconcentrator and linear size selector circuits would give a circuit of size
O(nw). The only issue is who will tell the selector which edge is active so which
value should be propagated.

Pippenger [33] resolved this routing issue in a rather efficient way. He gives a
construction of linear size superconcentrator together with an efficient algorithm
that determines the routing. The algorithm can be implemented by a small size
circuit namely, there is a circuit of size O(n log n) and depth O(log2 n) that gets as
its input indicator vectors of sets A and B and outputs a vector indicating which
edges should be used to connect A to B by |A|-many vertex disjoint paths in the
accompanying superconcentrator. Put together, this gives a Boolean circuit of size
O(nw + n log n) and depth O(log2 n) that sorts w-bit integers according to one bit.
We call this Pippenger’s partially sorting circuit.

To get a smaller circuit Asharov et al. [7] open up the construction of Pippenger
[33] and use his technique to build a smaller circuit from scratch. We will use
Pippenger’s partially sorting circuit as a black-box to build more efficient circuits.

The cost of Pippenger’s partially sorting circuit is dominated by the size of the
circuitry to calculate the routing. This takes a circuit of size O(n log n) but we can
afford only O(nw). So we use a similar technique as in Section 2.1 and we will
apply this circuit only to blocks of inputs of 2O(w) items.

Say we divide the input into blocks of integers of size n′ = 22w, and we sort
each block by Pippenger’s partially sorting circuit. This will give a circuit of total
size O((n/n′) · [n′w + n′ log n′]) = O(nw). Now we partition each block into parts
of 2w integers. All but one part in each block will be monochromatic meaning that
each part contains items with the same value of the bit according to which we sort.
Now we could try to use a similar technique as in Section 2.1 and apply some naïve
algorithm on monochromatic and non-monochromatic parts. Unfortunately, that
does not work here as even the items in monochromatic parts may vary. So we will
proceed iteratively from here.

The iterative procedure will use parameters W0,W1, . . . ,Wlog∗ n−log∗ w−1 where
W0 = w and Wi+1 = 2Wi . At iteration i > 0, we divide the current sequence into
parts consisting of Wi items, and we form blocks of 22Wi/Wi parts. Hence, each
block contains 22Wi integers. Within each block there will be at most 2 · 22Wi/W2

i
non-monochromatic parts. In each block we will move the non-monochromatic
parts to a side using Pippenger’s partially sorting circuit that will consider each
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part as an item consisting of W · w bits. Then in each block we sort the items in
non-monochromatic parts together using Pippenger’s partially sorting circuit. The
number of those items is at most 2 · 22Wi/Wi. We repartition those items into parts
of size Wi, and sort all the parts (again as units) within the block using Pippenger’s
partially sorting circuit according to the appropriate bit of their first item. (We
do not care where the single non-monochromatic part ends up.) Notice, if we
repartition the block into parts of size 2Wi = Wi+1 then at most two parts in the
block out of Wi+1 parts will be non-monochromatic. At this point we are ready for
next iteration i + 1.

After the last iteration the total number of parts will be relatively small and the
number of items in the non-monochromatic parts will be also small. So we can use
few extra Pippenger’s partially sorting circuits to finish the sorting. An interested
reader might consult [24] for precise details.

The parameters Wi are chosen so that at each iteration the number of items
in non-monochromatic parts within a block is 1/Wi faction of all the items in the
block so we can afford to sort them using Pippenger’s partially sorting circuit.
Similarly for the number of parts where we are concerned about the logarithmic
term in the complexity of Pippenger’s partially sorting circuit used to sort the parts.
In total, each iteration requires a circuit of size O(nw) and depth O(log2 Wi).

Thus we obtain a circuit sorting n w-bit integers according to one bit of total
size O(nw(1 + log∗ n − log∗ w)) and depth O(log2 n). It can be used along the lines
of Asharov et al. [7] to build a circuit of size O(nwk(1 + log∗ n− log∗ w)) and depth
O(log3 n) that sorts w-bit integers according to their first k bits.

4 Lower bounds
Sorting is one of the most popular candidate functions for which people try to prove
lower bounds. This is rather natural as sorting deals with transfer of information,
and information is an aspect of computation that is quantitatively relatively well
understood compared to computation itself. Already in 70’s researchers tried
to prove lower bounds for sorting on Turing machines. Stoss [35] proved an
Ω(n log2 n) lower bound for sorting on Turing machines by algorithms that only
move items around. This was extended by Paul [31] to algorithms which do not
perform any “magic” defined in terms of Kolmogorov complexity. For Turing
machines there was only little progress since then.

A modern take on excluding the “magic” is the Network Coding Conjecture
of Li and Li [28]. Network coding is a problem in a communication network
with ` source nodes s1, . . . , s` and target nodes t1, . . . , t` where each source si

wants to be transmitting a stream of information to target ti. The intermediate
nodes in the network can combine received messages in arbitrary manner before
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transmitting them further. The question is at what rate can the source-target pairs
communicate when each link has some restricted capacity, and how this rate relates
to the multicommodity flow in the corresponding network.

There are well known examples where the information rate can exceed the
multicommodity flow in directed networks [1, 3]. The Network Coding Conjecture
postulates that such situation cannot occur in undirected graphs [28]. So far the
conjecture was established only in restricted settings. It is a compelling formulation
of the “no magic” assumption.

There are multiple recent results establishing conditional lower bounds for
sorting under the assumption that the Network Coding Conjecture is true such as
lower bound for sorting in external memory [16] or for Boolean circuits [2, 7, 30].
Asharov et al. [7] show that under the Network Coding Conjecture, Boolean
circuits sorting n integers w bits each partially according to k bits require size
Ω(nk(w − log n)) even with no restriction on the depth of the circuits. Thus under
the Network Coding Conjecture the Boolean circuits described in previous sections
are almost optimal.

Sorting lower bound can also be derived from other assumptions. For example,
Boyle and Naor [10] show that Ω(log n) lower bound on the overhead of offline
oblivious RAM would imply the super-linear lower bound Ω(n log2 n) on the size of
sorting circuits. (It was erroneously thought that such lower bounds for oblivious
RAM were already established.) Super-linear lower bounds on the size of sorting
circuits of logarithmic depth would also follow from a non-adaptive nε lower bound
on the number of queries for the function inversion problem with preprocessing of
Hellman [12, 15, 19, 37].

All these partial results witness the centrality of sorting problem. In many
ways, sorting seems to be the right candidate for proving super-linear size lower
bounds for logarithmic depth circuits. Proving such a bound would constitute a
major progress in computational complexity and we invite interested readers to
take on this challenge. As Andrew Yao puts it: You cannot win if you don’t buy a
lottery ticket.
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Abstract
Last year, the CONCUR conference series inaugurated its Test-of-Time

Award, purpose of which is to recognise important achievements in Con-
currency Theory that were published at the CONCUR conference and that
have stood the test of time. This year, the following four papers were chosen
to receive the CONCUR Test-of-Time Awards for the periods 1994–1997
and 1996–1999 by a jury consisting of Rob van Glabbeek (chair), Luca de
Alfaro, Nathalie Bertrand, Catuscia Palamidessi, and Nobuko Yoshida:

• David Janin and Igor Walukiewicz. On the Expressive Completeness
of the Propositional mu-Calculus with respect to Monadic Second Or-
der Logic [3].

• Uwe Nestmann and Benjamin C. Pierce. Decoding Choice Encod-
ings [4].

• Ahmed Bouajjani, Javier Esparza, and the late Oded Maler. Reacha-
bility Analysis of Pushdown Automata: Application to Model-
checking [2].

• Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.
Vardi.�Alternating�Refinement�Relations�[1].

This�year,� the�second�paper�was� live-interviewed�by�Nobuko�Yoshida;� the�
third�paper�was� interviewed�by�Nathalie�Bertrand�and� the� forth�paper�was�
interviewed�by�Luca�Aceto.� Adam�Barwell�and�Francisco�Ferreira�helped�
making�the�article�from�the�live�interview�by�Yoshida.
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1� Interview�with�David�Janin�and�Igor�Walukiewicz
Luca:� You� receive� the�CONCUR�ToT�Award�2021� for�your�paper� ‘On� the�Ex-
pressive�Completeness�of�the�Propositional�mu-Calculus�with�respect�to�Monadic�
Second�Order�Logic’,�which� appeared� at�CONCUR� 1996.� In� that� article,� you�
showed�what�I�consider�to�be�a�fundamental�result,�namely�that�the�mu-calculus�
and�the�bisimulation-invariant�fragment�of�monadic�second-order�logic�(MSOL)�
have�the�same�expressiveness�over�transition�systems.�Could�you�tell�us�how�you�
came� to� study� that�question�and�why�do�you� think� that� such�a�natural�problem�
hadn’t�been�answered�before�your�paper?

David�and�Igor:�At�that�time�we�were�interested�in�automata�characterizations�of�
the�expressive�power�of�MSOL�and�the�mu-calculus.� In�1988�Damian�Niwinski�
has� shown� that� over� binary� trees� the�mu-calculus� and�MSOL� are� expressively�
equivalent.� When� it�appeared,� the�result�was�quite�surprising,�even�unexpected.�
The�two�logics�are�not�equivalent�on�unranked�trees�where�the�number�of�children�
of�a�node�is�not�fixed.�In�consequence,�the�logics�are�not�equivalent�over�the�class�
of�all�transition�systems.

In�1983�van�Benthem�showed�that�modal�logic�is�equivalent�to�the�bisimulation�
invariant�fragment�of�first-order�logic.�When�we�have�learned�about�this�result�we�
have�realized�that�our�automata�models�can�be�used�to�prove�a�similar�statement�
for�the�mu-calculus.

The�method�of� van�Benthem� could� not�be� applied� to�MSOL,� the� automata�
based�method�looks�like�the�only�way�to�prove�the�result.

Luca:� I� am� interested� in�how� research� collaborations� start,� as� I� like� to� tell�
‘research� life�stories’� to�PhD�students�and�young�researchers.� Could�you� tell�us�
how�you�started�your�collaboration?

David:�I�came�to�meet�Igor�when�he�was�visiting�Bordeaux�in�fall�93,�present-
ing�his�first�completeness�result�on�a�proof�system�for�the�mu-calculus�(LICS�93).�
I�was�myself�starting�a�PhD�considering�modal�logic�for�specifying�(various�forms�
of)�nondeterminism�in�connection�with�(power)domain�theory�(FSTTCS�93).

We�eventually�met�again�in�Auvergnes�(centre�of�France)�for�the�Logic�Col-
loquium�in�summer�94.� There,�spending�time�in�the�park�nearby�the�conference�
venue�or�walking�around�the�volcanoes,�we�elaborated�a�notion�of�nondetermin-
istic�automata� for� the�modal�mu-calculus.� This� result�can�be�seen�as�extending�
the�notion�of�‘disjunctive’�normal�form�from�propositional�logic�to�the�modal�mu-
calculus.� I�remember�that�Igor�later�used�this�result�for�his�second�completeness�
result�for�Kozen’s�proposed�proof�system�for�the�mu-calculus�(LICS�95).�Thanks�
to�Igor,�this�was�for�me�the�occasion�to�learn�in�depth�the�link�between�mu-calculus�
and�tree�automata.
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Incidentally,� Johan�van�Benthem�was� also�attending� this�Logic�Colloquium�
and�we�both�attended�his�lecture�about�the�bisimulation-invariant�fragment�of�FO.�
Although�we�did�not�yet�realize�we�could�generalize�his�result�to�MSO,�this�surely�
increased�our�own�understanding�of�logic.

Our�first�result�(Automata�for�the�mu-calculus)�was�presented�at�MFCS�in�95�
in�Prague,�where�Igor�and�I�met�again.� It�could�have�been�there,�or�a�little�later,�
that�we�eventually�postulated�our�bisimulation-invariance�result.�However,�proof�
arguments�were�only�found�later�while�exchanging�emails.� It�was�a�bit�amazing�
for�me�that�we�could�discuss�that�way�across�Europe:� email�started�to�be�heavily�
used�only�in�the�late�80’s.�In�my�head,�Poland�was�far,�far�away�from�France.

Yet�our�collaboration�was�eventually� in� the� line�of�an�ongoing�collaboration�
between�Warsaw�and�Bordeaux,�involving�researcher�like�Arnold�(my�supervisor)�
and�Niwinski�(Igor’s�mentor),�both�major�specialists�in�the�area�of�automata�and�
logics.�Somehow,�as�a�followup,�together�with�Aachen�(Grädel�and�Thomas)�and�
many�other�sites,�the�GAMES�European�network�was�later�created,�and,�almost�at�
the�same�time,�Igor�came�to�Bordeaux�as�a�CNRS�researcher.

Luca:�As�you�mentioned�earlier,�van�Bentham�has�shown�that�modal�logic�has�
the� same� expressive�power� as� the�bisimulation-invariant� fragment�of�first-order�
logic.� In�some�sense,�one�may�consider�your�main�result�as�the�extension�of�van�
Bentham’s�theorem�to�a�setting�with�fixed-points.�Could�you�briefly�describe�at�a�
high� level� the�challenges� that�fixed-points�created�in�your�w ork?�To�your�mind,�
what�was�the�main�technical�achievement�or�technique�in�your�paper?

David�and�Igor:� Sure�our� result� is�similar� to�van�Benthem’s,�and,�as�men-
tioned� above,� his� own� presentation� in� 1993�was� very� inspiring.� However,� his�
proof�relies�on�compactness�of�first-order�logic�and�cannot�be�adapted�to�monadic�
second-order�logic.�In�our�proof,�we�have�used�automata-theoretic�techniques.

In�our�previous�works�we�had�developed�automata�models�for�MSOL�and�the�
mu-calculus�on�unranked�trees.�Every�transition�system�is�bisimulation�invariant�
to� a� tree�obtained�by� the�unfolding�of� the� transition� system.� Crucially� for�our�
result,� it� is�also�equivalent� to�a� tree�where�every�subtree� is�duplicated� infinitely�
many�times.�A�short�pumping�argument�shows�that�on�such�trees�the�two�automata�
models�are�equivalent.

Luca:� Did� any� of� your� subsequent� research� build� explicitly� on� the� results�
and� the� techniques� you� developed� in� your� award-winning� paper?� Is� there� any�
result�obtained�by�other�researchers�that�builds�on�your�work�and�that�you�like�in�
particular?

David�and�Igor:�Around�that�time�Marco�Hollenberg�and�Giovana�D’Agosti-
no�used�our�automata-theoretic�methods�to�show�the�uniform�interpolation�prop-
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erty�for�the�mu-calculus.
In�collaboration�with�Giacomo�Lenzi�(postdoc�in�Bordeaux�from�Pisa),�David�

considered� the�bisimulation-invariant� fragment�of�various� levels�of� the�monadic�
quantifier�alternation�hierarchy.�It�turns�out�that�monadic�⌃ 1�corresponds�to�reach-
ability�properties�and�monadic�⌃2� corresponds� to�Büchi�properties,� respectively�
the�first�and�second�levels�of�the�mu-calculus�hierarchy.

It�could�be�the�case�that�all�mu-calculus�can�be�translated�into�monadic�⌃3� for-
mulas�–�this�is�true�when�restricting�to�deterministic�transition�systems.�However,�
with�nondeterminism,�such�a�result�seems�di�cult�to�achieve.

Incidentally,� Giacomo� and�David� also� proved� that� adding� limited� counting�
capacity�to�modalities�yields�a�fixed-point�calculus�equivalent�to�the�unravelling�
invariant�fragment�of�MSO�(LICS�2001).

In�1999,�in�collaboration�with�Erich�Grädel,�Igor�has�used�similar�techniques�
to�define�and�study�guarded�fixed-point�lo gic.�Subsequently,�several�other�fixed-
point� logics�of� this�kind�were�proposed�with� the�most�expressive�one�probably�
being�guarded�negation�logic�with�fixed�points�of�Bárány,�ten�Cate,�and�Segoufin�
from�2015.�These�works�all�use�automata-theoretic�methods�to�some�extent.

Luca:� Your� paper�was�written�while� Igor�was� at�BRICS� at� the�University�
of�Aarhus.� Igor,�what�was� it� like� to�be�at�BRICS@Aarhus�at� that� time?� What�
role�do�you�think�centres�like�BRICS�played�and�can�play�in�the�development�of�
theoretical�computer�science?�Do�you�think�that�your�stay�at�BRICS�had�a�positive�
impact�on�your�future�career?

Igor:� My�stay�at�BRICS�had�definitively�a �beneficial�impact�on �me .�At �that�
time�BRICS�was�one�of�the�most�active�centers�world�wide�in�theoretical�computer�
science.�Being�able�to�see�and�talk�to�so�many�di↵erent�people,�being�exposed�to�
so�many�di↵erent�ideas,�was�very�enriching.�BRICS�was�a�meeting�place�allowing�
scientists�to�have�a�better�and�larger�vision�of�our�field.�BRICS�contributed�to�the�
development�of�many�people�involved,�as�well�as�to�the�excellence�of�Aarhus,�and�
even�Denmark�as�a�whole,�in�our�field.

Luca:� I�have�been�brought�up� in� the�concurrency-theory� tradition�and�I�feel�
that�bisimulation-invariant�properties�are�the�interesting�ones�over�transition�sys-
tems.�Do�you�think�that�we�actually�‘need’�logics�that�allow�one�to�specify�prop-
erties�of�transition�systems�that�are�not�bisimulation�invariant?

David:� That�was� the� idea� indeed�and� the�mu-calculus� is� the�good� logic� for�
that.�From�a�mathematical�perspective,�bisimulation�is�a�fairly�natural�definition.�
In�some�sense,�bisimulation�equivalence�is�a�greatest�co-congruence.

However,�I�always�suspected�that�bisimulation�is�too�fine�grained�as�an�equiv-
alence�for�concurrency.�When�modelling�realistic�systems,�nondeterminism�arises
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either�as�controllable�(angelic)�or�uncontrollable�(demonic)�choice.� In�this�case,�
the�right�equivalence�to�be�considered�is�simulation�equivalence.

The�funny�thing�is�that�David�Park,�who�‘invented’�bisimulation,�was�actually�
studying�equivalence�of�J.R.�Büchi’s�deterministic�string�automata�where,�because�
of�determinism,�bisimulation�turns�out�to�be�equivalent�to�simulation�equivalence.�
It�is�only�after�Matthew�Hennessy�and�Robin�Milner’s�work�in�concurrency�that�
bisimulation�was�applied�to�nondeterministic�behaviors.

Igor:� In� the� context� of�XML� and� semistructured� data,� bisimulation� is� not�
relevant.� One� of� the� prominent� queries� in�XPATH� is�whether� a� value� appears�
twice�–� that� is� clearly�not� a�bisimulation-invariant�property.� So�while�XPATH�
looks�very�close�to�PDL�or�the�mu-calculus,�many�techniques�and�questions�are�
very�di↵erent.�The�other�context�that�comes�to�mind�is�controller�synthesis,�where�
we�ask�for�a�transition�system�of�a�specific�shape,�for�example,�with�self-loops�on�
certain�actions.�Such�self�loops�represent�invisibility�of�the�action�to�the�controller.

Luca:�What�are�the�research�topics�that�you�find�most�interesting�right�now?
Is�there�any�specific�problem�in�your�current�field�of�interest�that�you’d�like�to�see�
solved?

David:� In�Logic�for�Computer�Science,�there�have�always�been�two�kinds�of�
approaches:�model�theory�that�eventually�led�to�model�checking�and�proof�theory�
that�eventually�led�to�typed�programming�languages.

Twenty�years�later,�aiming�at�designing�and�implementing�real�concurrent�sys-
tems,�especially�for�interactive�arts,�I�realized�that�the�latter�approach�was�(at�least�
for�me)�a�lot�more�e↵ective.�Building�concurrent�systems�by�synchronizing�arbi-
trary�sub-systems�sounded�for�me� like�unstructured�programming;� it�was�essen-
tially�unmaintainable.�Monads�and�linear�types,�among�many�other�approaches�in�
typed� functional�programming,� surely�o↵ered� interesting�alternatives� to�process�
calculi�approaches.

Igor:� In� the�context�of� the�paper�we�discuss�here,� I�am�surprised�by�devel-
opments� around� the�model-checking�problem� for� the�mu-calculus.� After� some�
years�of�relative�calm,�Calude,�Jain,�Khoussainov,�Li�and�Stephan�have�made�an�
important� breakthrough� in� 2017.� Yet,� despite� big� activity� after� this� result,� the�
research�on�the�problem�seems�to�have�hit�one�more�barrier.� Another�old�promi-
nent�problem�is�decidability�of�the�alternation�hierarchy�for�the�mu-calculus.�The�
problem� is:� given�a�formula�and�a�number�of�alternations�between� the�least�and�
the�greatest�fixed-points,�decide�if�there�is�an�equivalent�formula�with�this�number�
of�alternations.�Even�when�the�number�of�alternations�is�fixed�we�do�not�know�the�
answer.�Among�others,�Thomas�Colcombet�and�Christof�Loeding�have�done�very�
interesting�work�on�this�subject.
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Luca: What advice would you give to a young researcher who is keen to start
working on topics related to automata theory and logic in computer science?

David: From the distance, our result sounds to me as a combination of both
technique and imagination. Technique for mastering known results and imagina-
tion for finding original open problems, especially between research fields that are
not (yet) known to be deeply related. As a matter of fact, I felt lucky finding such
a fresh open problem that was (probably) a lot easier to solve than many other
well-known hard problems.

Technique comes from hard work. It is obviously essential but somehow easy
to teach and evaluate in academia. Imagination comes from curiosity. It is still
essential but a lot more di�cult to teach. So young researchers must develop by
themselves their own imagination and curiosity.

In the automata-theory branch of logic in computer science, the remaining
open problems seem fairly hard, so I believe that it is the imagination of young re-
searchers that will make the di↵erence for setting up new interesting directions of
research, especially those who are ready to look aside, towards other areas of logic
in computer science and, because it can be a considerable source of motivation,
funny applications.

Igor: Naturally, the field is much broader these days than it was 25 years
ago. It is crucial to master some techniques. For this, working on variations of
already solved problems is a good method. Yet, I think it is important to escape
the cycle of constant modifications of existing problems and their solutions. I
would suggest that, at some moment, one should find an important open problem
that one is passionate about and should spend a considerable e↵ort on it. I admit
that this is a matter of a taste, personality, and having a su�ciently comfortable
situation to a↵ord such a risk. Another good option is to look at frontiers with
other areas: distributed computing, semantics, control theory, security.

2 Interview with Uwe Nestmann and Benjamin Pierce
Nobuko: You receive the CONCUR 2021 Test-of-Time Award for your paper
“Decoding Choice Encodings”, which appeared at CONCUR 1996. Could you
tell us briefly what lead you to embark on studying the expressiveness of choice
in the asynchronous pi-calculus?

Uwe: I did my diploma thesis in ’91. I was working on a topic that had to
do with communicating functions. I built a lambda calculus with communication
in it. It was a typed lambda calculus and it was strong enough to type the Y-
combinator. I went to Edinburgh and presented that at the Concurrency Club, and
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they�asked�me,�“who�is�your�supervisor?”.�I�didn’t�really�have�one,�because�I�was�
mostly�self-driven� those�days.� What� they� told�me� is� that� it’s�better� to�not�work�
on�this�topic�without�a�competent�supervisor.� The�second�piece�of�advice�was�to�
get�a�supervisor�first�and�then�look�for�a �t opic.�So�I �found�B enjamin.�Benjamin�
had�this�wonderful�project�at�the�time�on�trying�to�make�a�programming�language�
out�of�the�pi-calculus�and,� in�that�language,�choice�encodings�(or�at�least�choice�
operators)�played�a� role.� He� invited�me� to�visit�him� in�Paris,�where�he�was�on�
six-months’�leave,�I�think.

Benjamin:� It�was�actually�a�“nested�postdoc.”� I�did�three�postdocs�after�fin-
ishing�my�PhD�at�CMU:�one�in�Edinburgh,�one�in�Paris,�and�one�in�Cambridge.�
The�Paris�one�was�nested�inside�the�Edinburgh�one.

Uwe:� I�was�in�Paris�for�one�week,�and�Benjamin�told�me�to�try�programming�
in�his�new�programming�language,�Pict.� I�tried�to�write�down�the�dining�philoso-
phers�problem,� in�a�way�such� that�I�could�use�an�abstraction� to�pick�up�forks� in�
either�order,�and�I�wanted� to� instantiate� it�with� left�and�right,�and�right�and� left,�
but�the�Pict�language�didn’t�allow�me�to�do�so.�Behind�was�the�interplay�between�
choice�and�abstraction�(and�instantiation)�and�that�was�the�start�of�all�of�it�from�my�
point�of�view.�Then�I�wrote�up�an�exposé�and�I�ended�up�actually�working�on�just�
a�third�of�that�for�my�PhD�thesis.�And�of�course,�there�were�technical�reasons�for�
Benjamin�and�Dave�[Turner]�at�the�time�for�being�interested�in�choice�constructs.

Benjamin:�Of�course,�Dave�Turner�is�the�most�important�name�that�needs�to�
be�mentioned�here,�besides�obviously�Robin�Milner.� All�of� this�was�happening�
under� the�umbrella�of�Robin’s�wonderful�work�on�pi-calculus�and� the�amazing�
group� that�he�had�assembled�at� the� time.� He�had� this� incredible�set�of�students,�
including�Dave�Turner�and�David�Sangiorgi�and�Peter�Sewell,�doing�all�sorts�of�
things�with�pi-calculus.�Dave,�besides�being�a�first-class�hacker,�was�also�a�really�
good� theoretician.� He� truly�married� the� two.� He�and� I� started� talking�at� some�
point�about�what�kind�of�programming�language�would�you�get�if�you�treated�the�
pi-calculus�like�the�Lisp�people�treated�the�lambda�calculus.�What�that�led�to�was�a�
lot�of�di↵erent�language�designs�based�on�di↵erent�versions�of�the�pi-calculus,�but�
we�kept�wanting�to�make�it�simpler�and�simpler.�Partly�because�we�were�thinking�
of�it�as�possibly�even�a�distributed�language,�not�just�a�concurrent�language,�and�as�
everybody�knows,�the�choice�operator�–�in�the�full-blown�pi-calculus�or�CCS�sense�
–� is�not�a�real� thing� in�distributed�systems:� it’s�not� implementable.� So�we�were�
trying�to�make�the�underlying�calculus�simpler�and�simpler,�and�eventually�wound�
up�with�this�programming�language�with�no�choice�at�all.�But�as�Uwe�discovered,�
there�are�things�that�you�might�want�to�do�where�choice�is�the�natural�primitive,�
like�dining�philosophers,�which� raises� the�question�of�how�much�of� it� can�you�
get� just�by�programming�on� top�of�plain�parallel�composition�plus�messages�on�
channels.�We�found�that�programming�up�a�restricted�form�of�choice�was�a�little�
tricky�but�not�that�tricky.�What�was�really�tricky,�though,�was�justifying�that�it�was
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correct.�The�reason�why�it�turned�into�a�whole�dissertation�for�Uwe,�was�because�
the�well-known�notions�of�correctness�that�were�lying�around�did�not�apply�to�this�
situation.�I�remember�being�totally�astonished�at�the�length�and�technicality�of�the�
final�proof�that�Uwe�ended�up�doing.

Nobuko:�Did�you�imagine�at�the�time�that�your�award-winning�paper�would�
have� so�much� impact�on� the�area�of�expressiveness� in�concurrency� theory,� and�
how�do�you�feel�now?

Benjamin:� Maybe�Uwe�did;� I�did�not.� I� think�we�were� just� following�our�
noses.

Uwe:�Actually,�I�would�say�“yes”�and�“no”.�The�“no”�is�when�it�came�to�the�
CONCUR�acceptance,�I�got�the�impression�that�we�just�about�made�it�because�the�
competition�was�so� tough�and� the�pi-calculus�was�really�hot�at� that� time.� There�
were�six�or�seven�pi-calculus�papers� in� the�conference� in� the�end�(I�don’t�know�
how�many�were�in�the�submission�pool).� The�tiny�“yes”�that�I�would�like�to�say�
is�because�Kohei� [Honda]�had� foreseen� it.� When� I�gave� the�presentation�at� the�
Newton� Institute� just� in�autumn� ’95�–� that�was� the�workshop� that�Benjamin�or-
ganised�on�concurrent�high-level�languages�–�Kohei�came�to�me�after�the�talk�and�
said�something�like,�“maybe�you�don’t�know�yet,�but�you�will�be�known�for�this”.�
I�can’t�remember�the�exact�wording.� I�think�he�called�it�“Nestmann’s�Theorem”�
or�something.� Me,�a�PhD�student,� the�first�t ime�in�front�of�this�crowd�of�expert�
people�and�then�he�tells�me�something�like�that.� I�didn’t�believe�him.� Of�course�
not.

Benjamin:�Kohei�was�ahead�of�his�time�in�so�many�ways.

Nobuko:�Could�you�tell�us�what�the�research�environment�was�like�in�Edin-
burgh�and� the�UK�as�a�whole�at� that� time�and�how� it�has� influenced�the�rest�of�
your�career?

Benjamin:� I�came�as�a�postdoc� to�Robin’s�group.� I�was� the� last�postdoc�of�
Robin’s� in�Edinburgh,� and� then� travelled�with� him� to�Cambridge,�where�Peter�
Sewell�and�I�were�his�first�p ostdocs.�I �would�say�that�both�Edinburgh�and�Cam-
bridge�at�the� time,�and�still,�were� just�incredible.� In�Edinburgh�you�had�Milner,�
you�had�[Gordon]�Plotkin,�you�had�Don�Sannella,�you�had�students�around�you�
like�Martin�Hofmann�and�Philippa�Gardner�and�Marcelo�Fiore,�and�the�list�goes�
on�and�on.� You�had�other�postdocs�like�Randy�Pollack.� It�was�just�an�incredible�
place.� People�talking�about�amazing,�deep,�mind-bending�things�all�the�time.� It�
was�particularly�an�amazing�place�for�thinking�about�concurrency.� There�were�a�
lot�people�breaking�new�ground.

Nobuko:�Benjamin,�how�did�that�experience�influence�your�current�research?
Benjamin:� For�one� thing,� it�solidified�my�interest�in�l anguage�d esign.�The�

whole�Pict�experience�was�so�fruitful.� It�was�so�much�fun�working�with�Dave�on
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implementing�this�interesting�language,�and�both�the�design�and�the�programming�
that�we�did� in�Pict�gave� rise� to� so�many� interesting�questions.� For�example,� it�
led�us� to�do�a�bunch�of� thinking�about� type�systems� for�concurrency,�and� I�can�
see� echoes� of� those� ideas� in� the�work� that� you,� Nobuko,� and� colleagues� have�
done�more� recently�with� session� types.� Though� I�don’t�consider�myself�a�core�
concurrency�researcher�any�more,�the�experience�gave�me�an�appreciation�for�the�
theory�of�concurrency�that�has�drawn�me�back�to�the�area�over�and�over.

Nobuko:�Uwe,�how�did�it�influence�your�research?
Uwe:� I�did�my�PhD� in�Erlangen� (University�of�Erlangen-Nürnberg),�which�

was�a�place� that�was�not�so�much�known�at� that� time�for� theory,�and�especially�
not�for�concurrency� theory.� I�had� the�opportunity�by�a�bilateral� travel�exchange�
programme�between�these�two�universities�pushed�by�my�other�supervisor,�Terry�
Stroup,�at�that�time.�And�when�I�came�into�Edinburgh,�not�only�was�there�so�much�
competence�around,�which�is�mainly�what�Benjamin�summarised,�but�there�was�so�
much�openness.�There�was�so�much�openness�for�any�kind�of�ideas.�So�much�cu-
riosity�and�joy.�So�I�was�very�lucky�that�I�could�regularly,�every�couple�of�months,�
visit�the�LFCS�for�a�few�days.� There,�I�was�pumped�up�with�content�and�ideas,�
and�did�a�presentation�in�the�pi�club�in�Robin’s�tiny�o�ce,�with�almost�ten�people�
sitting�around�a�tiny�blackboard,� listening�to�my�ideas�and�my�problems.� It�was�
just�unbelievable�at�this�time.�That�kind�of�culture�and�atmosphere�was�so�great.�I�
traced�it�back,�in�May�or�June�’95,�since�we’re�talking�about�this�particular�paper,�
it�was�culminating�in�the�crucial�part�where�I�was�just�before�proving�choice�en-
codings�correct.�I�only�needed�two�ingredients.�One�came�a�week�later�by�Davide�
Sangiorgi�posting,� for� the�first�t ime,�a �s hort�n ote�o n�a synchronous�bisimilarity.�
And�the�other�was�that�we�were�rediscovering,�mostly�together�in�the�pi�club�with�
Ole-Høgh�Jensen�and�Robin�Milner,� the�notion�of�coupled�similarity.� Both�Ole�
and�Robin�had�di↵erent�ideas�and�came�to�the�same�conclusion.� I�came�back�to�
Erlangen�and�found�the�old�paper�on�coupled�similarity�by�[Joachim]�Parrow�and�
[Peter]�Sjödin�and�within�a�week�all�of�the�pieces�were�just�about�there.�I�“simply”�
had�to�write�down�the�details�and�convince�myself�that�it�went�all�the�way�through.�
That�was�the�crucial�moment�and�without�Edinburgh,�without�this�culture,� these�
possibilities,� this�openness,� it�would�not�have�happened�and�maybe�I�would�not�
even�have�become�a�professor� in�Berlin.� Just�because�of� this� tiny�situation�and�
getting�together�of�bright�people.

Nobuko:�Studying�expressiveness�this�way�was�quite�new�and�at�the�beginning�
at�that�time,�so�you�probably�cared�a�lot�about�presentation�and�how�to�communi-
cate�your�ideas.�Do�you�have�any�comments�about�this�aspect?�I�found�your�paper�
is�still�very�readable�and�very�clearly�written�for�such�a�subtle�paper.�How�did�you�
go�about�writing�with�this�in�mind?�Apart�from�technical�details.
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Uwe:� I�was�a�great�fan�of�Benjamin’s�presentation�and�communication�skills�
at� that� time.� I�was� seeing� him� on� stage� and� reading� his� papers� and� I� had� the�
possibility� to�closely� interact�with� this� impressive�guy�and� learn�from�him.� Just�
recently,� I� learnt� about� a� citation� that� summarises� this� approach� about�writing:�
“Do�not� try� to�write� such� that�you�are�understood.� Try� to�write� such� that�you�
cannot�be�misunderstood.”� I� think� this�expresses�precisely�what�I� think�I� learnt�
back� then� in� trying� to�get� this�paper�out,�and�making� these�subtle�observations,�
and�finding�the�r ight�n otation.�I t’s�often�underestimated�how�important�the�role�
of�good�notation� is� for�getting� things�across.� The�same�goes� for�graphical�pre-
sentations.� And� then,� polishing,� polishing,� polishing,� polishing.� “Get� simpler�
sentences,”�Benjamin�always�said.� I’m�German,�you�know,�we�like�complicated�
constructions�which�are�somewhat�nice�and�deeply�nested.� I�learnt�at�the�time�to�
get� it�as�simple�as�possible.� Presentations�were�another� thing.� I� found�my�pre-
sentation�back�at� the�Newton� Institute�again�and� I� remember� I�had� this� table�of�
contents�written�with�ABCDE,�which�were�the�initial�letters�of�the�concepts�that�I�
presented:�Asynchrony,�Bisimulation,�Coupled�similarity,�Decoding,�and�I�think�
E�was�for�End�or�something.� I�obviously�like�playing�with�words,�and�I�admire�
the�power�and�joy�of�well-chosen�language.

Nobuko:� I�do�remember�your�presentation.�You�highlighted�a�coupled�simu-
luation�as�a�part�of�Rob�[van�Glabbeek]’s�famous�diagram�at�branching�bisimilar-
ities’�CONCUR�paper.�I�still�remember�your�presentation�at�Newton�Institute.

Benjamin:� I�have� always� cared� a� lot� about�good�writing.� Communicating�
ideas� is�really�one�of� the�most� important�parts�of�an�academic’s� job.� So� it�feels�
important�to�acknowledge�the�people�I�learned�about�writing�from.�The�first�was�
Don�Knuth�–�his�level�of�attention�to�writing,�among�all�the�other�things�he�did,�
is� totally� inspiring� to�me.� The�other�was� John�Reynolds,�who�was�one�of�my�
two� supervisors� as� a�PhD� student� and�who� is� the�most� careful�writer� that� I’ve�
ever�worked�closely�with.� He�gave�me�one� time�a�draft�of�one�of�his�papers� to�
proofread,�and�I�said�to�myself,�“Aha,�this�is�my�chance�to�get�back�at�him�for�all�
the�mistakes�and�flaws�he�has�found�in�my�writing�over�the�y ears!”�So�I �started�
reading� it,�and� I�got�more�and�more� frustrated�because� I�couldn’t�find�anything�
to�improve.�Anything�at�all!� In�the�whole�paper�–�not�a�comma,�not�a�notational�
choice,�not�the�way�something�was�worded.� Nothing.� That�experience�was�both�
an�inspiration�and�a�humbling�lesson�to�me.

The�biggest�thing�I’ve�learned�over�the�years�about�writing�is�that�the�biggest�
ingredient�of�good�writing� is�exactly�what�Uwe�brought� to� this�paper:� the�will-
ingness�to�iterate�until�it’s�good.�Good�writers�are�people�that�stop�polishing�later�
than�bad�writers.

Nobuko:�How�much�of�your�later�work�has�built�on�your�award-winning�pa-
per?�What�follow-up�result�of�yours�are�you�most�proud�of�and�why?
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Uwe:�I�would�like�to�mention�three.�Funnily,�neither�of�them�was�in�the�decade�
following�the�paper.�The�reason�may�be�because�I�was�dragged�into�other�projects,�
having�to�do�with�security�protocols,�pi-calculus,�and�object�calculi.� (1)�By�acci-
dent,�I�got�back�in�contact�with�Ursula�Goltz,�who�was�one�of�my�PhD�referees:�
she�was�working�on�a�project�on�synchronous�and�asynchronous�systems�and�she�
asked�me�for�literature�because�she�knew�I�was�digging�deep�in�the�80s�about�re-
sults�on�the�first�CSP�implementations.�In�the�course�of�this�project,�I�got�back�to�
actually�directly�building�upon�my�PhD�work,�and�I�found�Kirstin�Peters,�at�that�
time�a�PhD�student,�who�got� interested� in� that.� We� found�a�number�of� remark-
able�observations�having� to�do�with�distributed� implementability�and�notions�of�
distributability�and�what�this�may�have�to�do�with�encodings�between�calculi.�We�
discovered�a�hierarchy�of�calculi�where�you�can�very�easily�see�which�of�them�are�
at�the�same�level�of�distributed�implementability.�We�found�that�the�asynchronous�
pi-calculus�is�actually�not�fully�implementable�in�a�distributed�system,�like�many�
others.�There�is�the�ESOP�paper�in�2013,�which�I’m�very�proud�of.�Kirstin�pushed�
this�reasearch�much�further.� (2)�Another�follow-up�work�concerns�the�notion�of�
correctness�that�we�were�applying�in�the�awarded�paper,�it�was�a�lot�about�a�direct�
comparison�between�terms�and�their�translations.�Not�by�plain�full�abstraction�on�
two�di↵erent� levels�and�having�an� if�and�only� if,�but�a�direct� translation�so�you�
could�not�distinguish�a�term�from�its�translation.� This�kind�of�observation�led�to�
a�rerun�of,�say,�the�research�on�what�we�actually�want�from�an�encoding.�What�is�
a�good�criterion�for�a�good�encoding?�This�culminated�in�the�work�with�Daniele�
Gorla�where�we�criticised�the�notion�of�full�abstraction�in�the�sense�that�it’s�a�very�
important�notation�but�you�can�easily�misuse�it�and�get�to�wrong�results�or�useless�
results.� (We�also�emphasised�the�importance�of�operational�correspondence,�and�
Daniele�went�on� to�establish�his,� by�now,� quite� standard�and�established� set�of�
criteria� for�what�a�good�encoding� is.)� That� is�a�nice�highly�abstract�paper�with�
Daniele� in�Mathematical�Structures� in�Computer�Science� in�2016,�only,� so�also�
well,�well� after� the�CONCUR�paper� in�1996.� (3)� In� just� the� last� two�or� three�
years,�my�PhD�student�Benjamin�Bisping�finally�s tudied�a lgorithms�and�imple-
mentations�for�checking�coupled�similarity.�We�found�an�amazing�wealth�of�new�
views�on� these�kinds�of�equivalences� that�are�slightly�weaker� than�weak�bisim-
ilarity.� So�back� to� the� roots,� in� a� sense,� to�what�we�were�doing�25�years� ago.
(Like�Kirstin�Peters�and�Rob�van�Glabbeek�who�further�showed�that�coupled�sim-
ilarity� is� in� fact�very�closely�connected� to�encodings,� in�general.)� Seeing� these�
developments�makes�a�lot�of�fun.

Nobuko:�This�was�a�TACAS�paper,�right?
Uwe:� Yes,� and�we� also�published� the� survey� article� “Coupled�Similarity�–

The�First�32�Years”,�for�the�Festschrift�for�Robert�van�Glabbeek.� It’s�basically�an�
advertising�paper�for�this�great�notion�of�equivalence,�which�is�highly�underesti-
mated.� It’s,� in�a�sense,�much�better� than�weak�bisimilarity.� Especially� if�you’re
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interested in – and this is my favourite domain – distribution, distributability, dis-
tributed implementations.

Nobuko: Benjamin, do you have any further comments?
Benjamin: For me, the answer is a little more oblique. I haven’t written pa-

pers about choice encodings and things like that, besides this one. But what it
did for me was to really solidify my interest in the asynchronous pi-calculus as a
foundation for programming languages – and as a foundation for thinking about
concurrency – because this paper, Uwe’s result, teaches us that the asynchronous
pi-calculus is more powerful than it looks – powerful enough to do a lot of pro-
gramming in. You know there’s this famous quote attributed to Einstein, “Make

everything as simple as possible, but no simpler.” I felt like the asynchronous pi-
calculus was kind of “it” after seeing this result. And that calculus then became the
foundation for a whole bunch of my later work on type systems for concurrency
and language design.

Uwe: Actually the encodings we did back then went into what is now called
the “localised asynchronous pi-calculus”, but it simply wasn’t yet known back
then. The localised asynchronous pi-calculus is at this perfect level of distributed
implementability, as we know by now.

Nobuko: This is partly also Massimo Merro did with Davide Sangiorgi, right?
Uwe: Yes, they did this few years later, towards the end of the ’90s.

Nobuko:� What�do�you�think�of�the�current�state�and�future�directions�of�the�
study�of�expressiveness�in�process�calculi,�or�more�generally,�concurrency�theory�
as�a�whole?

Uwe:�Back�then,�in�Cambridge,�I�was�having�discussions�with�Peter�Sewell.�
Quite�many�of�them.�At�the�time,�we�were�making�fun�by�saying,�“now�we�know�
how� to�do�process�calculi,�we�can�do�five�of�them�for�b reakfast.”�We�know�the�
techniques,�we�know�how�to�write�down�the�rules,�we�know�what�to�look�for�in�
order�to�make�it�good.�And�I�would�say�that�for�studying�encodings�nowadays�it’s�
kind�of�the�same�level�of�maturity;�we�know�what�to�look�for�when�writing�down�
encodings,�pitfalls�to�avoid,�and�it’s�done.�So�what�I�found�most�interesting�today,�
is�that�often�enough,�the�proximity�between�encodings�and�actually�doing�imple-
mentations�is�very�close�and�that�is�may�be�because�the�maturity�of�programming�
languages�we�can�use�is�much�higher.�We�can�use�convenient�abstractions�in�order�
to�more-or-less�straightforwardly�write�down�encodings.

What’s�going�on?� Current� state�and� future�directions.� The�EXPRESS/SOS�
workshop�is�still�alive�and�kicking.� It�attracts�great�papers�and�not�that�many�are�
submitted�but�typically�they’re�great�papers�and�I�think�that’s�good.�I�think�we�had�
an� impact�on�concurrent�programming,�and� for�example,� if�you� look�at�Google�
Go,� the� concurrency�primitives� that�you� find� in� there� is�pretty�much� a�process
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calculus.� It’s�message�passing,�and�choice,�and�even�mixed�choice,�and�stu↵�like�
that.�I�cannot�say�right�now�that�there�are�deep,�deep,�deep�questions�to�be�solved�
about�encodings�except�for�finding�out�what�Robert�van�Glabbeek’s�criteria�have�
to�do�with�Daniele�Gorla’s�criteria.�There�is�an�ongoing�debate,�but�the�issues�are�
quite�technical.�What�could�use�more�research�is�typed�languages,�typed�calculi,�
and�typed�encodings.� It�has�been�done�and�we�have�many�nice�results,�but�I�think�
there�are�still�some�open�questions�on�what�the�ideal�criteria�should�be�on�those.

Nobuko:�What�advice�would�you�give�a�young�researcher�interested�in�work-
ing�on�concurrency�theory�and�process�calculus�like�today?

Benjamin:� My�best� advice� for�people� that�want� to�do� theory� is:� keep�one�
foot� in� practice.� Don’t� stop� building� things.� Because� that’s� the�way� you�find�
interesting�problems,� it’s� the�way�you�keep�yourself�grounded,� it’s� the�way�you�
make�sure�that�the�directions�you’re�looking�and�the�questions�that�you’re�asking�
have�something�to�do�with�.�.�.�something!�It’s�the�way�to�stay�connected�to�reality�
while�also�generating�great�questions.

Nobuko:�Uwe,�do�you�have�anything�to�add�to�that?
Uwe:�Having�a�foot�in�practice�is�also�good�for�actually�checking�and�finding�

mistakes�in�your�reasoning.� Building�systems�not�only�for�finding�problems�but�
also� for�finding�out�that�you�have�a �problem�in�your�t hinking.�Apart�f rom�that,�
I�would�not� like� to�push�for�any�particular�area�for�concurrency� theory.� I�mean,�
concurrency� theory� is� incredibly�wide.� My�advice� is:� get� the�best�possible� su-
pervisor�that�you�can�find�and�then�work�on�his�p roject.�I�think�this�is�very�good�
advice.�Be�patient,�dig�deep.�This�is�very�general�advice.�Never�give�up.� It�took�
me�two�years�until,�in�one�week,�the�pieces�fell�together.�So�be�patient,�dig�deep,�
and�train�your�communication�skills,�practice�networking.�All�the�general�things.�
Ah,�and�maybe�what�I�found�very�useful�for�my�own�career:� learn�the�basics�and�
the�history�of�your�field.�Understand�what�has�already�been�found�and�what�that�
means�even�twenty�years�after.�I�learned�a�lot�from�the�early�80s�papers�that�I�was�
mentioning�beforehand�on�first�implementations�of�the�communication�primitives�
of�CSP.�There�is�one�published�supposedly�deadlock-free�algorithm,�which�almost�
twenty�years�later�was�discovered�to�be�incorrect.�The�proof�was�incorrect;�it�was�
not�actually�deadlock�free.�So,�work�on�hard�problems,�dig�deep,�be�patient.�And�
communicate�well.�This�is�also�the�best�way�to�get�help.

Nobuko:�Wow.�Anyone�who�can�satisfy�everything�would�be�quite�a�fantastic�
student.�(Laughs.)�Like�you,�Uwe,�you�know.

Nobuko:�This�is�the�last�question:�what�are�the�research�topics�that�currently�
excite�you�the�most?�Can�I�ask�Benjamin�first?

Benjamin:� I�will�name�two.�One�is�machine-checked�proofs�about�real�soft-
ware.� Over� the�past� fifteen�or� twenty�years,� the�capabilities�of�proof�assistants,
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and�the�community�around�them,�have�reached�the�point�where�you�can�really�use�
them�to�verify�interesting�properties�of�real�software;�this�is�an�amazing�opportu-
nity�that�we�are�just�beginning�to�exploit.

On� a� more� pragmatic� level,� I’m� very� interested� lately� in� testing.� Specifi-
cally,� specification-based�(or�property-based)�testing�in�the�s tyle�popularised�by�
QuickCheck.� It’s�a�beautiful�compromise�between�rigor�and�accessibility.� Com-
pared�to�the�e↵ort�of�fully�verifying�a�mathematically�stated�property,�it�is�incred-
ibly�easier�and� lower-cost,� and�yet,� you�can�get� tremendous�benefit,�b oth�from�
the�process�of�thinking�about�the�specification�in�the�mathematical�way�that�we’re�
used� to� in� this�community�and�from� the�process�of� testing�against,� for�example,�
randomly�generated�or�enumerated�examples.� It’s�a� sweet� spot� in� the� space�of�
approaches�to�software�quality.

Nobuko:� These� things�are� still�very�di�cult� for�concurrency�or�distributed�
systems.� Do� you� have� any� comment� because� proof� assistants� for� concurrency�
theory�is,�I�think,�still�quite�di�cult�compared�to�hand-written�proof.

Benjamin:�Yes,�in�both�domains�–�both�verification�and�testing�–�concurrency�
is� still�hard.� I�don’t�have� a�deep� insight� into�why� it� is�hard� in� the�verification�
domain,�beyond�the�obvious�di�culty�that�the�properties�you�want�are�subtle;�but�
in�the�testing�domain,�the�reason�is�clear:� the�properties�have�too�many�quantifier�
alternations,�which� is�hard�for� testing.� Not� impossible�–�not�always� impossible,�
anyway�–�but�it�raises�hard�challenges.

Uwe:�There’s�a�recurring�pattern�in�what�I�like�doing�and�that�is�always�to�do�
with�looking�at�di↵erent�levels�of�abstractions.�You�can�think�of�it�in�terms�of�en-
codings�or�as�a�distributed�system,�and�I�was�always�wondering�about�the�relation�
between�global� (higher-level)�properties�and� local� (lower-level)� implementation�
of�systems.� And� throwing� formal�methods,� formal�models,� and� theories�at� this�
problem�has�always�been�what�I�liked,�and�I�still�do�that,�nowadays�again,�more�
on� fault-tolerant�distributed�algorithms.� Maybe�also�because�of� the� recent�hype�
due�to�blockchain�and�the�strong�interest�in�practical�fault-tolerant�Byzantine�al-
gorithms,�and�so�on.�And,�here�I�meet�Benjmain�again,�at�best�doing�mechanical�
verification�of�t hose.�Mechanical�verification�is�still�hard�and�you�can�easily�pull�
PhD�students� into�a�miserable�state�by�dragging� them�onto�a�problem� that� takes�
an�awful� lot�of� time,�and� then�you�get�out�one�paper,�with� the�proof� in�Isabelle,�
in�our�case.� On� the�other�hand,� it’s�getting�more�and�more�a� tool� that�we� just�
use.�The�more�you’ve�done,�using�a�proof�assistant,�the�more�you�integrate�it�into�
your�everyday� life.� Some�students,�as�a�standard,� test� their�definitions�and�their�
theorems�and�do�their�proofs�in�Isabelle�and�we�now�even�have�bachelor�students�
using�that.�Good�ones,�I�mean�bright�ones,�of�course,�but�it’s�becoming�more�and�
more�an�everyday� thing.� The�other� idea:� Benjamin,�you’re�well-known�also�for�
the�software�foundations�series.� I�don’t�know�whether�you’ve�done�pedagogical�
research,�learning�theory,�on�top�of�that�in�the�following�sense.�What�we�are�inter-
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ested in, just recently, is understanding how people learn how to do proofs. It’s a
long, di�cult, mental process and there are a number of theories about this actu-
ally works, and whether this works, and there’s magic involved, and whatnot. And
getting used to, of course. Learning from patterns. But then, what could be the
impact of using proof assistants for learning how to do proofs? Does it actually
help? Or does it actually hinder?

Benjamin: It turns people into hackers. (Laughs.)
Uwe: Yeah, yeah, yeah. We’re talking about computer science students, not

maths students, right? Programming is proving, proving is programming. This is
of course a slogan from type theory, but one may actually use it as a motivation
to write down first proofs, getting feedback from the proof assistant, and go on
from there. This is one of the interests that we have, in actually understanding this
process of learning how to do proofs.

Nobuko: I now conclude this interview. Thank you both very much for giving
us your time.

3 Interview with Ahmed Bouajjani and Javier Es-
parza

Nathalie: You receive the CONCUR ToT Award 2021 for your paper with Oded
Maler Reachability Analysis of Pushdown Automata: Application to Model-Checking,
which appeared at CONCUR in 1997. In that article, you develop symbolic tech-
niques to represent and manipulate sets of configurations of pushdown automata,
or even of the broader class of alternating pushdown systems. The data struc-
ture you define to represent potentially infinite sets of configurations is coined
alternating multi-automata, and you provide algorithms to compute the set of pre-
decessors (pre*) of a given set of configurations. Could you briefly explain to our
readers what alternating multi-automata are?

Ahmed: The paper is based on two ideas. The first one is to use finite automata
as a data structure to represent infinite sets of configurations of the pushdown au-
tomaton. We called them multi-automata because they have multiple initial states,
one per control state of the pushdown automaton, but there is nothing deep there.
The second idea is that this representation is closed under the operation of com-
puting predecessors, immediate or not. So, given a multi-automaton representing
a set of configurations, we can compute another multi-automaton representing all
their predecessors. If you compute first the immediate predecessors, then their
immediate predecessors, and so on, you don’t converge, because your automata
grow bigger and bigger. The surprising fact is that you can compute all prede-
cessors in one go by just adding transitions to the original automaton, without
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adding any new states. This guarantees termination. Later we called this process
“saturation”.

Once you can compute predecessors, it is not too di�cult to obtain a model-
checking algorithm for LTL model checking. But for about branching-time logics
you must also be able to compute intersections of sets of configurations. That’s
where alternation kicks in, we use it to represent intersections without having to
add new states.

Nathalie: Could you also tell us how you came to study the question addressed
in your award-winning article? Which of the results in your paper did you find
most surprising or challenging?

Javier: In the late 80s and early 90s many people were working on symbolic
model-checking, the idea of using data structures to compactly represent sets of
configurations. BBDs for finite-state model-checking were a hot topic, and for
quite a few years dominated CAV. BDDs can be seen as acyclic automata, and so
it was natural to investigate general finite automata as data structure for infinite-
state systems. Pierre Wolper and his group also did very good work on that.

About your second question, when I joined the team Ahmed and Oded had
already been working on the topic for a while, and they had already developed
the saturation algorithm. When they showed it to me I was blown away, it was so
beautiful. A big surprise.

Nathalie: In contrast to most previous work, your approach applied to model
checking of pushdown systems treats in a uniform way linear-time and branching
time logics. Did you apply this objective in other contributions?

Javier: I didn’t. The reason is that I was interested in concurrency, and when
you bring together concurrency and procedures even tiny fragments of branching-
time logics become undecidable. So I kind of stuck to the linear-time case. Did
you work on branching-time, Ahmed?

Ahmed: Somehow yes (although it is not precisely about linear vs branching
time properties), in the context of Regular Model Checking, a uniform frame-
work for symbolic analysis of infinite-state systems using automata-based data
structures. There, we worked on two versions, one based on word automata for
systems where configurations can be encoded as words or vectors of words, such
as stacks, queues, etc., and another one based on tree automata for configurations
of a larger class of systems like heap manipulating programs, parametrised sys-
tems with tree-like architectures, etc. The techniques we developed for both cases
are based on the same principles.

Nathalie: As it is often the case, the paper leaves some open questions. For
instance, I believe, the precise complexity of verification of pushdown systems
against CTL specifications is PSPACE-hard and in EXPTIME. Did you or others
close this gap since? Did your techniques help to establish the precise complexity?

Ahmed: In our paper we showed that model checking the alternating modal
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mu-calculus�is�EXPTIME-hard.�CTL�is�less�expressive,�and�it�was�the�most�pop-
ular�logic�in�the�verification�community�at�the�t ime,�so�it�was�natural�to�ask�if�it�
had�lower�complexity.

Javier:� Yes,�as�a�first�step�in�the�paper�we�showed�that�a �fragment�of�CTL,�
called�EF,�had�PSPACE�complexity.� But� I�made�a�mistake� in� the�proof,�which�
was� later� found� by� Igor�Walukiewicz.� Igor� cracked� the� problem� in� a� paper� at�
FSTTCS’00.� It�turns�out�that�EF�is�indeed�PSPACE-complete�(so�at�least�we�got�
the�result�right!),�and�full�CTL�is�EXPTIME-complete.� I�wish�Igor�had�used�our�
technique,�but�he�didn’t,�he�applied� the� ideas�of�his�beautiful�CAV’96�paper�on�
parity�pushdown�games.

Nathalie:� It� is� often� interesting� to� understand� how� research� collaborations�
start�as�it�can�be�inspiring�to�PhD�students�or�colleagues.� Could�you�tell�us�how�
you� started�your�collaboration�on� the�award-winning�paper?� Did�you�continue�
working�together�(on�a�similar�topic�or�on�something�totally�di↵erent)�after�1997?

Ahmed:� Javier�and�I�first�met�in�Liege�for�CAV�9 5.�French�universities�have�
this�program�that�allows�us�to�bring�foreign�colleagues�to�France�for�a�month�as�
invited�professors,�and�I�invited�Javier�to�Grenoble�in�96.

Javier:� It�was� great� fun;� Verimag�was� a� fantastic� place� to� do� verification,�
we�both�liked�cinema,�Ahmed�knew�all�restaurants,�and�the�Alps�were�beautiful.�
Ahmed�invited�me�again�to�Grenoble�in�97.�This�time�I�came�with�my�wife,�and�
we�again�had�a�great�time.

When�I�arrived�in�Grenoble�in�96�Ahmed�and�Oded�had�already�written�most�of�
the�work�that�went�into�the�paper.�My�contribution�was�not�big,�I�only�extended�the�
result�to�the�alternation-free�mu-calculus,�which�was�easy,�and�proved�a�matching�
lower�bound.� I�think�that�my�main�contribution�came�*after*�this�paper.� Ahmed�
and�Oded�were� too�modest,� they� thought� the� result�was�not� so� important,�but� I�
found� it�not�only�beautiful,� I� thought� it’d�be�great� implement� the�LTL�part,�and�
build�a�model�checker�for�programs�with�procedures.�We�could�do�that�thanks�to�
Stefan�Schwoon,�who�started�his�PhD� in�Munich�around� this� time–he� is�now�at�
Paris-Saclay—and�was�as�good�a�theoretician�as�a�tool�builder.� Around�2000�he�
implemented�a�symbolic�version�of�the�algorithms�in�MOPED,�which�was�quite�
successful.

Ahmed:� In�99� I�moved� to�LIAFA� in�Paris,�and� I� remember�your�kids�were�
born.

Javier:�Yes,�you�sent�my�wife�beautiful�flowers!
Ahmed:�But�we�kept�in�touch,�and�we�wrote�a�paper�together�in�POPL’03�with�

my�PhD�student�Tayssir�Touili,�now�professor�in�Paris.�We�extended�the�ideas�of�
the�CONCUR�paper� to�programs�with�both�procedures�and�concurrency.� Other�
papers�came,�the�last�in�2008.

Javier:� And�Ahmed�is�visiting�Munich�next�year,�pandemic�permitting,�so�I�
hope�there’ll�be�more.
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Nathalie:�How�would�you�say�this�award-winning�paper�influenced�your�later�
work?�Did�any�of�your�subsequent�research�build�explicitly�on�it?

Ahmed:� This�paper�was�the�first�of�many�I �have�co-authored�on�verification�
of�infinite-state�systems�using�automata.�All�of�them�use�various�automata�classes�
to�represent�sets�of�configurations,�and�compute�reachable�configurations�by�iter-
ative�application�of�automata�operations.�We�call�these�procedures�accelerations;�
instead�of�computing�a�fixpoint�of�a �function�by�repeated�i teration,�you�“jump”�
to�the�fixpoint�after�finitely�many�steps,�or�at�least�converge�fa ster.�Accelerations�
were�implicitly�present�in�the�CONCUR’97�paper.� They�have�been�also�used�by�
many�other�authors,�for�example�Bernard�Boigelot�and�Pierre�Wolper.

My�first�paper�on�accelerations�was�with�Peter�Habermehl,�my�PhD�student�
at�the�time�and�now�at�IRIF.�We�worked�on�the�verification�of�systems�communi-
cating� through�queues,�using�finite�automata�with�Presburger�constraints�as�data�
structure.� Then�came�several�works�on�communicating�systems�with�my�student�
Aurore�Annichini�and�Parosh�Abdulla�and�Bengt�Jonsson�from�Uppsala.�As�a�nat-
ural�continuation,�with� the�Uppsala�group�and�my�student�Tayssir�Touili�we�de-
veloped�the�framework�of�Regular�Model�Checking.�And�then,�with�Peter�Haber-
mehl,�Tomas�Vojnar�and�Adam�Rogalewicz�from�TU�Brno,�we�extended�Regular�
Model�Checking�to�Abstract�Regular�Model�Checking,�which�proved�suitable�and�
quite�e↵ective�for�the�analysis�of�heap�manipulating�programs.

We�also�applied� the�CONCUR’97� results� to� the�analysis�of�concurrent�pro-
grams.� The�first�work�was�a �POPL’03�paper�with�Javier,�Tayssir,�and�me�on�an�
abstraction�framework.� Two�years�later,�Shaz�Qadeer�and�Jacob�Rehof�proposed�
bounded-context�switch�analysis�for�bug�detection.� That�paper�created�a� line�of�
research,�and�we�contributed� to� it� in�many�ways,� together�with�Shaz,�Mohamed�
Faouzi�Atig,� who�was�my� student� then,� and� is� now�Professor� at�Uppsala,� and�
others.

Javier:�The�CONCUR’97�paper�was�very�important�for�my�career.�As�I�said�
before,� it�directly� led� to�MOPED,�and� later� to� jMOPED,�a�version�of�MOPED�
for�Java�programs�developed�by�Stefan�Schwoon�and�Dejvuth�Suwimonteerabuth.�
Then,�Tony�Kucera,�Richard�Mayr,� and� I� asked�ourselves� if� it�was�possible� to�
extend�probabilistic�verification�to�pushdown�systems,�and�wrote�some�papers�on�
the�topic,�the�first�in�LICS’04.�This�was�just�the�right�moment,�because�at�the�same�
time�Kousha�Etessami�and�Mihalis�Yannakakis�started�to�write�brilliant�papers�on�
recursive�Markov�chains,�an�equivalent�model.�The�POPL’03�paper�with�Ahmed�
and�Tayssir�also�came,�and�it�triggered�my�work�on�Newtonian�program�analysis�
with�two�very�talented�PhD�students,�Stefan�Kiefer,�now�in�Oxford,�and�Michael�
Luttenberger,�nw�my�colleague�at�TUM.�So� the�CONCUR’97�paper�was�at� the�
root�of�a�large�part�of�my�work�of�the�next�15�years.

Nathalie:�Is�there�any�result�obtained�by�other�researchers�that�builds�on�your�
work�and�that�you�like�in�particular�or�found�surprising?
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Javier: After implementing MOPED, Stefan worked with Tom Reps on an
extension to weighted pushdown automata, the Weighted Pushdown Library. Tom
and Somesh Jha also found beautiful applications to security. This was great work.
I was also very impressed by the work of Luke Ong and his student Matthew
Hague. In 97 Ahmed and I tried to apply the saturation method to the full mu-
calculus but failed, we thought it couldn’t be done. But first Thierry Cachat gave a
saturation algorithm for Büchi pushdown games, then Luke, Matthew cracked the
mu-calculus problem, and then they even extended it to higher-order pushdown
automata, together with Arnaud Carayol, Oliver Serre, and others. That was really
surprising.

Ahmed: I agree. I’d also mention Qadeer and Rehof’s TACAS’05 paper. They
built on our results to prove that context-bounded analysis of concurrent programs
is decidable. They initiated a whole line of research.

Nathalie: What are the research topics that you find most interesting right
now? Is there any specific problem in your current field of interest that you’d like
to see solved?

Javier: Ten years ago I’ve had said the complexity of the reachability problem
for Petri nets and of solving parity games, but now the first one is solved and
the second almost solved! Now I don’t have a specific problem, but in the last
years I’ve been working on parameterised systems with an arbitrary number of
agents, and many aspects of the theory are still very unsatisfactory. Automatically
proving a mutual exclusion algorithm correct for a few processes was already
routine 20 years ago, but proving it for an arbitrary number is still very much an
open problem.

Ahmed: I think that invariant and procedure summary synthesis will remain
hard and challenging problems that we need to investigate with new approaches
and techniques. It is hard to discover the right level of abstraction at which the
invariant must be expressed, which parts of the state are involved and how they are
related. Of course the problem is unsolvable in general but finding good method-
ologies on how to tackle it depending on the class of programs is an important is-
sue. I think that the recent emergence of data-driven approaches is promising. The
problem is to develop well principled methods combining data-driven techniques
and formal analysis that are e�cient and that o↵er well understood guarantees.

Nathalie: Would you have an anecdote or a tip from a well-established re-
searcher to share to PhD students and young researchers?

Javier: Getting this award reminded me of the conference dinner at CAV 12
in St. Petersburg. I ended up at a table with some young people I didn’t know. The
acoustics was pretty bad. When the CAV Award was being announced, somebody
at the table asked "What’s going on?", and somebody else answered "Not much,
some senior guys getting some award". Never take yourself very seriously ...

Nathalie: Oded Maler passed away almost 3 years ago. Do you have any
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memory of him to share with our readers?
Ahmed: Oded was very amused by the number of citations. He used to say

"Look at all the damage we’ve done".
Javier: Yes, Oded had a wonderful sense of humour, very dry and deadpan.

When I arrived in Grenoble it took me a few days to learn how to handle it! I miss
it very much.

4 Interview with Rajeev Alur, Thomas A. Henzinger,
Orna Kupferman and Moshe Y. Vardi

Luca: You receive the CONCUR 2021 Test-of-Time Award for your paper “Alter-
nating Refinement Relations”, which appeared at CONCUR 1998. In that article,
you gave what I consider to be a fundamental contribution, namely the introduc-
tion of refinement relations for alternating transition systems. Could you briefly
explain to our readers what alternating transition systems are? Could you also tell
us how you came to study the question addressed in your award-winning article
and why you focused on simulation- and trace-based refinement relations? Which
of the results in your paper did you find most surprising or challenging?

AHKV: When we model a system by a graph, our model abstracts away some
details of the system. In particular, even when systems are deterministic, states
in the model may have several successors. The nondeterminism introduced in the
model often corresponds to di↵erent actions taken by the system when it responds
to di↵erent inputs from its environment. Indeed, a transition in a graph that mod-
els a composite system corresponds to a step of the system that may involve some
components. Alternating transition systems (ATSs) enable us to model compos-
ite systems in more detail. In an ATS, each transition corresponds to a possible
move in a game between the components, which are called agents. In each move
of the game, all agents choose actions, and the successor state is deterministically
determined by all actions. Consequently, ATSs can distinguish between collabora-
tive and adversarial relationships among components in a composite system. For
example, the environment is typically viewed adversarially, meaning that a com-
ponent may be required to meet its specification no matter how the environment
behaves.

In an earlier paper1, some of us introduced ATSs and Alternating Temporal
Logics, which can specify properties of agents in a composite system. The CON-
CUR 1998 paper provided refinement relations between ATSs which correspond
to alternating temporal logics. Refinement is a central issue in a formal approach

1See https://www.cis.upenn.edu/~alur/Jacm02.pdf.
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to� the�design�and�analysis�of� reactive� systems.� The� relation�“I� refines�S�” �intu-
itively�means� that� system�S� has�more�behaviors� than� system� I.� It� is�useful� to�
think�about�S� being�a�specification�and�I �an�implementation.�Now,�if�we�consider�
a� composite� implementation� IkE� and� specification�S�k E�a nd�w e�w ant�t o�check�
that� the� component� I� refines�t he�c omponent�S�, �t hen�t he�t raditional�refinement�
preorders�are�inappropriate,�as�they�allow�I� to�achieve�refinement�of�I kE�with�re-
spect�to�S�kE�by�constraining�its�environment�E.�Alternating�refinement�relations�
are�defined�with�respect�to�ATSs�that�model�the�interaction�among�the�underly-
ing�components,�and�they�enable�us�to�check,�for�example,�that�component�I�has�
fewer�behaviors� than�component�S� no�matter�how�component�E�behaves.� They�
are�called�“alternating”�because� refinement�may�restrict�implementation�actions�
but�must�not�restrict�environment�actions.� In�other�words,�refinement�may�admit�
fewer�system�actions�but,�at�the�same�time,�more�environment�actions.

It�was�nice� to� see�how� theoretical�properties�of�preorders� in� the� traditional�
setting� are� carried�over� to� the�game� setting,� and� so� are� the� results�known� then�
about�the�computational�price�of�moving�to�a�game�setting.�First,�the�e�ciency�of�
the�local�preorder�of�simulation�with�respect�to�the�global�preorder�of�trace�con-
tainment� is�maintained.� As� in� the� traditional�setting,�alternating�simulation�can�
be�checked� in�polynomial� time,�whereas�alternating� trace-containment� is�much�
more�complex.�Second,�the�branching�vs.�linear�characterizations�of�the�two�pre-
orders�is�preserved:� alternating�simulation�implies�alternating�trace�containment,�
and�the�logical�characterization�of�simulation�and�trace-containment�by�CTL�and�
LTL,� respectively,� is� carried� over� to� their� alternating� temporal� logics� counter-
parts.� The� doubly-exponential� complexity� of� alternating� trace� containment,� as�
opposed� to� the� PSPACE� complexity� of� trace� containment,� is� nicely� related� to�
the�doubly-exponential�complexity�of�LTL�synthesis,�as�opposed�to�its�PSPACE�
model-checking�complexity.

Luca:� In�your�paper,� you�give� logical� characterisations�of�your� alternating�
refinement�relations�in�terms�of�fragments�of�alternating�temporal�l ogic.�Logical�
characterisations�of�refinement�relations�are�classic�results�in�our�field�and�I�find�
them�very�satisfying.� Since�I�teach�a�number�of�those�results�in�my�courses,�I’d�
be�interested�in�hearing�how�you�would�motivate�their�interest�and�usefulness�to�a�
student�or�a�colleague.�What�would�your�“sales�pitch”�be?

AHKV:�There�is�extensive�research�on�the�expressive�power�of�di↵erent�for-
malisms.�Logical�characterization�of�refinement�relations�tells�us�something�about�
the�distinguishing�power�of� formalisms.� For�example,�while� the� temporal� logic�
CTL⇤� is�more�expressive� than� the� temporal� logic�CTL,� the� two� logics�have� the�
same�distinguishing�power:� if�you�have�two�systems�and�can�distinguish�between�
them�with�a�CTL⇤�formula�(that�is,�your�formula�is�satisfied�only�in�one�of�the�sys-
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tems),�then�you�should�be�able�to�distinguish�between�the�two�systems�also�with�
a�CTL�formula.�Moreover,�while�CTL�is�not�more�expressive�than�LTL,�we�know�
that�CTL� is�“more�distinguishing”� than�LTL.�These� results�have� to�do�with� the�
logical�characterizations�of�trace�containment�and�simulation.�The�distinguishing�
power�of�a�specification�formalism�is�useful�when�we�compare�systems,�in�partic-
ular�an�implementation�and�its�abstraction:�if�we�know�that�the�properties�we�care�
about�are�specified�in�some�formalism�L ,�and�our�system�refines�the�abstraction�
according�to�a�refinement�relation�in�which�the�satisfaction�of�specifications�in �L�
is�preserved,�then�we�can�perform�verification�on�the�abstraction.

Luca:�I�am�interested�in�how�research�collaborations�start,�as�I�like�to�recount�
“research-life�stories”�to�PhD�students�and�young�researchers�of�all�ages.� Could�
you�tell�us�how�you�started�your�collaboration�on�the�award-winning�paper?

AHKV:�Subsets�of�us�were�already�collaborating�on�other� topics� related� to�
reactive�models�and�model�checking,�and�all�of�us�shared�a�common�belief� that�
the�field�was�in�need�to�move�from�the�limited�setting�of�closed�systems�to�a�more�
general�setting�of�open�systems,�that�is,�systems�that�interact�with�an�environment.�
Open�systems�occur�not�only�when�the�environment�is�fully�or�partly�unknown,�but�
also�when�a�closed�system�is�decomposed�into�multiple�components,�each�of�them�
representing�an�open�system.�To�build�“openness”�into�models�and�specifications�
as�first-class�citizens�quickly�leads�to�the�game-theoretic�(or�“alternating”)�setting.�
It�was� this� realization�and� the� joint�wish� to�provide�a�principled�and�systematic�
foundation�for�the�modeling�and�verification�of�open�systems�which�naturally�led�
to�this�collaboration.

Luca:� Did� any� of� your� subsequent� research� build� explicitly� on� the� results�
and�the�techniques�you�developed�in�your�award-winning�paper?� Which�of�your�
subsequent�results�on�alternating�transition�systems�and�their�refinement�relations�
do�you�like�best?� Is�there�any�result�obtained�by�other�researchers�that�builds�on�
your�work�and�that�you�like�in�particular�or�found�surprising?

AHKV:�Various�subsets�of�us�pursued�multiple�research�directions�that�devel-
oped� the�game-theoretic�setting�for�modeling�and�verification�further,�and�much�
remains� to�be�done.� Here� are� two� examples.� First,� the�game-theoretic� setting�
and� the� alternating�nature�of� inputs� and�outputs� are�now�generally� accepted� as�
providing� the�proper�semantic� foundation� for� interface�and�contract� formalisms�
for�component-based�design.�Second,�studying�strategic�behavior�in�multi-player�
games�quickly�leads�to�the�importance�of�probabilistic�behavior,�say�in�the�form�
of� randomised� decisions� and� strategies,� of� equilibria,� when� players� have� non-
complementary�objectives,�and�of�auctions,�when�players�need�to�spend�resources
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for�decisions.� All�of� these�are� still�very�active� topics�of� research� in�computer-
aided�verification,�a nd�t hey�a lso�f orm�a �b ridge�t o�t he�a lgorithmic�g ame�theory�
community.

Luca:�One�can�view�your�work�as�a�bridge�between�concurrency�theory�and�
multi-agent�systems.� What� impact�do�you� think� that�your�work�has�had�on� the�
multi-agent-system�community?� And�what�has�our�community� learnt� from� the�
work�done�in�the�field�of�multi-agent�s ystems?�To�your�mind,�what�are�the�main�
di↵erences�and�points�of�contact�in�the�work�done�within�those�communities?

AHKV:�Modeling�interaction�in�multi-agent�systems�is�of�natural�interest�to�
planning�problems�studied�in�the�AI�community.�In�2002,�the�International�Foun-
dation�for�Autonomous�Agents�and�Multiagent�Systems�(IFAAMAS)�was�formed�
and�the�annual�International�Conference�on�Autonomous�Agents�and�Multiagent�
Systems�(AAMAS)�was�launched.�The�models,�logics,�and�algorithms�developed�
in�the�concurrency�and�formal�methods�communities�have�had�a�strong�influence�
on�research�presented�at�AAMAS�conferences�over�the�past�twenty�years.�Coinci-
dentally,�this�year�our�paper�on�Alternating-Time�Temporal�Logic�was�chosen�for�
the�IFAAMAS�Influential�Paper�Award.

Luca:�What�are�the�research�topics�that�you�find�most�interesting�right�now?
Is�there�any�specific�problem�in�your�current�field�of�interest�that�you’d�like�to�see�
solved?

AHKV:�Research�on� formal�verification�and�s ynthesis,�including�our�paper,�
assumes� that� the�model�of� the� system� is�known.� Over� the� last� few�years,� rein-
forcement�learning�has�emerged�as�a�promising�approach�to�the�design�of�policies�
in� scenarios�where� the�model� is�not�known�and�has� to�be� learned�by�agents�by�
exploration.� This� leads� to�an�opportunity� for� research�at� the� intersection�of� re-
active� synthesis� and� reinforcement� learning.� A�potentially�promising�direction�
is�to�consider�reinforcement�learning�for�systems�with�multiple�agents�with�both�
cooperative�and�adversarial�interactions.

The�realization�that�reactive�systems�have�to�satisfy�their�specifications�in�all�
environments�has� led� to� extensive� research� relating� formal�methods�with�game�
theory.� Our�paper�added�alternation�to�refinement�r elations.�The�transition�from�
one�to�multiple�players�has�been�studied�in�computer�science�in�several�other�con-
texts.�For�the�basic�problem�of�reachability�in�graphs,�it�amounts�to�moving�from�
reachability�to�alternating�reachability.�We�recently�studied�this�shift�in�other�fun-
damental�graph�problems,� like� the�generation�of�weighted�spanning� trees,�flows�
in�networks,�vertex�covers,�and�more.�In�all�these�extensions,�we�consider�a�game�
between�two�players�that�take�turns�in�jointly�generating�the�outcome.�One�player�
aims�at�maximizing� the�value�of� the�outcome� (e.g.,�maximize� the�weight�of� the
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spanning tree, the amount of flow that travels in the network, or the size of the
vertex cover), whereas the second aims at minimizing the value. It is interest-
ing to see how some fundamental properties of graph algorithms are lost in the
alternating setting. For example, following a greedy strategy is not beneficial in
alternating spanning trees, optimal strategies in alternating flow networks may use
fractional flows, and while the vertex-cover problem is NP-complete, an optimal
strategy for the maximizer player can be found in polynomial time. Many more
questions in this setting are still open.

Luca: What advice would you give to a young researcher who is keen to start
working on topics related to alternating transition systems and logics?

AHKV: One important piece of advice to young researchers is to question
the orthodoxy. Sometimes it is necessary to learn everything that is known about
a topic but then take a step back, look at the bigger picture, reexamine some of
the fundamental assumptions behind the established ways of thinking, change the
models that everyone has been using, and go beyond the incremental improvement
of previous results. This is particularly true in formal methods, where no single
model or approach fits everything. And young researchers stand a much better
chance of having a really fresh new thought than those who have been at it for
many years.
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Abstract

Decentralized systems (e.g., blockchain systems) have the potential to
revolutionize financial and payment systems, as well as the internet — for
the good of humankind and planet Earth. This position paper aims at justify-
ing this standpoint and at laying out a vision for the future of decentralized
computing.

We start by revisiting the definition of decentralized systems, briefly sur-
veying the literature on the taxonomy and di↵erent facets of decentraliza-
tion. We complement existing definitions by proposing Inclusiveness as a
critical facet. We argue that our notion of Inclusiveness rules out some pop-
ular candidate technologies for a “base-level” (or L1) blockchain consensus,
namely Proof-of-Stake, from replacing Nakamoto’s Proof-of-Work (PoW)
as the base consensus technology of decentralized systems.

We further discuss why the high energy consumption of Bitcoin’s PoW
consensus is not wasteful and why Bitcoin should be embraced as the money
of the future. We then argue that future decentralized systems should aim at
leveraging the “slow-but-very-secure” PoW consensus of Bitcoin, building
systems on top of it rather than trying to replace it. Finally, we propose some
open problems for decentralized cloud computing research.

1 Introduction
Decentralized systems are a subset of distributed systems. While a distributed sys-
tem can loosely be defined as “a collection of independent computers that appears
to its users as a single coherent system” [51], a basic definition of a decentralized
system requires these independent computers to be controlled by multiple author-
ities, such that no authority is fully trusted by all [52]. In other words, authorities
— or operators controlling computers of a system — are assumed to be potentially
malicious, or Byzantine [36].

*The author is an independent computer scientist and the ConsensusLab Lead at Protocol Labs.
Email: marko@protocol.ai.
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This basic definition is, however, insu�cient to capture all nuances of decen-
tralization. For example, this definition is satisfied both by a global-scale open
membership (i.e., permissionless) system, such as Bitcoin [43], and by a closed
membership (i.e., permissioned) system comprising 4 companies implementing a
Byzantine fault-tolerant protocol which tolerates one Byzantine fault. While it is
intuitive that the latter system in our example is less decentralized than Bitcoin, it
should also be obvious that we need a more fine grained methodology for evalu-
ating the level of decentralization. To this end, the first contribution of this paper
(Sec. 2) is a brief survey of the literature on taxonomy and di↵erent flavors of
decentralization. We refine the basic definition of a decentralized system of [52]
to identify four main decentralization facets of a distributed system: Resilience,
Openness, In-Protocol Incentives and Governance.

This methodology will hopefully give the reader a tool to discern genuinely
decentralized projects from others that only give an illusion of decentralization.
This seems particularly important given an explosion in the number of “decen-
tralized” cryptocurrency projects. For instance, coinmarketcap.com lists more
than 12’000 cryptocurrencies, many of which lack a concrete use case and have
their token supply and network governance controlled by their respective develop-
ment teams. These projects piggyback on the rising popularity of tokens that have
a genuine use case (e.g., Bitcoin) and can sow confusion and create speculative
bubbles.

A minority of these projects are actually motivated by improving the state of
the art in decentralized computing. For instance, some projects aim to address per-
formance limitations of Bitcoin (in particular its transaction throughput, currently
capped at about 7 transactions per second [53]) or reduce its power consumption.
These projects are complicated by fundamental tradeo↵s that underlie the design
of decentralized systems, in particular the tradeo↵ between scalability and perfor-
mance and its very level of decentralization. In other words, it is not easy to scale
Bitcoin while retaining its security and decentralization.

In these attempts to improve Bitcoin, there seems to be a confusion about its
actual use case. If Bitcoin is seen as a simple payment system, its performance
indeed could not answer the demands of the slightly less than 8 billion people on
planet Earth. However, Bitcoin network could be used as a final settlement layer
while the scaling could happen in a hierarchical approach, in so-called layer 2 [29]
and higher-layer protocols.

This leaves a seemingly insurmountable issue related to Bitcoin’s power con-
sumption, which today already uses roughly 0.1% of the world’s energy produc-
tion [4]. Proposals aiming at addressing this issue involve changing the base con-
sensus protocol of Bitcoin from Nakamoto’s Proof-of-Work [43] to an alternative
one. A number of top-ranked cryptocurrencies use or plan to use the approach
called Proof-of-Stake [2] to be more “green” and energy e�cient than Bitcoin.
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Unfortunately, Proof-of-Stake is not as open and decentralized as Proof-of-
Work and is actually more akin, in its essence, to a closed membership (permis-
sioned) system. While this is intuited in open discussions since the proposal of the
Proof-of-Stake idea on the bitcointalk forum in 2011 [2], existing definitions of
decentralized systems fail to capture this key di↵erence between Proof-of-Work
and Proof-of-Stake. To this end, we propose a new property called Inclusiveness
(Sec. 3), which refines Openness as previously considered in the literature (and
which we cover in Sec. 2). In short, an inclusive system designates a decentralized
system which provides equal opportunities to its participants. Inclusive systems
are a subset of open (permissionless) systems: we show that Nakamoto’s Proof-
of-Work is inclusive and that systems based on Proof-of-Stake are not. Therefore,
Proof-of-Stake cannot be used in Layer 1 in inclusive decentralized systems.

While Bitcoin is inclusive, if it is seen as a simple payment system its energy
consumption would indeed be too high a price to pay for this property. However,
energy usage or, more generally, the cost of a certain technology, should always be
evaluated in the context. We propose to re-evaluate Bitcoin’s energy consumption
considering a di↵erent use case for Bitcoin: that of inclusive decentralized money
(i.e., “peer-to-peer cash” [43]), of the present and, especially, the future.

If one performs a thought experiment of what would happen if (when) Bitcoin
becomes the dominant form of money on Earth, the fears of “excessive”, “waste-
ful” and “useless” power consumption of Bitcoin fade away. We will perform
exactly such a thought experiment later in this paper (Sec. 4), thus explaining why
Bitcoin’s power consumption is not wasteful or excessive, and why it is actually
good for planet Earth and mankind.

In short, in Section 4 we make an argument that human behavior in the Bitcoin
monetary system is incentivized towards savings and rational spending on things
we need, with low time preference, encouraging long-term planning, preservation
of natural resources and sustainability. We contrast this to the current inflationary
fiat monetary system, which inherently promotes spending on things we (think
we) want and consumerism, high time preference (i.e., focus on short-term prof-
its), and where the entire economy is oriented to “growth”, which results in pro-
ducing and consuming things we often do not need, wasting resources. We will
also touch upon the equal opportunities in the Bitcoin monetary system and their
impact on human freedom and liberties, contrasting them to inequalities in the
current monetary system.

Once we agree that it is good for humankind that the Bitcoin network acts as
a backbone for future money and once we embrace this thought, it is interesting
to explore how we can use such a very secure decentralized network in use cases
beyond money. Some interesting projects pursue use cases di↵erent from the use
case Bitcoin pursues, e.g., o↵ering decentralized storage of large volumes of data
(e.g., Filecoin [6] network which today has more than 10 exabytes (EB), or 10
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million TB, of storage capacity). Other projects work towards enabling arbitrary
computation in a decentralized network. These decentralized cloud computing
projects have the potential to, one day, challenge the centralized cloud computing
operators that dominate today’s internet [27]. Since these systems need to even-
tually scale to the workloads of today’s centralized cloud computing and beyond,
they clearly need more e�cient consensus hierarchies than the one o↵ered solely
by Bitcoin’s Proof-of-Work. However, this brings back the decentralization and
security challenges of consensus protocols other than Proof-of-Work. The key
question is: can we build more e�cient decentralized systems that would benefit
from the security of Bitcoin?

To this end, we propose (in Section 5) to approach the design of the future
decentralized internet by leveraging Nakamoto’s Proof-of-Work as a secure an-
chor for critical information needed for secure operation of other, more scalable
networks. In a sense, we propose to use Bitcoin network as the backbone of the
decentralized internet, helping to secure the rest of it. As an example of such use,
we discuss a possible approach in which weights of validators in a Proof-of-Stake
network, potentially along with its state checkpoints, are anchored into the Bit-
coin blockchain, addressing the critical family of so-called long-range attacks on
Proof-of-Stake [21]. In this design, to complement Bitcoin as a secure store of
state/membership anchors, i.e., hashes of the critical state, we propose optionally
using a decentralized content addressable storage system, such as Filecoin/IPFS
[15] to resolve those hashes. Finally, we outline some open problems motivating
future work.

2 Methodology for Evaluating Decentralization in
Distributed Systems

In general, decentralized systems can be defined as a subset of distributed systems
where multiple authorities control di↵erent components and no authority is fully
trusted by all [52].

For instance, popular cloud and social networks like Google, Facebook or
Twitter, are examples of distributed systems. However, these systems are not
decentralized, as each one is controlled by a single authority (company). Note
that it is not su�cient for a system to simply have its components controlled by
multiple authorities in order to be classified as decentralized — the absence of a
single trusted authority is needed, meaning that any component in a decentralized
system can be potentially adversarial [52], or Byzantine [36].

Beyond the above broad definition of a decentralized system, computer sci-
ence literature considers multiple facets of decentralization in an attempt to char-
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acterize its nuances, as well as the di↵erences among decentralized systems (see
e.g., [44] for a recent survey). We summarize these into the following decentral-
ization facets:

1. Resilience of the system to adversarial (Byzantine) behavior of its compo-
nents, i.e., the authorities that control them, as well as the simple disappear-
ance (also called unavailability) of individual components.

Resilience itself may apply to di↵erent properties of the system, namely
safety and liveness [35, 10]. Informally, a safety property of a system stip-
ulates that “bad things” do not happen and a liveness property stipulates
that “good things” do eventually happen (i.e., that the system does not stop
making progress).

For instance, an important liveness property of a blockchain system is cen-
sorship resistance [26], whereas an important safety property of a blockchain
system is double-spend resistance [43]. We define these properties later, in
the context of Bitcoin, in Section 4.1.

To quantify Resilience, the scientific literature and engineering practice is
typically interested in the minimum number of authorities that the adversary
needs to compromise to subvert a key property of the system, such as safety
or liveness. In the context of blockchains this number is sometimes referred
to as the Nakamoto coe�cient1 [48]. Intuitively, the higher the Nakamoto
coe�cient, the higher the level of decentralization. Per the definition of a
decentralized system we adopted [52], the system cannot be deemed de-
centralized if this number is 1 — i.e., if a single participating authority
can compromise a key property of the system. Finally, when evaluating
the Nakamoto coe�cient, it is important to consider possible business rela-
tions or shared control structures among otherwise seemingly independent
authorities.

2. Openness of the system to new participants. In this sense, a widely-used
classification of blockchain systems into permissioned and permissionless
systems (see e.g., [40]) reflects this property. Permissionless systems allow
participants to self-elect into the system, whereas permissioned systems rely
on an external selection process to be admitted into the system — with the
authority to choose [participants] typically residing with an institutional or
organizational process [40]. In other words, permissionless systems are
open to any new participant, whereas permissioned systems are not. Some
authors define decentralized systems as only those in which anyone is able

1Honoring Bitcoin’s pseudonymous inventor, Satoshi Nakamoto.
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to participate [12], e↵ectively restricting the notion of decentralized sys-
tems only to open, permissionless systems. As a general principle, even if
we accept permissioned systems as decentralized ones, permissionless sys-
tems are to be considered more decentralized than permissioned systems.

Some authors further refine the notion of open, permissionless systems fo-
cusing on equality of participants within the system. Karakostas et al. [31]
define egalitarianism in a rather technically involved way aiming at captur-
ing the proportionality of rewards of participants in blockchains compared
to their investment. In a related approach, Fanti et al. [24] define equitabil-
ity, which quantifies how much a participant can amplify her token holdings
compared to her initial investment. In the next section (Section 3), we argue
that these refinements of Openness are not general enough and define a new
refinement of Openness, using the notion of Inclusiveness.

Finally, some authors recognize operational decentralization as a facet of
decentralization related to Openness [44]. Intuitively, operational decen-
tralization aims at capturing hardware requirements for participation in the
system — the smaller the hardware requirements, the higher the possibility
for anyone to participate in the system and, hence, the higher the level of de-
centralization. For instance, a system which requires large amounts of stor-
age (e.g., hard disk space) to participate in blockchain A would be deemed
more centralized than blockchain B which requires less storage space [44].

3. In-protocol Incentives refer to the existence of rewards for protocol par-
ticipants, paid out to protocol participants in the protocol’s native token.
Incentives are an important facet of decentralized systems [44]: Troncoso
et al. [52] argue that the development of adequate incentives is necessary to
build a successful decentralized system.

In general, In-protocol Incentives test the Openness of the system. On the
one hand, an open system that provides incentives for participants will at-
tract new participants. On the other hand, a seemingly open system that
does not provide In-Protocol Incentives e↵ectively limits its Openness, as
new participants have less economic rationale to join the system. Such a
system may resort to out-of-protocol incentives, in which case incentives
are not governed by system software but by people. Out-of-protocol incen-
tives may involve existing participants establishing business and contractual
relations with new participants to motivate them to join the system. This
approach resembles and is more common in permissioned networks [11],
which, as we discussed, do not satisfy Openness.

In the context of incentives, wealth distribution across token stakeholders is
also considered as an aspect of decentralization [44].
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4. Governance of the system, focusing on power of human stakeholders to
influence and change key rules in the system, e.g., through software updates.

Several parameters for evaluating the decentralization of governance power
have been proposed or discussed in the literature. These include:

(a) governance of the infrastructure [25], or improvement control [44], of-
ten involving the number of developers contributing to systems’ code-
base and the number of people contributing to the discussion around
the system design [12],

(b) existence of a public face [25], which can be defined as a personal-
ity and/or institution that is widely recognized as a spokesperson or a
representative of the system.

(c) owner control, measured by examining the total tokens accumulated
by the stakeholders in the early adoption period. Depending on the
consensus mechanism used, such early tokens may give more power
to their owners, causing inequalities and centralization — this is par-
ticularly relevant in Proof-of-Stake systems [44].

Finally, some authors [44] consider additional facets of decentralization, in-
cluding the decentralization at the network layer, i.e., pertaining to the decen-
tralization of the network that underlies a distributed system, and the decentral-
ization at the application layer, which includes, e.g., the diversity of wallets and
exchanges. We acknowledge these decentralization facets that go beyond the core
of the system itself, opting to focus on systems proper in this position paper.

3 Inclusiveness in Decentralized Systems
In this section, we define Inclusiveness, which refines the notion of Openness
defined in the previous section. We argue for Inclusiveness as a key property of
decentralized systems and show that Proof-of-Stake systems are not inclusive, in
contrast to Proof-of-Work systems.

Inclusiveness is somewhat similar to the notions of egalitarianism [31] and
equitability [24]. Compared to Inclusiveness, these notions are less general as
they are defined only for protocols with incentives, practically quantifying the
linearity of reward distribution compared to the investment made.

Towards defining Inclusive systems, we first define the notion of Equal Op-
portunities.

Definition 1 (Equal Opportunities). A decentralized system provides Equal Op-
portunities if it satisfies both of the following conditions:
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• (Resource Symmetry) The system allows any (new or existing) participant
Bob to have an equal role in the system as any other existing participant
Alice, provided Bob makes the same investment in system resources as Al-
ice. Specifically, this means that if we swap the identities (private/public key
pairs) of participants Alice and Bob, the resulting system should be indis-
tinguishable from the original system.

• (Genuine Openness) The system cannot reach a state in which it prevents
Bob from making such an investment. Specifically, Bob’s ability to make this
investment must never depend on the permission or actions of either Alice
or other participants in the system.

The first condition of the Equal Opportunities property aims at capturing re-
source symmetry, intuitively capturing equality among new and existing network
participants. The motivation behind resource symmetry is to measure if the sys-
tem gives participants equal power in the system (given that their investment is the
same), or if it makes some participants “more equal” than the others, e.g., based
on discriminating their identities.

For example, two miners in Bitcoin’s Proof-of-Work have an equal role and
expected rewards in the system if they contribute the same computing (hashing)
power to the system (i.e., if they make the same investment in system resources).
On the other hand, swapping identities of a participant Alice, who is part of a
permissioned system, and Bob, who is not, yields a system which can be dis-
tinguished from the original one. In other words, permissioned systems are not
resource symmetric. Moreover, not all permissionless systems are resource sym-
metric.

The second property of Equal Opportunities aims at refining the Openness
property. In principle, an open (permissionless) system could be resource sym-
metric but prevent, in some state, new participants from making an investment
in system resources that would allow them to match the investment of existing
participants. Arguably, such a system could not be deemed as genuinely open.

Finally, we define Inclusive decentralized systems.

Definition 2 (Inclusiveness). A decentralized system is called Inclusive if and only
if it satisfies Equal Opportunities.

It is easy to see that inclusive systems are a subset of open (i.e., permissionless)
systems. However, not all open systems are inclusive.

Proof-of-Stake and Proof-of-Work permissionless consensus protocols have
fundamentally di↵erent implications on the decentralization of the network, which
are captured by Genuine Openness. In the following, we show that Proof-of-
Stake systems do not satisfy this aspect of Equal Opportunities and, hence, are
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not Inclusive. We also provide a high-level argument that Proof-of-Work systems
satisfy Inclusiveness.

In short, in Proof-of-Stake, “miners” do not expend electrical energy for min-
ing but vote with power proportional to the size of their stake, i.e., holdings in
the native token dedicated to voting. This not only implies considerably di↵erent
economical dynamics compared to Proof-of-Work [24], but may outright lead to
violation of Equal Opportunities.

To see this, consider the following simple example of a non-inflationary Proof-
of-Stake system, i.e., the one with the non-increasing total supply of a token. If
existing miners control more than 50% of the stake in the network and are un-
willing to sell their stake to new participants, new participants can never reach
the stake of old miners, regardless of the size of their investment. This violates
the Genuine Openness aspect of Equal Opportunities and, consequently, Inclu-
siveness. In this sense, the fact that in Proof-of-Stake existing participants can
possibly prevent new participants from meaningfully joining the system evokes
similarities between permissioned and Proof-of-Stake permissionless systems.

On the other hand, Bitcoin’s Proof-of-Work satisfies Genuine Openness. Namely,
the nature of Proof-of-Work consensus (see Sec. 4.1 for details) does not prevent
any participant from making an investment into system resources. In particular,
and assuming a free market for computing power, as well as absence of scarcity
of computing power and energy, existing participants cannot prevent new partici-
pants from entering the system. With innovation in computing (Moore’s law), the
computing power of the existing participants actually decays in time compared
to the computing power available outside the system, which is free to join the
network.

Therefore, we conclude that Bitcoin is an Inclusive system, whereas (non-
inflationary) Proof-of-Stake based systems are not. We leave as open the follow-
ing crypto-economics problem: are there variants of Proof-of-Stake which prov-
ably satisfy Equal Opportunities?

4 Why Bitcoin Does Not Waste Energy
In the previous section, we argued that the systems based on Proof-of-Stake are
not inclusive, as opposed to those based on Proof-of-Work. Therefore, assuming
that we accept Inclusiveness as a necessary aspect of decentralization, it follows
that Proof-of-Stake blockchain systems cannot be used as the basis for decentral-
ized systems (i.e., for the so-called layer 1 (L1)).

While Bitcoin and its Proof-of-Work could, technically, be used as the layer
1 of decentralized systems, the seemingly insurmountable issue of its “excessive”
energy consumption remains. We propose an argument as to why this is a non-
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issue and support the claim that the energy consumption of Bitcoin is actually
good for humankind and planet Earth, arguing that it is neither wasteful nor ex-
cessive. We leave formal modeling and proofs of this argument to future work and
the future itself.

Towards making such an argument we need to depart from the narrow domains
of computer science and engineering.2 To help see the “big picture”, we reason
about Bitcoin from the angle of other sciences such as sociology, economics and
philosophy. We believe that this is, in itself, thought-provoking, as it brings to
the spotlight the multi-disciplinary implications of Bitcoin, revealing its intrinsic
beauty and ingeniousness. The main impact of the novelty of Bitcoin is to be
measured in the spheres of socio-economics and metaphysics, not in computer
science.

To this end, later in this section (Sec. 4.3), we will perform a thought exper-
iment in which we will discuss the properties of a prospective world in which
Bitcoin becomes the pre-dominant money for mankind, or unit of account. For
the sake of simplicity, we will perform the thought experiment assuming that Bit-
coin becomes the only currency in use — we believe that most of our conclusions
would hold even if alternative currencies continue to exist, so long as Bitcoin be-
comes the unit of account. Then, we come back to discussing energy expenditure
of Bitcoin (Sec. 4.4), provoking the reader to reconsider if this energy expenditure
is a fair price to pay for living in such a world.

In the course of the thought experiment, our economics arguments will mostly
be made using simple logical thinking, based on infinite vs. capped money supply,
in an attempt to address a large audience. However, for readers who prefer a more
structured scholarly approach, where appropriate we will refer to and echo the
economics views of the so-called Austrian School of economics, and in particular
the thoughts of Friedrich A. Hayek, the 1974 Nobel Memorial Prize laureate.3

Before this, in order to make this paper self-contained, we briefly present, in
Section 4.1, the background behind Bitcoin and briefly evaluate its decentraliza-
tion (Sec. 4.2) using the methodology of Sections 2 and 3. A reader familiar with
Bitcoin may skip the next section, whereas a reader unfamiliar with Bitcoin is
encouraged to also read Nakamoto’s original whitepaper [43].

2Provided we do not invoke the Simulation Argument [19] to remain in the realm of computer
science.

3Specifically, Hayek’s “The Constitution of Liberty: The Definitive Edition” [30], first pub-
lished in 1960.
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4.1 Background on Bitcoin

4.1.1 Bitcoin Basics: Use Case and Monetary Policy

Bitcoin [43] is an open-source peer-to-peer computer network for generating and
transferring Bitcoin’s native token (bitcoin or “BTC”) among the users (peers) of
the network. Bitcoin was conceived as an electronic cash network to allow online
payments to be sent directly from one party to another without going through a
financial institution or any other trusted middleman. This was not possible prior to
Bitcoin as all electronic payments required trusted intermediaries, unlike physical,
in-person, cash or barter transactions.

On a high-level, in Bitcoin, user Alice wishing to send 1 BTC to another user
Bob, digitally signs, using her private cryptographic key, a transaction to trans-
fer 1 BTC from an address A, that Alice controls, to address B supplied to Alice
by user Bob. Alice’s private key is cryptographically tied to address A (which is
basically a cryptographic hash of a corresponding public key). Knowledge of the
private key allows Alice to have control over her BTC. As a fundamental princi-
ple, whoever controls the private keys corresponding to a given address controls
bitcoin pertaining to that address.

The main challenge in such a system is that users do not trust each other.
Namely, Alice could attempt to double-spend her bitcoin. Consider the following
example of a double-spend attempt. Alice signs transaction txAlice�to�Bob in which
she transfers 1 BTC from address A she controls, to Bob’s address B. However,
she also signs a conflicting transaction txAlice�to�Alice in which she sends 1 BTC
from address A to another address A’ that Alice also controls.

Which of these conflicting transactions should be actually taken into account?
This is the main technical problem that Bitcoin solves. In a process called consen-
sus, peers in the Bitcoin network, without trusting each other, agree on the global,
totally ordered ledger of all transactions in the system.

In our example, all peers in the Bitcoin network would agree on the relative
order between the two conflicting transactions txAlice�to�Bob and txAlice�to�Alice. The
first transaction in that order would be considered valid, whereas the other would
be discarded.

Besides preventing double-spends (as a safety property), another important
property Bitcoin provides is censorship resistance (as a liveness property). In
short, censorship-resistance guarantees that a correctly-behaving user Alice will
have her transactions eventually included in the ledger (while possibly having
Alice pay a transaction fee for this service). In other words, censorship-resilience
guarantees that transactions will not be excluded from the Bitcoin ledger due to
actions of the Byzantine adversary or peers disappearing from the system.

For e�ciency reasons, Bitcoin processes transactions in blocks, grouping a
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number of transactions together, up to a certain maximum block size. E↵ectively,
the Bitcoin consensus mechanism establishes a global order on those blocks form-
ing a chain of blocks (i.e., a “blockchain”). Consequently, Bitcoin establishes
global order on the transactions contained in those blocks.

Bitcoin software defines a so-called genesis block, the first block in the chain,
to which the latter blocks are appended. The Bitcoin genesis block contains a
link to the “real” (physical) world, by embedding the headline of the cover page
of The Times (British daily national newspaper) from January 3rd, 2009 reading
“Chancellor on Brink of Second Bailout for Banks”. This link to the real world,
beyond possibly conveying a motivation for the existence of Bitcoin, is important
for proving that the creator of the Bitcoin network could not have ran the code
prior to January 3, 2009.

At the beginning of the Bitcoin blockchain history, there weren’t any bitcoin
to transact, as none had been brought into existence (i.e, minted or mined) yet.
To bring bitcoin into existence, Bitcoin software defines a block reward, which
is an incentive for network participants to take part in Bitcoin consensus. Bit-
coin rewards every participant who successfully adds a block to the blockchain
with a fixed reward, which halves every 210,000 blocks. The period of 210,000
blocks corresponds roughly to 4 years, as Bitcoin block production time is set to
self-adjust to 10 minutes per block on expectation. For the first 210,000 blocks,
the block reward was 50 BTC per block. With maximum supply, as stipulated by
Bitcoin code, being 21 million BTC, 50% of all bitcoin have been mined in the
first 210,000 blocks. With block reward halving to 25 BTC, from block 210,001
to block 420,000, an additional 25% of the total supply have been minted in that
period, and so on, with the current Bitcoin block reward conveniently conveying
which percentage of the total supply has been minted within the current 4-year
window. Currently, more than 12 years after the genesis block, the Bitcoin net-
work has produced over 700,000 blocks with the current block reward being 6.25
BTC.4 The last 10% of Bitcoin’s total supply is to be mined between today and
the year 2140.

A participant in the Bitcoin network is an entity that runs a full node. Each Bit-
coin full node keeps the entire history of the blockchain, validates new blocks and
(optionally) participates in creating new blocks. Bitcoin’s maximum block size
and a relatively conservative time period interval of 10 minutes between blocks
imply that the blockchain does not grow too fast compared to advances in com-
puter hardware. Users can opt-out from running full nodes, by maintaining only
client wallets, which protect their private keys and send Bitcoin transactions to
others’ (full) nodes.

In the following, we explain how blocks are generated and validated in the

4Each bitcoin is divisible into 100 million smaller units, usually called satoshis.
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Bitcoin consensus.

4.1.2 Bitcoin Consensus

Bitcoin consensus proceeds as follows [43]:

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block. A node cryptographically
links the new block to its predecessor (parent) block. These parent links
define the position of the new block in the blockchain, all the way to the
genesis block. In short, a node chooses the predecessor block for the new
block to be the one which has the longest chain5 to the genesis block, out
of all blocks known to a node. In principle, nodes consider the transaction
history defined by the longest chain as the only valid one.

3. In the process often called mining, or Proof-of-Work [43], each node works
on finding a final piece of information, called a nonce that, when embedded
into the new block, will make other nodes accept and declare the new block
as valid.

This is the key point in the otherwise relatively straightforward Bitcoin con-
sensus. Namely, Bitcoin requires a cryptographic hash of a valid block to
start with a number of zeros (0s) when represented as a bit string. Since
the output of a cryptographic hash function cannot e↵ectively be predicted,
a hash of a block with one specific nonce appears basically as a random
string of 0s and 1s. Therefore, nodes need to try many nonces in order to be
lucky and construct the required final data for the block such that the hash
of the block will start with many 0s, as required by the validation code. The
number of zeros required is self-adjusted by the network during its lifetime,
based on code, to maintain an expected block time of 10 minutes between
the blocks.

Finding a nonce which makes the block valid is e↵ectively a very simple
but computationally intensive guessing game in which a node repeatedly
tries di↵erent nonces, applies them to the rest of the block, applies the hash
function and sees if the output hash has the required number of leading
zeros.

4. When a node finds a nonce and completes the Proof-of-Work, it broadcasts
the block to all nodes.

5In fact, it is the chain which requires most work, which is most often the longest chain. For
simplicity of narrative, we talk about “longest chain”.
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5. Other nodes accept the block only if: (i) all transactions in it are valid and
do not contain already spent bitcoin, and (ii) the hash of the block starts with
the required number of 0s. Unlike the mining step (step 3), this validation
step (step 5) is very simple and cheap to compute.

In the recent months, the Bitcoin network as a whole is estimated to have
performed anywhere between 68 EH/s (exahashes per second) on June 28, 2021
and 190 EH/s (on May 9, 2021). An exahash per second is one quintillion (a
billion billion) hashes per second, a very large number of operations. With each
hash operation costing actual physical-world energy to compute, this results in
large power consumption of the Bitcoin network, which is sometimes frowned
upon and considered as wasted.

4.2 Bitcoin’s Decentralization
In evaluating Bitcoin’s Resilience, we look at two major possible issues: the
double-spending (safety) issue and the censorship of transactions (liveness) is-
sue. To mount these attacks e↵ectively on the Bitcoin network, the attacker needs
to control more than 50% of the network computing power. This would allow the
attacker to simply ignore blocks produced by the rest of the network and produce
the dominant longest chain, which would then, by Step 2 of the Bitcoin consensus
protocol (Sec. 4.1.2) be the e↵ective history of transactions. In the case of cen-
sorship attacks - this new history could simply be empty of transactions. This is
known as a 51% attack for Bitcoin and requires a majority of the hash power of
the network.

Whereas it is di�cult to precisely calculate the Nakomoto coe�cient (number
of di↵erent authorities required to mount the attack) for Bitcoin, this resilience can
be (very) conservatively estimated. Namely, to spread out more evenly, in time,
their earnings from block rewards, Bitcoin nodes often group into so-called mining
pools. While individual nodes are often not directly under the control of a mining
pool’s operator authority and could leave the mining pool if they detected that they
were participating in an attack, for a very conservative estimate of Resilience one
could theoretically assume that a mining pool fully controls all the nodes within.
With this in mind, at the time of writing, more than 50% of Bitcoin mining power
is controlled by 4 mining pools.

However, in practice, and as indicated in the Bitcoin whitepaper [43], the eco-
nomic incentives of Bitcoin make safety attacks towards compromising Resilience
less likely than if the In-Protocol Incentives did not exist. If certain nodes control
a large amount of computing power, they have an economic dilemma between us-
ing that power to attack the system or using that power to behave correctly and
earn block rewards and transaction fees. This intuitively contributes to e↵ectively



The Bulletin of the EATCS

103

increasing the Nakamoto coe�cient (Resilience measure) and consequently in-
creasing the decentralization level of the network, in presence of economically
rational participants.

As for other facets of decentralization we defined earlier in the paper, Bitcoin
is Inclusive (Sec. 3) and has in-Protocol Incentives (Sec. 4.1).

It also has excellent operational decentralization, i.e., has low hardware re-
quirements for running a full node. Today, the size of the Bitcoin blockchain is
about 400GB of data, which means that a full node can be easily run on low-cost
hardware, with a mid-sized hard-disk (or a larger microSD card) and internet con-
nection, basically by anyone.6 This last feature is an important decentralization
aspect, and has many benefits. We will illustrate one such benefit later, in Sec-
tion 5.2, outlining a design that requires a user of a Proof-of-Stake blockchain
to run a Bitcoin node to prevent a number of critical attacks on Proof-of-Stake.
If running a Bitcoin full node would have had high hardware requirements, this
approach would be unrealistic.

Low hardware requirements for running a full node do not imply that every-
one can be successful in mining. Full nodes are incentivized to invest more into
hardware and computing equipment if they wish to have a higher probability of
obtaining block rewards in the Bitcoin consensus. It is well known that econom-
ically viable Bitcoin mining requires larger investments, with large miners even
running datacenter-size operations. Here, we should not confuse equal opportuni-
ties and inclusiveness with linear payouts, i.e., rewards proportional to an invest-
ment. Like practically any other economic undertaking, Bitcoin mining benefits
from economies of scale. This does not undermine its inclusiveness.

Finally, Bitcoin’s Governance benefits from the absence of any single individ-
ual or company acting as its public face (as Satoshi Nakamoto disappeared from
the public discourse more than ten years ago). Regarding owner control, Bitcoin
did not have a hidden owner accumulation phase. The first transaction in the
Bitcoin network happened in block #170, seemingly between Satoshi Nakamoto
and a cryptographer Hal Finney, on January 12, 2009, nine days after The Times
newspaper timestamp contained in the genesis block. The first block following
the genesis block was mined, probably by Satoshi Nakamoto, six days after the
genesis block, on January 9, 2009.7

Concerning code improvement proposals, anyone can propose a change to

6Bitcoin full node can be run on hardware which today costs about $200 USD, see https:
//getumbrel.com.

7As it is widely believed, Satoshi Nakamoto may have mined a sizeable number of bitcoin in
the early days of the network following the genesis, as an early participant. The exact number is
practically impossible to support with hard evidence. However, we do have hard evidence, in the
very Bitcoin transaction history, that an overwhelming majority of those early bitcoin that could
be attributed to Satoshi Nakamoto were never transacted on the network.
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the Bitcoin open-source software via Bitcoin Improvement Proposals (BIPs).8 In
practice, relatively few “core” developers (developers of the Bitcoin Core refer-
ence node software) propose and implement changes [12]. Major changes to soft-
ware are relatively rare, with no BIP containing a backwards incompatible change
to Bitcoin consensus (also known as a hard fork) ever having been deployed in
the software. For changes that restrict consensus validation rules even further and
are backwards compatible (soft forks), consensus among core developers is re-
quired, together with approval of miners through on-chain voting. That said, as
Bitcoin is open-source software, anyone can make any change to the software.
Whoever makes such a change, changing e.g., Bitcoin parameters (block size, or
frequency, or token supply), has “only” to convince other users to migrate to us-
ing such a network. A number of such backwards incompatible changes to Bitcoin
code have resulted in Bitcoin network forks (examples include Bitcoin Cash and
Bitcoin Gold), all considerably less popular than Bitcoin.

4.3 Life on Earth with Bitcoin as Money and Unit-of-Account:
a Thought Experiment

Towards our thought experiment, we first review the incentives for participants
(people and businesses) in the current monetary system (Sec. 4.3.1) and then move
to incentives for people in the Bitcoin system (Sec. 4.3.2). We then consider the
impact of Bitcoin on economic inequalities in Section 4.3.3.

4.3.1 Human Incentives under the Current Fiat Monetary System

As Hayek put it in 1960, “With government in control of monetary policy, the
chief threat in this field has become inflation.” [30]. Hayek made this statement
even before we completely abandoned the gold standard in 1971 and transitioned
to so-called fiat money (not backed by anything), and well before progressive
reduction and subsequent elimination (in some jurisdictions) of required reserves
for commercial banks when making loans in fiat money.

In such an inflationary economic environment, with continuous increase in
monetary supply there are several issues, out of which we outline just a few:

• Savings are silently taxed by inflation, therefore incentivizing people to
spend fiat money quickly, or to invest it.

• Investments are done through e.g., stocks, by entrusting funds to other eco-
nomical players, i.e., businesses. The success of these businesses is mea-
sured by their economic “growth”, where this “growth” is measured again

8
https://github.com/bitcoin/bips
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in the same inflationary fiat currency. This incentivizes businesses to pro-
mote spending, which business predominantly do by relying on marketing
and ads to push products to people in an attempt to make them spend more.

• Consequently, the time preference of both individuals and businesses is high
(i.e., they are short-term oriented). Individuals are incentivized to spend
money quickly, whereas businesses are incentivized to “grow” by pushing
products to people, even if these are not needed by people. Marketing divi-
sions exist to create the demand for products.

Therefore, current inflationary fiat economy encourages and incentivizes spend-
ing of resources on otherwise unneeded products, for which demand is simply
created to fulfill the goal of selling more goods. It is not di�cult to see that,
this being the predominant economic model for 8 billion people, is unsustainable
and will lead, in the long term, to overexploitation and pollution of the planet,
without necessarily improving quality of life. The current economic model lacks
incentives for long-term considerations.

This system has other profound issues related to the structure of the monetary
system and positioning of the preferred players (e.g., banks) in such a system.9
As inflation creates more money supply, these preferred players are close to the
source of money (i.e., to central banks), creating the so-called Cantillon e↵ect10

and inequalities in money distribution. These inequalities have profound implica-
tions on the very freedom and liberty of people who are at the opposite side of this
inequality.

4.3.2 Human Incentives under the Bitcoin Monetary System

The idea of using “rules versus authorities in monetary policy” has been argued
since, at least, Henry Simons [47] in 1936. As Hayek writes, “arguments ad-
vanced [by Simons] in favor of strict rules are so strong that the issue is now
largely on of how far it is practically possible to tie down monetary authority by
appropriate rules” [30].

Bitcoin, for the first time, o↵ers a monetary network with such “strict rules”,
which cannot be changed or manipulated even by the strongest adversaries. Prior
to Bitcoin we, as a humanity, did not have such a technology. Therefore, it is par-
donable that we resorted to inferior solutions, including the current fiat monetary

9Stretching our decentralization terminology of Sections 2 and 3, the fiat monetary system
does not provide Openness and, consequently, is not Inclusive.

10Richard Cantillon, an 18th century economist, suggested that inflation occurs gradually, orig-
inating the concept of non-neutral money, positing that the original recipients of new money enjoy
higher standards of living at the expense of later recipients. [8]
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system. However, since we now have this technology, let’s explore what kind of
the world it promises.

With the total money supply of 2.1 quadrillion monetary units (21M BTC
⇥ 100M satoshis/BTC), Bitcoin is a monetary system with hard-capped money
supply. This cap cannot be changed in an undetectable way: a single independent
full node running Bitcoin software needs not to trust anyone to be able to verify
that the supply did not change. The same goes for the Bitcoin’s rate of increase in
money supply.

In the current adoption period, Bitcoin encourages long-term savings. This
argument can easily be made without resorting to the historical exchange rate
with respect to legacy fiat currencies (although this historical exchange rate can
be used to verify the argument). Namely, as adoption grows and more people
accept Bitcoin, its value grows, along with its network e↵ect.

While people save and hold (colloquially, hodl [3]) Bitcoin, especially for
the long term, they change their time-preference and move away from the spend-
ing economy and its incentives (Sec. 4.3.1) towards the mindset and an economy
which encourages savings and, consequently, preservation of natural resources.
While doing this, people have an option to retain financial sovereignty (which can
be directly related to personal freedom and liberties [30]) by securing their pri-
vate keys themselves. It is worth noting that this aspect of Bitcoin still requires a
considerable level of technological literacy.

Fast forward to the future in which Bitcoin is the only money for humankind.
People do spend their bitcoin,11 but primarily on things they need, as they know
the Bitcoin are scarce. It is certainly possible to earn more Bitcoin by working,
yet this will entail providing genuine value to other people, in order for the latter
to be ready to spend their scarce monetary asset.

This marks a shift from a spending economy in which depreciating money is
spent on things we (think we) want but often do not need, to a saving economy
of appreciating money which is spent on goods we need (regardless of an indi-
vidual’s definition of a need — this is purely a local definition). Business models
dramatically change. Classical economic “growth”, along with short-term ori-
entation to revenues and profits, becomes largely meaningless under the Bitcoin
monetary standard, as one cannot infinitely grow their business when measured in
Bitcoin, as it is hard-capped. Instead, businesses need to focus on providing only
true value to people and can plan in long-term, since their monetary power does
not depreciate in time.

Under the Bitcoin monetary standard, humans as a species are incentivized to-
wards a savings economy and mindset, putting focus on their materialistic needs

11This of course occurs already today, yet people who can support themselves on fiat income
do not yet need to do this.
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instead on their materialistic wants, which were often not even their genuine
wants, but were pushed to them in the fiat system. As roughly 8-10 billion people
(of the present and future) transition from the fiat monetary system to Bitcoin,
the e↵ects on the environment become profound, with resources saved, helping
sustainability, even if this was not necessarily the original goal of every single
individual using Bitcoin.

As their Bitcoin savings allows people to accumulate and preserve the mon-
etary power that they gained by their past work, without fear of an external au-
thority who could depreciate its worth by external decisions, people are now free
to decide: do they want to work while providing the actual value to others, or do
they want to dedicate their time to art, poetry, science, new inventions, charity, or
spiritual development, etc? Here, we assume that the reader accepts that we live
in an era in which most jobs needed for human basic needs, can be done by the
machines and that we are steadily approaching a post-scarcity society, in which
all people can be ubiquitously provided basic needs (per Maslow’s hierarchy of
human needs). Technology already started to free people from the need to work
and will continue to do so, but only if the distribution of the benefits of such a
technology are shared among people.

The success of organizations will primarily be measured not by their revenue
and profits, but by their network e↵ect and the number of human lives that they
qualitatively improve. An example is the Bitcoin network itself. It does not have a
classical business model in the context of the existing monetary system, nor does
it need one. It changes lives by pure adoption, giving people back their freedom
and their time. We can only imagine the potential of a society of free people, who
are not coerced to trade their time, the only scarce resource we humans actually
have, for ever-inflating money, and who are incentivized by the economic system
to save and mind their spending. In this sense, it is well probable that Bitcoin will
help us to evolve as a species.

4.3.3 On Economic Inequalities and Bitcoin

While Bitcoin is Inclusive (Sec. 3), i.e., it provides Equal Opportunities, it does
not guarantee economic equality. However, economic inequalities, in particular
the very glaring ones, are much easier to address with Bitcoin as planetary money
than in the current system. We provide several arguments towards supporting this
claim:

1. Bitcoin allows transfer of value over the internet in a decentralized, permis-
sionless and inclusive way. Note that this is not possible with the current
banking system, as large populations of the world are unbanked and author-
ities can stop and censor transactions. It is unprecedentedly easy to use this
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feature of Bitcoin to “equalize” wealth. A straightforward example, which
applies to the world of today, are money remittances, i.e., funds sent by
migrant workers (typically in wealthier countries) to friends and family in
their homeland. This particular use case has already been a motivating use
case in Bitcoin’s adoption in El Salvador, which became the first country in
the world to adopt Bitcoin as a legal tender on 7 September 2021.

2. Under the Bitcoin monetary standard, it is very easy for individuals and
businesses to understand if they have a disproportionately high fraction of
Bitcoin compared to others. They simply need to divide the total supply
by their holdings and compare to the number of people on Earth. Note that
this is impossible, in general and for the long-term, in the current monetary
system regardless of ones’ balance in the bank, as the supply is long-term
uncapped (at any given point in time this is possible to estimate, but requires
cumbersome computation of the entire fiat money supply and wealth in the
world).

With such an understanding of their own financial security, people could
more easily decide to give and donate their money thereby reducing eco-
nomic inequalities.

3. Bitcoin mining can be done practically by anyone, anywhere. While Bitcoin
mining consumes energy, energy is very democratically and rather equally
distributed across the entire world. In practically every corner of the planet,
the sun shines, winds blow, rivers flow and/or geothermal energy exists. Bit-
coin’s reliance on energy expenditure therefore incentivizes research on uti-
lizing energy which is available in a respective corner of the planet. Across
the planet, renewable resources (as an aggregate) are the most equally dis-
tributed ones.

4.4 Conclusions on the Bitcoin Energy Expenditure
In the previous section, we outlined arguments which aim at justifying the en-
ergy expenditure of Bitcoin. We painted a reality which, hopefully, provokes the
reader to reconsider whether Bitcoin’s energy expenditure is genuinely “useless”,
“wasteful” and “excessive”. We did this in an unapologetic way, refraining from
even calculating what fraction of world’s energy Bitcoin uses or will use. We
maintain that, if Bitcoin brings us closer to a more sustainable world of free peo-
ple, any fraction of the energy we produce as humans towards this end is justified.
A very large energy expenditure on Bitcoin might, perhaps, even help catalyze
our evolution to a Type I civilization on the Kardashev scale.12 The widely-used

12
https://en.wikipedia.org/wiki/Kardashev_scale
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comparison of Bitcoin’s energy expenditure to today’s nation-states13 should per-
haps only be used to understand which nation-states would still have the power to
break the security of Bitcoin (by mounting the 51% attack) if they would somehow
engage all the power available in their country.

That said, we should continue investing in research on technologies that would
reduce energy expenditure of Bitcoin, yet that would at the same time provide the
same or stronger security and decentralization guarantees. So far, such a technol-
ogy has been elusive. It seems that the second law of thermodynamics might be a
challenge here, as Bitcoin reliance on repeated computation of an irreversible hash
function, which is the key to its security, results in an irreversible heat production
[37].

In a di↵erent approach, one might ask whether this expended energy might
be used for something “actually useful” and not for simple repetitive, “useless”
hashing; such e↵orts exists, but have so far not been successful. For instance, one
proposal made up on-the-fly would be to use this energy towards, say, machine-
learning and/or data science. Today, these are sometimes used for good purposes
but more often simply to better place ads and "improve" businesses performance
in the technologically and humanly inferior monetary fiat system we live with. We
have to be very careful in what we define as “useful” and how we define value.
What is useful at one level of abstraction and in one value system can be seen as
a completely useless activity in another value system of reference, which might
actually be considerably better for humanity.

Some readers may be motivated to precisely calculate the net e↵ect of Bit-
coin’s energy consumption and might feel uneasy to accept the high-level argu-
ments we presented here towards showing that Bitcoin is good for humankind.
Such a calculation would certainly be interesting to see, yet challenging to per-
form as Bitcoin’s energy expenditure will need to be contrasted to the sum of
energy expenditure on activities that Bitcoin renders obsolete or reduces consid-
erably. These include but are not limited to: legacy banking system, data centers
powering ad-based spending, and the sum of all activities people undertake under
coercion from the current monetary system. It would also need to take into ac-
count the human time wastes under the current system and its opportunity cost.
Intuitively, we conjecture that the net result will be orders of magnitude in favor
of Bitcoin.

13See e.g., https://digiconomist.net/bitcoin-energy-consumption.
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5 Towards Decentralized Cloud Computing

5.1 Challenges
In the previous section, we argued for the Bitcoin network as the backbone for the
money of the future. Once we embrace this thought and accept that the future will
include a very secure and decentralized, albeit low-throughput consensus network,
an interesting question arises: can we leverage Bitcoin consensus in use cases
other than money?

One possibly interesting use case is decentralized cloud computing and, more
generally, the internet. Today’s internet is becoming increasingly more central-
ized, with half of the internet tra�c in 2019 coming from only 5 internet com-
panies (well-known social network, cloud and content providers), which is to be
contrasted to thousands of autonomous systems (ASs) needed to reach this frac-
tion in 2007 [27].

In the light of this galloping centralization of the internet, powered by the cur-
rent ad-based economy, it is rightful to ask: how can we decentralize the internet
again? We clearly need economic models and payment networks to power this,
e.g., allowing paying content creators directly, instead through ads. While this
can be done on Bitcoin layers 2 and higher [29], as already being implemented by
Twitter, the question remains: how do we decentralize the rest of the cloud com-
puting infrastructure, namely computation and storage, while not compromising
their security?

First steps have been already made towards using blockchain to support de-
centralized arbitrary computation and data storage. For instance, Filecoin [6] cur-
rently allows decentralized storage of immutable data with rather large capacity
(over 10 EB). A number of other projects (e.g., Ethereum [1]), make first steps to-
wards allowing development of general-purpose applications (“smart-contracts”)
and running them on the blockchain. Even though these are currently used mostly
for very limited use cases of debatable value, especially under the prospective Bit-
coin monetary standard (such as decentralized finance), the first steps have been
made.

Evolving these decentralized systems further entails two main problems: secu-
rity and scaling. In an attempt to scale their system, currently based on Proof-of-
Work, the Ethereum community decided to move to Proof-of-Stake as its (local)
backbone, proposing a Proof-of-Stake beacon chain [23], citing environmental
concerns around Proof-of-Work.

However, this poses issues with security and decentralization. In Section 3,
we argued why a network based on Proof-of-Stake cannot be used as a Layer
1 of decentralized systems, due to lack of Inclusiveness. Beyond this funda-
mental issue, Proof-of-Stake protocols su↵er from many attack vectors, including
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“nothing-at-stake” [20], ”long range” [21] and other attacks. The situation seems
unfortunate, as Proof-of-Stake (PoS) and, more generally, identity-based Byzan-
tine fault-tolerant (BFT) protocols [53] remain one of the most promising avenues
for improving performance of decentralized systems, in addition to peer-to-peer
payment channels [29].

On the other hand, it is unrealistic to expect Bitcoin to include smart-contracts
on its main network, nor would this make sense given Bitcoin’s low-throughput.
Bitcoin is, rightfully so, conservatively evolving, with major upgrades being de-
ployed rather rarely and never as a hard-fork, i.e., in a backwards-incompatible
manner. This is critical to the security of the main network, and it’s the correct
approach. When it comes to security, less code is more, as more code practically
always introduces more vulnerabilities. For the backbone of the world’s monetary
network, introduction of potential vulnerabilities is a clear no-go.

This situation is, fortunately, addressable. In the rest of this section:

• We first discuss, in Section 5.2, how to help secure more scalable consensus
protocols, leveraging the Bitcoin blockchain. More specifically, we discuss
a promising approach to “saving” Proof-of-Stake blockchains by anchoring
(checkpointing) their state and weighted memberhip (stake) into the Bitcoin
blockchain, protecting them from long-range and nothing-at-stake attacks.
This approach will be possible in a scalable manner only after the Bitcoin
Taproot (supported by Bitcoin Core v0.21.1+) upgrade takes e↵ect, at block
height 709632, expected in mid-November 2021.

• Then, in Section 5.3, we discuss some of the additional challenges in ex-
tending this emerging architecture towards a genuine decentralized cloud.

5.2 Bitcoin as a Backbone for PoS/BFT Protocols
Long-range attacks on Proof-of-Stake [21] rely on the inability of a client or other
participant in the system, Alice, who disconnects from the system at time t1 and
reconnects at a later time t2 > t1, to know that validators (i.e., stakeholders or
“miners” in a PoS network) who have been legitimate validators at time t1 and
who leave the system (or transfer their stake) at time t0 (t2 > t0 > t1), are not to
be trusted anymore. These validators can fork Alice, without her being able to
recognize the attack even if she is presented with a “valid” chain fork. We illus-
trate this attack in Figure 1 for the special case of equal weights among validators
(for simplicity). This illustration also demonstrates the related “I still work here”
attack [9] in permissioned BFT-based blockchains subject to membership changes
(reconfiguration).

Steinho↵ et al. recently proposed an approach to deal with the long-range
/ “I still work here” attack by anchoring BFT/PoS membership into Ethereum’s
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(a) Client communicates with initial configuration of members/stakeholders
{A, B,C,D}, which then transition, perhaps gradually, to configuration
{E, F,G,H} (steps 1-4).

(b) When client reconnects, the initial configuration may be entirely corrupted
by the adversary (step 5).

Figure 1: Illustration of the long-range (“I still work here”) family of attacks on
PoS (BFT) systems.

Proof-of-Work (PoW) blockchain (Eth 1.0) using Ethereum smart contracts [50].
As a Proof-of-Concept, the approach uses rather unscalable multi-signatures. This
approach will no longer be viable once Ethereum abandons Proof-of-Work: the
PoS of Eth 2.0 cannot be used instead PoW for anchoring as it too is vulnerable
to long-range attacks.

With Bitcoin Taproot14, one can extend this design and make it scale to thou-
sands of PoS/BFT validators. In short, Bitcoin Taproot’s enables Schnorr thresh-
old signatures [45], which permit a public key to be constructed from multiple
participant public keys and require cooperation between all participants to sign
a transaction. These multi-party keys and signatures are indistinguishable from
their single-party equivalents and enable arbitrary t-out-of-n signing policies, very
amenable to BFT and PoS protocols.

14
https://en.bitcoin.it/wiki/BIP_0341
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An idea very similar to porting the approach of Steinho↵ et al. [50] to Bitcoin
Taproot has recently been proposed by Matt Bell [14], along with an initial de-
sign, in the context of enabling Proof-of-Stake sidechains for Bitcoin. Indeed, the
approach could be used for Bitcoin PoS sidechains which stake in BTC, as well
as for “external” PoS blockchains which provide staking in other tokens.

Below, we sketch how this approach might work (di↵erent implementations
and nuances in the design of this approach are currently being considered — see
also [14]):

1. Members of the current configuration of a PoS network A (CA
0 ) jointly con-

trol, using the Schnorr threshold signature scheme enabled by Bitcoin Tap-
root, the funds on the Bitcoin blockchain pertaining to network A on address
A0.

2. When the configuration of PoS network A changes su�ciently15, say to
configuration CA

1 , a Bitcoin transaction is constructed, outside the Bitcoin
blockchain, as follows:

(a) Members of the old configuration CA
0 jointly sign a single Bitcoin

transaction, which transfers BTC belonging to network A from ad-
dress A0 to new address A1. Here, address A1 is jointly controlled by
members of the new configuration CA

1 .

(b) The OP_RETURN opcode in the Bitcoin transaction can be used to
store a hash of any additional information validators or users of net-
work A need, such as the Merkle root of the most recent weighted
stakeholders or even the Merkle root of the entire state of network
A.16

(c) Whatever information is referred to by its hash and stored in the OP_RETURN
opcode of the Bitcoin transaction, could then be stored in its entirety
into an external content-addressable decentralized storage. This could
be for example, Filecoin decentralized storage, or the Interplanetary
File System (IPFS) [15, 7].
In this case, the Filecoin/IPFS content ID (CID)17 of new membership
CA

1 , and the latest state checkpoint of network A, could be stored in

15Here, the notion of a “su�cient membership change” is intentionally underspecified and may
depend on the security policy of network A.

16Per https://en.bitcoin.it/wiki/OP_RETURN, “Many members of the Bitcoin commu-
nity believe that the use of OP_RETURN is irresponsible... for arbitrary data”. Fortunately, Bit-
coin is inclusive and decentralized and one does not need to ask permission from other members
of the community for using Bitcoin in a certain way.

17See https://docs.ipfs.io/concepts/content-addressing/.
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the Bitcoin transaction OP_RETURN opcode, whereas the data cor-
responding to said CID could be stored in Filecoin/IPFS.

3. The “account” of network A on the Bitcoin blockchain needs to be peri-
odically refunded with BTC to account for transaction fees on the Bitcoin
network. This could be done by having new nodes joining or staking on net-
work A deposit funds to the latest address used by network A on the Bitcoin
blockchain (above, address A1).

4. With such an approach to reconfiguration in place, Alice, the user of PoS
network A from the beginning of our long-range attack example, can re-
solve, by running a Bitcoin full-node and a client of content-addressable
decentralized storage (e.g., Filecoin/IPFS), all the information pertaining to
PoS network A.
It is worth noting that running a Bitcoin full node is not an issue here for
Alice, due to Bitcoin’s high operational decentralization (Sec. 4.2), as a
Bitcoin node could be run by an IoT device (e.g., Raspberry Pi) and a stan-
dard hard disk. In this context, the fact that Bitcoin blockchain size grows
“slowly” due to the small block size and 10-minute block time is an impor-
tant advantage.

Clearly, in the design outlined above, in addition to using Bitcoin as a stake
(membership) anchor, PoS network A could use its own content addressable stor-
age implementation instead of Filecoin/IPFS. However, such implementations are
rather involved and it is considerably easier for developers of new PoS networks
to leverage existing building blocks for the decentralized internet, i.e., Bitcoin and
Filecoin/IPFS.

5.3 Next Steps for Decentralized Computation and Storage
In order for decentralized cloud computing and the decentralized internet (so-
called Web3) to become pervasive and supersede current Web2 internet and cen-
tralized cloud computing, it is reasonable to require Web3 to run Web2 workloads,
with billions of transactions per second, low latencies, high security, etc. All this
should be ideally done with higher privacy, censorship resilience (freedom of in-
formation) and availability, to provide benefits for humanity over Web2.

This tasks is very challenging, in particular in the context of scalability. How-
ever, we firmly believe it is achievable. Towards this goal, we highlight some of
the decentralized systems areas which require more research. In a non-exhaustive
approach, focusing on problems related to scaling distributed computing for Web3,
we divided the problems to be tackled into the following research areas: 1) hier-
archical scaling, 2) scaling consensus proper, and 3) scalable execution. These
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are supported by research considerations that are pervasive to all of these work ar-
eas: security (including privacy), decentralization, and correctness of design and
implementation.

Hierarchical scaling. Assuming a future Web3 handling Web2-sized workloads,
one cannot rely on a single L2 blockchain network (assuming Bitcoin at L1) to
“rule them all”, much like today’s web workloads are not executed on any single
centralised machine.

This immediately brings sharding to the picture, i.e. the horizontal scaling
of decentralized systems. This requires extending the work at the intersection
of classical distributed computing and database problems related to concurrency
— such as cross-shard transaction semantics and shard state management — to
Web3-specific security challenges. There is already considerable work in this
area (see, e.g., [38, 32, 56] and the surveys [57, 55]), which is picking up in pace
in recent years, with more interesting and creative proposals appearing recently
(e.g., [34, 39]). Sharding challenges related to scalability and security of shards
are complemented by low-level interoperability [13] challenges among consensus
protocols of di↵erent families.

Not precluding alternative designs, we envision, as an extension of our de-
signed outlined in Section 5.2, a world of hierarchical consensus protocols in
which children shards, powered by faster and more performant consensus proto-
cols, leverage stronger security of their parent shards, which might in turn have
weaker performance. In such a hierarchical approach, checkpointing into a higher
security context will be important.

Scaling consensus proper. In a possible hierarchical consensus approach we
mentioned above, di↵erent consensus protocols will be applicable to di↵erent
shards, layers and use cases.

We propose identifying the “best” consensus protocol within a given security
and scalability context, applicable to a single shard. Di↵erent consensus protocols
may be relevant, e.g., targeting distinct sybil attack protection mechanisms (e.g.,
based on verifiable resource commitments [42, 41] or Proof-of-Stake), participat-
ing population size (e.g., whether we are dealing with thousands [28] or hundreds
[49] of nodes), performance, and security guarantees. Here, we should pay partic-
ular attention to the tradeo↵s between ease of design, maintainability, and system
guarantees.

Here, it is very important to understand that scalable consensus protocol im-
plementations need to evolve into full-fledged battle-tested production systems.
There is work ahead of us not only in protocol design but in robust testing and
verification tools.
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Scaling execution. Advances in scaling through sharding and scaling consensus
are insu�cient without considering the scalability of application execution. Ex-
isting blockchain systems largely follow, within a single shard, a classical order-
execute architecture in which sequential execution of applications (e.g. smart
contracts or payment scripts) follows prior ordering of transactions [54]. This in-
troduces severe performance bottlenecks, which have been the target of decades
of research in databases, multi-core processors, and distributed systems.

Here, we will need to revisit the parallel execution problem through the prism
of existing decentralised applications (based on dedicated smart-contract virtual
machines [22]) but also aim at accommodating larger-scale general-purpose scale
computations, including federated machine learning workloads or computations
over large data [33, 16], e.g., stored on IPFS. This may involve porting alter-
native execution models, such as execute-order-validate, tested in the domain of
permissioned blockchains [11] to the world of permissionless systems. Alterna-
tive application programming models which support better e�ciency of parallel
execution (e.g., CRDTs [46]) are also of particular interest.

Finally, very relevant to all these research areas in particular hierarchical scal-
ing and consensus proper, will be further research on improving distributed ran-
domness used in actual decentralized systems (e.g., drand [5]), using perhaps Bit-
coin itself [18], or approaches based, e.g., on verifiable delay functions [17].

6 Conclusions and Future Work
In this paper we argued for Bitcoin as a backbone of future decentralized money
and the internet, making a case for it to be good for humankind.

The main novelty of this paper is not necessarily technical — the main con-
tribution is a proposal to give existing systems, notably Bitcoin, a di↵erent look.
Author’s own view on Bitcoin changed only relatively recently from “generally
positive” to the one depicted in this paper, and this was equal to an enlightenment.
Arguably, one cannot change other people, but can only change oneself. The goal
of this paper is simply to share the message.

Future work in building decentralized systems, briefly tackled in Section 5.3,
will, by definition, not be a task of any single individual or organization. An
interesting question here is how do we, decentralized systems researchers and
developers, organize better towards building coherent and interconnected systems,
while remaining in a decentralized working mode and outside the control of any
single organization?

In an attempt to facilitate this, we recently established ConsensusLab as a re-
search and development hub and part of Protocol Labs. One of the main goals of
ConsensusLab is to serve as a weak synchronization point for researchers across
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academia, open-source blockchain projects and industry, and to help foster dis-
cussion and open collaboration pertaining to decentralized consensus and related
technologies that are at the heart of decentralized systems. The collaboration here
is, in part, related to openly discussing, criticizing and, perhaps, gently steer-
ing technical innovations in consensus, but is also very much related to meta-
collaboration, discussing how do we build tools, incentives and funding schemes
towards working together in a decentralized way. We wholeheartedly look for-
ward to these collaborations and future innovations.
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Abstract
Programming is a highly creative activity that cultivates problem-solving

skills, but also requires a high degree of precision. The Logo philosophy
empowers novice programmers to become successful problem solvers who
are capable of dealing with mistakes. The widespread emergence of block-
based programming languages has lead to an active prevention of certain
classes of errors while others still prevail. Rather than providing support,
most block-based interfaces, to some extent, abandon learners in the difficult
task of troubleshooting. We present a block-based programming environment
that supports autonomous troubleshooting. Programming competences are
not restricted to writing programs only. Correcting, modifying, and extending
the functionality of previously-written programs is equally important and
should not be neglected. Learning by productive failure is an unavoidable
part of education.

1 Why Debugging is Important
Programming is a creative activity that develops constructive problem-solving
skills and which finally has found its way into public school education. By pro-
gramming, students communicate with a machine and instruct it what to do. For
this purpose, they learn a programming language which essentially is a language
that the machine “understands” [20]. Unlike humans, however, machines are not
able to interpret ambiguities or handle imprecise statements. As a consequence,
even the smallest flaws can cause a program to result in unexpected behavior or
fail entirely. Making mistakes is natural and troubleshooting is one of the most
crucial parts of a programmer’s skill set [13].

Under the term debugging we understand a systematic process that is aimed
at finding the reason why a given program does not work as intended and fixing
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the underlying cause [8]. Although the primary goal of debugging is simply to fix
bugs, we consider the path of reaching this goal equally important: while analyzing
novices’ debugging patterns, Perkins et al. [18] found that tinkering is a widespread
practice among novice debuggers. Generally, novices’ debugging process often
seems to lack systematicity [14] and especially locating errors is challenging for
inexperienced programmers [13]. Fostering debugging skills explicitly, on the other
hand, has shown to have a positive impact on learners’ conceptual understanding
of programming [2, 9].

The birth of the Logo programming language in 1967 marked the dawn of a
profound philosophy of debugging for educational purposes which we will subsume
under the term Logo philosophy [1, 6]. Papert expressed a meta-cognitive vision
for programming education that emphasizes the need for learners to “rethink their
thinking and to learn about their own learning” [16]. Debugging is an essential
component of this philosophy as the following Mindstorms excerpt shows [17]:

What we see as a good program with a small bug, the child sees as
“wrong”, “bad”, “a mistake”. School teaches that errors are bad; the
last thing one wants to do is to pore over them, dwell on them, or think
about them. [. . . ] The debugging philosophy suggests an opposite
attitude. Errors benefit us because they lead us to study what happened,
to understand what went wrong, and, through understanding, to fix
[the program]. Experience with computer programming leads children
more effectively than any other activity to “believe in” debugging.

Confronting students with problems and allowing them to fail is relevant far
beyond the scope of programming and computer science only. Van Lehn et al. [12]
provide strong evidence for delaying external support during instruction and letting
students learn by failure. This form of impasse-driven learning is associated
with concept understanding [22]. While students are trying (and failing) to solve
unstructured problems, they build relevant mental models that can later be used
for more efficient direct instruction. This concept of productive failure has shown
clear learning benefits for students [7].

Programming provides a good framework for students to learn by means of
the productive failure approach. Programs are sequences of commands that are
executed one after the other and thus the effect of a program can be anticipated and
planned. Programs are typically written with a clear expectation of what exactly
will happen during execution. Due to mistakes, however, reality and expectation
may diverge unexpectedly. Quite often, this outcome puzzles programmers and
leaves them with the challenging task of finding out where an error crept in.
Narrowing down the exact location of an error has proven to be especially hard for
novice programmers [13].



BEATCS no 135

126

Scholars have tried different measures (e.g., pedagogical interventions via
didactic methods, carefully chosen analogies, and technological tools) to support
novices’ troubleshooting and error localization throughout the past 50 years. This
article highlights some technical debugging methods and contrasts them with
today’s common practice in block-based programming. We present a block-based
programming environment that is specifically designed for novices to acquire
debugging skills by handling logical errors. We intend to raise awareness and
hope to spark more active research in the domain of debugging and block-based
programming.

2 Two Different Perspectives on Debugging
Logo not only revolutionized the domain of programming education but it also
brought forth a variety of debugging mechanisms, strategies, and tools that were
devised with the intent of fostering novice programmers’ debugging skills. With
the dawn of block-based programming, debugging practices have shifted away
from the deliberate and active exposure to errors towards a more preventive form
of error handling. In this section, we present the key attributes of both of these
perspectives and hint at their respective implications on novice programmers.

2.1 Debugging in Accordance with the Logo Philosophy
The term “Logo” characterizes not only the name of a family of programming lan-
guages but also a philosophical interpretation of how learning is best achieved [1].
This philosophy is deeply anchored in the ideas of constructivist learning by Jean
Piaget (i.e., “learning by doing”) and the constructionist visions of Seymour Papert
(i.e., “learning by making”). Within the context of these theories, programming
simply represents a tool for learning. The Logo philosophy is based on the ra-
tionale of making students iteratively construct, analyze, and refine their own
learning artifacts. While programming, students develop creative solutions to given
problems. They learn to formally describe the resulting algorithm as a program
whose execution they can delegate to a computer. Errors can creep in at any point
during this process and students must learn to deal with unexpected results.

2.1.1 The Logo-Way of Handling Errors

Programming errors can occur in virtually all conceivable situations and the un-
derlying causes are manifold. With the Logo philosophy (or closely connected
with it), numerous debugging mechanisms have been invented with the aim of
supporting novice programmers in error handling and developing their debugging
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skills. Three of these ideas (creating observable models of computation, providing
advanced error diagnostics, and integrating process-related debugging mechanisms
directly into the language) will be presented separately.

• Introducing the Turtle: An Observable Model of Computation

Programmers need to express their ideas as sequences of commands that
are subsequently interpreted and executed. Exactly how this interpretation
and execution takes place, however, verges on pure magic for most novices.
Numerous models of computation exist and some of them have been created
specifically with the intent of helping novices peek inside this magic blackbox
of program execution [3]. One of the first such models was the Logo turtle
with which programmers can draw geometric shapes onto a screen. Thanks
to the turtle’s observable behavior, errors become obvious and programmers
learn to systematically test their programs.

• Developing Advanced Error Diagnostics for Novices

As many other programming languages, Logo knows at least three different
types of errors: (i) Structural syntax errors arise due to grammatical incon-
sistencies that can be detected by the parser. (ii) Structural semantic errors
are typically detected at runtime and lead to early termination of program
execution. (iii) Logical semantic errors are neither detected by the parser
nor at runtime and their characterizing feature is an unexpected program
behavior. Several techniques allow novice programmers to cope with such
errors more easily, from custom error messages, to in-line error highlighting,
all the way to tailor-made debuggers.

• Extending the Language with Built-In Debugging Mechanisms

Logo originally came with its own debugging vocabulary that was directly
incorporated into the language. Via the pause command, for example, the
execution of Logo programs could be interrupted at any point in time. This
allows the existing program variables and intermediate results to be examined
using an interactive mode of programming. The trace command is useful
for tracing the program flow across multiple layers of abstraction. Several of
these functionalities add to the underlying concept of Read-Eval-Print-Loop
(REPL) that Logo inherited from Lisp.

In summary, the Logo philosophy is characterized by its wide range of different
debugging mechanisms that supports troubleshooting with novice programmers.
The focus of the Logo approach is on helping learners understand and make use of
the complex and abstract concepts of automatic information processing.
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Figure 1: Example of a (silently fail-
ing) runtime error in Scratch. The
result of a division by zero is mathe-
matically undefined.

Figure 2: Example of a logical error
in Scratch. In a decagon (polygon
with 10 corners of equal angle), each
angle must be 360/10 degrees.

2.2 Debugging and Block-Based Programming

After more than three decades, Logo had to slowly hand over its undisputed
monopoly to the newer type of block-based programming languages; a class of
languages that allows programmers to write programs by snapping command
blocks in a graphical user interface. Using this feature, it is possible to prevent
syntactic errors almost entirely from happening [10].

Although many block-based interfaces still contain traits of the Logo turtle,
the approach of how block-based environments handle errors is different from the
original Logo philosophy. Although certain classes of errors can be eliminated
using a block-based interface, the issue of debugging is far from resolved: besides
syntactic errors there are two more classes of errors which must be considered,
independently of whether the chosen environment uses a block- or text-based inter-
face, namely (i) logical errors and (ii) runtime errors. Both of these error classes
are semantic in nature and cannot be handled considering only the syntactical
attributes of a programming language. Figures 1 and 2 show two examples of such
errors in Scratch. The example on the left results in a runtime error (i.e., division
by zero is mathematically undefined) while the example on the right turns out to
be logically incorrect.

One troubleshooting strategy used by many block-based environments consists
in using “failsoft commands” which essentially result in runtime errors to be treated
like logical errors. Rather than stopping execution, as is usually the case with
runtime errors, many block-based programming environments swallow runtime
errors and resume execution without informing the user. The concept of failsoft
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commands became popular with the Scratch programming environment more than
ten years ago [10]. By now, it is common practice among many well-known and
broadly-used block-based programming platforms such as Snap, Code.org., and
even Blockly. We question the usefulness of failsoft commands. Error localization
is known to be one of the hardest parts of debugging. Intentionally hiding relevant
information from users thus seems contra-productive from a debugging point of
view.

3 Our Approach
Logo was originally designed to provide a broad variety of supporting features to
facilitate error handling. This can be observed in a plethora of different mechanisms
from syntax (e.g., Logo is particularly light on syntax with a bare minimum of
syntactic elements [21]) to the role of the turtle [17] and the question of how to
best phrase compiler error messages for beginners to understand [5, 19].

The argument for introducing block-based programming was inherently moti-
vated by error handling, too. Syntax errors were claimed to distract novices from
algorithmic aspects and for certain age ranges handling a keyboard was considered
an additional challenge by itself. For those factors, block-based programming has
proven to be a useful tool. Still, block-based programming cannot help against all
errors and dedicated mechanisms for handling runtime errors and logical errors are
still required.

XLogoOnline is a tailor-made programming environment for novice program-
mers from kindergarten to grade 6. Students at the lower end of this age range
typically are not able to read and write yet and their formal education in mathe-
matics has only just begun. In order to still allow students to dive into the world
of algorithms and programming, XLogoOnline provides a block-based program-
ming interface for students between kindergarten and grade 4. This interface was
extended with three forms of support for troubleshooting: (i) a small command
set was chosen not to admit any runtime errors, (ii) the environment includes the
possibility for physical program execution to reduce struggles with change of per-
spective, and (ii) an exercise collection tool was developed which verifies student
solutions and reports some logical errors. These three forms of troubleshooting
will be elaborated individually.

3.1 Runtime Errors not Possible
Young children between 6 and 8 years old can learn to program despite their
challenges in reading and writing and limited formal mathematics background.
XLogoOnline provides a block-based interface which allows students to navigate a
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turtle on a rectangular grid. For this purpose, students are provided with six block
commands:

1. forward moves the turtle ahead. Each of these movements is unparameter-
ized and uses an internal unit distance of 100 pixels, i.e., one grid cell.

2. back moves the turtle backwards. Each of these movements is unparameter-
ized and uses an internal unit distance of 100 pixels, i.e., one grid cell.

3. left rotates the turtle 90 degrees to the left. The rotation angle is fixed and
aligns with the underlying rectangular grid.

4. right rotates the turtle 90 degrees to the right. The rotation angle is fixed and
aligns with the underlying rectangular grid.

5. setpencolor exchanges the pen with one of six possible colors. The selection
involves a drop-down menu.

6. repeat allows any sequence of commands to be executed repeatedly. Students
choose the number of repetitions by providing a positive integer parameter.
Arithmetic operations are disallowed.

None of these six commands has the possibility to throw an unexpected runtime
exception. This means that only logical errors can still occur and must be handled
by programmers.

3.2 Physical Program Execution
One of the known logical difficulties Logo novices initially struggle with is con-
nected to the concept of perspective. All of the four movement and rotation
commands mentioned in Section 3.1 are interpreted from the perspective of the
turtle, rather than the perspective of the programmer. This means that programmers
have to imagine themselves in the position of the turtle in order to figure out
whether to turn to the left or to the right.

This change of perspective is sometimes hardly even noticed by students,
especially if the different perspectives align (as in Figure 3). There are, however,
also cases which are notoriously hard for young programmers due to a clash of
perspective. Figure 4 shows such a case where the ladybug’s perspective differs
from the reader’s perspective. A clash of perspective may result in confusion
between left and right.

In order to tackle this problem, we provide not only a virtual turtle but a physical
turtle in addition as shown in Figure 8. This approach was originally proposed
by Papert in the early days of Logo. Back then, the turtle was usually considered
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Figure 3: The change in perspective
may not be noticed as much because
the ladybug’s perspective is the same
as the programmer’s perspective at
the beginning.

Figure 4: The ladybug’s perspective
deviates from that of the programmer.
As a result, the required change of
perspective entails additional cogni-
tive effort.

a physical robot instead of a virtual agent on the screen. Physical robots have
the advantage that a change of perspective comes naturally by simply changing
one’s position relative to the robot. This is something many young novices do
unconsciously and which seems to improve their performance.

3.3 Exercise Collection with Automatic Verification

Programming is a precise form of communication; in order to instruct a computer to
do something for us, we need to express ourselves in a way that is unambiguous and
instructive enough for a mindless machine to “understand”. Novice programmers
must learn to deal with this required level of precision. One way of reaching
this goal involves providing novices with age-appropriate exercises that challenge
their conceptual understanding. We have developed an exercise collection with
predefined tasks (some examples are shown in Figures 5 to 7). Student solutions to
these tasks are automatically verified for correctness and the result is reported back
the user.

Tasks differ in terms of what students are allowed to do in their solution. Some
tasks contain fields that students are not allowed to cross. Forbidden fields may
be marked visually sometimes (e.g., Figure 5) while other times, their status can
only be inferred from the exercise text (e.g., Figure 6). In addition to forbidden
fields, walls can be used to separate neighboring fields which would otherwise be
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Figure 5: Find the straw-
berry without passing
over a forbidden field.

Figure 6: Collect all blue
shapes without crossing
over a red field.

Figure 7: Collect 18
strawberries but without
crossing a wall.

Figure 8: Students who struggle with
changing perspectives benefit from
executing their programs on a physi-
cal robot.

Figure 9: Error dialog that pops up
whenever one of the underlying rules
is violated.

connected. One such example is shown in Figure 7. Not respecting one of these
conditions leads to an error dialog, as shown in Figure 9.

4 Summary and Conclusion
Not only programming itself but also dealing with errors needs to be learned. Block-
based programming environments offer one-sided support that focuses mainly on
the elimination of syntactic errors. There are several error classes (e.g., runtime
errors and logical errors) that are not affected by the use of blocks and that are
oftentimes not handled in block-based programming environments. Teaching
pupils how to approach problems and making them learn from failure is of utmost
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importance for pupils’ cognitive development. Whether block- or text-based, it
is crucial that learners leave school not as passive consumers of technology but
that they learn to create their own solutions and deal with errors – one of the most
natural ways of doing so consists in teaching them how to program.
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Abstract

We provide a self-contained introduction to finite extensive games with
perfect information. In these games players proceed in turns having, at each
stage, finitely many moves to their disposal, each play always ends, and
in each play the players have complete knowledge of the previously made
moves. Almost all discussed results are well-known, but often they are not
presented in an optimal form. Also, they usually appear in the literature
aimed at economists or mathematicians, so the algorithmic or logical aspects
are underrepresented.
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1 Introduction
In computer science for a long time the most commonly studied games have been
infinite two-player games (see, e.g., [1] for an account of some of the most popular
classes). With the advent of algorithmic game theory various classes of games
studied by economists became subject of interest of computer scientists, as well.
These games usually involve an arbitrary finite number of players. Among them
one the most common ones are strategic games, in which the players select their
strategies simultaneously. They have been covered in several books and surveys.

However, in our view a systematic account of another most popular class of
games, extensive games with perfect information, is missing. It is true that they are
extensively discussed in several books, mostly written for theoretical economists.
However, in the introductory texts technical results are usually omitted and illus-
trated by examples (e.g., [5]). In turn, in the advanced textbooks the presentation
is often difficult to follow since these games are introduced as a special case of
the extensive games with imperfect information, which leads to involved notation
(e.g., [9]). An exception is [16] which devotes a separate chapter to extensive
games with perfect information.

From the point of view of computer science the main results are usually not
presented in an optimal way. For example, the backward induction is often intro-
duced in a verbose way, or formulated in a way that hides its algorithmic aspect.
This way the optimal result that relates it to the set of all subgame perfect equilib-
ria (Theorem 7) is often missed. We explain here that it is actually a nondetermin-
istic algorithm that can be even presented as a parallel algorithm. We also discuss
an important article [3] that formalizes common knowledge of rationality in finite
extensive games with perfect information and relates it to backward induction.

Further, Theorem 17 that clarifies the relation between backward induction
and the iterated elimination of weakly dominated strategies, is either only illus-
trated by an example (e.g., [5]) or only a sketch of a proof is provided (e.g., [16]).
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Also, some more recent results, Theorem 19, due to [7], and Theorem 20, due to
[12], merit in our opinion some attention among computer scientists. Finally, the
so-called Zermelo theorem about chess-like games is in our view often proved in
a too elaborate way, starting with the exposition in the classic [22].

These considerations motivated us to write a tutorial presentation of finite ex-
tensive games with perfect information aimed at computer scientists. Often these
games are discussed by introducing strategic games first. We follow this approach,
as well, as it allows us to view extensive games as a subclass of strategic games
for which some additional notions can be defined and for which additional results
hold.

In our presentation we shall often refer to the account given in [16] that comes
closest to our ideal. We shall strengthen some of their results, provide more de-
tailed proofs of some of them, and add some new results. Also, we shall recall
their natural notion of a reduced strategy that in our view merits more attention.

2 Preliminaries on strategic games
To discuss extensive games it is convenient to introduce first strategic games. A
strategic game for n ≥ 1 players consists of:

• a set of players {1, . . ., n},

and for each player i

• a non-empty (possibly infinite) set S i of strategies,

• a payoff function pi : S 1 × · · · × S n→ R.

We denote it by (S 1, . . ., S n, p1, . . ., pn). So the set of players is implicit in this
notation.

Strategic games are studied under the following basic assumptions:

• players choose their strategies simultaneously; subsequently each player re-
ceives a payoff from the resulting joint strategy,

• each player is rational, which means that his objective is to maximize his
payoff,

• players have common knowledge of the game and of each others’ rational-
ity.1

1Intuitively, common knowledge of some fact means that everybody knows it, everybody
knows that everybody knows it, etc. It is discussed in the context of extensive games in Section 6.
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Finite two-player games are usually represented in the form called a bimatrix,
where one assumes that the players choose independently a row or a column. Each
entry represents the resulting payoffs to the row and column players. The follow-
ing examples of two-player games will be relevant in the subsequent discussion.

Example 1. The following game is called Prisoner’s Dilemma. The strategies C
and D stand for ‘cooperate’ and ‘defect’:

C D
C 2, 2 0, 3
D 3, 0 1, 1

The following game is called Matching Pennies. The strategies H and T stand
for ‘head’ and ‘tail’:

H T
H 1,−1 −1, 1
T −1, 1 1,−1

�

Fix a strategic game H := (S 1, . . ., S n, p1, . . ., pn). Let S = S 1 × · · · × S n.
We call each element s ∈ S a joint strategy (of players 1, . . ., n), denote the ith
element of s by si, and abbreviate the sequence (s j) j,i to s−i. We write (s′i , s−i) to
denote the joint strategy in which player’s i strategy is s′i and each other player’s
j strategy is s j. Occasionally we write (si, s−i) instead of s. Finally, we abbreviate
the Cartesian product × j,iS j to S −i.

Given a joint strategy s, we denote the sequence (p1(s), . . ., pn(s)) by p(s) and
call it an outcome of the game. We say that H has k outcomes if |{p(s) | s ∈ S }| =
k and call a game trivial if it has one outcome. We say that two joint strategies s
and t are payoff equivalent if p(s) = p(t).

We call a strategy si of player i a best response to a joint strategy s−i of the
other players if

∀s′i ∈ S i : pi(si, s−i) ≥ pi(s′i , s−i).

Next, we call a joint strategy s a (pure) Nash equilibrium if for each player i,
si is a best response to s−i, that is, if

∀i ∈ {1, . . . , n} : ∀s′i ∈ S i pi(si, s−i) ≥ pi(s′i , s−i).

So a joint strategy is a Nash equilibrium if no player can achieve a higher payoff

by unilaterally switching to another strategy. Intuitively, a Nash equilibrium is a
situation in which each player is a posteriori satisfied with his choice. It is often
used to predict the outcomes of the strategic games.
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It is easy to check that there is a unique Nash equilibrium in Prisoner’s Dilemma
which is (D,D), while the Matching Pennies game has no Nash equilibria.

A relevant question is whether we can identify natural subclasses of strategic
games where a Nash equilibrium is guaranteed to exist. Below, we describe two
such classes which are well studied in game theory. Fix till the end of this section
a strategic game H = (S 1, . . ., S n, p1, . . ., pn).

We say that a pair of joint strategies (s, s′) forms a profitable deviation if
there exists a player i such that s′

−i = s−i and pi(s′) > pi(s). If such a pair (s, s′)
exists, then we say that player i can profitably deviate from s to s′ and denote this
by s → s′. An improvement path is a maximal sequence (i.e., a sequence that
cannot be extended to the right) of joint strategies in which each consecutive pair
is a profitable deviation. By an improvement sequence we mean a prefix of an
improvement path.

We say that H has the finite improvement property (FIP in short), if every
improvement path is finite. Clearly, if an improvement path is finite, then its last
element is a Nash equilibrium. So if H has the FIP, then it is guaranteed to have
Nash equilibrium, which explains the interest in this notion. A trivial example of
a game that has the FIP is the Prisoner’s Dilemma game.2

However, the FIP is a very strong property and several natural games with a
Nash equilibrium fail to satisfy it. Young in [23] and independently Milchtaich
in [14] proposed a weakening of this condition and introduced the following nat-
ural class of games. We say that H is weakly acyclic if for any joint strategy s,
there exists a finite improvement path that starts at s. Consequently, every weakly
acyclic game has a Nash equilibrium.

We call the function P : S → R a weak potential for H if

∀s: if s is not a Nash equilibrium, then for some
profitable deviation s→ s′, P(s) < P(s′).

The following natural characterization of finite weakly acyclic games was es-
tablished in [15].

Theorem 1 (Weakly acyclic). A finite game is weakly acyclic iff it has a weak
potential.

Sometimes it is convenient to assume that a weak potential is a function to a
strict linear ordering (that can be subsequently mapped to R).

One way to find a Nash equilibrium in a strategic game is by using a concept
of dominance. In the context of extensive games the most relevant is the notion of
weak dominance. By a subgame of a strategic game H we mean a game obtained
from H by removing some strategies.

2A more interesting class of games that have the FIP are the congestion games, see [18].
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Consider two strategies si and s′i of player i. We say that si weakly dominates
s′i (or equivalently, that s′i is weakly dominated by si) in H if

∀s−i ∈ S −i : pi(si, s−i) ≥ pi(s′i , s−i) and ∃s−i ∈ S −i : pi(si, s−i) > pi(s′i , s−i).

Denote by H1 a subgame of H obtained by the elimination of some (not nec-
essarily all) strategies that are weakly dominated in H, and put H0 := H and
Hk+1 := (Hk)1, where k ≥ 1. Note that Hk is not uniquely defined, since we do not
stipulate which strategies are removed at each stage.

Abbreviate the phrase ‘iterated elimination of weakly dominated strategies’ to
IEWDS. We say that each Hk is obtained from H by an IEWDS. If for some k,
some subgame Hk is a trivial game we say that H can be solved by an IEWDS.
The relevant result (that we shall not prove) is that if a finite strategic game H can
be solved by an IEWDS then every remaining joint strategy is a Nash equilibrium
of H. We shall illustrate it in Example 7 in Section 4.

The following lemma will be needed in Section 7.

Lemma 2. Let H := (S 1, . . ., S n, p1, . . ., pn) be a finite strategic game and let
Hk := (S k

1, . . ., S
k
n, p1, . . ., pn), where k ≥ 1. Then

∀i ∈ {1, . . ., n} ∀si ∈ S i ∃ti ∈ S k
i ∀s−i ∈ S k

−i : pi(ti, s−i) ≥ pi(si, s−i).

Proof. We proceed by induction. Take some i ∈ {1, . . ., n} and si ∈ S i. Suppose
k = 1. If si ∈ S 1

i , then we are done, so assume that si < S 1
i . H is finite and

the relation ‘weakly dominates’ is transitive, so some strategy ti from H weakly
dominates si in H and is not weakly dominated in H, and thus is in H1.

Suppose the claim holds for some k > 1. By the induction hypothesis for some
ui ∈ S k

i we have pi(ui, s−i) ≥ pi(si, s−i) for all s−i ∈ S k
−i. If ui < S k+1

i , then for the
same reasons as above some strategy ti from Hk+1 weakly dominates ui in Hk and
consequently pi(ti, s−i) ≥ pi(si, s−i) for all s−i ∈ S k

−i. �

Finally, we introduce the following condition defined in [13]. We say that a
strategic game (S 1, . . ., S n, p1, . . ., pn) satisfies the transference of decisionmaker
indifference (TDI) condition if:

∀i ∈ {1, . . . , n} ∀ri, ti ∈ S i ∀s−i ∈ S −i :
pi(ri, s−i) = pi(ti, s−i)→ p(ri, s−i) = p(ti, s−i).

Informally, this condition states that whenever for some player i two of his strate-
gies ri and ti are indifferent w.r.t. some joint strategy s−i of the other players then
this indifference extends to all players.

In the next section we shall introduce a natural class of strategic games that
satisfy the TDI condition.
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3 Preliminaries on strictly competitive games
Sections 8 and 10 concern specific extensive games that involve two players. It is
convenient to introduce them first as strategic games. A strategic two-player game
is called strictly competitive if

∀i ∈ {1, 2} ∀s, t ∈ S : pi(s) ≥ pi(t) iff p−i(s) ≤ p−i(t).

(As there are here just two players, −i denotes the opponent of player i, so p−i(s)
and p−i(t) are here numbers.) Note that every strictly competitive game satisfies
the TDI condition as the definition implies that

∀i ∈ {1, 2} ∀s, t ∈ S : pi(s) = pi(t) iff p−i(s) = p−i(t). (1)

A two-player game is called zero-sum if

∀s ∈ S : p1(s) + p2(s) = 0.

An example is the Matching Pennies game. Clearly every zero-sum game is
strictly competitive.

In Section 10 we shall discuss two classes of zero-sum games. A zero-sum
game is called a win or lose game if the only possible outcomes are (1,−1) and
(−1, 1), with 1 interpreted as a win and −1 as losing. Finally, a zero-sum game
is called a chess-like game if the only possible outcomes are (1,−1), (0, 0), and
(−1, 1), with 0 interpreted as a draw.

The following results about strictly competitive games will be needed in Sec-
tion 8.

Lemma 3. Consider a strictly competitive strategic game H with a Nash equilib-
rium s. Suppose that for some i ∈ {1, 2}, ti weakly dominates si. Then (ti, s−i) is
also a Nash equilibrium.

Proof. Let H := (S 1, S 2, p1, p2). Take a strategy s′i of player i. By the assumptions
about s and ti

pi(ti, s−i) = pi(si, s−i) ≥ pi(s′i , s−i).

Next, take a strategy s′
−i of player −i. By (1) and the fact that s is a Nash

equilibrium
p−i(ti, s−i) = p−i(si, s−i) ≥ p−i(si, s′−i).

This establishes the claim. �

Given a finite strategic game H := (S 1, . . ., S n, p1, . . ., pn) we define for each
player i

maxmini(H) := max
si∈S i

min
s−i∈S −i

pi(si, s−i).
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We call any strategy s∗i such that mins−i∈S −i pi(s∗i , s−i) = maxmini(H) a security
strategy for player i in H.

The following result goes back to [22], where it was established for zero-sum
games. The formulation below is from [16, pages 22-23]).

Theorem 4 (Minimax). Suppose that s is a Nash equilibrium of a strictly com-
petitive strategic game H. Then each si is a security strategy for player i and
p(s) = (maxmin1(H),maxmin2(H)).

Corollary 5. Consider a finite strictly competitive strategic game H that has a
Nash equilibrium. Then H1 has a Nash equilibrium, as well, and for all i ∈ {1, 2},
maxmini(H) = maxmini(H1).

(The notation H1 was introduced in Section 2.)

Proof. We first prove that some Nash equilibrium of H is also a joint strategy of
H1. Let s be a Nash equilibrium of H. Suppose first that only one strategy from
s, say si, is not a strategy in H1. The game H is finite and the relation ‘weakly
dominates’ is transitive so some strategy ti weakly dominates si and is not weakly
dominated. Thus (ti, s−i) is a joint strategy in H1, which by Lemma 3 is a Nash
equilibrium in H.

Suppose now that none of the strategies from s are strategies in H1. By the
argument just made we conclude that for some joint strategy t in H1 first (ti, s−i)
is a Nash equilibrium in H and then that t is a Nash equilibrium in H.

We conclude that a joint strategy is both a Nash equilibrium in H and in H1.
The other claim then follows by the Minimax Theorem 4. �

Lemma 6. Consider a strictly competitive strategic game H that has a Nash equi-
librium and has two outcomes. Let H1 be the result of removing from H all weakly
dominated strategies. Then H1 is a trivial game.

Proof. Let s∗ be a Nash equilibrium of H = (S 1, S 2, p1, p2) and s′ a joint strategy
such that p(s∗) and p(s′) are the two outcomes in H. By condition (1) from Section
2 p1(s∗) , p1(s′) and p2(s∗) , p2(s′). H is strictly competitive, so for some i both
pi(s∗) > pi(s′) and p−i(s′) > p−i(s∗).

First we show that pi(s∗i , s−i) = pi(s∗) for all s−i ∈ S −i. Suppose other-
wise. Take s−i such that pi(s∗i , s−i) , pi(s∗). Then pi(s∗i , s−i) = pi(s′), so by
(1) p−i(s∗i , s−i) = p−i(s′) > p−i(s∗), which contradicts the fact that s∗ is a Nash
equilibrium.

Hence by the choice of i for all s−i ∈ S −i

pi(s∗i , s−i) = pi(s∗) ≥ pi(s′i , s−i)

and
pi(s∗i , s

′
−i) = pi(s∗) > pi(s′).

So s∗i weakly dominates s′i . This implies that H1 is a trivial game. �
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4 Extensive games
After these preliminaries we now focus on the subject of this tutorial.

A rooted tree (from now on, just a tree) is a connected directed graph (i.e.,
such that the undirected version is connected) with a unique node with the in-
degree 0, called the root, and in which every other node has the in-degree 1. A
leaf is a node with the out-degree 0. We denote a tree by (V, E, v0), where V is a
non-empty set of nodes, E is a possibly empty set of directed edges, and v0 is the
root. In drawings the edges will be directed downwards.

An extensive game with perfect information (in short, just an extensive game)
for n ≥ 1 players consists of:

• a set of players {1, . . ., n},

• a game tree T := (V, E, v0); we denote its set of leaves by Z,

• a turn function turn : V \ Z → {1, . . ., n},

• the outcome functions oi : Z→ R, for each player i.

We denote it by (T, turn, o1, . . ., on).
As in the case of strategic games we assume that each player is rational (which

now means that his objective is to maximize his outcome in the game) and that
the players have common knowledge of the game and of each others’ rationality.

A node w is called a child of v in T if (v,w) ∈ E. A node in T is called a
preleaf if all its children are leaves. We say that an extensive game is finite if
its game tree is finite. In what follows we limit our attention to finite extensive
games.

The function turn determines at each non-leaf node which player should move.
The edges of T represent possible moves in the considered game, while for a node
v ∈ V \Z the set of its children C(v) := {w | (v,w) ∈ E} represents possible actions
of player turn(v) at v.

In the figures below we identify the actions with the labels we put on the edges
and thus identify each action with the corresponding move. For convenience we
do not assume the labels to be unique, but it will not lead to confusion. Further,
we annotate the non-leaf nodes with the identity of the player whose turn it is to
move and the name of the node. Finally, we annotate each leaf node with the
corresponding sequence of the values of the oi functions.

Example 2. Consider the Prisoner’s Dilemma and Matching Pennies games from
Example 1. Suppose the players move sequentially with the row player moving
first. The game trees of the resulting extensive games are depicted in Figures 1
and 2 below. The thick lines in the second drawing will be explained later. �
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1,u

2,v

(2,2)

C

(0,3)

D

C

2,w

(3,0)

C

(1,1)

D

D

Figure 1: Extensive form of the Prisoner’s Dilemma game

1,u

2,v

(1,-1)

H

(-1,1)

T

H

2,w

(-1,1)

H

(1,-1)

T

T

Figure 2: Extensive form of the Matching Pennies game

Example 3. The following two-player game is called the Ultimatum game. Player
1 moves first and selects a number x ∈ {0, 1, . . ., 100} intepreted as a percentage
of some good to be shared, leaving the fraction of (100− x)% for the other player.
Player 2 either accepts this decision, the outcome is then (x, 100− x), or rejects it,
the outcome is then (0, 0). The game tree is depicted in Figure 3, where the action
of player 1 is a number from the set {0, 1, . . ., 100}, and the actions of player 2 are
A and R.

1, u

2, 0

(0, 100)

A

(0, 0)

R

0

2, x

(x, 100 − x)

A

(0, 0)

R

x

2, 100

(100, 0)

A

(0, 0)

R

100

· · · · · ·

Figure 3: The Ultimatum game

�

Next we introduce strategies in extensive games. Consider a finite extensive
game G := (T, turn, o1, . . ., on). Let Vi := {v ∈ V \ Z | turn(v) = i}. So Vi is the set
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of nodes at which player i moves. Its elements are called the decision nodes of
player i. A strategy for player i is a function si : Vi → V , such that (v, si(v)) ∈ E
for all v ∈ Vi. Joint strategies are defined as in strategic games. When the game
tree consists of just one node, each strategy is the empty function, denoted by ∅,
and there is only one joint strategy, namely the n-tuple of these functions.

Each joint strategy different from (∅, . . ., ∅) assigns a unique child to every
node in V \ Z. In fact, we can identify joint strategies with such assignments.
Each joint strategy s = (s1, . . ., sn) determines a rooted path play(s) := (v1, . . ., vm)
in T defined inductively as follows:

• v1 is the root of T ,

• if vk < Z, then vk+1 := si(vk), where turn(vk) = i.

Informally, given a joint strategy s, we can view play(s) as the resulting play
of the game.

G is finite, so for each joint strategy s the rooted path play(s) is finite. Denote
by leaf (s) the last element of play(s). We call then (o1(leaf (s)), . . ., on(leaf (s))) the
outcome of the game G when each player i pursues his strategy si and abbreviate
it to o(leaf (s)).

Example 4. Let us return to the extensive form of the Matching Pennies game
from Example 2. The strategies for player 1 are: H and T , while the strategies for
player 2 are: HH, HT , TH, and TT , where for instance TH stands for a strategy that
selects T at the node v and H at the node w. In Figure 2 thick lines correspond with
the joint strategy (H,TH). Here play(H,TH) = (u, v, (−1, 1)), where we identify
each leaf with the corresponding outcome, and o(leaf (H,TH)) = (−1, 1). �

With each finite extensive game G := (T, turn, o1, . . ., on) we associate a strate-
gic game Γ(G) := (S 1, . . ., S n, p1, . . ., pn) defined as follows:

• S i is the set of strategies of player i in G,

• pi(s) := oi(leaf (s)).

We call Γ(G) the strategic form of G.
All notions introduced in the context of strategic games can now be reused

in the context of finite extensive games simply by referring to the corresponding
strategic form. This way we obtain the notions of a best response, Nash equilib-
rium, extensive games that have the FIP, are weakly acyclic, etc.

Example 5. The strategic form of the extensive form of the Matching Pennies
game from Example 2 differs from the initial Matching Pennies game from Ex-
ample 1 and looks as follows:
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HH HT T H TT
H 1,−1 1,−1 −1, 1 −1, 1
T −1, 1 1,−1 −1, 1 1,−1

Note that this game has two Nash equilibria: (H,TH) and (T,TH). The first
one is depicted in Figure 2 by thick lines. By definition, these are the Nash equi-
libria of the extensive form of the Matching Pennies game.

The intuitive reason that there are two Nash equilibria is that no matter which
out of his two strategies the first player selects, the second player can always
secure the payoff 1 for himself. Of course, the decision which player moves first
affects both the sets of strategies and the sets of Nash equilibria.

One can also easily check that the extensive form of the Prisoner’s Dilemma
game given in Figure 1 has one Nash equilibrium, (D,DD). �

Example 6. Consider now the Ultimatum game from Example 3. Each strategy
for player 1 is a number from {0, 1, . . ., 100}, while each strategy for player 2 is a
function from {0, 1, . . ., 100} to {A,R}.

It is easy to check that (100, s2), where for y ∈ {0, 1, . . ., 100}, s2(y) = R is a
Nash equilibrium with the outcome (0, 0) and that all other Nash equilibria are of
the form (x, s2), where s2(x) = A and s2(y) = R for y > x, and x, y ∈ {0, 1, . . ., 100},
with the corresponding outcome (x, 100 − x). �

Concepts such as Nash equilibrium can be defined directly, without a detour
through the strategic games. However, introducing strategic games first allows us
to view finite extensive games as a special class of strategic games and allows us
to conclude that some results established for the strategic games, for instance the
Weakly Acyclic Theorem 1, also hold for all finite extensive games.

As we shall see, for extensive games, due to their structure, additional results
hold. Further, their structure suggests a new equilibrium notion that is meaningful
only for these games. Finally, when discussing iterated elimination of weakly
dominated strategies in an extensive game, one needs to reason about its strategic
form.

All examples in this section are instances of the so-called Stackelberg com-
petition. In such games a leader moves first and a follower, having observed
the resulting action, moves second. Of course, there are other natural extensive
games, in particular multi-player games and games with infinite game trees.

For extensive games that are not Stackelberg competition games it is legitimate
to question the notion of a strategy. Namely, one would expect that when a player
following a strategy makes a move to a node u, then all his subsequent moves
should take place in the subtree rooted at u. However, the definition of a strategy
does not stipulate it as it is ‘overdefined’. A natural revision was introduced in
[16, page 94].
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Given a node w in the game tree consider the path v = v1, . . ., vk = w to it from
the root v. Let

[w]i := {(v j, v j+1) | j ∈ {1, . . ., k − 1} and turn(v j) = i}.

Informally, [w]i is the set of the moves of player i that lie on the path from the root
to w.

We call rsi a reduced strategy of player i if it is a maximal subset of a strategy
si (recall that each strategy is a function, so a set of pairs of nodes) that satisfies
the following property:

if (u,w) ∈ rsi, then [w]i ⊆ rsi.

Intuitively, rsi is a reduced strategy of player i if according to it each of his moves
follows his earlier moves in the game.

Just like the joint strategies, each joint reduced strategy determines a play of
the game. This allows us to define the outcome of the game when each player
pursues his reduced strategy. Associate now with each joint reduced strategy r the
following set of original joint strategies:

Str(r) := {s | ∀i ∈ {1, . . .n} : ri ⊆ si}.

One can show that the sets Str(r), where r is a Nash equilibrium in the reduced
strategies, form a partition of the set of original Nash equilibria. So each Nash
equilibrium in the reduced strategies is a convenient representation of a set of
Nash equilibria in the original strategies.

Example 7. Consider the classic centipede game due to [17]. In Figure 4 we
present a version of the game from [16, page 107]. C and S represent the actions
‘continue’ and ‘stop’.

S S S S S S

CCCCCC1,a 1,c 1,e2,b 2,d 2, f

(1, 0) (0, 2) (3, 1) (2, 4) (5, 3) (4, 6)

(6, 5)

Figure 4: A six-period version of the centipede game

Each player has three decision nodes and two actions at each of them. So each
player has eight strategies. In contrast, both players have four reduced strategies.
These are
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for player 1: aS , aCcS , aCcCeS , aCcCeC, and

for player 2: bS , bCdS , bCdC f S , bCdC fC,

where aCcCeS , is a shorthand for {(a,C), (c,C), (e, S )}, etc. The strategic form
corresponding to the joint reduced strategies is given in Figure 5.

bS bCdS bCdC f S bCdC fC
aS 1, 0 1, 0 1, 0 1, 0

aCcS 0, 2 3, 1 3, 1 3, 1
aCcCeS 0, 2 2, 4 5, 3 5, 3
aCcCeC 0, 2 2, 4 4, 6 6, 5

Figure 5: The strategic form of the centipede game that uses reduced strategies

This game has a unique Nash equilibrium, namely (aS , bS ), with the outcome
(1, 0). It can be obtained by solving the game by an IEWDS in six steps, by
repeatedly eliminating the rightmost column and the lowest row. In contrast, the
strategic form corresponding to the original extensive game has several Nash equi-
libria. According to the notation introduced above, these Nash equilibria form the
set Str((aS , bS )). �

5 Subgame perfect equilibria

5.1 Definition and examples

Example 6 suggests that the concept of a Nash equilibrium is not informative
enough to predict outcomes of extensive games: it results in too many scenarios,
some of which are obviously inferior to all players. Another issue is the problem
of so-called ‘not credible threat’ as illustrated in the following example.

1,u

2,v

(1,-1)

H

(-1,1)

T

H

2,w

(-1,1)

H

(-10, 0)

T

T

Figure 6: A modification of the Matching Pennies game
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Example 8. Consider the extensive game given in Figure 6. This game has three
Nash equilibria: (H,T H), (T,T H), and (H,TT ). However, the last equilibrium is
not plausible: if player 1 chooses T , then player 2 should select H and not T : the
‘threat’ of player 2 to choose T at the node 2 is not credible. �

Motivated by the issue of non-credible threats Selten introduced in [20] a
stronger equilibrium concept. To define it we need to use strategies instead of
the restricted strategies.

Consider an extensive game G := (T, turn, o1, . . ., on) and a non-leaf node w of
T . Denote by T w the subtree of T rooted at w. The subgame of G rooted at the
node w, denoted by Gw, is defined as follows:

• its set of players is {1, . . ., n},

• its tree is T w,

• its turn and payoff functions are the restrictions of the corresponding func-
tions of G to the nodes of T w.

So the notion of a subgame has a different meaning for the strategic and for the
extensive games. Note that some players may ‘drop out’ in Gw, in the sense that
at no node of T w it is their turn to move. Still, to keep the notation simple, it is
convenient to admit in Gw all original players in G. Each strategy si of player i in
G uniquely determines his strategy sw

i in Gw. Given a joint strategy s = (s1, . . ., sn)
of G we denote by sw the joint strategy (sw

1 , . . ., s
w
n ) in Gw.

A joint strategy s of G is called a subgame perfect equilibrium in G if for every
node w of T , the joint strategy sw of Gw is a Nash equilibrium in Gw. Informally
s is subgame perfect equilibrium in G if it induces a Nash equilibrium in every
subgame of G.

It is straightforward to check that all Nash equilibria in the extensive forms
of the Prisoner’s Dilemma and Matching Pennies games are also subgame perfect
equilibria. The modified Matching Pennies game given in Example 8 has two
subgame perfect equilibria: (H,TH) and (T,TH). Note that the Nash equilibrium
(H,TT) that involves a non-credible threat is not a subgame perfect equilibrium.

Example 9. Return now to the Ultimatum game from Example 3. In Example
6 we noticed that this game has several Nash equilibria. However, only two of
them are subgame perfect equilibria. They are depicted in Figures 7 and 8. In the
first equilibrium player 1 selects 100 and player 2 accepts all offers, while in the
second equilibrium player 1 selects 99 and player 2 accepts all offers except 100.
These equilibria are more intuitive than the remaining Nash equilibria and provide
natural insights into this game. �
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1, u

2, 0

(0, 100)

A

(0, 0)

R

0

2, x

(x, 100 − x)

A

(0, 0)

R

x

2, 100

(100, 0)

A

(0, 0)

R

100

· · · · · ·

Figure 7: A subgame perfect equilibrium in the Ultimatum game

1, u

2, 0

(0, 100)

A

(0, 0)

R

0

2, 98

(98, 2)

A

(0, 0)

R

98

2, 99

(99, 1)

A

(0, 0)

R

99

2, 100

(100, 0)

A

(0, 0)

R

100

· · ·

Figure 8: Another subgame perfect equilibrium in the Ultimatum game

It should be noted that the Ultimatum game has been extensively analysed in
experimental economics. It has been observed that in practice, people do not often
play a Nash equilibrium or a subgame perfect equilibrium.

5.2 Backward induction

We now show that for a finite extensive game G over T , one can construct a sub-
game perfect equilibrium using the iterative procedure described in Algorithm 1
called the backward induction algorithm. Since each loop iteration of Algorithm
1 modifies the underlying game tree, we use the notation C(v,T ) to denote the set
of children of node v in the current version of the tree T .

Note that Algorithm 1 always terminates but in general need not have a unique
outcome due to the presence of the choose statements. Each execution (i.e., each
selection of values in the choose statements) constructs a unique joint strategy s
and an extension of the functions o1, . . ., on to all nodes of the game tree.

Example 10. Consider the Ultimatum game from Example 3. Algorithm 1 gen-
erates two possible outputs that correspond to Figures 7 and 8. For the second
outcome the corresponding extensions of the outcome functions to all nodes are
given in Figure 9. �
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Algorithm 1:
Input: A finite extensive game G := (T, turn, o1, . . ., on) with

T = (V, E, v0)
Output: A subgame perfect equilibrium s in G and extensions of the

functions o1, . . ., on to all nodes of T such that o(v0) = o(leaf (s))
1 while |V | > 1 do
2 choose v ∈ V that is a preleaf of T ;
3 i := turn(v);
4 choose w ∈ C(v,T ) such that oi(w) is maximal;
5 si(v) := w;
6 o(v) := o(w);
7 V := V \C(v,T );
8 E := E ∩ (V × V);
9 T := (V, E, v0)

1, u, (99, 1)

2, 0, (0, 100)

(0, 100)

A

(0, 0)

R

0

2, 98, (98, 2)

(98, 2)

A

(0, 0)

R

98

2, 99, (99, 1)

(99, 1)

A

(0, 0)

R

99

2, 100, (0, 0)

(100, 0)

A

(0, 0)

R

100

· · ·

Figure 9: The backward induction algorithm and the Ultimatum game
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The following characterisation result makes use of the nondeterminism present
in the algorithm.

Theorem 7. For every finite extensive game all possible executions of the back-
ward induction algorithm generate precisely all subgame perfect equilibria.

To establish this result we shall need a preparatory lemma, called the ‘one
deviation property’ (see, e.g., [16, page 98]). Recall that for a function f : X → Y
(with X , ∅), argmaxx∈X f (x) := {y ∈ X | f (y) = maxx∈X f (x)}.

Lemma 8. Let G be a finite extensive game over the game tree T . A joint strategy
s is a subgame perfect equilibrium in G iff for all non-leaf nodes u in T

si(u) ∈ argmaxx∈C(u)oi(leaf (sx)), where i = turn(u).

In words, this condition states that for all non-leaf nodes u in T and i = turn(u),
si(u) selects a child x of u for which oi(leaf (sx)) is maximal.

For a proof see, e.g, [16, pages 98-99] or a more detailed presentation in the
appendix of [2].

Corollary 9 ([2], Corollary 7). Let G be a finite extensive game over the game
tree T with the root v. A joint strategy s is a subgame perfect equilibrium in G iff
for all u ∈ C(v)

• si(v) ∈ argmaxx∈C(v)oi(leaf (sx)), where i = turn(v),

• su is a subgame perfect equilibrium in the subgame Gu.

Intuitively, the first condition states that among the subgames rooted at the
children of the root v, the one determined by the first move in the game G yields
the best outcome for the player who moved.

Proof of Theorem 7. The proof proceeds by induction on height(T ), defined as the
number of edges in the longest path in the tree T . The base case when height(T ) =

1 is straightforward. Suppose height(T ) > 1. Let C(v) = {w1, . . .wk}.
(⇒ ) Consider a joint strategy s in G together with some extensions of the func-
tions o1, . . ., on to the nodes of the game tree of G that are generated by an execu-
tion of Algorithm 1.

Fix an arbitrary l ∈ {1, . . . , k}. Delete in this execution the while loop iterations
that do not involve the nodes of the game tree T wl of the subgame Gwl and use at
the beginning the game tree T wl instead of T . This way we obtain an execution
of Algorithm 1 applied to the game Gwl that generates a joint strategy swl in Gwl

together with some extensions of the functions o1, . . ., on to the nodes of the game
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tree T wl . By the induction hypothesis swl is a subgame perfect equilibrium in Gwl

and o(wl) = o(leaf (swl)).
Consider now the last iteration of the while loop in the original execution of

Algorithm 1. At this stage V = {v0,w1, . . .,wk}, so before line 2 we have C(v0,T ) =

{w1, . . .,wk}. After line 3 we have i = turn(v0) and after line 4 w is such that
w ∈ {w1, . . .,wk} and oi(w) ≥ oi(wl) for all l ∈ {1, . . ., k}.

By the previous conclusion for all l ∈ {1, . . ., k} we have oi(wl) = oi(leaf (swl)),
so for all l ∈ {1, . . ., k} we have oi(leaf (sw)) ≥ oi(leaf (swl)). After line 5 we have
si(v0) = w, so by Lemma 8 s is a subgame perfect equilibrium. Finally, after line
6 we have o(v0) = o(leaf (sw)) = o(leaf (s)).

(⇐ ) Suppose that s is a subgame perfect equilibrium in G. We show that it can be
generated by Algorithm 1 together with the extensions of the functions o1, . . ., on

to all nodes of T such that o(v0) = o(leaf (s)).
Fix an arbitrary l ∈ {1, . . . , k}. By the assumption on s, the joint strategy swl is

a subgame perfect equilibrium in the subgame Gwl , so by the induction hypothesis
some execution of Algorithm 1 applied to the subgame Gwl generates swl together
with the extensions of the functions o1, . . ., on to the nodes of the game tree of Gwl

such that o(wl) = o(leaf (swl)).
Using these k executions of Algorithm 1 applied to the subgames Gw1 , . . .,Gwk

we construct the desired execution of Algorithm 1 applied to the game G as fol-
lows. First we ’glue’ these k executions into one but using at the beginning of the
execution the game tree T instead of the game tree of Gw1 and using at the begin-
ning of each subsequent execution the current tree T instead of the game tree of
the considered subgame.

After these k executions glued together V = {v0,w1, . . .,wk}, so before line 2
we have C(v,T ) = {w1, . . .,wk}, in line 2, v0 is selected and after line 3 we have
i = turn(v0).

By the induction hypothesis for all l ∈ {1, . . . , k} we have o(wl) = o(leaf (swl)),
so by Lemma 8 w = si(v0) is a node from {w1, . . .,wk} such that oi(w) is maximal.
So in line 4 we can select this node w, which ensures that the assignment in line
5 is consistent with the original joint strategy s. Further, the assignment in line 6
ensures that o(v0) = o(w) = o(leaf (sw)) = o(leaf (s)). �

Corollary 10 ([11]). Every finite extensive game (with perfect information) has a
subgame perfect equilibrium (and hence a Nash equilibrium).

We presented backward induction as a nondeterministic algorithm, but one
can go even further. Exploiting the fact that the children of each node can be dealt
with independently, we can present it as an algorithm that uses nested parallelism.
In such an algorithm there is no need to modify the game tree. Given a non-leaf
node v we define a nondeterministic program Seq(v) by
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i := turn(v);
choose w ∈ C(v) such that oi(w) is maximal;
si(v) := w;
o(v) := o(w)

Then for a preleaf node v we define Comp(v) as Seq(v) and for each node v
that is neither a preleaf or a leaf we define Comp(v) by

[‖w∈C(v)Comp(w)]; Seq(w)

where [‖w∈C(v)Comp(w)] stands for a parallel composition of the programs Comp(w)
for w ∈ C(v). So each such node v is processed with only after its children have
been processed and these children are processed in an arbitrary order.

Then Comp(v0) is the desired parallel version of the backward induction algo-
rithm.

5.3 Special classes of extensive games
It is natural to study conditions under which an extensive game has a unique sub-
game perfect equilibrium. The following property was introduced in [4]. We say
that an extensive game is without relevant ties if for all non-leaf nodes u in T the
function oi, where turn(u) = i, is injective on the leaves of T u. This is more gen-
eral than saying that a game is generic, which means that each oi is an injective
function.

Corollary 11. Every finite extensive game without relevant ties has a unique sub-
game perfect equilibrium.

In particular, every finite generic extensive game has a unique subgame perfect
equilibrium.

Proof. If a game is without relevant ties, then so is every subgame of it. This
allows us to proceed by induction on the height of the game tree. Let G be a
finite extensive game without relevant ties over a game tree T . If height(T ) = 0
the claim clearly holds. Suppose that height(T ) > 0. Let v be the root of T and
i = turn(v).

By the induction hypothesis for each w ∈ C(v) there is exactly one subgame
perfect equilibrium tw in Gw. Let t = ×w∈C(v)tw. Then for different w,w′ ∈ C(v),
leaf (tw) and leaf (tw′) are different leaves of the game tree of G. Since G is without
relevant ties, oi(leaf (tw)) , oi(leaf (tw′)).

This means that the function g : C(v) → R defined by g(w) := oi(leaf (tw)) is
injective. Consequently the set argmaxw∈C(v)oi(leaf (tw)) has a unique element and
hence by Corollary 9, G has exactly one subgame perfect equilibrium. �
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Note that the centipede game from Example 7 is generic, so by Corollary
11 it has exactly one subgame perfect equilibrium. To determine it we can use
the observation there established, namely that in every Nash equilibrium both
players select S at the nodes a and b, respectively. Indeed, by the structure of
the game this observation also holds for every subgame. It follows that in the
unique subgame perfect equilibrium both players select S at all non-leaf nodes.
This counterintuitive form of the subgame perfect equilibrium in this game is
sometimes used to question the adequacy of this solution concept.

It is also natural to study conditions under which the subgame perfect equi-
libria are payoff equivalent. The following theorem is implicit in [13]. The TDI
condition was introduced in Section 2 when discussing strategic games.

Theorem 12. In every finite extensive game that satisfies the TDI condition all
subgame perfect equilibria are payoff equivalent.

Proof. Consider a finite extensive game G := (T, turn, o1, . . ., on) that satisfies the
TDI condition. We proceed by induction on the number of nodes in the game tree.
The claim holds when the game tree has just one node, since there is then only
one subgame perfect equilibrium. Suppose the game tree has more than one node.

Consider two subgame perfect equilibria s and t in G. Take a preleaf v in T .
Suppose si(v) = w1 and ti(v) = w2, where i = turn(v). By Corollary 9 w1,w2 ∈

argmaxx∈C(v)oi(x).

Case 1. leaf (s) = w1 and leaf (t) = w2.
Take a strategy s′i that differs from si only for the node v to which it assigns

w2. Then leaf (s′i , s−i) = w2, so oi(leaf (s)) = oi(w1) = oi(w2) = oi(leaf (s′i , s−i)).
Hence by the TDI property o(leaf (s)) = o(leaf (s′i , s−i)), so o(leaf (s)) = o(leaf (t)).

Case 2. leaf (s) , w1 or leaf (t) , w2.
Without loss of generality suppose that leaf (t) , w2. Consider the game G′ :=

(T ′, turn, o1, . . ., on) obtained from G by setting o(v) to o(w1) and by removing all
the children of v. So in G the node v is a preleaf, while in G′ it is a leaf with the
outcome o(w1). G′ also satisfies the TDI condition since all its outcomes are also
outcomes of G.

Let s′ and t′ be joint strategies in G′ obtained from s and t by dropping v from
the domains of si and ti. Then both s′ and t′ are subgame perfect equilibria in G′.
(We leave the proof of this fact to the reader.)

We have o(leaf (s)) = o(leaf (s′)) and by assumption the node v does not lie
on the path play(t), so leaf (t) = leaf (t′). Hence o(leaf (s)) = o(leaf (t)) by the
induction hypothesis. �
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6 Backward induction and common knowledge of
rationality

Recall that player’s rationality in an extensive game means that his objective is to
maximize his outcome in the game. Backward induction is a natural procedure
and it is natural to inquire whether it can be justified by appealing to players’
rationality.

In this section we discuss Aumann’s result [3] that for a natural class of ex-
tensive games common knowledge of players’ rationality implies that the game
reaches the backward induction outcome.

To formulate this result we introduce first Aumann’s approach to modeling
knowledge in the context of extensive games. Fix a finite extensive game with no
relevant ties G := (T, turn, o1, . . ., on) with T = (V, E, v0). Let S 1, . . ., S n be the
respective sets of strategies of players 1, . . ., n.

A knowledge system for G consists of

• a non-empty set Ω of states,

• a function s : Ω→ S 1 × · · · × S n,

• for each player i a partition Pi of Ω.

One possible interpretation of a state is that it represents a ‘situation’, in which
complete information about the players’ strategies is available. This information
is provided by means of the function s.

Given a knowledge system, player i does not know the actual state ω but he
knows the element of the partition Pi to which ω belongs. This interpretation
suggests the following assumption.

Define for player i the function si : Ω→ S i by

si(ω) := si, where si is the ith component of s(ω).

Then we assume that for each player i the function si is constant on each element
of the partition Pi. Intuitively, it means that in the assumed knowledge system
each player knows his strategy.

We first introduce concepts that do not rely on the function s. By an event we
mean a subset of Ω. For an event E and player i we define the event KiE by

KiE :=
⋃
{L ∈ Pi | L ⊆ E}.

Intuitively, KiE is the event that player i knows E.
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Next, we define

KE := K1E :=
n⋂

i=1

KiE,

inductively for k ≥ 1
Kk+1E := KkE,

and finally

CKE :=
∞⋂

k=1

KkE.

Intuitively, KE is the event that all players know the event E and CKE is the event
that there is common knowledge of the event E among all players.

Using the function s we now formalize the notion that player i is rational. To
start with, given a node v at which player i moves, his strategy ti, and the function
s−i : Ω→ S −i defined in the expected way, we denote by

[oi(leaf ((s−i, ti)v)) > oi(leaf (sv))]

the event
{ω ∈ Ω | oi(leaf ((s−i(ω), ti)v)) > oi(leaf (s(ω)v)}.

It states that in the subgame Gv the outcome for player i is higher if he selects
strategy ti instead of the strategy he chooses according to s.

Similarly, for a joint strategy t we denote by

[s = t]

the event
{ω ∈ Ω | s(ω) = t}.

Recall now that for a player i we denoted by Vi the set of nodes at which he
moves. We define

Ri :=
⋂
v∈Vi

⋂
ti∈S i

¬Ki[oi(leaf ((s−i, ti)v)) > oi(leaf (sv))].

where ¬ denotes complementation w.r.t. Ω. Intuitively, this event states that for
all nodes v at which player i moves and all his strategies ti, player i does not know
whether ti would yield a higher outcome than the strategy he chooses according
to s. So Ri is the event formalizing that player i is rational.

Finally, we define

R :=
n⋂

i=1

Ri.
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Intuitively, R is the event that each player rational.
We still need to formalize the event that the outcome of the game is prescribed

by the backward induction. To this end Aumann assumes that the game is generic,
so that the game has a unique subgame perfect equilibrium, but thanks to Corollary
11 it suffices to assume that the game is without relevant ties. Then the backward
induction has a unique outcome which is the subgame perfect equilibrium of the
game. Denote the latter by s∗. The intended event I is then defined by

I := [s = s∗].

We can now state the main result of [3].

Theorem 13. Consider a finite extensive game G without relevant ties. Then

CKR ⊆ I.

This inclusion formalizes the announced statement that common knowledge
of players’ rationality implies that the backward induction yields the outcome of
the game.

The proof of the theorem relies on a number of simple properties of the oper-
ators Ki and CK that we list without proof in the following lemma.

Lemma 14.

(i) CKE = KiCKE.

(ii) If E ⊆ F, then KiE ⊆ KiF.

(iii) KiE ∩ KiF = Ki(E ∩ F).

(iv) CKE ⊆ E.

(v) Ki¬KiE = ¬KiE.

(vi) KiE ⊆ E.

Given a joint strategy s and a node v that is not a leaf, we define

s(v) := si(v),

where i = turn(v). So if s is the used joint strategy, then s(v) is the move resulting
from it at node v. For each such node v we define the function s(v) : Ω→ V in the
expected way.

We shall also need the following two observations concerning players’ knowl-
edge the proofs of which we omit.
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Lemma 15.

(i) For all ti ∈ S i, [si = ti] ⊆ Ki[si = ti].

(ii) For all v ∈ Vi, Iv ⊆ KiIv, where Iv := [s(v) = s∗(v)].

Intuitively, (i) states that if player i chooses the strategy ti he knows that he
chooses it and (ii) states that if player i chooses the move s∗(v) at the node v, then
he knows this. Note that by Lemma 14(vi) we can replace in (i) and (ii) ⊆ by =.

Proof of Theorem 13.
We have I =

⋂
v∈V\Z Iv, so it suffices to prove that for all v ∈ V \ Z, CKR ⊆ Iv.

Given two nodes v and w we write w < v if w is a (possibly indirect) descendant
of v.

We proceed by induction w.r.t. <. Take a node v and suppose that CKR ⊆ Iw

for all w < v. Let i = turn(v). For a joint strategy s denote by s<v the joint strategy
sv with the pair (v, si(v)) removed from si, and define the function s<v : Ω →

S 1 × · · · × S n by
s<v(ω) := s(ω)<v.

By Lemma 14(i) and (ii) and the induction hypothesis CKR = KiCKR ⊆ KiIw

for all w < v, so by Lemma 14(iii)

CKR ⊆
⋂
w<v

KiIw = Ki

⋂
w<v

Iw = Ki[s<v = (s∗)<v]. (2)

Also, by Lemma 14(iv) and the definition of Ri with ti set to s∗i

CKR ⊆ R ⊆ Ri ⊆ ¬Ki[oi(leaf ((s−i, s∗i )v)) > oi(leaf (sv))]. (3)

Further, by Lemma 14(iii) and the fact that since i = turn(v),

Ki[s<v = (s∗)<v] ∩ Ki[oi(leaf ((s−i, s∗i )v)) > oi(leaf (sv))]
= Ki[s<v = (s∗)<v ∧ oi(leaf ((s−i, s∗i )v)) > oi(leaf (sv))]
= Ki[s<v = (s∗)<v ∧ oi(leaf ((s∗)v)) > oi(leaf ((s∗

−i, si)v))]
= Ki[s<v = (s∗)<v] ∩ Ki[oi(leaf ((s∗)v)) > oi(leaf ((s∗

−i, si)v))],

so by taking complement w.r.t. Ki[s<v = (s∗)<v]

Ki[s<v = (s∗)<v] ∩ ¬Ki[oi(leaf ((s−i, s∗i )v)) > oi(leaf (sv))]
= Ki[s<v = (s∗)<v] ∩ ¬Ki[oi(leaf ((s∗)v)) > oi(leaf ((s∗

−i, si)v))]
⊆ ¬Ki[oi(leaf ((s∗)v)) > oi(leaf ((s∗

−i, si)v))].
(4)

Finally, by (2)–(4), the fact that for each node v, sv is a unique subgame perfect
equilibrium in Gv, Lemma 15, and Lemma 14(v) and (vi)

CKR ⊆ Ki[s<v = (s∗)<v] ∩ ¬Ki[oi(leaf ((s−i, s∗i )v)) > oi(leaf (sv))]
⊆ ¬Ki[oi(leaf ((s∗)v)) > oi(leaf ((s∗

−i, si)v))] = ¬Ki[s(v) , s∗(v)]
= ¬Ki¬Iv = ¬Ki¬KiIv = ¬¬KiIv = KiIv ⊆ Iv,
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as desired. �

We conclude by the following observation of [3] showing that non-trivial
knowledge systems can be easily constructed.

Note 16. For every finite extensive game without relevant ties there exists a knowl-
edge system such that CKR , ∅.

Proof. It suffices to choose Ω to be a singleton set {ω} and set s(ω) := s∗, where s∗

is the unique subgame perfect equilibrium of the considered game. Then CKR =

Ω. �

Aumann’s paper dealt with concepts also studied by philosophers and psychol-
ogists. As a result it became highly influential and attracted wide attention. In par-
ticular Stalnaker pointed out in [21] that Aumann’s notion of rationality involves
reasoning about situations (nodes) that the agent knows will never be reached and
constructed a model in which common knowledge of players’ rationality does not
imply that the game reaches the backward induction outcome.

The apparent contradiction between Aumann’s and Stalnaker’s results was
clarified by Halpern in [8]. The difference can be explained by adding to Au-
mann’s knowledge system for an extensive game one more parameter, a function

f : Ω × V \ Z → Ω,

that for a given state ω and a non-leaf node v yields a state ω′ that is ‘nearest’ (in
a well-defined sense) to v and is such that v is reached in ω′, i.e., is such that v lies
on play(s(ω′)).

Then according to Stalnaker, a player i is substantively rational in a state ω, if
for each node v ∈ Vi he is rational in the state ω′ = f (ω, v), where the latter means
that

ω′ ∈
⋂
ti∈S i

¬Ki[oi(leaf ((s−i, ti)v)) > oi(leaf (sv))].

Stalnaker’s model refers to substantive rationality and not rationality.

7 Weak dominance and backward induction
Iterated elimination of weakly dominated strategies is defined for strategic games,
so it can be also applied to the strategic forms of extensive games. For the class of
finite extensive games discussed in the previous section this procedure is closely
related to backward induction. The aim of this section is to clarify this relation.

The following notion will be needed. Consider a node w in the game tree of
an extensive game G such that turn(w) = i. We say that a strategy si of player i
can reach w if for some s−i the node w lies on the path play(si, s−i).
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We begin by introducing Algorithm 2 that is a modification of the backward
induction algorithm 1 from Section 5 in which the input and output are modified
and line 7 is added.

Algorithm 2:
Input: A finite extensive game with no relevant ties

G := (T, turn, o1, . . ., on) with T = (V, E, v0) and
Γ(G) = (S 1, . . ., S n, p1, . . ., pn).

Output: The subgame perfect equilibrium s in G, extensions of the
functions o1, . . ., on to all nodes of T such that
o(v0) = o(leaf (s)), and a trivial strategic game
(S 1, . . ., S n, p1, . . ., pn) that includes s.

1 while |V | > 1 do
2 choose v ∈ V that is a preleaf of T ;
3 i := turn(v);
4 choose w ∈ C(v,T ) such that oi(w) is maximal;
5 si(v) := w;
6 o(v) := o(w);
7 S i := S i \ {s′i ∈ S i | s′i can reach v and s′i(v) , w};
8 V := V \C(v,T );
9 E := E ∩ (V × V);

10 T := (V, E, v0)

The following theorem makes precise the mentioned relation between two
concepts.

Theorem 17. Consider a finite extensive game G without relevant ties and Algo-
rithm 2 applied to it.

(i) Each strategy removed in line 7 is weakly dominated in the current version
of the strategic game.

(ii) The strategic game (S 1, . . ., S n, p1, . . ., pn) which is generated upon termina-
tion of the algorithm is trivial and includes the subgame perfect equilibrium
of G.

Proof. Below s is the subgame perfect equilibrium of the game G. Consider the
assertion I(u) defined by

I(u) ≡ ∀t ∈ S : [if u appears in play(t) then o(leaf (su)) = o(leaf (tu))],

where S = S 1 × · · · × S n.
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First notice that if during an execution of the algorithm for some node u the
assertion I(u) becomes true, then it remains true. The reason is that the considered
set S of joint strategies never increases.

We now show that after each loop iteration I(v) holds, where v is the node
being dealt with in current loop iteration and S refers to the current set of joint
strategies. Fix an execution of the algorithm. We proceed by induction on the
order in which the nodes of T are selected in line 2. Consider first a preleaf v
in the original game tree T . Take t ∈ S such that v appears in play(t) and let
i = turn(v). Then

o(leaf (tv))
= { by line 7 ti(v) = w}

o(w)
= { by line 5 si(v) = w}

o(leaf (sv)).

Next, consider a node v in the original game tree T selected in line 2 that is
neither a preleaf nor a leaf and consider the program state after the current loop
iteration. Then both i = turn(v) and si(v) = w.

By the order in which the nodes are selected in line 2, all nodes u ∈ C(v) have
been dealt with in earlier loop iterations. So by the induction hypothesis I(u) holds
for u ∈ C(v). In particular I(w) holds. Take t ∈ S such that v appears in play(t).
Then

o(leaf (tv))
= { by line 7 ti(v) = w}

o(leaf (tw))
= { I(w)) }

o(leaf (sw))
= { by line 5 si(v) = w}

o(leaf (sv)).

(i) Fix the program state after an arbitrary loop iteration of the algorithm with the
current values of v,w, i, S 1, . . ., S n. In particular turn(v) = i.

We first prove that for u ∈ C(v), u , w

oi(leaf (sw)) > oi(leaf (su)). (5)

Let ti be the strategy of player i that differs from si only for the node v to which
it assigns u. We have si(v) = w and by definition sv is a Nash equilibrium in the
subgame Gv, so

oi(leaf (sw)) = oi(leaf (sv)) ≥ oi(leaf (tv
i , s

v
−i)) = oi(leaf (tu

i , s
u
−i)) = oi(leaf (su)).

But turn(v) = i, u,w ∈ C(v), u , w, and Gv is without relevant ties, so (5) follows.
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Take now a strategy s′i removed in line 7 and suppose s′i(v) = u. Consider
the strategy ti that differs from s′i only for the node v to which it assigns w (i.e.,
si(v)). We claim that after line 7 ti weakly dominates s′i in the current version of
(S 1, . . ., S n, p1, . . ., pn).

Take some t−i ∈ S −i. If v < play(ti, t−i), then v < play(s′i , t−i), so play(ti, t−i) =

play(s′i , t−i) and hence

pi(ti, t−i) = oi(leaf (ti, t−i) = oi(leaf (s′i , t−i) = pi(s′i , t−i).

If v ∈ play(ti, t−i), then also w ∈ play(ti, t−i), v ∈ play(s′i , t−i) and u ∈ play(s′i , t−i),
where, recall, s′i(v) = u. Since u,w ∈ C(v), these two nodes have been dealt with
in earlier loop iterations. So both I(u) and I(w) hold.

Hence

pi(ti, t−i) = oi(leaf (ti, t−i)) = oi(leaf ((ti, t−i)w)) = oi(leaf (sw))

and
pi(s′i , t−i) = oi(leaf (s′i , t−i)) = oi(leaf ((s′i , t−i)u)) = oi(leaf (su)).

So pi(ti, t−i) > pi(s′i , t−i) by (5).
Now, ti does not need to be a strategy from S i but thanks to Lemma 2 we

can conclude that a strategy t′i in S i exists that weakly dominates s′i in the current
version of (S 1, . . ., S n, p1, . . ., pn).

(ii) Upon termination of the algorithm I(v0), i.e., ∀t ∈ S : o(leaf (s)) = o(leaf (t))
holds. This means that upon termination the final game (S 1, . . ., S n, p1, . . ., pn) is
trivial. Further, for each player each strategy removed in line 7 differs from his
strategy in the subgame equilibrium, which means that the final game includes
this equilibrium. �

This theorem shows that every finite extensive game G without relevant ties
can be solved by an IEWDS. Recall from Corollary 11 that such a game has a
unique subgame perfect equilibrium. However, not all instances of the IEWDS
behave the desired way. The following example, taken from [16, page 109], shows
that some generic extensive games can be solved by an IEWDS that removes the
unique subgame perfect equilibrium. This explains why in line 7 in Algorithm 2
only specific weakly dominated strategies are removed.

Example 11. Consider the two-player generic extensive game and its associated
strategic game given in Figure 10. In the figure, the nodes are labelled with the
player whose turn it is to move.

Consider now an IEWDS that consists of the following sequence of elimina-
tion of weakly dominated strategies: AE,D,AF. The resulting trivial subgame has
two joint strategies (BE,C), (BF,C). So this instance of the IEWDS eliminates
(BE,D), which is the unique subgame perfect equilibrium. �
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1

2 (3, 3)

1 (1, 1)

(2, 0) (0, 2)

A B

C D

E F

C D
AE 2, 0 1, 1
AF 0, 2 1, 1
BE 3, 3 3, 3
BF 3, 3 3, 3

Figure 10: An extensive game (left) and its associated strategic game (right).

8 Weak dominance and strictly competitive games
We now continue an account of iterated elimination of weakly dominated strate-
gies. In Theorem 17 we showed that each finite extensive game without relevant
ties can be solved by an IEWDS. A natural question is whether we can extend this
result to arbitrary finite extensive games. The following example taken from [16,
pages 109-110] shows that this fails to be the case already for two-player games.

1

2 1

(0, 0) (2, 0) (1, 1) (0, 0)

A B

L R C D

L R
AC 0, 0 2, 0
AD 0, 0 2, 0
BC 1, 1 1, 1
BD 0, 0 0, 0

Figure 11: An extensive game (left) and its associated strategic game (right).

Example 12. Consider the two-player extensive game and its associated strategic
game given in Figure 11. In the game tree, the nodes are labelled with the player
whose turn it is to move. For this game there is just one instance of IEWDS which
consists of eliminating the strategy BD. The resulting subgame is not trivial, so
no instance of IEWDS can solve this extensive game. �

On the other hand, as shown in [7], finite extensive zero-sum games can be
solved by an IEWDS in which at each step all weakly dominated strategies are
removed. The aim of this section is to present this result for the larger class of
finite extensive strictly competitive games for which the same proof remains valid.
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From now on, given a strategic game H we denote by H1 a subgame of H
obtained by the elimination of all strategies that are weakly dominated in H, and
put H0 := H and Hk+1 := (Hk)1, where k ≥ 1. So, in contrast to Sections 2 and 3
each Hk is now uniquely defined.

Below for a strategic game H we denote by Hi the set of strategies of player
i. Also, for a finite extensive game G we write Γk(G) instead of (Γ(G))k, Γi(G)
instead of (Γ(G))i, and Γk

i (G) instead of (Γk(G))i. In particular Γ0(G) = Γ(G).
Further, for a finite strictly competitive strategic game H = (S 1, S 2, p1, p2) we

define for each player i

pmax
i (H) := maxs∈S pi(s),

wini(H) := {si ∈ S i | ∀s−i ∈ S −i pi(si, s−i) = pmax
i (H)},

lose−i(H) = {s−i ∈ S −i | ∃si ∈ S i pi(si, s−i) = pmax
i (H)}.

So pmax
i (H) is the maximal payoff player i can receive in the game H, wini(H) is

the set of strategies of player i for which he always gets pmax
i (H), while lose−i(H)

is the set of strategies of player −i for which his opponent i can get his maximally
possible payoff pmax

i (H).
The following lemma, with a rather involved proof, is crucial.

Lemma 18. Let G be a finite strictly competitive extensive game. For all i ∈ {1, 2}
and for all k ≥ 0, if wini(Γk(G)) = ∅ then lose−i(Γk(G)) ∩ Γk+2

−i (G) = ∅.

This lemma implies that if for all i ∈ {1, 2}, wini(Γk(G)) = ∅ then two further
rounds of eliminations of weakly dominated strategies remove from Γk(G) at least
two outcomes.

Proof. Fix i and k and suppose wini(Γk(G)) = ∅. So for all si ∈ Γk
i (G) we have

mins−i∈Γ
k
−i(G) pi(si, s−i) < pmax

i (H), and hence maxmini(Γk(G)) < pmax
i (Γk(G)).

By Corollary 10 the strategic game Γ(G) has a Nash equilibrium. By the
repeated application of Corollary 5 we have maxmini(Γ(G)) = maxmini(Γk(G)).
Therefore

maxmini(Γ(G)) < pmax
i (Γk(G)). (6)

Take now s−i ∈ lose−i(Γk(G)). We need to prove that s−i < Γk+2
−i (G).

For some si ∈ Γk
i (G) we have pi(si, s−i) = pmax

i (Γk(G)). By Lemma 2 we can
assume that si ∈ Γk+1

i (G). Consider now the path play(si, s−i). Then

• by (6) for the first node u lying on play(si, s−i) (so the root),

maxmini(Γ(Gu)) < pmax
i (Γk(G)),

• for the last node u lying on play(si, s−i) (so the leaf),

pmax
i (Γk(G)) = pi(si, s−i) = oi(u) = maxmini(Γ(Gu)).
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So for some adjacent nodes u,w lying on the path play(si, s−i)

maxmini(Γ(Gu)) < pmax
i (Γk(G)) ≤ maxmini(Γ(Gw)). (7)

Further, if for some adjacent nodes u′,w′ lying on the path play(si, s−i) we
have turn(u′) = i and pmax

i (Γk(G)) ≤ maxmini(Γ(Gw′)), then maxmini(Γ(Gu′)) =

maxmini(Γ(Gw′)). So turn(u) = −i and s−i(u) = w.
If s−i < Γk+1

−i (G) then s−i < Γk+2
−i (G). So suppose s−i ∈ Γk+1

−i (G). We prove that
then s−i is weakly dominated in Γk+1(G). The dominating strategy is obtained in
two steps.

By Corollary 10 the game Γ(Gu) has a Nash equilibrium s∗. First, we introduce
the strategy t−i ∈ Γ−i(G) defined as follows:

t−i(x) :=

s−i(x) if x not in T u,

s∗
−i(x) if x in T u,

where turn(x) = −i and T is the game tree of G.
We now establish two claims relating t−i to s−i.

Claim 1. ∀s′i ∈ Γk+1
i (G) : p−i(s′i , t−i) ≥ p−i(s′i , s−i).

Proof. Suppose by contradiction that there exists s′i ∈ Γk+1
i (G) such that p−i(s′i , t−i) <

p−i(s′i , s−i). The strategy t−i differs from s−i only on the nodes in T u, so the dif-
ference in the payoffs implies that u appears both in play(s′i , t−i) and play(s′i , s−i).
This implies

maxmin−i(Γ(Gu)) ≤ p−i((s′i)
u, s∗−i) = p−i(s′i , t−i) < p−i(s′i , s−i). (8)

By Theorem 4 s∗
−i is a security strategy of player −i in the game Γ(Gu). Further,

the node u appears in play(s′i , s−i), so s′′ := (s′i , s−i)u is a joint strategy in Gu. This
and (8) imply

p−i(s∗) = maxmin−i(Γ(Gu)) < p−i(s′i , s−i) = p−i(s′′),

so by (1), the fact that Gu is strictly competitive, and Theorem 4

pi(s′i , s−i) = pi(s′′) < pi(s∗) = maxmini(Γ(Gu)). (9)

Next we introduce the strategy ti ∈ Γi(G) defined as follows (recall that w =

s−i(u)):

ti(x) :=

s′i(x) if x not in T w,

t∗i (x) if x in T w,

where turn(x) = i and t∗i is a security strategy of player i in the game Γ(Gw).
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We now establish two claims relating ti to s′i :

∀s′−i ∈ Γk
−i(G) : pi(ti, s′−i) ≥ pi(s′i , s

′
−i), (10)

pi(ti, s−i) > pi(s′i , s−i). (11)

To establish (10) consider any strategy s′
−i ∈ Γk

−i(G). By the definition of ti, if
w does not appear in play(ti, s′−i) then pi(ti, s′−i) = pi(s′i , s

′
−i). So suppose w appears

in play(ti, s′−i). By the definition of ti, (7), and the fact that both s′i and s′
−i are

strategies in Γk(G)

pi(ti, s′−i) = pi(t∗i , (s′−i)
w) ≥ maxmini(Γ(Gw)) ≥ pmax

i (Γk(G)) ≥ pi(s′i , s
′
−i).

To establish (11) recall that we noted already that u appears in play(s′i , s−i).
Since turn(u) = −i and s−i(u) = w, also w appears in play(s′i , s−i). The strategy
ti differs from s′i only on the nodes in T w, so w apears in play(ti, s−i), as well.
Therefore by the definition of ti, (7) and (9)

pi(ti, s−i) = pi(t∗i , (s−i)w) ≥ maxmini(Γ(Gw)) > maxmini(Γ(Gu)) > pi(s′i , s−i).

By Lemma 2 there exists t′i ∈ Γk
i (G) such that pi(t′i , s

′
−i) ≥ pi(ti, s′−i) for all

s′
−i ∈ Γk

−i(G). This, together with (10) and (11) implies that s′i is weakly dominated
by t′i in Γk(G). Hence s′i < Γk+1

i (G), which yields a contradiction. �

Claim 2. p−i(si, t−i) > p−i(si, s−i).

Proof. The node u appears in play(si, s−i), so by Theorem 4 and (7)

pi(s∗) = maxmini(Γ(Gu)) < pmax
i (Γk(G)) = pi(si, s−i) = pi(su

i , s
u
−i),

and consequently by Theorem 4(i) and the fact that Gu is strictly competitive

maxmin−i(Γ(Gu)) = p−i(s∗) > p−i(su
i , s

u
−i) = p−i(si, s−i). (12)

Further, the strategy t−i differs from s−i only on the nodes in T u, so u appears
in play(si, t−i), as well. Hence

p−i(si, t−i) = p−i(su
i , s
∗
−i) ≥ maxmin−i(Γ(Gu)). (13)

Combining (12) and (13) we get the claim. �

By Lemma 2 there exists t′
−i ∈ Γk+1

−i (G) such that p−i(s′i , t
′
−i) ≥ p−i(s′i , t−i) for all

s′i ∈ Γk+1
i (G). We conclude by Claims 1 and 2 that s−i is weakly dominated by t′

−i
in Γk+1(G). Therefore s−i < Γk+2

−i (G), as desired. �

We can now establish the announced result.
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Theorem 19. Let G be a finite strictly competitive extensive game with at most m
outcomes. Then Γm−1(G) is a trivial game.

Proof. We prove a stronger claim, namely that for all m ≥ 1 and k ≥ 0 if Γk(G)
has at most m outcomes, then Γk+m−1(G) is a trivial game.

We proceed by induction on m. We can assume that m > 1. For m = 2 the
claim follows by Lemma 6. Take m > 2.

Case 1. For some i ∈ {1, 2}, wini(Γk(G)) , ∅.
For player i every strategy si ∈ wini(Γk(G)) weakly dominates all strategies

s′i < wini(Γk(G)). So in Γk+1(G) the set of strategies of player i equals wini(Γk(G))
and hence pmax

i (Γk(G)) is his unique payoff in this game. By (1) Γk+1(G), and
hence also Γk+m−1(G), is a trivial game.

Case 2. For all i ∈ {1, 2}, wini(Γk(G)) = ∅.
Take joint strategies s and t such that p1(s) = pmax

1 (Γk(G)) and p2(t) = pmax
2 (Γk(G)).

Since m > 1 (1) implies that the outcomes (p1(s), p2(s)) and (p1(t), p2(t)) are dif-
ferent.

We have s2 ∈ lose2(Γk(G)) and t1 ∈ lose1(Γk(G)). Hence by Lemma 18 for no
joint strategy s′ in Γk+2(G) we have p1(s′) = pmax

1 (Γk(G)) or p2(s′) = pmax
2 (Γk(G)).

So Γk+2(G) has at most m−2 outcomes. By the induction hypothesis Γk+m−1(G)
is a trivial game. �

9 Weak acyclicity
By Theorem 10 every finite extensive game has a Nash equilibrium. A natural
question is whether we can strengthen this result to show that finite extensive
games have the FIP. The following example adapted from [15] shows that even
for simplest extensive games the answer is negative.

Example 13. Consider the extensive form game given in Figure 1. Following the
convention introduced in Example 4, the strategies for player 1 are C and D, while
the strategies of player 2 are CC,CD,DC and DD.

Then the following improvement sequence generates an infinite improvement
path in this game:

(D,DC) → (D,CD) → (C,CD) → (C,DC) → (D,DC)
(3, 0) (1, 1) (2, 2) (0, 3) (3, 0)

For convenience of the reader in each joint strategy we underlined the strategy
which is not a best response and listed the corresponding outcomes. �

However, a weaker result, due to [12], does hold. It implies that every finite
extensive game has a Nash equilibrium, a result established earlier, in Corollary
10.
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Theorem 20. Every finite extensive game is weakly acyclic.

Proof. We prove the claim by defining a weak potential. Take a finite extensive
game G := (T, turn, o1, . . ., on), with T := (V, E, v0) and let S be the set of joint
strategies.

Consider first a function R : S × V → {0, 1} defined as follows:

R(s, v) :=

1 if sv
i is a best response to sv

−i in the subgame Gv

0 otherwise,

where i = turn(v).
Let now L := (v1, . . ., vk) be a list of the nodes from V such that each node

appears after all of its children in T . For example,

((2, 2), (0, 3), (3, 0), b, (1, 1), c, a)

is such a list of the nodes of the tree from Figure 1, where we identify each leaf
with the corresponding outcome.

Finally define the function P : S → {0, 1}k by putting

P(s) := (R(s, v1), . . .,R(s, vk)),

where, recall, L = (v1, . . ., vk), and consider the strict lexicographic ordering <lex

over {0, 1}k. We show that P is a weak potential w.r.t. this ordering and appeal to
the Weakly Acyclic Theorem 1.

So consider a joint strategy s in G that is not a Nash equilibrium. Take a player
i such that si is not a best response to s−i. Let ti be a best response of player i to
s−i and let t = (ti, s−i). Define s′i as the modification of ti such that its values on
the nodes not lying on play(t) are the values provided by si. More formally, for
all nodes v such that turn(v) = i we put

s′i(v) :=

ti(v) if v lies on play(t)
si(v) otherwise

Let s′ = (s′i , s−i). Then play(s′) = play(t), so o(leaf (s′)) = o(leaf (t)), and hence
s′i is also a best response of player i to s−i. Since si is not a best response to s−i,
for some v from play(s′) such that turn(v) = i player’s i strategy sv

i is not a best
response to sv

−i in the subgame Gv. Take the last such node v from play(s′).
So R(v, s) = 0 while R(v, s′) = 1, since (s′i)

v is a best response to sv
−i in the

subgame Gv. Further, by the choice of v and the definition of s′i we have that
R(w, s′) = R(w, s) for all nodes w that precede v on the list L. We conclude that
P(s) <lex P(s′). �
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10 Win or lose and chess-like games
In this section we discuss two classes of zero-sum extensive games introduced in
Section 2. We begin with the win or lose games. Given such a game G we say
that a strategy si of player i is winning if

∀s−i ∈ S −i : oi(leaf (si, s−i)) = 1,

and denote the (possibly empty) set of such strategies by wini(G).
The Matching Pennies game shows that in strategic win or lose games win-

ning strategies may not exist. For finite win or lose extensive games the situation
changes.

Theorem 21. Let G be a finite win or lose extensive game. For all players i we
have wini(G) , ∅ iff win−i(G) = ∅.

Proof. Call the players white and black and call a finite win or lose extensive game
white if the white player has a winning strategy in it and analogously for black.
We prove that every such game is white or black. Clearly, these alternatives are
mutually exclusive.

We proceed by induction on the number of nodes in the game tree. The claim
clearly holds when the game tree has just one node. Consider a game G with the
game tree T with more than one node. By the induction hypothesis for every child
u of the root of T the subgame Gu is white or black.

Without loss of generality assume that in G the white player moves first. We
claim that the game G is black if for every child u of the root of T the subgame Gu

is black and otherwise that it is white. Indeed, in the first case no matter what is
the first move of the white player he loses the game if the black player pursues his
winning strategy in the resulting subgame, and otherwise the white player wins
the game if he starts by selecting the move that leads to a white subgame and
subsequently pursues in this subgame his winning strategy.

Note that we did not assume that the players alternate their moves. �

Next we consider chess-like games. We say that a strategy si of player i in
such a game G guarantees him at least a draw if

∀s−i ∈ S −i : oi(lea f (si, s−i)) ≥ 0,

and denote the (possibly empty) set of such strategies by drawi(G). The set
wini(G) is defined as above.

Theorem 22. Let G be a finite chess-like extensive game. We have

win1(G) , ∅ or win2(G) , ∅ or (draw1(G) , ∅ and draw2(G) , ∅).
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We reproduce a proof given in [2].

Proof. We introduce the following abbreviations:

• W1 for win1(G) , ∅,

• D2 for draw2(G) , ∅,

• W2 for win2(G) , ∅,

• D1 for draw1(G) , ∅.

Let G1 and G2 be the modifications of G in which each outcome (0, 0) is
replaced for G1 by (−1, 1) and for G2 by (1,−1). Then win1(G1) = win1(G),
win2(G1) = draw2(G), win1(G2) = draw1(G), and win2(G2) = win2(G).

Hence by Theorem 21 applied to the games G1 and G2 we have W1 ∨ D2 and
W2 ∨ D1, so (W1 ∧ W2) ∨ (W1 ∧ D1) ∨ (D2 ∧ W2) ∨ (D2 ∧ D1), which implies
W1∨W2∨ (D2∧D1), since ¬(W1∧W2), (W1∧D1) ≡ W1, and (D2∧W2) ≡ W2. �

The above result is attributed to [24]. However, in [19] it was pointed out
that the paper contains only the idea and the corresponding result is not formally
stated, and that the first rigorous statement of the result and its proof seems to
have been provided in [10]. This result is stated in [22, page 125] and proved
using backward induction (apparently the first use of it in the literature on game
theory). In [6] a proof is provided that does not rely on backward induction and
argument also covers chess-like games in which infinite plays, interpreted as draw,
are allowed. As noticed in [2] Theorems 21 and 22 also hold for infinite extensive
games in which every play is finite.

11 Conclusions
The aim of this tutorial was to provide a self-contained introduction to finite exten-
sive games with perfect information aimed at computer scientists. Our objective
was to provide a systematic presentation of the most important results concerning
this class of games that in our view could be of interest to computer scientists.

In [2] we argued that the next most natural class of extensive games is the one
in which every play is finite (in the set theory terminology the game trees are then
well-founded). In such a class of games one can in particular consider behavioural
strategies in the extensive games considered here, according to which a move
consists of a probability distribution over the finite set of children of a given node.

Many textbooks on game theory rather choose as the next class extensive
games with imperfect information. In these games players do not need to know
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the previous moves made by the other players. An example is the Battleship game
in which the first move for each player consists of a secret placing of the fleet on
the grid. An interested reader is referred to Part III of [16].
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Abstract

Reminiscences of a crucial year in Chaitin’s life, 1974.

In the first few months of 1974 I traveled from Buenos Aires to New York as a
“summer visitor” at the IBM T. J. Watson Research Center in Yorktown Heights.
I lived in the White Plains YMCA and commuted to the Watson Center by train
and taxi.

It was during this visit that I discovered or invented the halting probability
Ω. I remember the exact moment. I had been invited to give a lecture at a uni-
versity somewhere in the United States—every week it was a different one—and
was flying back to New York. At the precise moment that I realized that the halt-
ing probability was irreducible or algorithmically random, I was looking out the
window and saw an unmistakable sight, the Pentagon in Washington, DC.

The author in 1974 in Terry Fine’s office at Cornell University
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Due to the usual delays for refereeing and such, the halting probability did not
appear in print until the next year, 1975, in my fifth Journal of the ACM paper, “A
Theory of Program Size Formally Identical to Information Theory.”

By the way, the halting probability was originally ω, but the set theorist Robert
Solovay, who was visiting the Watson Research Center, suggested to me that
Ω might be better because in set theory ω stood for the set of natural numbers
{0, 1, 2, 3, . . .}.

During this visit to the Watson Research Center I also corrected the proofs of
one of my first publications on incompleteness, destined to appear later in the year,
an invited paper “Information-Theoretic Computational Complexity” in the IEEE
Transactions on Information Theory, with an appendix giving the mathematical
details, which proofs I was to send to Gödel, as I will tell below.1

And I had two very interesting experiences.
The first was that I attended a lecture at the New York Academy of Sciences

in Manhattan by a mathematician I admired, Mark Kac. The lecture was on ran-
domness, and Kac’s thesis was that randomness was an interesting but slippery
notion that resisted precise definition. He concluded his lecture with the follow-
ing words: “In spite of this, a definition of randomness has been proposed by
Kolmogorov and by a young fellow in Argentina, Gregory Chaitin.” I stood up
and said, “No, I’m here now!” Pandemonium, over which Kac declared, “This
was not rehearsed!”

After the talk a gentleman came up to me and said, “I’m Dennis Flanagan,
the Editor of Scientific American.” And he told me the following story about
Gödel. At the time Flanagan was living in Princeton, New Jersey, and he had
just published a wonderful article, “Gödel’s Proof” by Ernest Nagel and James R.
Newman (1956), later expanded into a small book that completely obsessed me
from the moment it appeared in the New York City public library (at that time
I lived in Manhattan). Gödel was not known to the general intellectual public
yet—that article and that book were to change that—and few people had seen
a photo of Gödel and knew how he looked. However, Flanagan had sent the
well-known portrait photographer Arnold Newman to Princeton in order to be
able to include an image of Gödel in the article about him in Scientific American,
resulting in a stark portrait of an angry-to-be-disturbed Gödel sitting in front of a
bare blackboard that has been reproduced many times.

So Flanagan knew how Gödel looked. And one hot, humid summer day Flana-
gan was walking down the street in Princeton, a small town, and saw Gödel ap-
proaching. He prepared to introduce himself as the publisher of the article about

1However, my best paper on incompleteness was probably “Gödel’s Theorem and Informa-
tion” published in the International Journal of Theoretical Physics years later, in 1982, and then
reprinted in Tymoczko, New Directions in the Philosophy of Mathematics, together with the paper
that I sent to Gödel.
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Gödel’s proof. At that moment, however, a scantily clad beautiful young female
student (we used to call them “co-eds” from the word “co-education”) passed by,
and Gödel stopped dead in his tracks to admire her. As they say in French, “La
belle opportunité est perdu!” Flanagan did not dare to interrupt Gödel!

The second amazing experience was that I somehow managed to make a phone
call to Gödel’s office at the Princeton Institute for Advanced Study (IAS), a cold
call as they say in the world of sales, and Gödel himself picked up the phone.
“Professor Gödel,” I said, “I am extremely fascinated [obsessed would have been
more accurate] by your incompleteness theorem, and I have a new proof based
on the Berry paradox instead of the Epimenides paradox [the paradox of the liar,
‘This statement is false’].” He replied, “It doesn’t matter which paradox you use!”
In fact, he says this in the introduction to his famous 1931 paper, which I was
familiar with. So I was prepared, and I immediately answered, “Yes of course, but
this suggests to me a new information-theoretic view of incompleteness, which
I would very much like to visit you and tell you about.” He replied, “Send me
a paper of yours on this subject, and I will take a look at it and decide if I give
you an appointment.” So I sent him the proofs of my as-yet-unpublished 1974
IEEE paper. Then I called him back, and he commented “Very interesting, your
complexity measure is an absolute notion [like computability as contrasted with
provability, which depends on the axioms].” And he gave me an appointment!

The great day arrived, and I had already figured out how to take the train from
Yorktown Heights into New York City and from there to Princeton, New Jersey,
and how long that would take. It was the week before Easter, and that weekend I
was supposed to leave NY and fly back to Buenos Aires. There had been a Spring
snowstorm, nothing serious, nothing that would stop me from visiting my hero,
Kurt Gödel. I was about to leave my office at IBM for the train station, when the
phone rang, and a voice, a terrible voice, that of Gödel’s secretary, announced that
Gödel was very careful about his health and because it had snowed he was not
coming into his office that day and therefore my appointment was canceled!

So this is how I spoke to Gödel on the phone twice but never met him. In
retrospect, I think this is a much more interesting story than if I had actually met
Gödel. It illustrates the surreal quality of interactions with Gödel.

The next week I stopped on my way back to Buenos Aires to present “A The-
ory of Program Size Formally Identical to Information Theory” at Stanford Uni-
versity.

However, the annus mirabilis 1974 was not yet over. Back in Buenos Aires, I
was summoned by the head of IBM Argentina, Mr Benito Esmerode. The moment
I sat down in Mr Esmerode’s office, the phone rang. It was the head of IBM,
Thomas J. Watson Jr. “Yes,” said Mr Esmerode, “he is here in my office now, and
yes, of course we will pay for his trip to the University of Notre Dame!”

What had happened? The IEEE was holding their 1974 International Sym-
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posium on Information Theory later that year at Notre Dame University, and the
organizers wanted me to present “A Theory of Program Size Formally Identical
to Information Theory” in their opening plenary session. But I had told them I
couldn’t travel to Indiana. So the president of Notre Dame wrote to Thomas J.
Watson Jr. and asked for his help. Problem solved.

That was my second trip from Buenos Aires to the United States in 1974. I was
transferred from IBM Argentina to the Watson Research Center in 1975, the year
that my article on “Randomness and Mathematical Proof” appeared in Scientific
American2.

Years later my friend Cristian Calude from the University of Auckland was
visiting me at the Watson Research Center, and we decided to make a pilgrimage
to Princeton. We found Einstein’s former home near the IAS, Gödel’s former
home in a much poorer part of town, and Gödel’s and John von Neumann’s graves
in the Princeton Cemetery. Einstein is not there. He was cremated and his ashes
were scattered at an undisclosed location, as he had wished.

Cris Calude and Greg Chaitin at Gödel’s grave in Princeton, New Jersey

Furthermore, as we stood looking at Gödel’s home, the couple who were rent-
ing it from the current owner came out and invited us in. It turns out that much
remained exactly as it had been when Kurt and his wife Adele lived there, in
particular the heavy sound-proofing so that Gödel could work undisturbed in his
study, and a shrine to the Virgin Mary in the garden, but not Adele’s infamous
pink flamingo, which Gödel found “charming.”

2To be followed by “Randomness in Arithmetic" in 1988 and by “The Limits of Reason" in
2006.
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Gregory Chaitin is an Argentine-American mathematician living in Rio de
Janeiro, and a lifetime honorary professor of the University of Buenos Aires with
an honorary doctorate in philosophy from the University of Córdoba, the oldest
university in Argentina and one of the oldest in South America. He was formerly
at the IBM Watson Research Center in New York, where he was part of a small
team that developed the Power processor architecture and its associated software.

On the theoretical side, Chaitin is best known for his discovery of the remark-
ableΩ number, a concrete example of irreducible complexity in pure mathematics,
and which shows that mathematics is infinitely complex. For this he was awarded
the Leibniz Medallion by Wolfram Research in 2007. He has also proposed mod-
eling evolution as a random walk in software space (“metabiology”).

Among his books are: Algorithmic Information Theory; Conversations with a
Mathematician; Meta Math!; and Proving Darwin.

Festschriften: Cristian S. Calude, Randomness and Complexity, from Leibniz
to Chaitin, World Scientific, Singapore, 2007; Gregory Chaitin, Thinking about
Gödel and Turing: Essays on Complexity, 1970–2007, World Scientific, Singa-
pore, 2007; Shyam Wuppuluri, Francisco Antonio Doria, Unravelling Complex-
ity: The Life and Work of Gregory Chaitin, World Scientific, Singapore, 2020.
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ICALP 2022
49th EATCS International Colloquium on Automata, Languages and

Programming
4-8 July 2022, in Paris, France, and online

https://icalp2022.irif.fr/

Call for Papers

The 49th International Colloquium on Automata, Languages, and Program-
ming (ICALP) will take place

** in Paris, France, and online on 4-8 July 2022. **
The 2022 edition has the following special features:
- Submissions are anonymous, and there is a rebuttal phase.
- The conference is hybrid.
- This will be the 50th birthday of the conference and some special events are

planned.
ICALP is the main conference and annual meeting of the European Associ-

ation for Theoretical Computer Science (EATCS). As usual, ICALP will be pre-
ceded by a series of workshops, which will take place on July 4. The 2022 edition
will be the occasion to celebrate the 50th anniversary of both EATCS and the first
ICALP, which was first held in 1972 in Rocquencourt, in the Paris area.

Important dates

Submissions: February 9, 2022 AoE
Rebuttal: March 21-23
Notification: April 11
Camera-ready version: April 25
Early registration: TBA
Conference: 4-8 July, 2022

Deadlines are firm; late submissions will not be considered.
Conference website: https://icalp2022.irif.fr/
Submission: https://easychair.org/my/conference?conf=icalp2022#
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Invited Speakers

Albert Atserias, Universitat Politècnica de Catalunya
Constantinos Daskalakis, MIT
Leslie Ann Goldberg, Oxford University
Madhu Sudan, Harvard
Stéphan Thomassé, ENS Lyon
Santosh Vempala, Georgia Tech

Submission Guidelines

1) Papers must present original research on the theory of computer science. No
prior publication and no simultaneous submission to other publication outlets (ei-
ther a conference or a journal) is allowed. Authors are encouraged to also make
full versions of their submissions freely accessible in an on-line repository such
as ArXiv, HAL, ECCC.

2) Submissions take the form of an extended abstract of no more than 15 pages,
excluding references and a clearly labelled appendix. The appendix may consist
either of omitted proofs or of a full version of the submission, and it will be read
at the discretion of program committee members. The extended abstract has to
present the merits of the paper and its main contributions clearly, and describe
the key concepts and technical ideas used to obtain the results. Submissions must
provide the proofs which can enable the main mathematical claims of the paper to
be fully verified.

3) Submissions are anonymous. The conference will employ a fairly lightweight
double-blind reviewing process. Submissions should not reveal the identity of the
authors in any way. In particular, authors’ names, affiliations, and email addresses
should not appear at the beginning or in the body of the submission. Authors
should not include obvious references that reveal their own identity, and should
ensure that any references to their own related work are in the third person (e.g.,
not “We build on our previous work . . . ” but rather “We build on the work of . . . ”).

The purpose of this double-blind process is to help PC members and external
reviewers come to an initial judgment about the paper without bias, and not to
make it impossible for them to discover who the authors are if they were to try.
Nothing should be done in the name of anonymity that weakens the submission
or makes the job of reviewing the paper more difficult. In particular, important
references should not be omitted or anonymized. In addition, authors should feel
free to disseminate their ideas or draft versions of their paper as they normally
would. For example, authors may post drafts of their papers on the web, submit
them to arXiv, and give talks on their research ideas.

4) The submissions are done via Easychair to the appropriate track of the con-
ference (see topics below). The use of pdflatex and the LIPIcs style are mandatory:
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papers that deviate significantly from the required format risk rejection without
consideration of merit.

5) During the rebuttal phase, authors will have three days, March 21-23, to
view and respond to initial reviews. Further instructions will be sent to authors of
submitted papers before that time.

6) One author per accepted paper is expected to present the work in Paris,
unless there are strong reasons not to do so, including high environmental cost of
travel or impossibility to travel. We will be monitoring the current situation and
are aware of possible travel restrictions, but we aim to organize the conference
as a hybrid event with a strong in-person attendance. If no speaker can attend, a
remote presentation and participation to the discussion session are mandatory.

7) Papers authored only by students should be marked as such upon submis-
sion in order to be eligible for the best student paper awards of the track.

Awards

During the conference, the following awards will be given:
- the EATCS award (https://eatcs.org/index.php/eatcs-award),
- the Gödel prize (https://eatcs.org/index.php/goedel-prize),
- the Presburger award (https://eatcs.org/index.php/presburger),
- the EATCS distinguished dissertation award (https://eatcs.org/index.php/dissertation-award),
- the best papers for Track A and track B,
- the best student papers for Track A and track B (see submission guidelines).

Proceedings

ICALP proceedings are published in the Leibniz International Proceedings in In-
formatics (LIPIcs) series. This is a series of high-quality conference proceedings
across all fields in informatics established in cooperation with Schloss Dagstuhl
- Leibniz Center for Informatics. LIPIcs volumes are published according to the
principle of Open Access, i.e., they are available online and free of charge.

Topics

Papers presenting original research on all aspects of theoretical computer science
are sought. Typical but not exclusive topics of interest are:

Track A: Algorithms, Complexity and Games

• Algorithmic and Complexity Aspects of Network Economics
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• Algorithmic Aspects of Biological and Physical Systems

• Algorithmic Aspects of Networks and Networking

• Algorithmic Aspects of Security and Privacy

• Algorithmic Game Theory and Mechanism Design

• Approximation and Online Algorithms

• Combinatorial Optimization

• Combinatorics in Computer Science

• Computational Complexity

• Computational Geometry

• Computational Learning Theory

• Cryptography

• Data Structures

• Design and Analysis of Algorithms

• Distributed and Mobile Computing

• Foundations of Machine Learning

• Graph Mining and Network Analysis

• Parallel and External Memory Computing

• Parameterized Complexity

• Quantum Computing

• Randomness in Computation

• Sublinear Time and Streaming Algorithms

• Theoretical Foundations of Algorithmic Fairness

Track B: Automata, Logic, Semantics, and Theory of Programming

• Algebraic and Categorical Models of Computation
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• Automata, Logic, and Games

• Database Theory, Constraint Satisfaction Problems, and Finite Model The-
ory

• Formal and Logical Aspects of Learning

• Formal and Logical Aspects of Security and Privacy

• Logic in Computer Science and Theorem Proving

• Models of Computation: Complexity and Computability

• Models of Concurrent, Distributed, and Mobile Systems

• Models of Reactive, Hybrid, and Stochastic Systems

• Principles and Semantics of Programming Languages

• Program Analysis, Verification, and Synthesis

• Type Systems and Typed Calculi

ICALP 2022 Programme Committee

Track A: Algorithms, complexity, and games
Petra Berenbrink - University of Hamburg
Sergio Cabello - University of Ljubljana
Yixin Cao - Hong Kong Polytechnic University
Sitan Chen - University of California Berkeley
Xi Chen - Columbia University
Ilias Diakonikolas - University of Wisconsin-Madison
David Doty - University of California Davis
Yuval Filmus - Technion
Cyril Gavoille - Université de Bordeaux
Sevag Gharibian - Paderborn University
Seth Gilbert - National University of Singapore
Nick Gravin - Shanghai University of Finance and Economics
Kasper Green Larsen - Aarhus University
Abhradeep Guha Thakurta - Google Research
Hamed Hatami - McGill University
Sandy Irani - University of California Irvine
Yuval Ishai - Technion
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Aayush Jain - NTT Research/CMU
Ken-ichi Kawarabayashi - National Institute of Informatics
Yuqing Kong - Peking University
Michal Koucky - Charles University
Stefano Leonardi - Sapienza Universita di Roma
Nutan Limaye - IT University of Copenhagen
Frederic Magniez - CNRS
Audra Mcmillan - Apple
Slobodan Mitrovic - MIT / University of California Davis
Wolfgang Mulzer - Freie Universitat Berlin
Cameron Musco - University of Massachusetts Amherst
Anand Natarajan - MIT
Jelani Nelson - University of California Berkeley
Evdokia Nikolova - University of Texas at Austin
Debmalya Panigrahi - Duke University
Richard Peng - Georgia Tech
Vijaya Ramachandran - University of Texas at Austin
Saket Saurabh - Institute of Mathematical Sciences, Chennai
Christian Sohler - University of Cologne
Thomas Steinke - Google Research
Vasilis Syrgkanis - Microsoft Research
Emanuele Viola - Northeastern University
Adrian Vladu - CNRS
Jan Vondrak - Stanford
Hoeteck Wee - NTT Research / ENS
David Woodruff - CMU (chair)
Christian Wulf-Nilsen - University of Copenhagen

Track B: Automata, Logic, Semantics, and Theory of Programming
Luca Aceto - Reykjavik University
Isolde Adler - University of Leeds
Antoine Amarilli - Télécom Paris
Pablo Barcelo - Catholic University of Chile
Libor Barto - Charles University
Mikołaj Bojańczyk - University of Warsaw (chair)
Laura Ciobanu - Heriot-Watt University
Erich Grädel - RWTH Aachen University
Christoph Haase - University of Oxfordv
Marcin Jurdziński - University of Warwick
Benjamin Kaminski - University College London
Joost-Pieter Katoen - RWTH Aachen University
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Bartek Klin - University of Oxford
Naoki Kobayashi - University of Tokyo
Dexter Kozen - Cornell University
Orna Kupferman - Hebrew University
Jérôme Leroux - CNRS / University of Bordeaux
Nathan Lhote - Aix-Marseille University
Markus Lohrey - University of Siegen
Joël Ouaknine - Max Planck Institute
Prakash Panangaden - McGill University
Michael Pinsker - Vienna University of Technology
Sven Schewe - University of Liverpool
Jeffrey Shallit - University of Waterloo
Mahsa Shirmohammadi - CNRS / University of Paris
Sebastian Siebertz - University of Bremen
Alex Simpson - University of Ljubljana
Lidia Tendera - University of Opole

ICALP 2022 Workshop Chairs
Track A: Valia Mitsou
Track B: Mahsa Shirmohammadi
ICALP 2022 Proceedings Chairs
Emanuela Merelli
ICALP 2022 Organizing Committee
Sandrine Cadet
Olivier Carton
Thomas Colcombet
Geoffroy Couteau
Hugo Férée
Irène Guessarian
Natalia Hacquart
Florian Horn
Simon Mauras
Valia Mitsou
Sylvain Perifel
Amaury Pouly
Arnaud Sangnier
Sylvain Schmitz
Mahsa Shirmohammadi
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TheoretiCS is a new Diamond Open Access electronic journal covering all
areas of Theoretical Computer Science (TCS), that will be launched during Fall
2021. The scope of the journal is TCS broadly construed, including, but not re-
stricted to, the Theory of Computing and the Theory of Programming. One of our
aims is to bridge the, often artificial, division between TCS-A and TCS-B.

Access to all papers is free. Authors are not required to pay any publication
fees or article processing charges, and retain copyright under a Creative Commons
license.

TheoretiCS strives for top quality scholarship in Theoretical Computer Sci-
ence. It publishes original research, explicitly including suitably revised and ex-
tended versions of conference papers. To be accepted, a paper must make a signif-
icant contribution of lasting value to a relevant area of TCS, and its presentation
must be of high quality.

TheoretiCS is published by the TheoretiCS Foundation e.V., a non-profit or-
ganisation registered in Germany. The journal is a joint effort of the TCS com-
munity. Its policies are decided by the Advisory Board, mostly consisting of
representatives of major TCS conferences.

TheoretiCS is an overlay journal of the Computing Research Repository (CoRR)
on arXiv. It is hosted by the Episciences platform for overlay journals, which is
kindly provided by the CCSD.

Editorial Board. The inaugural Editors-in-Chief are Javier Esparza (TU Mu-
nich) and Uri Zwick (Tel Aviv U.). The Editorial Board can be found at
https://theoretics.episciences.org/, see also below.

Organization and some history. The project started in 2019 and underwent a
long gestation. Our aim was to rapidly become a reference journal and to con-
tribute to the unity of the Theoretical Computer Science global community. From
the start, we wanted to have a thorough discussion with a wide representation of
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the community, on how to best implement the guiding principles of TheoretiCS. It
was deemed essential to make sure that all fields of theoretical computer science
would feel at home in this journal, and that it would be recognized as a valid venue
for publication all over the world.

This resulted in the creation of an Advisory Board, composed of represen-
tatives of most of the main conferences in the field (currently APPROX, CCC,
COLT, CONCUR, CSL, FOCS, FoSSaCS, FSCD, FSTTCS, ICALP, ICDT, ITCS,
LICS, MFCS, PODC, SoCG, SODA, STACS, STOC, TCC) and of so-called members-
at-large.

TheoretiCS acknowledges endorsement by Noga Alon, Shafi Goldwasser, Don-
ald E. Knuth, Robert E. Tarjan, Leslie Valiant, Moshe Y. Vardi, and Andrew C.-
C. Yao.

Editorial Board. Editors-in-Chief: Javier Esparza (Technical University of Mu-
nich) and Uri Zwick (Tel Aviv University)

Martin Abadi (Google, USA), Andris Ambainis (U. of Latvia), Albert Atserias
(UPC, Barcelona), Haris Aziz (UNSW, Sydney), David Basin (ETH Zürich), Pa-
tricia Bouyer (CNRS, Paris-Saclay), Nicolò Cesa-Bianchi (Università di Milano),
Anuj Dawar (Cambridge University), Luc Devroye (McGill University, Mon-
treal), Jacob Fox (Stanford University), Mohsen Ghaffari (ETH Zürich), Georg
Gottlob (Oxford University), Anupam Gupta (Carnegie Mellon University), Venkate-
san Guruswami (Carnegie Mellon University), Johan Håstad (KTH, Stockholm),
Ravi Kannan (Microsoft Research India, Bengaluru), Anna Karlin (University of
Washington, Seattle), Ken-ichi Kawarabayashi (National Institute of Informatics,
Tokyo), Valerie King (University of Victoria), Robert Kleinberg (Cornell Univer-
sity), Naoki Kobayashi (University of Tokyo), Elias Koutsoupias (Oxford Univer-
sity), Xavier Leroy (Collège de France, Paris), Katrina Ligett (Hebrew University,
Jerusalem), Rupak Majumdar (MPI-SWS, Kaiserslautern), Joseph Mitchell (State
University of New York at Stony Brook), Mehryar Mohri (Google and New York
University), David Mount (University of Maryland), Anca Muscholl (Univer-
sité de Bordeaux), Danupon Nanongkai (University of Copenhagen), Moni Naor
(Weizmann Institute, Rehovot), Catuscia Palamidessi (Inria, Palaiseau), Michał
Pilipczuk (University of Warsaw), Jean-Francois Raskin (Université Libre de Brux-
elles), Peter Sanders (KIT, Karlsruhe), Davide Sangiorgi (Università di Bologna),
Nitin Saxena (IIT Kanpur), Alistair Sinclair (UC Berkeley), Ola Svensson (EPF
Lausanne), Gregory Valiant (Stanford University), Stephanie Weirich (University
of Pennsylvania), Virginia V. Williams (Massachusetts Institute of Technology),
James Worrell (Oxford University), Mihalis Yannakakis (Columbia University,
New York).
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EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the EATCS Distinguished Dissertation Award, the Nerode
Prize (joint with IPEC) and best papers awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

Benefits offered by EATCS to Young Researchers also include:
- Database for Phd/MSc thesis
- Job search/announcements at Young Researchers area
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(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Jerusalem, Israel 1994
- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997

- Aalborg, Denmark 1998
- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013
- Copenhagen, Denmark 2014
- Kyoto, Japan 2015
- Rome, Italy 2016
- Warsaw, Poland 2017
- Prague, Czech Republic 2018
- Patras, Greece 2019
- Saarbrücken, Germany (virtual conference) 2020

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-
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mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Vienna), J. Hromkovič
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are D. Sannella (Edinburgh), L. Kari and P.G. Spirakis
(Patras).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Paul Spirakis,
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues are e 40 for a period of one year (two years for students / Young Researchers ). Young
Researchers, after paying, have to contact secretary@eatcs.org, in order to get additional
years. A new membership starts upon registration of the payment. Memberships can always be
prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 35 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 35 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.
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HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, contact the Secretary Office of EATCS:

Mrs. Efi Chita,
Computer Technology Institute & Press (CTI)
1 N. Kazantzaki Str., University of Patras campus,
26504, Rio, Greece
Email: secretary@eatcs.org,

Tel: +30 2610 960333, Fax: +30 2610 960490
If you are an EATCS member and you wish to prolong your membership or renew the subscription
you have to use the Renew Subscription form. The dues can be paid via paypal and all major credit
cards are accepted.
For adittional information please contact the Secretary of EATCS:

Prof. Emanuela Merelli
via Madonna delle Carceri, 9
Computer Science Build. 1st floor
University of Camerino,
Camerino 62032, Italy
Email: secretary@eatcs.org,

Tel: +39 0737402567


