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Dear EATCS members,

I hope my letter finds you and your family
safe and in good health.

First of all, let me wish you a very happy
2022. I hope that this will be a healthy
and fantastic year for all of us, full of
great research advances, exciting
conferences and workshops. I look forward
to working together with all of you in
order to continue promoting the development
of theoretical computer science.

We do not know yet what to expect from this
year, but I am optimistically looking
forward to 2022. While the coronavirus
pandemic will still have a major impact on
our lives and our scientific activities, I
hope that we are slowly getting back to a
safe and healthy environment. Therefore I
am looking forward to see not only more
fantastic research, but also I hope to see
more scientific activities in the
community, and even if some of them still
focusing on online participation, but many
involving meetings and conferences.

I am especially looking forward to
attending the 49th EATCS International
Colloquium on Automata, Languages, and
Programming (ICALP 2022), the EATCS
flagship conference that will be held in
Paris, France, July 4–8, 2022
(https://icalp2022.irif.fr/). After two
years of running ICALP fully online, in
2022 the event will be organized in a
hybrid fashion: while we expect most of
participants to attend the conference in
person, online participation will be made
possible. The PC chairs are David Woodruff
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(track A) and Mikołaj Bojańczyk (track B),
and the conference chair is Thomas
Colcombet. ICALP 2022 will feature six
fantastic invited speakers: Albert
Atserias (Universitat Politècnica de
Catalunya), Constantinos Daskalakis (MIT),
Leslie Ann Goldberg (Oxford), Madhu Sudan
(Harvard, USA), Stéphan Thomassé (l’Ecole
Normale Supérieure de Lyon), and Santosh
Vempala (Georgia Tech). I hope that many
of you have submitted your best work to
ICALP 2022 and I expect to see a great
scientific program, to be selected by the
PC in mid April. As usual, ICALP will be
preceded by a series of workshops, which
will take place on July 4.

ICALP 2022 will be the occasion to
celebrate the 50th anniversary of both the
first ICALP and of EATCS — with arguably,
year 1972 marking the birth of European
theoretical computer science. The first
ICALP conference was organized by Maurice
Nivat in July 1972 in Rocquencourt, Paris.
It is fascinating to see now the 45 papers
published at ICALP 1972 (not all in
English, with a few papers in German and
over a dozen in French!), with so different
focus than what we see nowadays: 23 papers
on automata and formal languages, 12 in
theory of programming, and 11 in
computational complexity. As for EATCS,
the efforts to establish a Europe-centered
scientific organization in Theoretical
Computer Science led to the submission to
EEC and to Belgian authorities of legal
documents to create EATCS on June 24, 1972;
this is the official date of the
constitution of EATCS (or as it was then
officially called Association Européenne
d’Informatique Théorique (AEIT), or in
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English, European Association for
Theoretical Computer Science (EATCS)). A
royal decree by the King of Belgium from
September 4, 1972 officially created EATCS
and approved its statute. The named
founders of EATCS were: Giorgio Ausiello
(Italy), Jaco de Bakker (The Netherlands),
Maurice Nivat (France), Mike Paterson (UK),
Manfred Paul (Federal Republic of Germany),
Michel Sintzoff (Belgium), and Leo Verbeek
(The Netherlands). I hope to see many of
you joining us in these celebrations of the
50th anniversaries of ICALP and of EATCS
during the ICALP 2022 conference in Paris!

Also, please allow me to remind you about
three EATCS affiliated conferences that
will take place in summer and fall this
year: the 47th International Symposium on
Mathematical Foundations of Computer
Science (MFCS 2022 in Vienna,
https://www.ac.tuwien.ac.at/mfcs2022/ —
also celebrating its 50th anniversary!),
the 30th Annual European Symposium on
Algorithms (ESA 2022), and the 35th
International Symposium on Distributed
Computing (DISC 2022).

But there will be some more exciting theory
conferences taking place in the summer,
where I hope to see strong in-person
attendance. The 54th ACM Symposium on
Theory of Computing (STOC 2022,
http://acm-stoc.org/stoc2022/) will be held
this year in Europe, in Rome, Italy, June
20–24, 2022. Another flagship theory
conference, the 37th Annual ACM/IEEE
Symposium on Logic in Computer Science
(LICS, https://lics.siglog.org/lics22/)
will be held this year at the Technion in
Haifa, Israel, August 2–5, 2022, as part of
the Federated Logic Conference (FLOC 2022).
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I expect all these conferences to bring a
large in-person attendance and to stimulate
fantastic research advances in theory.

As usual, let me close this letter by
reminding you that you are always most
welcome to send me your comments,
criticisms and suggestions for improving
the impact of the EATCS on the Theoretical
Computer Science community at
president@eatcs.org. We will consider all
your suggestions and criticisms carefully.

I look forward to seeing many of you
around, at ICALP in Paris, or during other
conferences or workshops that I hope to
attend this spring and summer and fall, or
maybe only online, and to discussing ways
of improving the impact of the EATCS within
the theoretical computer science community.

Artur Czumaj
University of Warwick, UK

President of EATCS
president@eatcs.org

February 2022
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Salomaa Prize
in Automata Theory, Formal
Languages and related topics

The University of Turku and the Developments in Language Theory Sympo-
sium established the Salomaa prize in order to honor outstanding achievments in
the area of formal language theory. The previous prize winners are:

2018 Jean-Éric Pin (Paris Diderot University, Paris, France)

2019 Artur Jeż (University of Wrocław, Wrocław, Poland)

2020 Joël Ouaknine (Max Planck Institute, Saarbrücken, Germany) and
James Worrell (University of Oxford, Oxford, UK)

All member of the formal language community are kindly invited to send nom-
inations by email to the chair of the prize committee 2022:

Juraj Hromkovič, ETH Zurich, juraj.hromkovic@inf.ethz.ch
The guidelines for the nomination letter are found at:

https://math.utu.fi/salomaaprize/guidelines
The prize consists of a diploma and 2000 Euros and will be awarded at DLT 2022.





Institutional
Sponsors
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CTI, Computer Technology Institute & Press "Diophantus"
Patras, Greece

CWI, Centum Wiskunde & Informatica
Amsterdam, The Netherlands

MADALGO, Center for Massive Data Algorithmics
Aarhus, Denmark

Microsoft Research Cambridge
Cambridge, United Kingdom

Springer-Verlag
Heidelberg, Germany
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The Interview Column
by

Chen Avin and Stefan Schmid

Ben Gurion University, Israel and TU Berlin, Germany
{chenavin,schmiste}@gmail.com
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Know the Person behind the Papers

Today: Keren Censor-Hillel

Bio: Keren Censor-Hillel is an Associate Professor in the Department of Com-
puter Science at the Technion. She completed her PhD thesis, for which she re-
ceived the Principles of Distributed Computing Doctoral Dissertation Award, in
2010, and joined the Technion in 2013 after being a Simons Postdoctoral Fellow at
MIT. Censor-Hillel received an Alon Fellowship, awarded by the Israeli Academy
of Science, in 2013. She is a recipient of a 2016 Krill Prize given by The Wolf
Foundation and a 2018 Henry Taub Prize for Academic Excellence. Her research
is supported by grants from the ISF, NSF-BSF, and an ERC Starting Grant by the
European Commission.

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

Keren: In the photo you can see me hiking. A keen-sighted observer may see
some desert surrounding me, which is my favorite hiking area in Israel. I love
outdoor activities and sports, and try to find time for them on a daily basis. I also
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Credit: Photo by photographer Yasmin Lahav.

share another photo, taken in my office, which is another place I hang out in quite
a lot (well, at least in pre-COVID times, when this photo was taken).

Can you please tell us something about you that probably most of the readers
of your papers don’t know?

Keren: Since I have been working mostly from home lately (as many of us
have), if you are reading a paper that I wrote starting March 2020, it is likely that
there was a cat on my lap when I was typing into the paper’s tex file.

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

Keren: The PODC 2006 paper “Computing separable functions via gossip"
by Damon Mosk-Aoyama and Devavrat Shah was what got me interested in dis-
tributed graph algorithms. I read it in order to present it in a seminar-style class
that I took as a graduate student. The paper shows how to compute separable
functions in a distributed setting in a very neat way. The topic and paper intrigued
me and got me into this research domain.

Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?
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Keren: One of my highest-impact papers is “Algebraic methods in the con-
gested clique”, co-authored with Petteri Kaski, Janne H. Korhonen, Christoph
Lenzen, Ami Paz, and Jukka Suomela. This paper gives distributed algorithms for
matrix multiplication and shows their applications to distance computations and
subgraph finding problems. There has been great progress in these fundamental
research areas, and at the same time there are still some intriguing open questions,
which I welcome everyone to join us in attacking.

When (or where) is your most productive working time (or place)?
Keren: I can work anywhere and even in noisy places, but to be most pro-

ductive I do need relatively long chunks of uninterrupted time, as my context
switching skills could use some improvement. Those who know me know that I
am very strict in separating my working and non-working hours.

What do you do when you get stuck with a research problem? How do you
deal with failures?

Keren: Failures are the opposite of getting stuck: Failures are inherent for
any (research) progress. In many cases, a failure is a huge lead for a direction that
doesn’t work, and could come along with some insight that has a potential of being
useful later. Getting stuck is a different story and can be much more discouraging.
It usually makes me talk about the problem with anyone who is willing to listen,
and I get back to it once in a while to see if a fresh look into it could bring some
new insights.

Is there a nice anecdote from your career you like to share with our readers?
Keren: I started out as a Math undergrad and for some reason I thought that

I would not enjoy computer science. Toward the end of my studies I took some
TCS courses and those completely changed my view of computer science and I
enrolled as a CS graduate student. I am very happy that I have this mathematical
education, and I find it to be an important part of my scientific background.

Do you have any advice for young researchers? In what should they invest
time, what should they avoid?

Keren: I’d suggest to complement one’s research with additional scientific
and academic activities. Although such activities require time, they are usually
fun, and they almost always lead to new opportunities.

What are the most important features you look for when searching for grad-
uate students?

Keren: I look for students who demonstrate creative thinking and good scien-
tific writing skills, and with whom I enjoy the conversations. I typically take on
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students only after some initial research period, so that we can coordinate expec-
tations.

Do you see a main challenge or opportunity for theoretical computer scien-
tists for the near future?

Keren: Opportunities are abundant, as theoretical computer science is about
the foundations. The challenge is to stay relevant in order to maintain this impor-
tance of the field, by revisiting our lines of research once in a while.

How was your research affected by the pandemic? How do you think it will
affect us as a community?

Keren: The pandemic brought many hardships and among those it has been
having a substantial negative impact on my research. Still, I consider myself lucky,
and I think that for some, perhaps especially the more academically younger re-
searchers, the effect could be worse. I hope that the steps that we have been taking
as a community in order to keep these researchers in the loop are helpful.
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Please complete the following sentences?

• My favorite movie is... The Princess Bride. What can I say, I grew up in
the 80’s...

• Being a researcher... provides me with skills that are useful in other
aspects of life. Patience, for example.

• My first research discovery... was in the area of coding theory. It is a
very different area from distributed computing which I study now, but
the thrill of new findings is ever the same.
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The Theory Blogs Column
by

Luca Trevisan
Bocconi University

Via Sarfatti 25, 20136 Milano, Italy

L.Trevisan@UniBocconi.it

https://lucatrevisan.github.io

A big di↵erence between academic blogs and other forms of academic com-

munication is the immediacy: the ability to post about results that have just been

announced, about events that just took place, or about thoughts that just happened,

and to start an interactive discussions. In a complementary way, this column can

be an opportunity to look back.

For the first few editions of this column, I will ask writers of some of the most

popular theoretical computer science blogs to write guest columns in which they

look back at how they started and at some of their favorite posts and interactions.

To get started, Lance Fortnow, the OG of theoretical computer science blogging,

will tell us what inspired him to get started, how he set the tone for his blog, what’s

up with the green background, and he will give us an updated version of one of his

favorite posts.

Lance’s blog, which is now co-written with Bill Gasarch, is at https://blog.
computationalcomplexity.org/
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Computational Complexity

Lance Fortnow
Illinois Institute of Technology

Thanks to Luca Trevisan for starting this column about theoretical computer
science blogs and for asking me to write one of the first columns. Luca said he
was interested in knowing what inspired me to start my blog, how I thought about
topics (that is, the balance between technical and non-technical content and at
what level to address the technical content), why I chose the green background
and so on. He also suggested I update a favorite post.

This column thus expands and updates two June 2009 blog posts, The Story
of the Blog [3] and A Kolmogorov Complexity Proof of the Lovász Local
Lemma [2], the latter about the most mind-blowing STOC talk I ever attended.

1 The Story of the Blog
In 2002 I read a Newsweek article [7] on the then new phenomenon on blogging
and I decided to give it a try. I wanted to blog on a specific topic and so I started
blogging on the topic I know best. On August 22, 2002 I started “My Computa-
tional Complexity Web Log”, the first major blog devoted to theoretical computer
science. I used the Blogger platform before it was bought out by Google. Back
then it had few choices for themes and I chose one with a green background, a
color that has become our trademark. I can tell across a large conference room
who is looking at the blog.

The blog gained in readership after a sardonic post [4] entitled “Finding the
order of the multiplicative group (mod n). . . zuh?” in Jason Kottke’s popular blog.

Weblogs are usually pretty easy for readers to get into. Lance Fort-
now’s Computational Complexity Web Log is probably the most
di�cult-to-read weblog I’ve ever come across. But that’s OK because
if you’re into computational complexity, it’s just the thing.

All of a sudden I had thousands of readers interested in computational complexity.
In that first year I wrote mostly technical posts. I did a set of posts entitled Foun-
dations of Complexity giving an introduction to the field and a series Complexity
Class of the Week where I would review results and questions about a specific



The Bulletin of the EATCS

23

complexity class. Later on I wrote a monthly series of my Favorite Theorems in
the field.

The technical posts take considerable e↵ort to write and proofread, and
seemed less interesting to the majority of my readers who didn’t come from
the theoretical computer science community. I started writing more opinion and
academic-oriented posts. The blog became a meeting place for the theoretical
computer science community where we would have some discussions, sometimes
quite heated, over the issues of concern to our community. Most of the young peo-
ple I would meet at conferences knew me more for the blog than for my research.
For a while a Google search on my name led to the blog before it led to me.

Changes happen. I shortened the name of the blog. In March of 2007 after
a post on turtles [1], I felt I was just going through the motions and decided to
retire from blogging. Bill Gasarch took over the blog and kept it going. But I had
too much I wanted to say and rejoined the blog in January 2008. Since then Bill
and I have co-written this blog and have together experimented with podcasting,
vidcasting and typecasting, where we simply transcribe a discussion between us.
We often hosted guest bloggers, some of whom, like Scott Aaronson, would go
on to write popular blogs on their own. There was a time this blog had new
posts every working day but as I took on more administrative roles, we typically
do about one to two posts a week. I have supplemented the blog with a Twitter
account for short comments and announcements.

Now we have many excellent blogs in theoretical computer science ranging
from very technical to very amusing. We strive to be the blog of record, the
weblog people turn to to learn about the issues and happenings in the community.
We try to cover the major results in complexity, remember those we’ve tragically
lost and the centenaries of the founders of our field.

Weblogs have become the places that brings our ever growing academic com-
munity together in a way our conferences no longer can. As this blog approaches
20 years, 3000 posts, 25000 comments and 10 million page views, I’m glad Com-
putational Complexity is able to play its part in that e↵ort.

2 A Kolmogorov Complexity Proof of the Lovász
Local Lemma

When I was a graduate student at MIT in the late 1980s, Joel Spencer traveled up
from New York to teach a course on the Probabilistic Method, one of the most
useful courses I had for future research. The probabilistic method is a general ap-
proach to show that certain combinatorial objects, such as Ramsey Graphs, exists
by showing that they occur with some positive probability over some distribution
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on graphs. In most cases you can find such graphs by just trying random examples.
In that class I first learned about the Lovász Local Lemma, that if you had a

set of binary random variables with high enough probability and enough indepen-
dence, then there was a positive probability they all were true. However the proof
did not lead to a randomized constructive algorithm.

In 90’s I attended a talk on an algorithmic proof of the Lovász Local Lemma. I
had di�culty following the talk and couldn’t even understand how the parameters
related to the lemma. I tried asking the speaker afterwards but was dismissed with
a “You don’t understand.”

As a best paper and best student paper winner at STOC 2009, I felt I should
attend Robin Moser’s talk on his paper “A Constructive Proof of the Lovász Local
Lemma” [5] but I didn’t have high hopes. How wrong I was. Not only did Moser
present an amazing result but also an incredibly inventive simple proof that he
came up with while preparing the talk.

Smartly Moser focused on an application of the Lovász Local Lemma to sat-
isfiability instead of the full lemma during the talk. He had a beautiful short
can’t-believe-that-works construction with a simple information-theoretic argu-
ment, which I converted in my head to Kolmogorov complexity, because I think
better computationally. As I watched enthralled, I said to Eric Allender sitting next
to me “Are we really seeing a Kolmogorov proof the the Lovász Local Lemma?”
Indeed we were.

After the talk I quickly wrote up the Kolmogorov proof which I posted early
the next morning.

Theorem 1. Suppose we have a k-CNF formula � with n variables and m clauses

and each clause shares a variable with at most r other clauses. Then there is a

constant d such that if r < 2k�d�1
then � is satisfiable. Moreover we can find that

assignment in time polynomial in m and n.

The full algorithm consists of two short routines Solve and Fix below.

Algorithm 1 Solve(�)
Pick a random assignment of �
while There is an unsatisfiable clause C do

Fix(C)
end while

Assume Fix(C) always terminates. Every clause that was satisfied before we
called Fix(C) will still remain satisfied and C will also now be satisfied. So Solve
makes at most m calls to Fix.
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Algorithm 2 Fix(C)
Replace the variables of C with new random values
while While there is an unsatisfied clause D that shares a variable with C do

Fix(D)
end while

We need to show all the Fix(C) terminate. Suppose the algorithm makes s Fix
calls including all the recursive ones. We will show s is bounded and thus the
algorithm terminates.

Fix a Kolmogorov random string x of length n + sk (random relative to
�, k, s, r,m and n) and assume the algorithm uses the first n bits as the initial as-
signment and k bits each to replace the variables in each Fix call.

If we know which clause is being fixed, we know the clause is violated so we
know all the bits of this clause and thus we learn k bits of x. We then replace those
bits with another part of x.

So we can describe x by the list of clauses we fix plus the remaining n bits of
the final assignment. We can describe the C such that Fix(C) is called by Solve
by m log m bits and the remaining fixed clauses by log r+O(1) bits because either
it is one of r clauses that intersects the previous clause or we indicate the end of a
recursive call (keeping track of the recursion stack).

Since x was random we have

m log m + s(log r + O(1)) + n � n + sk

and thus

s(k � log r � d)  m log m

for some constant d.
By assumption we have r  2k�d�1 or equivalently k � log r � d � 1 and thus s

must be bounded by m log m.
We choose the x randomly which with high probability will be Kolmogorovly

random and the algorithm will run in polynomial time. QED

In follow-up work with Gábor Tardos [6], Moser builds on these techniques to
give a constructive version of the full Lovász Local Lemma with the original pa-
rameters which yields r < 2k/e for satisfiability. The Moser-Tardos paper received
the Gödel Prize in 2020.
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In this issue of the distributed computing column, Michel Raynal and Gadi Tauben-
feld revisit a classical question: what can we accomplish in shared memory sys-
tems that are anonymous and symmetric? The article is a nice introductory pre-
sentation of symmetry and anonymity. It differentiates symmetry and anonymity
in the context of processors, and looks at both process and memory anonymity.
The article uses two fundamental problems to illustrate: mutual exclusion and
consensus. In each case, it illustrates what can be accomplished, giving a good
illustration of both what is feasible and the limitations in symmetric and anony-
mous systems. This new distributed computing column is a great way to start the
new year, looking back at a classic problem!
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1 Introduction
More than forty years ago, Dana Angluin asked the following question at one of
the first symposia on the theory of computing (STOC 1980) [2]:

“How much does each processor in a network of processors need
to know about its own identity, the identities of other processors, and
the underlying connection network in order for the network to be able
to carry out useful functions?"

If addressing computability issues was mainly perceived as a theoretical ques-
tion in 1980, due to the fantastic boom in the development of concurrent and
distributed systems (whether the communication is through shared memory or
message-passing), today this question is becoming more and more important. In
such a context, this technical article visits three important anonymity-related no-
tions. The first two concern restrictions on the identities of the processes (namely,
symmetry and anonymity). The third one is relatively new: it concerns the notion
of an anonymous shared memory [32].

2 Process Symmetry
The notion of symmetry is pervasive in many domains, from philosophy and arts
(mainly architecture and painting) to scientific areas such as physics, chemistry,
and mathematics [12]. In informatics, a form of process symmetry (related to
fairness) was introduced by Edsger W. Dijkstra in his famous one-page article that
presented the mutual exclusion problem and a solution to it [10]. More precisely,
when he defined the problem, Dijkstra wrote, “The solution must be symmetrical
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between the n computers; as a result we are not allowed to introduce a static
priority.” More than twenty years later (1989), the notion of process symmetry
was explicitly defined and investigated by Eugene Styer and Gary L. Peterson in
an article presented at the ACM conference on principles of distributed computing
(PODC) [30].

Definition Let us consider a system of processes, each with its own unique iden-
tity. In such a context, an algorithm is symmetric if the only way to distinguish
processes is by comparing their identifiers (names). This means that the set of
the process identifiers defines a specific data type such that the identifiers can be
written, read, and compared, but there is no way to “look inside” an identifier,
which means that other operations cannot manipulate process identifiers. Thus,
identifiers cannot be used to index the entries of a shared array.

Two types of symmetric algorithms can be defined according to how much in-
formation can be derived from comparing two identifiers [30, 31]. The family of
symmetric algorithms with arbitrary comparisons allows the three operations =,
>, and < to be applied on process identifiers. Thus, symmetry with arbitrary com-
parisons allows to totally order the processes according to their identifiers. The
family of symmetric algorithms with only equality is more restrictive. It allows
only the operation = to be applied to process identifiers (in this case, there is no
notion of order on process identifiers).

Process symmetry is important for several reasons. One is related to the fact
that, while the size of the possible process name-space can be huge (e.g., 232), the
number of processes n is usually relatively much smaller (e.g., n = 100). Such
a very large name-space does not allow process identifiers to be used as an index
to access shared registers. There are two ways to address this issue. One consists
in using a process renaming algorithm which allows the size of the name-space
to be reduced to n in failure-free systems (this requires an algorithm that needs
2dlog ne + 1 atomic read/write registers [30]), and to 2n − 1 in asynchronous sys-
tems where processes may crash (see [4, 9]). Another option consists in designing
symmetric algorithms. It is important to observe that symmetry with equality
means “egalitarian” because a process cannot use its identifier to obtain specific
rights. In this sense, process symmetry with equality is the “last” step before pro-
cess anonymity.

The RW communication model This model is the most basic communication
model, namely the only way for processes to communicate is by reading and writ-
ing atomic shared registers [16, 19, 27, 31] (the shared registers are the cells of a
distributed Turing machine which allows processes to cooperate). A register that
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can be written and read by any process is a multi-writer multi-reader (MWMR)
register. If a register can be written by a single (predefined) process and read by
all, it is a single-writer multi-reader (SWMR) register.

As already indicated, due to the definition of process symmetry, process iden-
tifiers cannot be used as pointers to index shared registers. Consequently, process
symmetry requires that the shared read/write registers be MWMR registers.

Illustration: Symmetric deadlock-free mutex in RW systems To illustrate
process symmetry, let us consider Algorithm 1. This algorithm, due to Styer and
Peterson [30], is a process symmetry with equality mutual exclusion algorithm
for n processes, where communication is through MWMR atomic registers (RW
communication model).

operation acquire() is % invoked by process p
(1) repeat
(2) wait(TURN = ⊥); TURN ← p;
(3) repeat
(4) for each k ∈ {1, ..., n − 1} do
(5) if (LOCK[k] = ⊥) then LOCK[k]← p end if end for;
(6) lockedp ← ∧1≤k≤n−1(LOCK[k] = p)
(7) until TURN , p ∨ lockedp end repeat;
(8) if (TURN = p)
(9) then return()
(10) else for each k ∈ {1, ..., n − 1} do
(11) if (LOCK[k] = p) then LOCK[k]← ⊥ end if end for
(12) end if
(13) end repeat.

operation release() is % invoked by process p
(14) TURN ← ⊥;
(15) for each k ∈ {1, ..., n − 1} do
(16) if (LOCK[k] = p) then LOCK[k]← ⊥ end if end for;
(17) return().

Algorithm 1: Symmetric with equality mutex in RW systems [30]

The processes have distinct identities p, q, etc., which can be compared only
for equality; ⊥ is a default process identity (different from the processes’ identi-
ties). The processes communicate through atomic read/write registers. TURN is
an atomic MWMR register initialized to ⊥. Then, it may contain the identity of a
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process competing for the critical section. LOCK[1..n − 1] is an array of atomic
MWMR registers, initialized to ⊥. The entries of LOCK can be seen as locks
that a process needs to capture (by writing its identity in each of them) to enter
the critical section. Finally, each process p has a local variable denoted lockedp,
whose initial value is irrelevant.

To enter the critical section, process p invokes acquire(), which consists of a
repeat loop (lines 1-13) that p will exit when it executes the return() statement
(line 9). Process p first waits until TURN = ⊥; when this occurs, it writes its
identity in TURN (line 2). Then, it enters an internal repeat loop (lines 3-7). Inside
this loop, process p strives to deposit its identity in as many free locks as possible
(lines 4-5). When this is done, process p computes if –from its asynchronous
and local point of view– it has captured all the locks (assignment to lockedp at
line 6). If TURN , p or lockedp = true, process p exits the internal loop. If
TURN = p (in this case TURN has not been modified since p wrote its identity
in it), p enters the critical section (lines 8-9). In the other case, before re-entering
the main repeat loop, p resets to their initial values all the locks it has previously
acquired (lines 10-11).

To exit the critical section, process p invokes the operation release(), which
resets to their initial values the shared register TURN and all the locks containing
its identity (lines 14-16).

It is easy to see that this algorithm uses exactly n atomic read/write registers
and is memoryless (a new invocation of acquire() by a process does not use infor-
mation on its previous invocations). Moreover, the size of each shared register is
bounded by log(n + 1). Proofs of this algorithm can be found in [30, 31].

Remark It is interesting to notice that, while mutual exclusion cannot be solved
in the RW communication model when the processes have no identifiers (i.e., are
anonymous), it can be solved with process symmetry, which, as already men-
tioned, is the last step before process anonymity.

3 Process Anonymity
Definition For privacy reasons, some applications must hide the identities of the
processes involved. On another side, some applications (e.g., sensor networks)
are made up of tiny computing entities with no identifier. This defines the process
anonymous computing model, which is characterized by the fact that there is no
way for a computing entity (process) to be distinguished from another computing
entity. In such a model, not only do the processes have no identities, but they have
the same code and the same initialization of their local variables (otherwise, some
processes could be distinguished from the others). As for process symmetry, the
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Symmetric with equality mutual exclusion on top of shared read/write
registers was addressed and solved for the first time in 1989 [30]. This
article proves the following lower bounds results and presents associ-
ated optimal algorithms.

• n shared read/write registers are necessary and sufficient for
deadlock-free symmetric mutual exclusion for n processes.

• (2n − 1) shared read/write registers are necessary and suffi-
cient for memoryless starvation-free symmetric mutual exclusion.
“Starvation-free” that that any process that tries to enter the criti-
cal section eventually enters it. “Memoryless” means that a pro-
cess that tries to enter the critical section does not use any infor-
mation about its previous attempts to enter the critical section.

A symmetric with equality leader election algorithm, in which all the
processes are required to participate, was also presented in [30]. This
algorithm requires three shared read/write registers, which was conjec-
tured to be necessary. It has recently been shown that a single shared
read/write register is sufficient [14].

Sidebar 1: Symmetric mutual exclusion and election in RW systems

notion of SWMR is meaningless for process anonymity: any process may apply
any operation to any register.

Process-anonymous failure-free shared memory systems have been studied
in [5] where (assuming each process knows the number of processes n) a char-
acterization is presented of problems solvable despite process-anonymity. Re-
lations between the broadcast communication abstraction and reliable process-
anonymous shared memory systems have been studied in [3]. Anonymous failure-
prone shared-memory systems have been studied in [15], where an answer is pre-
sented to the question “What can be deterministically implemented in the process-
anonymous crash-prone model?” (deterministically means here that randomized
algorithms cannot be used).

Illustration: Obstruction-free binary consensus in asynchronous RW systems
To illustrate process-anonymity, let us consider the binary consensus problem in
an asynchronous read/write system in which any number of processes may crash.
Consensus is one of the most important problems of fault-tolerant distributed com-
puting. Similar to mutual exclusion which is at the core of centralized systems,
consensus is at the core of many crash-prone distributed computing problems [24].
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Process-anonymous systems have been studied since 1980 in the con-
text of message-passing systems in [2], where several impossibility re-
sults are established (e.g., the impossibility to deterministically elect a
leader). Characterizations of problems that can be solved in reliable
asynchronous message-passing systems despite process anonymity, can
be found in [6, 34]. Failure detectors suited to crash-prone asyn-
chronous process-anonymous systems have been introduced and inves-
tigated in [7, 8].

Sidebar 2: Process anonymity in message-passing systems

In this problem, each process proposes a value (operation propose()), and must
decide on a value. Binary means that only the values 0 and 1 can be proposed.
The operation propose() returns the value decided by the invoking process. The
following properties define consensus:

• Validity: If a process decides on a value, this value was proposed by a
process.

• Agreement: no two processes decide on different values.
• Termination (Wait-freedom): The invocation of propose() by a process that

does not crash terminates.

One of the most important results of distributed computing is the impossibility
to design a deterministic consensus algorithm satisfying the wait-freedom live-
ness property [16, 20] in the presence of asynchrony and process crashes (be the
communication medium message-passing [11], or RW registers [20]). This im-
possibility result, established in the context of non-anonymous processes, extends
trivially to process-anonymous systems. One way to circumvent this impossibil-
ity result is to weaken the termination property as follows (this property, called
obstruction-freedom, was introduced in [17]).

• Termination (Obstruction-freedom): If process p invokes propose() and all
other processes that have pending propose() operations pause during a long
enough period, then p terminates its operation.

The notion of “long enough” captures the fact that process p is the only process
that continues its execution until it returns from its invocation of propose().

Algorithm 2 described below is due to Rachid Guerraoui and Eric Ruppert [15].
It is a process-anonymous binary consensus in which the processes communicate
through MWMR registers, namely a two-dimensional array SM[0..1, 1..] whose
second dimension is unbounded. Each register SM[x, y] is initialized to the de-
fault value down, and it can then take the value up. SM[x, y] can be seen as a flag
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raised forever by a process when some condition is satisfied. Process p locally
manages a current estimate of the decision value estp ∈ {0, 1}, the opposite value
denoted oppositep, and an iteration number kp.

operation propose(v) is % invoked by process p
(1) estp ← v; kp ← 0;
(2) repeat
(3) kp ← kp + 1; oppositep ← 1 − estp;
(4) if (SM[oppositep, kp] = down)
(5) then SM[estp, kp]← up;
(6) if (kp > 1) ∧ (SM[oppositep, kp − 1] = down) then return(estp) end if
(7) else estp ← oppositep

(8) end if
(9) end repeat.

Algorithm 2: Obstruction-free binary consensus in RW systems [15]

This algorithm can be seen as running a competition between two teams of
processes, the team of the processes that champion 0, and the team of the pro-
cesses that champion 1. Process p first progresses to its next iteration (line 3).
Iteration numbers k can be seen as defining a sequence of rounds executed asyn-
chronously by the processes. Hence, the state of the flags SM[0, k] and SM[1, k]
(which are up or down) describes the state of the competition at round k. When
process p enters round k, there are two cases.

• If the flag associated with this round s (kp) and the other value (oppositep)
is up (i.e., the predicate of line 4 is not satisfied), p changes its mind passing
from the group of processes that champion estp to the group of processes
that champion oppositep (line 7). It then proceeds to the next round.

• If the flag associated with this round and the other value is down (the pred-
icate of line 4 is then satisfied), maybe estp can be decided. To this end,
p indicates first that estp is competing to be the decided value by raising
the round kp flag SM[estp, kp] (line 5). The decision involves the two last
rounds, namely (kp − 1) and kp, attained by p (hence, the sub-predicate kp >
1 at line 6). If p sees both the flags measuring the progress of oppositep

equal to down at round (kp − 1) and round kp (predicate SM[oppositep, kp]
at line 4, and predicate SM[oppositep, kp − 1] at line 6), oppositep is de-
feated, and p consequently decides estp.

To show this is correct, let us consider the smallest round k during which
a process decides. Moreover, let pi be a process that decides during this
round, v the value it decides, and τ the time at which p reads SM[1− v, kp −
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1] before deciding (line 6 of round k). As p decides, at time τ we have
SM[1 − v, kp − 1] = down. This means that, before time τ, no process
changed its mind from v to 1 − v at line 6. The rest of the proof consists in
showing that no process p j started round k before time τ with est j = 1 − v.
A proof of this algorithm ensures the consensus is given in [15].

4 Memory Anonymity
Definition Control (processes) and data (memory) are the two pillars of com-
puting. So, while anonymity can be applied to processes, what is the meaning of
“memory anonymity”? It means that different processes can have different names
for the same register. Let the shared memory be made up of m ≥ 1 atomic registers
AM[1..m]. While in a non-anonymous memory AM[x] denotes the same register
for all the processes, in an anonymous memory AM[x] can denote some register
for process p and a different register for another process q. So, there is an ad-
dressing disagreement on the names used by the processes to access the registers.
More precisely, an anonymous memory AM[1..m] is such that:

• For each process p an adversary defined a permutation fp() over the set
{1, 2, · · · ,m}, such that when p uses the address AM[x], it actually accesses
AM[ fp(x)],

• No process knows the permutations, and
• All the registers are initialized to the same default value denoted ⊥.

The notion of anonymous shared memory has been recently introduced in [32].
The work in [32] was inspired by Michael O. Rabin’s paper on solving the choice
coordination problem [23].

An example of anonymous memory is presented in Table 1. To make apparent
the fact that AM[x] can have a different meaning for different processes, we write
AMp[x] when process p invokes AM[x].

identifiers for an identifiers identifiers
external observer for process p for process q

AM[1] AMp[2] AMq[3]
AM[2] AMp[3] AMq[1]
AM[3] AMp[1] AMq[2]

permutation fp() : [2, 3, 1] fq() : [3, 1, 2]

Table 1: An illustration of an anonymous memory model
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Motivating anonymous shared memory Anonymous shared memory have two
main motivations. The first is related to the basics of computing, namely, com-
putability and complexity lower/upper bounds. Increasing our knowledge of what
can (or cannot) be done in the context of both anonymous processes and anony-
mous memories, and providing associated necessary and sufficient conditions,
helps us determine the weakest system assumptions under which the fundamental
election problem can be solved.

The second motivation is application-oriented. In [25, 26], it is shown how the
process of genome-wide epigenetic modifications, which allows cells to utilize
the DNA, can be modeled as an anonymous shared memory system where, in
addition to the shared memory, also the processes (that is, proteins modifiers)
are anonymous. Epigenetic refers in part to post-translational modifications of
the histone proteins on which the DNA is wrapped. Such modifications play an
important role in the regulation of gene expression.

The authors model histone modifiers (which are a specific type of proteins) as
two different types of writer processors and two different types of eraser proces-
sors that communicate by accessing an anonymous shared memory array which
corresponds to a stretch of DNA, and for such a setting formally define the epige-
netic consensus problem.

Thus, anonymous shared memories are useful in biologically inspired dis-
tributed systems [21, 22], and mastering fundamental distributed computing prob-
lems in such an adversarial context could reveal to be important from an appli-
cation point of view. The similarities and differences between distributed com-
putations in biological and computational (shared-memory and message-passing)
systems are explored in [21, 22].

The RMW communication model In addition to the basic RW communica-
tion model used previously, we also consider a second communication model de-
noted RMW (Read-Modify-Write). This model is the RW communication model
enriched with the operation Compare&Swap(), which is an atomic conditional
write. More precisely, when process p invokes Compare&Swap(AMp[x], old, new),
where old and new are two values, it atomically assigns the value new to AMp[x]
and returns true if AMp[x] = old. Otherwise, AMp[x] is not modified, and the
value false is returned.

Necessary and sufficient conditions for mutual exclusion and election in sym-
metric processes and anonymous memory systems Considering a failure-free
system where processes are not anonymous, but the memory is anonymous, the
following necessary and sufficient conditions relate the number n of processes
and the size m of the anonymous memory to solve two classical problems that are
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mutual exclusion and election. These conditions capture the minimal information
about the pair 〈n,m〉 needed to break the symmetry that allows these problems to
be solved despite memory anonymity. Let M(n) be the set of the positive integers
which are relatively prime with the integers 2, . . . , n, i.e., M(n) = {m : ∀ ` ∈
{2, ..., n} : gcd(`,m) = 1}, and let M′(n) = M(n) \ {1}.

• Mutual exclusion can be solved by a symmetric algorithm in a system made
up of n (non-anonymous) processes communicating through an anonymous
memory of size m accessed by RMW (resp. RW) operations if and only if
m ∈ M(n) (resp. m ∈ M′(n)), m ∈ M(n) (resp. m ∈ M′(n)). The upper
bound was established in [1] and the lower bound in [32].

• Leader election can be solved by a symmetric algorithm, in which all the
processes are required to participate, in the systems that consist of of n (non-
anonymous) processes communicating through an anonymous memory of
size m accessed by RMW or RW operations if and only if gcd(m, n) = 1
[14].

Let us observe that while the RMW operations allow mutual exclusion to be
solved in more cases than the RW operations alone, this is no longer true for leader
election. Let us also observe that while the conditions m ∈ M(n) and m ∈ M′(n)
are at the heart of their proofs, they do not appear explicitly in the algorithms.

Illustration: Symmetric processes anonymous memory deadlock-free mutex
in RMW systems Algorithm 3 (from [1]) is a symmetric with equality anony-
mous memory deadlock-free mutual exclusion algorithm. It is based on RMW
communication operations and assumes m ∈ M′(n). The registers of the memory
are initialized to ⊥, and p denotes the identifier of the process that invokes the
acquire() or release() operation. Let a register be free if it contains ⊥. We say
that a register AMp[x] is owned by process p if AMp[x] = p.

When it invokes acquire(), process p enters a repeat loop in which it first
tries to own as many registers as possible by writing its identity in as many free
registers as possible (line 2). Then p a reads all the registers (line 3) and computes
how many registers –from its local and asynchronous point of view– contains
the identity that appears the most frequently (most_presentp, line 4) and how
many registers it owns (ownedp, line 5). If ownedp < most_presentp, process
p momentarily withdraws from the competition, resetting to ⊥ the registers it
owns (line 7), until it sees all registers equal to ⊥ (lines 8-10). If ownedp ≥

most_presentp, continues competing until it owns a majority of registers (line 12).
When this occurs, p enters the critical section. When it invokes release() process
p resets all the registers it owns to their initial value (line 13. A proof of this
algorithm can be found in [1].
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operation acquire() is
(1) repeat
(2) for each x ∈ {1, ...,m} do Compare&Swap(AMp[x],⊥, p) end for;
(3) for each x ∈ {1, ...,m} do viewp[x]← AMp[x] end for;
(4) most_presentp ←

maximum number of times the same non-⊥ value appears in viewp;
(5) ownedp ← (|{x ∈ {1, . . . ,m} : viewp[x] = p}|);
(6) if ownedp < most_presentp then
(7) for each x ∈ {1, ...,m} do

if (viewp[x] = p) then AMp[x]← ⊥ end if end for;
(8) repeat
(9) for each x ∈ {1, ...,m} do viewp[x]← AMp[x] end for
(10) until ∀ x ∈ {1, . . . ,m} : viewp[x] = ⊥ end repeat
(11) end if
(12) until ownedp > m/2 end repeat.

operation release() is
(13) for each x ∈ {1, ...,m} do Compare&Swap(AMp[x], p,⊥) end for.

Algorithm 3: Symmetric mem.-anony. deadlock-free mutex in RMW systems [1]

It is interesting to note that it is not known whether a symmetric memory-
anonymous starvation-free mutual exclusion exists. This constitutes a challenging
research problem.
Illustration: Symmetric processes memory-anonymous consensus As far as
consensus is concerned, a process symmetry with equality obstruction-free con-
sensus algorithm for n ≥ 1 and m ≥ 2n − 1 anonymous RW registers is presented
in [32].
Illustration: Symmetric processes memory-anonymous election A symmet-
ric algorithm electing a leader in a system where the processes communicate
through RW registers is described in [14]. As shown in [13], such an algorithm can
be used to de-anonymize an anonymous memory. This election algorithm requires
that all the processes participate in the algorithm. It assumes that gcd(m, n) = 1,
which is shown to be necessary and sufficient for the election of a single leader. If
up to d leaders can be elected the condition becomes gcd(m, n) ≤ d (the number
of elected leaders is then ` such that 1 ≤ ` ≤ d).
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5 Full Anonymity
The ultimate question is now: Are there problems that can be solved when both
the processes and the memory are anonymous?

An illustration: Consensus in the RW model As shown in [28], it appears that
it is possible to solve obstruction-free consensus in a fully anonymous crash-prone
system made up of n = 2 processes and m ≥ 3 anonymous registers, as shown by
Algorithm 4.

The anonymous memory is made up of m ≥ 3 MWMR atomic registers
AM[1..m]. Each anonymous process p manages a local array viewp[1..m] which
will contain a local copy of the anonymous memory, a local variable kk that is an
index to address the entries of viewp[1..m], and a local estimate of the decision
value estp.

operation propose(v) is % invoked by anonymous process p
(1) estp ← v;
(2) repeat
(3) for each kp ∈ {1, ...,m} do viewp[kp]← AMp[kp] end for;
(4) if (∃ w appearing in a majority of entries of viewp[1..m])

then estp ← w end if;
(5) kp ← arbitrary index j such that viewp[kp] , estp if any, otherwise 0;
(6) if (kp , 0) then AMp[kp]← estp end if;
(7) until viewp[1] = viewp[2] = · · · = viewp[m] = estp) end repeat;
(8) return(estp).

Algorithm 4: Fully anony. obst.-free consensus for 2-process RW systems [28]

When process p invokes propose(v), it first deposits v in estp (line 1), and
enters a repeat loop in which it first scans the anonymous registers (line 3). If
it sees a majority value w, it adopts w as its new estimate of the decision value
(line 4), and writes it in an anonymous register that storing a different value from
w (line 5-6). The process p repeats the previous statements until, after scanning
the anonymous memory, all its registers contain the same estimate value, which is
then decided. A proof of this algorithm is given in [28].

While obstruction-free consensus can be solved for two processes despite full
anonymity, crashes and asynchrony, neither an algorithm nor a necessary and suf-
ficient condition are known for the case n > 2. This constitutes a challenging
research problem.

It is interesting to note that, while it is possible to solve binary consensus
for two processes in a fully anonymous crash-prone system using only 3-valued
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registers, this is not possible to do so using only 2-valued registers (i.e., bits). It
was recently proved in [33] that there is no obstruction-free consensus algorithm
for two non-anonymous processes using only anonymous bits. Thus, as shown
in [33], it follows that anonymous bits are strictly weaker than anonymous (and
hence also non-anonymous) multi-valued registers.

Illustration: Consensus in the RMW model As consensus with the wait-
freedom liveness property cannot be solved in a non-anonymous RW system [11,
20], it cannot be solved either in an anonymous asynchronous crash-prone RW
system. This impossibility no longer holds in a crash-prone fully anonymous
system where the processes communicate with RMW operations, as shown by
Algorithm 5 [28].

operation propose(v) is % invoked by process p
(1) for each k ∈ {1, 2, ...,m} do Compare&Swap(AMp[k],⊥, v) end for;
(2) max← max(AMp[1], ...AMp[m]);
(3) return(max).

Algorithm 5: Fully anony. obst.-free consensus in RMW systems [28]

This very simple algorithm assumes that the proposed values can be totally
ordered and works for any value of n and m. All the registers of the anonymous
memory AM[1..m] are initialized to ⊥. The algorithm is based on a “first write,
then read” access pattern. Each process p strives to write the value v it proposes
in any order in all the registers. Then it returns the greatest value it reads from the
anonymous memory (max is a local variable).

Assuming at least one process does not crash, there is a finite time after which
(whatever the concurrency/failures pattern), each anonymous register contains a
non-⊥ value. Moreover, a greater value cannot erase a smaller value already writ-
ten in a register. This guarantees that a single value can be decided.

Mutex and election in a fully anonymous system Recent results concern mu-
tex and election in fully anonymous system. On the negative side, none of these
problems can solved in systems where the anonymous processes communicate
through RW registers. Differently they can be solved when communication is
through RMW registers The reader will consult [29] for mutex and [18] for elec-
tion. (In the election problem where processes are anonymous it is required that
when a processes terminates the algorithm it knows if it or not a leader.).
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6 Conclusion
The purpose of this article was to be a simple introductory presentation of the no-
tions of process symmetry, process anonymity, and memory anonymity in asyn-
chronous systems where communication is through shared memory. To this end,
two fundamental (and practically relevant) problems encountered in concurrent
and distributed systems have been considered [24]: mutual exclusion in failure-
free systems and consensus in crash-prone systems. The following tables sum-
marize what can be done in this context. They also clearly express the additional
computability power provided by the RMW communication model with respect
to the RW communication model.

Mutual exclusion communication nec. & suf. condition reference
process symmetry (with eq.) RW n > 1, m ≥ n [30]

memory anonymity RW n > 1, m ∈ M′(n) [1] UB, [32] LB
memory anonymity RMW n > 1, m ∈ M(n) [1]

full anonymity RW impossible [29]
full anonymity RMW n > 1, m ∈ M(n) [29]

Table 2: Deadlock-free mutual exclusion (asynchronous failure-free systems)

Table 2 concerns mutual exclusion (LB and UB stand for lower bound and
upper bound, respectively). Table 3 concerns consensus. Let us remember that n
is the number of processes, m is the size of the memory, M(n) = {m : ∀ ` ∈
{2, ..., n} : gcd(`,m) = 1}, and M′(n) = M(n) \ {1}. Also, in the tables, when
we write “memory anonymity”, we mean that the memory is anonymous and the
processes are symmetric.

Consensus comm. progress property sufficient condition reference
process anonymity RW obstruction-freedom n > 1, m = ∞ [15]
memory anonymity RW obstruction-freedom n > 1, m ≥ 2n − 1 [32]

full anonymity RW obstruction-freedom n = 2, m ≥ 3 [28]
full anonymity RMW wait-freedom n > 1, m ≥ 1 [28]

Table 3: Consensus (asynchronous crash-prone systems)
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Abstract

In every state of a quantum particle, Wigner’s quasidistribution is the
unique quasidistribution on the phase space with the correct marginal distri-
butions for position, momentum, and all their linear combinations.

The only difference between a probabilistic classical world and the
equations of the quantum world is that somehow or other it appears as if

the probabilities would have to go negative . . . Okay, that’s the fundamental
problem. I don’t know the answer to it, . . . if I try my best to make the

equations look as near as possible to what would be imitable by a classical
probabilistic computer, I get into trouble.

— Richard Feynman,
Simulating Physics with Computers, 1982 [7, p. 480]
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1 Introduction

The story of negative probabilities starts with the 1932 article [13] by Eugene
Wigner. In quantum mechanics, probability distributions of the position and mo-
mentum of a particle make physical sense but their joint distribution doesn’t. Yet
Wigner exhibited such a joint distribution. It had some desired properties. How-
ever, some of its values were negative. “But of course,” wrote Wigner, “this must
not hinder the use of it in calculations.”

In 1987, Jacqueline and Pierre Bertrand proposed “a new derivation of
Wigner’s function based on the property of positivity of its integrals along straight
lines in phase space” [1]. In 2014, in this Bulletin [2], we sketched a mathematical
proof of a characterization of Wigner’s quasidistribution as the unique quasidis-
tribution on the phase space R2 that yields the correct marginal distributions not
only for position and momentum but for all their linear combinations. In 2021,
that sketch was developed into a complete proof that the characterization is valid
in “nice” states, namely the states given by smooth functions with compact sup-
port [3].

In this paper, we prove that the characterization is valid in all states, with no
exception. Furthermore, the new proof is simpler, conceptually and technically. In
particular, the uniqueness is derived from a purely measure-theoretic observation
that we prove in §3. The simplicity of the new proof gave us the idea to present
it in this Bulletin. We made an effort to give our readers a comprehensible and
maybe even enjoyable introduction to some foundational issues of science.

Quisani1: What are negative probabilities?

Authors: The axiomatic definition of probabilities readily generalizes to
quasiprobabilities, or signed probabilities, where negative values are allowed [3].
Basically, you drop the requirement that probabilities take values in the real seg-
ment r0, 1s and allow arbitrary real values.

Q: But what is the intuition behind negative probabilities? An urn cannot have
�3 red balls.

A: We don’t know. At this point, we find it more fruitful to think about what
quasiprobabilities are good for.

1A former student of the second author.
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Q: You once compared the generalization of probabilities to quasiprobabilities
with the generalization of real numbers to complex ones. Complex numbers be-
came indispensable, e.g., in solving algebraic equations. Are there important the-
oretical problems that have been solved using negative probabilities?

A: We don’t know such problems, but we expect that quasiprobabilities will be
used to solve theoretical problems. They are already used in practice.

Q: Yes, you mentioned quantum tomography in our 2014 conversation [2]. Being
a software engineer, I realize the paramount value of practical applications. But
today I would like you to address basic questions. Some of these basic questions
you seemed to dodge during our 2014 conversation. For example, you spoke
about marginal distributions not only for the position and momentum but also
for all their linear combinations. But what are marginal distributions for linear
combinations? You never defined them properly.

A: Addressing basic questions is fine, and we will define those marginal distribu-
tions. We will try to explain things the best we can.

Q: Do explain. But please take into account that, in the meantime, I was busy with
computer engineering. I didn’t have time to study quantum mechanics or measure
theory.

A: Understood.

2 Preliminaries

2.1 Measures

We recall some basic definitions of measure theory.

A measurable space M is a pair pΩ,Σq where Ω is a nonempty set and Σ a
σ-algebra of subsets of Ω. In other words, Σ is a Boolean algebra closed under
countable unions. Members of Σ are measurable sets of M.

Example: The real line R with the collection of real Borel sets, which is the least
σ-algebra containing every open real interval pa, bq. �
Example: The real plane R2 with the collection of Borel subsets of R2, which is
the least σ-algebra containing every open rectangle pa, bq � pc, dq. �
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A measure µ on a nonempty set Ω is a function such that

1. the domain of µ is a σ-algebra of subsets of Ω known as µ-measurable sets,

2. µ assigns a real number or 8 to each µ-measurable set, and

3. µ is countably additive which means that, for all pairwise disjoint measur-
able sets sn, we have

µ
� 8¤

n�1

sn

	
�

8̧

n�1

µpsnq.

Since the union
�

sn is independent of the order of the sets sn, so is the sum°
µpsnq. That implies absolute convergence by a well-known theorem of

Riemann.

If µ does not take value 8, then µ is finite. If µ has no negative values then it is
nonnegative. Every measure we consider in this paper is either finite or nonnega-
tive.

Example: The Lebesgue measure on Euclidean spaces Rk and finite-dimensional
Hilbert spaces Ck, called length in the case of R, called area in the cases of R2

and C, and called volume in the case of R3 and in general. A careful treatment of
the Lebesgue measure, with all the necessary proofs, is somewhat involved [12,
Chapter 11], but the definition itself is simple, and we give a version of it on the
example of the interval p0, 1q in R.

An open set O in p0, 1q is the disjoint union of its maximal intervals; define
the length of O to be the sum of the lengths of its maximal intervals. For any set
s � p0, 1q, the outer measure λ�psq of s is the infimum of the lengths of the open
sets O that cover s. The inner measure λ�psq is defined as 1 � λ�pp0, 1q � sq.

If λ�psq � λ�psq, then s is Lebesgue measurable and the outer (and also the
inner) measure λ�psq is called the Lebesgue measure λpsq.

The Lebesgue measure on R is defined by applying this construction to inter-
vals pi, i � 1q for all integers i and adding the resulting measures if all the pieces
are measurable.

Lemma 1. If µ, ν are finite measures on a measurable space M, then their differ-
ence pµ� νqpsq � µpsq � νpsq is a finite measure on M.
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Proof. If measurable sets s1, s2, . . . are pairwise disjoint, then

pµ� νq
¤

n

sn � µ
¤

n

sn � ν
¤

n

sn �
¸

n

µpsnq �
¸

n

νpsnq

�
¸

n

pµpsnq � νpsnqq �
¸

n

pµ� νqpsnq.

The third equality holds because of absolute convergence. �

A function f : Ω1 Ñ Ω2 from a measurable space M1 � pΩ1,Σ1q to a mea-
surable space M2 � pΩ2,Σ2q is measurable for M1,M2 if the f -preimage of every
measurable set in M2 is measurable in M1. If M2 is the real line R or complex line
C endowed with the σ-algebra of Borel sets, then f is a measurable function on
M1. �

2.2 L2pRq, and test functions

If f is a measurable function on a Euclidean space Rk and µ is a nonnegative
measure on Rk, then »

f dµ �
»
Rk

f dµ �
»
Rk

f pxqdµpxq

means the Lebesgue integral of f with respect to measure µ. For real-valued f ,
the integral is defined by approximating f with so-called simple functions, i.e.
functions gpxq taking only finitely many values vi, each on a measurable set si.
The integral

³
gpxqdµpxq is simply

°
i viµpsiq. If the supremum of the integrals of

simple functions gpxq ¤ f pxq for all x coincides with the infimum of the integrals
of simple functions gpxq ¥ f pxq for all x, then their common value is the integral³

f dµ, in which case f is integrable with respect to measure µ. See details in
Chapter 11 of [12].

For C-valued functions f , just integrate the real and imaginary parts sepa-
rately. It is easy to check that every bounded continuous function is integrable
with respect to any finite measure µ.

If s is a measurable subset of Rk, we let χspxq be 1 for x P s and 0 otherwise.
Then

³
s f pxq dµpxq means

³
Rk χspxq f pxq dµpxq.

Proviso. By default, Euclidean spaces Rk come with the Lebesgue measure. �
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L2pRq is the Hilbert space of square integrable functions ψ : R Ñ C with the

inner product xψ |ϕy given by the (Lebesgue) integral
»
R

ψ�pxqϕpxq dx.

Two L2pRq functions are considered equivalent if they differ only on a set of
measure zero. Strictly speaking, L2pRq vectors are the equivalence classes. It is
more convenient though to work with individual functions modulo the equivalence
relation.

The forward Fourier transform F sends an L2pRq function ψpxq to

pψpξq � 1?
2π

»
ψpxq e�iξx dx

provided that the integral exists. Similarly, the inverse Fourier transform F �1

sends a function ϕpξq to

qϕpxq � 1?
2π

»
ϕpξqeiξx dξ,

Mathematically x and ξ are real variables. In applications, the dimension of ξ is
the inverse of that of x so that ξx is a pure number. Here and in the rest of the
paper, integrals are by default integrals over R.

The forward and inverse Fourier transforms are defined also for functions of
several variables. In particular, provided the integrals exist, we have

pf pξ, ηq � 1
2π

¼
f px, yq e�ipξx�ηyq dx dy,

qgpx, yq � 1
2π

¼
gpξ, ηqeipξx�ηyq dξ dη.

If µ is a finite measure on R, its Fourier transform pµ is an RÑ C function:

pµpζq � 1?
2π

»
R

e�ixζdµpζq.

Similarly, if ν is a finite measure on R2, its Fourier transform pν is an R2 Ñ C

function: pνpξ, ηq � 1
2π

»
R2

e�ipξx�ηyq dνpx, yq.

An L2pRq function ψpxq is a Schwartz function if it is infinitely differentiable
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and if it and its derivatives rapidly approach zero when x Ñ �8 in the sense that,
for all nonnegative integers j, k, we have

lim
xÑ�8

����x j d
kψpxq
dxk

���� � 0.

Schwartz functions are also known as test functions.

The Fourier transform of a test function is a test function. By the Plancherel
theorem [9, Theorem A.19], the Fourier transform F is a unitary operator on the
test functions. But these functions are dense in L2pRq. By continuity, F is (or
rather extends to) a unitary operator on the whole L2pRq.

2.3 Distributions, and exponential operators

Dirac introduced a “function” δpxq which is identically zero for all x � 0 while
δp0q is infinite, so infinite that

³
R
δpxqdx � 1. This makes no sense. δ is not a

function in the usual sense. But it does make sense in the context of integrals of the
form

³
R

f pxqδpxqdx which should be f p0q, at least for well behaved functions f .
Laurent Schwartz suggested viewing Dirac’s δ and similar “generalized functions”
as linear functionals on the space of test functions. Thus, Dirac’s δ-function would
be thought of as the linear functional on test functions f :

f ÞÑ
»

f pxqδpxqdx � f p0q. (1)

If 0 � c P R, then

δpxq � 1
|c| δ

� x
c

	
. (2)

Indeed, if we use the substitution y � x{c and keep integrating from �8 to 8,
then we have »

f pxq 1
|c| δ

� x
c

	
dx �

»
f pcyqδpyqdy � f p0q.

Schwartz developed these ideas into a theory of distributions, i.e. continuous lin-
ear real-valued functionals on the space of test functions (with the suitable topol-
ogy). Since then distributions play a major role in the theory of differential equa-
tions.
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Some divergent integrals, e.g.
³

eitxdt, can be seen as distributions in that sense.
In fact, as distributions, »

eitxdt � 2πδpxq. (3)

Indeed, »
dx f pxq

»
eitxdt �

?
2π
»

dt
1?
2π

»
f pxqeitxdx

�
?

2π
» qf ptq dt

� 2π � 1?
2π

» qf ptqe�it0dt � 2π f p0q.

The exponential eA of an operator A on L2pRq is the operator

eA �
8̧

k�0

Ak

k!
� I � A � 1

2
A2 � 1

6
A3 � . . . (4)

provided that series converges.

If pXψqpxq � x � ψpxq, then

peXψqpxq �
8̧

k�0

1
k!
pXkψqpxq � ψ �

8̧

k�0

1
k!

xk � ψ � ex.

If D is the derivative operator d
dx and c a real number, then ecDψpxq � ψpx � cq.

Indeed,

ecDψpxq �
8̧

k�0

pcDqkψpxq
k!

�
8̧

k�0

Dk f pxq
k!

ck

� ψpxq � ψ1pxq
1!

c � ψ2pxq
2!

c2 � ψ3pxq
3!

c3 � . . .

which is the Taylor series of ψpx � cq around point x; think of c as ∆x.

Q: I worry about convergence of the Taylor series.

A: The Taylor series certainly converges on analytic functions, in particular on
Gaussian functions

exp
�
�px � aq2

2b2



.
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The linear combinations of Gaussian functions are dense in L2pRq, and there is a
unique continuous extension of ecD to L2, namely the shift f pxq ÞÑ f px � cq.

3 Pushforward measures, and uniqueness theorem

We recall the definition of pushforward measures and then prove a measure-
theoretic uniqueness theorem used in the proof of our main theorem in §9.

Consider measurable spaces M1 � pΩ1,Σ1q and M2 � pΩ2,Σ2q. Let µ be a
measure on M1 and let a function f : Σ1 Ñ Σ2 be measurable for M1,M2.

Definition 2 (§3.6 in [5]). The pushforward of µ along f , a.k.a. the f -pushforward
of µ or the f -image of µ, is the measure

f�µpeq � µ
�

f�1peq�
on M2. �

It is easy to check that ν � f�µ is indeed a measure on M2.

Proposition 3. With notation as above, for every measurable function g : Ω2 Ñ C
on M2, if gp f pxqq is µ-integrable then g is ν-integrable and»

M2

gpyqdνpyq �
»

M1

gp f pxqqdµpxq.

For real-valued f , Proposition 3 is a modification of Theorem 3.6.1 in book
[5] as described in the comments following the proof of theorem in the book. The
generalization to C-valued functions is straightforward.

Recall that, by default, real Euclidean spaces Rk are equipped with the
Lebesgue measure. Accordingly, measurable subsets of Rk are Lebesgue mea-
surable, and integrals are Lebesgue integrals.

Theorem 4 (Uniqueness). Let µ1, µ2 be finite Borel measures on R2. If pax �
byq�µ1 � pax � byq�µ2 for all a, b not both zero, then µ1 � µ2.

Proof. Let a, b range over pairs of reals not both zero. By Lemma 1, µ � µ1 � µ2

is a measure on R2. It suffices to prove that µ is the zero measure R2. Let νab �
pax � byq�µ.
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Every νab is the zero measure on R. Indeed, if s is a Borel subset s of R, let
S � tpx, yq : ax � by P su. We have

pax � byq�µpsq � µpS q � µ1pS q � µ2pS q
� pax � byq�µ1psq � pax � byq�µ2psq � 0.

We have.

pνabpζq �
»
R

eiζt dνabptq �
»
R2

eiζpax�byq dµpx, yq

�
»
R2

eipaζx�bζyq dµpx, yq,

where the second equality uses Proposition 3 with gptq � eiζt; the integrand
eiζpax�byq is a bounded continuous function and therefore is integrable with respect
to the (finite) measure µ.

Comparing this with the Fourier transform of µ,

pµpξ, ηq � »
R2

eipξx�ηyq dµpx, yq,

we get pµpaζ, bζq � pνabpζq.
Since every νab is the zero measure, every pνabpζq � 0 for all ζ. It follows that pµ is
the function zero.

By Proposition 3.8.6 in book [5], if two Borel measures on R2 have equal
Fourier transforms, then they coincide. Applying this to µ and the zero measure,
we conclude that µ is the zero measure. �

The theorem generalizes to higher dimensions, but we restrict our attention to
R2.

4 Marginal distributions

Traditionally, for a (signed) probability distribution of several variables, the
marginal (signed) distributions are defined only for single variables or subsets
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of the variables. We extend this definition to linear functions of the variables,
restricting attention to just two variables.

Let P be a quasiprobability distribution on real plane R2 with coordinate axes
x and y, and let pa, bq range over pairs of real numbers not both zero.

Definition 5. The pax � byq marginal of P is the pushforward measure (and in
fact quasidistribution) pax�byq�P of P along the function z � ax�bp : R2 Ñ R.
�

In particular, pxq�Ppsq � P
�

s � R�, and pyq�Ppsq � P
�
R� s

�
, so that pxq�P

and pyq�P are traditional marginals.

Now suppose that P is given by a density function f px, yq, so that Ppsq �´
s f px, yq dx dy for all measurable subsets s of R2. We show that in this case

every marginal pax � byq�P is given by a density function which will be denoted
pax � byq� f .

Lemma 6. For every pair pa, bq, the function

gpzq �

$''&''%
1
|b|
»

f
�

x,
1
b
pz � axq



dx if b � 0

1
|a|
»

f
� z

a
, y
	

dy otherwise

is the density function pax � byq� f .

Proof. We consider the case b � 0; the other case is similar (and a bit simpler). It
suffices to prove that pax� byq�Pru, vs �

³v
u gpzq dz on intervals ru, vs with u ¤ v.

We have
pax � byq�Pru, vs �

¼
u¤ax�by¤v

f px, yq dx dy.

Let z � ax � by, so that y � 1
bpz � axq. Change variables in the integral, from

x, y to x, z. The absolute value of the Jacobian determinant of this transformation
is 1

|b| , so we obtain

pax � byq�Pru, vs �
¼

u¤z¤v

1
|b| f

�
x,

1
b
pz � axq



dx dz

�
» v

u
dz
»
R

1
|b| f

�
x,

1
b
pz � axq



dx �

» v

u
gpzq dz. �
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Lemma 7. pax � byq�Ppu, vq � pacx � bcyq�Ppcu, cvq for every real c � 0 and
every open interval pu, vq of R.

Proof.

pax � byq�Ppu, vq � P tpx, yq : u   ax � by   vu
� P tpx, yq : cu   acx � bcy   cvu
� pacx � cbyq�Ppcu, cvq. �

Lemma 8 (Lemma 6.4 in [3]). For all real a, b not both zero and every function
g : RÑ R, the following claims are equivalent.

1. g is the density function pax � bpq� f .

2. pgpζq � ?
2π � pf paζ, bζq where pf and pg are (forward) Fourier transforms of

f and g respectively.

The computation that proves the lemma was essentially done in our proof of
the uniqueness theorem above.

5 Position, momentum, and their linear combina-
tions

Consider one particle moving in one dimension. A generalization to more parti-
cles in more dimensions is relatively straightforward.

In classical mechanics, the position x and momentum p of the particle deter-
mine its current state. The set of all possible classical states is the phase space of
the particle. In quantum mechanics, the state space of the particle is the Hilbert
space L2pRq.

Using Dirac’s bra-ket notation, we write |ψy for the vector given by function
ψ. Unit vectors |ψy represent states of the particle, and two unit vectors represent
the same state if and only if they differ by a scalar factor eiθ.

Q: How come a whole R Ñ C function is needed to represent just one quantum
state?
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A: Because, in quantum mechanics, a particle is also a wave. If it is in state |ψy,
then |ψpxq|2 is the probability density at x for finding the particle. xψ |ψy is the
total probability. Accordingly, xψ |ψy must be 1, and this is why unit vectors are
used to represent states.

In quantum mechanics, observable quantities are represented by Hermitian op-
erators on the state space. In particular, the position observable X and momentum
observable P are (represented by) operators

pXψqpxq � x � ψpxq,
pPψqpxq � �i~

dψ
dx

where ~ � h{2π is the reduced Planck constant; h is the (unreduced) Planck
constant. We will simplify notation by assuming (by proper choice of units) that
~ � 1.

Q: Functions Xψ and Pψ may fail to be square integrable.

A: Indeed, the operators X, P are undefined in some states.

Q: The formula for P looks mysterious to me. Is momentum also related to the
wave character of our particle?

A: Yes, it is. The momentum p corresponds to the wavelength λ � h{p (de
Broglie relation). So, if a particle had an exact value p of the momentum, its wave
function would be (up to a scalar factor)

ψpxq � e2πix{λ � eipx{~ � eipx,

which is an eigenfunction of P with eigenvalue p. (Yes, this ψ isn’t in our Hilbert
space. We’ll return to this point in §6.) P is designed to be the operator whose
eigenvalues are momenta, just as X is the operator whose eigenvalues (correspond-
ing to “eigenfunctions” δpx � qq) are positions q.

There is a simple mathematical connection between the two operators:
F PF �1 � X where F is the Fourier transform. It suffices to verify this equality
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on test functions.

F Ppψqpξq �
»

Pψpxqe�iξxdx �
»
�i

dψpxq
dx

e�iξxdx

� i
»
ψpxqde�iξx

dx
dx � ξ

»
ψpxqe�iξxdx �

� ξ � F pψqpξq � XF pψqpξq.

The third equality uses integration by parts; the extra terms disappear because
e�iξx is bounded and the test function ψ approaches zero when the argument goes
to �8.

Q: The equality F PF �1 � X makes me worry about the dimensions. You men-
tioned earlier that, when x is a length, as here, then the variable ξ of the Fourier
transform is a reciprocal length. But here the variable of the Fourier transform
seems to be a momentum. How do you reconcile these dimensions?

A: By convention, we’re using units where ~ � 1, and the dimension of ~ is
momentum times length, so our convention makes reciprocal length the same as
momentum. Thus, our P is dimensionally correct.

6 Dirac’s kets

The spectral theory of self-adjoint operators in finite dimensional Hilbert spaces
is relatively simple. Suppose thatH is n-dimensional, and consider a self-adjoint
operator A on H . Since H is self-adjoint, all its eigenvalues are real. There
exists an orthonormal basis |1y, . . . , |ny forH composed of eigenvectors of A. Let
λ1, . . . , λn be the corresponding eigenvalues.

For simplicity of exposition, we assume that all eigenvalues λk are distinct (and
thus non-degenerate since the number of them equals the dimension of H). This
suffices for our purposes in this paper, and it allows us to label the eigenvectors
with the corresponding eigenvalues. We may write |λky instead of |ky.

It will be convenient, in the infinite dimensional case, to use an alternative
characterization of the “distinct eigenvalues” assumption. The operator A is called
cyclic if there is a vector |ψy inH such that the vectors

|ψy, A|ψy, A2|ψy, . . . , An�1|ψy
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span the whole spaceH ; such vector |ψy is A-cyclic.

Claim 9. A is cyclic if and only if the eigenvalues λ1, . . . , λn are all distinct.

Proof. If the values are distinct, then
°n

k�1 |ky is A-cyclic. If, on the other hand,
λi � λ j, then for any vector |ψy � °

ck|ky, all linear combinations of vectors
Al|ψy have coefficients of |iy and | jy in the same ratio ci : c j. Thus these linear
combinations fail to spanH . �

Think of H as the state space of a quantum system where unit vectors repre-
sent states of the system (and two unit vectors represent the same state if and only
if they are collinear). Then every state |ψy can be written as

|ψy �
¸

j

|λ jy xλ j |ψy (5)

where scalars xλ j |ψy are probability amplitudes of the wave function |ψy, so that
the corresponding probabilities are |xλ j |ψy|2. Accordingly,

A|ψy �
¸

j

A|λ jy xλ j |ψy �
¸

j

λ j|λ jy xλ j |ψy

and the expectation of A in a state |ψy is

xψ|A|ψy �
¸

j

λ jxψ | λ jy xλ j |ψy �
¸

j

λ j |xλ j |ψy|2 .

The infinite dimensional case is much more involved. Let A be a self-adjoint
operator on a infinite-dimensional space H . If you measure A, you still receive
some real number but it is not necessarily an eigenvalue. It is just an element of
the spectrum

σpAq � tλ : operator A � λI is not invertibleu

of A. Notice that the set of eigenvalues is

tλ : operator A � λI is not one-to-oneu .

In finite dimensions, any one-to-one linear operator is invertible, but this principle
fails in infinite dimensions.
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As in the finite dimensional case, we make the simplifying assumption that
the spectrum is simple in the sense that A is cyclic. That is, there is a vector |ψy,
called an A-cyclic vector, such that the vectors

|ψy, A|ψy, A2|ψy, . . .

are dense in whole Hilbert spaceH .

How to generalize the spectral theory of self-adjoint operators in the finite
dimensional case to the infinite dimensional case? Paul Dirac came up with an
elegant heuristic generalization [6] which works for operators like aX � bP on
L2pRq. We sketch Dirac’s generalization, restricting attention to the Hilbert space
L2pRq and to cyclic self-adjoint operators A on L2pRq with σpAq � R.

For each spectrum value r P R, there is a generalized eigenvector, in short
eigenket, |ry for A, so that A|ry � r|ry. As in the finite dimensional case, we take
advantage of the cyclicity assumption to label eigenkets |ry by the corresponding
spectrum value r.

Q: What do you mean by eigenvector being generalized?

A: That it does not necessarily belong to L2pRq.

Q: That is confusing. Give me an example.

A: If A is the momentum operator P, then |ry is the function x ÞÑ eirx{?2π.
Indeed,

P
�

eirx

?
2π



� �i

d
dx

eirx � r
�

eirx

?
2π



.

The finite-dimensional orthonormality requirement is replaced by δ-normality:

xs | ry � δpr � sq.

In the case of P, using (3) we have»
e�isx

?
2π

� eirx

?
2π

dx � 1
2π

»
eipr�sqxdx � δpr � sq.

The finite-dimensional expansion (5) with respect to the eigenvectors becomes
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the Dirac basis expansion:

|ψy �
»
|ry xr |ψy dr

where xr |ψy is the density of probability amplitude, so that the corresponding
probability density is

DAprq � |xr |ψy|2 . (6)

The probability distribution on R, given by the probability density function DAprq,
will be denoted PA.

We have A|ψy � ³
A|ry xr |ψy dr � ³

r|ry xr |ψy dr, and the expectation of A
in state |ψy is

xψ|A|ψy �
»

r |xr |ψy|2 dr. (7)

In the case A � P, the density of probability amplitude is

xr |ψy � 1?
2π
xeirx |ψpxqy � 1?

2π

»
e�irxψpxq dx � pψprq,

the probability density is
DPprq �

��pψprq��2 , (8)

and PP is the corresponding probability distribution.

Q: Is there mathematical justification of Dirac’s heuristic generalization?

A: The theory of rigged Hilbert spaces, see [4] for example, mathematically jus-
tifies the use of generalized eigenvectors2. The operators A are subject to some
constraints which are satisfied by the operators X, P and their linear combinations.
See §3 in [10] in this connection.

Q: It this “rigged” as in rigged elections? What witty guy came up with this term?

A: This is a translation of a Russian term3 meaning equipped or rigged as in
“rigging a ship for sailing.”

Q: Will you tell me more about rigged Hilbert spaces?

A: Rigged Hilbert spaces deserve a separate column article, but the basic idea

2An alternative justification is provided by the spectral theory of operators [9].
3îñíàùåííûé; see [8].
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is that a Hilbert space H is augmented with two additional spaces to obtain a
so-called Gelfand triple.

In our case, the triple is

Φ � L2pRq � Φ�

where Φ comprises test functions and Φ� comprises distributions. Recall that we
touched upon distributions in§2.3.

Q: What kind of distributions are the eigenkets |ry � eirx of P?

A: An antilinear functional

x f | ry � 1?
2π

»
f �pxqeirxdx

on test functions f [11].

Q: I am confused. Earlier, in §2.3, you said that distributions are linear, not anti-
linear, functionals.

A: Yes, the elements of Φ� are antilinear functionals serving as generalized kets
while distributions are linear functionals serving as generalized bras. In our case,
it is safe to ignore the distinction and call both of them distributions.

Q: Explain.

A: To see what goes on, consider the finite dimensional case. View elements of Cn

as column vectors, so the inner product xϕ |ψy is given by the matrix product ϕ: �ψ.
Thus ψ acts antilinearly on ϕ whereas ϕ acts linearly on ψ, but both are column
vectors in the same space Cn. The same entities serve as linear and antilinear
functionals.

From this point of view, an eigenket of an operator A : Cn Ñ Cn for the
eigenvalue λ is a column vector ψ such that A � ψ � λψ. An eigenbra is a column
vector ϕ such that ϕ: �A � λϕ:; equivalently, A: �ϕ � λ�ϕ. When A is self-adjoint
and its eigenvalues λ are therefore real, the eigenbras and eigenkets coincide.

The situation is similar in infinite dimensions, and the operators whose eigen-
kets and eigenbras we use are (essentially) self-adjoint. Thus we can safely use
the same entities as eigenkets and eigenbras.
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7 Linear combinations of position and momentum
operators

In this section, we apply Dirac’s machinery to linear combinations aX�bP of the
operators X and P where a, b are real numbers not both zero.

One can argue that, from physical considerations, the spectrum of every aX �
bP is R. This is supported by theory. Every operator aX � bP is self-adjoint4.
The spectrum of every self-adjoint operator consists of reals [9, Theorem 9.17].
Hence, for every aX� bP, the spectrum σpaX� bPq � R. Furthermore, for every
aX � bP, we will provide an eigenket |ry of aX � bP for every real r, so that
σpaX � bPq � R.

Lemma 10. Let Z � aX � bP where a, b are real numbers not both zero, let
0 � c P R, and let pu, vq be an interval in R. Then, in every state |ψy,

PrZ P pu, vqs � PrcZ P tcr : u   r   vus �
#

PrcZ P pcu, cvqs if c ¡ 0,

PrcZ P pcv, cuqs if c   0.

Q: This seems obvious. The two events are the same and so have the same prob-
ability.

A: Z is an observable, and the probabilities are determined by the rules of quantum
mechanics.

Q: But we can view Z also as a random variable by repeatedly measuring it in a
given state. It is gratifying that both views give the same result, isn’t it?

A: Agreed.

Proof. We consider the case c ¡ 0; the case c   0 is similar.

As we saw in the previous section, there is a δ-normal system x f pr, xq : r P Ry
where f pr, xq is an eigenket of Z for spectrum value r. Then

A
1?

c f p r
c , xq : r P R

E
is a δ-normal system for cZ. Indeed,

pcZq
�

1?
c

f
�r

c
, x
�
 � ?

c Z f
�r

c
, x
� � ?

c
r
c

f
�r

c
, x
� � r � 1?

c
f
�r

c
, x
�
,

4More exactly, aX � bP is essentially self-adjoint [9, Proposition 9.40], and every essentially
self-adjoint operator has a unique self-adjoint extension [9, Proposition 9.11].
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and, using the δ-normality of x f pr, xq : r P Ry and using (2), we haveA 1?
c

f
� s

c
, x
� ��� 1?

c
f
�r

c
, x
�E � 1

c
δ
� s

c
� r

c

	
� δpr � sq.

By (6), in a state |ψy, the probability density functions for Z and cZ are

|x f pr, xq |ψpxqy|2 and |x f pr{c, xq |ψpxqy|2

Using the substitution r � cs, we have

PrcZ P pcu, cvqs �
» cv

cu
dr
����»
R

dx
1?

c
f �pr

c
, xqψpxq

����2
�
» v

u
ds
����»
R

dx f �ps, xqψpxq
����2 � PrZ P pu, vqs. �

For every real r, the eigenket |ry of X for spectrum value r is the delta function
δpx � rq, which acts on test functions according to

f pxq ÞÑ x f | ry �
»

f �pxqδpx � rq dx � f �prq.

X|ry is the distribution that sends a test function f pxq to»
f �pxqxδpx � rq dx �

»
f �px � rqpx � rqδpxq dx

� r f �prq � rx f | ry.

Thus, X|ry � r|ry. In particular, σpXq � R. Furthermore, these eigenkets form a
δ-normal system:

xs | ry �
»
δpx � sqδpx � rq dx � δpr � sq.

The density of probability amplitude is xr |ψy � ³
δpx � rqψ dx � ψprq, the

probability density function is

DXprq � |ψprq|2 . (9)

and PX is the corresponding probability distribution.
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Next we consider a case Z � �cX�P. It is still a special case, but the general
case Z � aX� bP easily reduces to that special case; we return to this issue in the
next section.

The mapping defined by U|ψy � eicx2{2|ψy is a unitary operator on the test
functions:

xUψ |Uϕy � xψ|U:U|ϕy � xψ |ϕy.
We have UPU�1 � Z on test functions [3, §6]. Indeed,

�
UPU�1

�
ψ � eicx2{2 �

�
�i

d
dx

�
e�icx2{2ψ

�
 � �cxψ� i
dψ
dx

� �cXψ� Pψ � Zψ.

Accordingly, one may expect that U transforms generalized eigenvectors of P into
those of Z. This intuition happens to be correct.

For each real r, the distribution eirx�icx2{2 is a generalized eigenvector of Z for
r:

Zeirx�icx2{2 � p�cX � Pqeirx�icx2{2 � �cxeirx�icx2{2 � i
d
dx

eirx�icx2{2

� eirx�icx2{2�� cx � ipir � icxq� � reirx�icx2{2.

It follows that the spectrum of Z is R.

For each real r, let |ry be the eigenket 1?
2π

eirx�icx2{2 of Z for generalized eigen-
value r. These eigenkets form a δ-normal system:»

e�isx�icx2{2
?

2π
� eirx�icx2{2

?
2π

dx � 1
2π

»
eipr�sqxdx � δpr � sq.

Accordingly, the density of probability amplitude is

xr |ψy � 1?
2π
xeirx�icx2{2 |ψpxqy � 1?

2π

»
e�irx�icx2{2ψpxq dx,

the probability density is

DZprq � 1
2π

���xeirx�icx2{2 |ψpxqy
���2 , (10)

and the corresponding probability distribution is PZ.
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8 Wigner’s quasiprobability distribution

In every L2pRq state |ψy, Wigner’s quasiprobability PW is given by probability
density function

wpx, pq � 1
2π

»
R

ψ�px � γ~

2
qψpx � γ~

2
qeiγp dγ. (11)

The integral converges in every L2pRq state |ψy. According to Wigner, the x-
marginal and p-marginal of his distribution are the probability distributions for X
and P respectively [13].

Q: You don’t take advantage of using units where ~ � 1. I guess it doesn’t hurt to
keep ~ in this case.

A: Exactly.

Q: Is this obvious that the x-marginal and p-marginal of Wigner’s distribution are
the probability distributions for X and P ?

A: It is certainly easier to verify than the claim that an arbitrary pax�byq-marginal
of Wigner’s distribution is the probability distribution for aX � bY .

Lemma 11. In every state |ψy, pxq�PW � PX.

Proof. It suffices to prove that, in every state |ψy, the x-marginal x�w of Wigner’s
density is the density function |ψ|2. Since two density function coincide if they
are proportional, we may neglect constant factors.

By Lemma 6, up to constant factors, the x�w density function is

x�w �
»

wpx, pqdp � by Lemma 6» �»
ψ�px � γ~

2
qψpx � γ~

2
q eiγp dγ

�
dp �» �»

eiγpdp
�
ψ�px � γ~

2
qψpx � γ~

2
q dγ � by (3)»

δpγqψ�px � γ~

2
qψpx � γ~

2
q dγ � by (1)

ψ�pxqψpxq � |ψ|2 �
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Lemma 12. wpx, pq �
» pψpp � γ

2
q� pψpp � γ

2
q e�iγx dγ

up to a constant factor.

Proof. Ignoring constant factors and using the formula

ψpxq �
» pψpξq eiξx dξ

for the inverse Fourier transform, we get

wpx, pq �
»
ψpx � γ

2
q� ψpx � γ

2
q eiγp dγ

�
½ pψpξq� e�iξpx� γ

2 q pψpηq eiηpx� γ
2 q eiγp dξ dη dγ

�
¼ �

e�iγp ξ2� η
2�pqdγ

� pψpξq� pψpηq e�ixpξ�ηq dξ dη

�
¼ pψpξq� pψpηq e�ixpξ�ηq δpξ

2
� η

2
� pq dξ dη.

The δ function makes it easy to perform the integration with respect to η. Just
substitute 2p � ξ for η in the remaining factors.

wpx, pq �
» pψpξq� pψp2p � ξq e�ixp2ξ�2pq dξ.

Change variables in the integral to γ � 2ξ � 2p, so ξ becomes p � γ

2 .

wpx, pq �
» pψpp � γ

2
q� pψpp � γ

2
q e�iγx dγ. �

Corollary 13. The ppq-marginal of Wigner’s distribution is the probability distri-
bution PP for P.

The proof is similar to that of Lemma 11, except the formula of Lemma 12 is
used.

The generalization to arbitrary pax � bpq-marginals will be proved in §9. A
key role in that proof is played by the following lemma.

Lemma 14 (Lemma 6.6 in [3]). For all test functions ψ and real numbers α, β,
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not both zero,

xψ|e�ipαX�βPq|ψy � eiαβ~{2
»
ψ�pyqe�iαyψpy � β~q dy.

Actually, Lemma 6.6 in [3] speaks about states |ψy that are “nice” in the sense
that the function ψ is smooth and compactly supported. But the lemma and its
proof obviously remain valid for test functions ψ.

9 Characterization theorem

Theorem 15. In every state |ψy in L2pRq, Wigner’s quasidistribution PW is the
unique quasidistribution on R2 such that, for all real numbers a, b not both zero,
the marginal pax� bpq�PW is correct in the sense that it coincides with the prob-
ability distribution PZ of the observable Z � aX � bP.

Proof. The uniqueness follows from Theorem 4.

We need to prove the equality pax � bpq�PW � PZ for every pair of reals a, b
not both zero and in every state |ψy. By virtue of Lemmas 7 and 10, we restrict
attention to two cases:

1. a � 1 and b � 0, so that Z � X,

2. b � 1, so that Z � aX � P.

Case (1) is taken care of by Lemma 11. In the rest of the proof we consider
case (2). Even though b � 1, we sometimes write aX � bP and ax � bp anyway.

Fix an arbitrary real number a. We prove that, in every state,

pax � bpq�PW � pax � pq�PW � PZ. (12)

In every state |ψy, the quasidistribution PW is given by the probability density
function wpx, pq specified by formula (11). By Lemma 6, the marginal quasidis-
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tribution pax � pq�PW is given by quasiprobability density function

gprq �
»

wpx, r � axq dx

� 1
2π

¼
ψ�px � γ~

2
qψpx � γ~

2
q eiγpr�axq dγ dx.

The probability distribution PZ is given by the probability density function DZ of
Z specified in (10). To prove (12), it suffices to prove

gprq � DZprq. (13)

Both sides of (13) are continuous as functions of the state in the L2pRq metric.
By continuity, it suffices to prove that the equality (13) holds in every “nice” state
|ψy provided that the nice states are dense in L2pRq.

Theorem 6.2 in [3] does just that. In that theorem, a state |ψy is nice if ψ is
smooth and compactly supported. While Theorem 6.2 addresses both, the unique-
ness and the correctness aspects, the emphasis in its proof is on uniqueness, and
the correctness proof may be a bit confusing. We explain it here. Notice that
two density functions coincide if they are proportional. Accordingly, we ignore
constant factors in equations below.

Since (ignoring the factor 1{2π)

wpx, pq �
»
ψ�px � γ~

2
qψpx � γ~

2
q eiγp dγ,

its Fourier transform is

pwpα, βq �½
dx dp dγ ψ�px � γ~

2
qψpx � γ~

2
q eiγp e�iαx e�iβp.

Here p occurs only in two of the exponential factors, so the integration over p
produces »

dp eipγ�βqp � δpγ � βq.

The delta function now makes the integral over γ trivial; just substitute β for γ in
the integrand. Thus,

pwpα, βq � »
dxψ�px � β~

2
qψpx � β~

2
q e�iαx.
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Introducing a new integration variable y � x � β~

2 , we get

pwpα, βq � »
dyψ�pyqψpy � β~q e�iαy eiαβ~{2.

By Lemma 14, pwpα, βq � xψ|e�ipαX�βPq|ψy.
In particular, if Z is defined as aX � bP and if we substitute aζ and bζ for α and
β, we get pwpaζ, bζq � xψ|e�iζZ|ψy.
By Lemma 8, xψ|e�iζZ|ψy is the Fourier transform of the marginal gpzq � pax �
bpq�wpx, pq. But this same xψ|e�iζZ|ψy is also, up to a constant factor, the Fourier
transform of the density function DZ of Z in the state ψ. Indeed, by (4),

e�iζZ �
¸

k

1
k!
p�iζZqk,

and we restrict attention to test functions ψ, so that convergence is no problem.
We have

xψ|e�iζZ|ψy �
A
ψ
��� ¸

k

1
k!
p�iζZqk

���ψE �
¸

k

p�iζqk

k!
xψ|Zk|ψy

Now we use Dirac’s machinery. Let |ry be the eigenket 1?
2π

eirx�icx2{2 of Z for
spectrum value r. We have Z2|ry � Zpr|ryq � r2|ry and similarly for other powers
of Z. By the preceding computation, (7), and (10), we have

xψ|e�iζZ|ψy �
¸

k

p�iζqk

k!

»
rk|xr |ψy|2 dr �

» ¸
k

p�iζqk

k!
rk|xr |ψy|2 dr

�
»

e�iζr|xr |ψy|2 dr �
»

e�iζrDZprq dr,

as required. �
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Abstract

One of the central open questions in computational complexity theory is to connect
worst-case hardness of NP to average-case hardness of NP. This question is well known as
whether Heuristica is excluded from Impagliazzo’s five worlds. It is known that standard
proof techniques that relate worst-case and average-case complexities are incapable of
excluding Heuristica; thus, in order to make progress, we need to develop new proof
techniques.

Recently, new worst-case to average-case connections that cannot be proved by previous
proof techniques are established based on meta-complexity. Meta-complexity refers to the
computational complexity of problems that themselves ask complexity. In this article, we
present the emerging paradigm of “meta-computational average-case complexity,” i.e., a
new approach of analyzing average-case complexity via meta-complexity of time-bounded
Kolmogorov complexity.

1 Introduction
Traditionally, the complexity of a computational problem is measured in terms of worst-case
complexity; that is, the performance of an algorithm is measured with respect to the worst
input. However, it is often criticized that the worst-case complexity measure is too pessimistic:
the worst input might not be encountered in practice; thus, worst-case complexity may not
be relevant to “real-life” complexity. Moreover, some NP-complete problems, such as the
Hamiltonian path problem, can be solved efficiently with high probability when the input is
chosen randomly from natural distributions [GS87].

A better approach to measuring “real-life” complexity would be to use average-case complex-
ity. It is natural to assume that a real-life instance is generated by some efficiently computable
procedure. This motivates us to study the complexity of DistNP, i.e., the average complexity of
NP over instances generated by some randomized polynomial-time algorithms.

The theory of average-case complexity has two primary motivations. As mentioned above,
one is to understand the practical performance of algorithms. The other is that average-case
hardness of NP is the foundation for the security of cryptosystems: the existence of an average-
case hard problem in NP is necessary for most cryptographic primitives to be secure [IL89].
The relationship among P , NP, average-case hardness of NP, and cryptography was clearly
presented in the influential work of Impagliazzo [Imp95]. We review Impagliazzo’s five worlds
in Section 2 and explain the importance of studying average-case complexity of NP.
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Arguably, one of the most important open questions in the theory of average-case complexity
is to exclude Heuristica from Impagliazzo’s five worlds, i.e., to prove average-case hardness
of NP from worst-case hardness of NP. This question can be, for example, formally stated as
follows.

Open Question 1. Does P , NP imply DistNP * AvgP?

Here, the statement DistNP * AvgP means that there exists a pair of a problem L and a
polynomial-time samplable distributionD with respect to which there is no average-polynomial-
time algorithm that solves L. We review the basics of average-case complexity in Section 3,
following the excellent survey of Bogdanov and Trevisan [BT06a].

There are at least three reasons why it is difficult to resolve Open Question 1. Standard proof
techniques that connect worst-case complexity to average-case complexity, such as black-box
reductions [FF93; BT06b], hardness amplification procedures [Vio05b; Vio05a], and relativizing
proof techniques [Imp11; HN21], are shown to be incapable of resolving Open Question 1. (We
will explain the details of the limits of black-box reductions in Section 5.) To make progress on
the central problem, we need to develop new types of proof techniques that are not subject to
any of these technical barriers.

Recently, a new type of proof techniques that are not subject to some of the barriers are
developed. [Hir18] presented the first worst-case-to-average-case connection that goes beyond
the limits of black-box reductions. Building on this result, [Hir21a] showed the following
worst-case-to-average-case connections.

Theorem 2 ([Hir21a]).

1. If UP * DTIME(2O(n/ log n)), then DistNP * AvgP.

2. If PH * DTIME(2O(n/ log n)), then DistPH * AvgP.

3. If NP * DTIME
(
2O(n/ log n)

)
, then DistNP * AvgPP. Here, AvgPP stands for P-computable

average-polynomial-time, which interpolates P and AvgP; see Section 3 for a definition.

The first item of the worst-case-to-average-case connections of Theorem 2 cannot be proved
by neither black-box reductions [FF93; BT06b] nor hardness amplification procedures [Vio05a;
Vio05b]; any proof of Theorem 2 must simultaneously overcome the two barriers, i.e., the limits
of black-box reductions and the “impossibility” of hardness amplification procedures. This
is the reason why it took 35 years to find a proof of Theorem 2 since Levin [Lev86] laid the
foundation of average-case complexity.

The main goal of this article is to present a proof of the first and second items of Theorem 2
as well as technical tools developed in the proof. Our presentation follows recent alternative
proofs of [Hir21a], which are independently obtained by [Hir21b; GK22]. Along the way, we
put together several results that are scattered in several papers.

The reader may wonder where the time complexity 2O(n/ log n) comes from. It comes from
the fact that a polynomial p is a “(1/ε log n)-exponential function”1 for a small constant ε > 0
in the sense that the ε log n-iterated composition p(ε log n)(n) of p is at most 2n/ log n. How this
property is used in the proof will be explained in Section 8. In fact, the time complexity is shown
to be tight for relativizing proof techniques: Building on the work of Impagliazzo [Imp11],

1The name is an analogue of a half-exponential function, which is a function f such that f ( f (n)) ≤ 2n.
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Hirahara and Nanashima [HN21] showed that there is an oracle A such that DistPHA
⊆ AvgPA

and UPA
∩ coUPA * DTIME(2o(n/ log n))A, which indicates that the time complexity 2O(n/ log n)

achieved in Theorem 2 cannot be improved to 2o(n/ log n) using relativizing proof techniques.
We note, however, that the first and third items of Theorem 2 is not necessarily relativizing;
whether they can be relativized or not remains open,2 whereas the second item of Theorem 2
does relativize.

Given the quantitatively tight barrier, it is natural to wonder if one can achieve the time com-
plexity 2o(n/ log n). Chen, Hirahara, and Vafa [CHV22] achieved this in fine-grained complexity
settings. For example, they showed that nondeterministic linear time NTIME(n) cannot be solved

in quasi-linear time on average if UP * DTIME
(
2O(
√

n log n)
)
. The conclusion is weaker than

Theorem 2, but the worst-case hardness assumption is also significantly weakened. A high-level
idea of [CHV22] is that a quasi-linear function p(n) = Õ(n) is a “

√
log n/n-exponential function”

in the sense that p(
√

n/ log n)(n) ≤ 2O(
√

n log n).
The proof is based on meta-complexity of time-bounded Kolmogorov complexity. Meta-

complexity refers to the computational complexity of problems that themselves ask complexity.
One representative example of meta-computational problems is MINKT [Ko91], which is the
problem of computing the t-time-bounded Kolmogorov complexity Kt(x) of x, given (x, 1t) as
input. Throughout this article, time-bounded Kolmogorov complexity and the (meta-)complexity
of MINKT play a central role. We review these notions in Section 4. At a very high level, the
reason why meta-complexity is useful is that worst-case meta-complexity exactly characterizes
the average-case complexity of the polynomial hierarchy PH: [Hir20a] showed that DistPH ⊆
AvgP if and only if GapMINKTPH ∈ P, where GapMINKTPH is the problem of approximating
PH-oracle time-bounded Kolmogorov complexity in the worst case. Meta-complexity enables
us to analyze average-case complexity from a view point of worst-case complexity. Analyzing
worst-case complexity is often easier than analyzing average-case complexity. Indeed, by
going through the statements on worst-case meta-complexity (see the right half of Fig. 1),
new statements on average-case complexity of PH are proved in [Hir20a; Hir21a]: One-sided-
error heuristics that succeed with small probability, errorless heuristics that succeed with high
probability, average-polynomial-time algorithms (AvgP), and P-computable average-polynomial-
time algorithms (AvgPP) are all equivalent for DistPH.

The aforementioned work [Hir18] showed the equivalence between the average-case com-
plexity of MINKT and the worst-case complexity of an approximate version of MINKT. We
present this result in Section 5 and explain why meta-complexity enables overcoming the limits
of black-box reductions. Along the way, we introduce the notion of k-wise direct product
generator [Hir20c], which is the main technical tool extensively used throughout this article.

For those who are familiar with randomness extractor, it may be useful to contrast the recent
development of meta-complexity with the development of the theory of randomness extractor.
The influential work of Trevisan [Tre01] presented a generic construction of an extractor from
a pseudorandom generator construction. The k-wise direct product generator is also a (very
simple) pseudorandom generator construction. Trevisan [Tre01] exploited the property of a
pseudorandom generator construction information-theoretically to construct an extractor, which
is an information-theoretic object. In contrast, the recent development of meta-complexity is
given by exploiting the property of a pseudorandom generator construction computationally. In a
bit more detail, we apply the reconstruction property of a pseudorandom generator construction

2The only non-relativizing part is Theorem 3, which relies on the PCP theorem.
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average-case complexity worst-case meta-complexity

DistPH ⊆ Avg1
1−n−cP Gap(KPH vs K) ∈ P

GapMINKTPH ∈ PDistPH ⊆ AvgPP

[Hir18; Hir20b; Hir20a]

trivial

[Hir20d; Hir20c; Hir20a; Hir21a]

trivial

Figure 1: The paradigm of analyzing average-case complexity by worst-case meta-complexity.
The figure shows that the following are equivalent for DistPH: Avg1

1−n−cP, i.e., one-sided-error
heuristics that succeed with probability n−c; AvgP, i.e., errorless heuristic schemes, or equiva-
lently, average-polynomial-time algorithms; AvgPP, i.e., P-computable average-polynomial-time
algorithms. This equivalence is given as a corollary of the characterization of the average-case
complexities of PH by worst-case meta-complexity of GapMINKTPH.

(Lemma 12) to efficient algorithms, whereas Trevisan [Tre01] applied it to inefficient algorithms.
Two fundamental theorems of Kolmogorov complexity play a key role in the proof of

Theorem 2: Language compression and symmetry of information. These theorems are known to
be true unconditionally for resource-unbounded Kolmogorov complexity [ZL70]. We present
time-bounded analogues of language compression and symmetry of information in Sections 6
and 7, respectively, under the assumption that DistNP ⊆ AvgP. The proofs of these results are
“meta-computational” in the sense that we use an efficient hypothetical algorithm that computes
time-bounded Kolmogorov complexity; this means that these proofs must be significantly
different from the resource-unbounded cases, as resource-unbounded Kolmogorov complexity
cannot be computed in finite steps.

The outline of the proof of Theorem 2 is depicted in Fig. 2. In Section 8, we introduce
the notion of universal heuristic scheme. We construct universal heuristic schemes for PH in
Section 9. As alluded in the figure, the final result does not refer to meta-complexity at all,
whereas the proof goes through statements on worst-case meta-complexity. Indeed, the only
known proofs are via meta-complexity!

DistPH ⊆ AvgP Gap(KPH vs K) ∈ P

∀L ∈ PH admits
universal heuristic schemes

PH ⊆ DTIME(2O(n/ log n))

Sections 5 and 6

Sections 7 and 9

Section 8

Goal

Figure 2: A proof strategy for the second item of Theorem 2.

Notation [n] denotes {1, . . . , n}. |x| denotes the length of a string x ∈ {0, 1}∗. For a function
p : N → N and i ∈ N, the function p(i) : N → N is recursively defined as follows: p(0)(n) := n
and p(i+1)(n) := p(i)(p(n)) for every n ∈ N.
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2 Impagliazzo’s Five Worlds

What is the importance of the P versus NP question? One cannot underestimate significant
impacts that a proof of P = NP would have. An efficient algorithm for NP would have great
impacts on mathematics in general. If P = NP, for any mathematical theorem ϕ, one can find a
proof π for ϕ in time poly(|π|, |ϕ|). This means that mathematicians do not need to work hard to
find proofs. In a world where P = NP, the only task of mathematicians is to come up with the
statements of interesting theorems; then, they can use the efficient automated theorem proving
algorithm to find proofs of the theorems. Another consequence of P = NP is that the security
of any public-key cryptosystem can be broken. This does not just mean that the privacy of
communications is compromised. All the wealth invested to Bitcoin can be stolen by the person
who finds a proof of P = NP, as Bitcoin relies on the security of a public-key cryptosystem.3

However, most researchers conjecture that P , NP, so it is likely that the answer to the P
versus NP question is negative. Given that most researchers believe P , NP, it is more intriguing
to investigate what follows from P , NP. In principle, we can expect that a secure public-key
cryptosystem can be constructed; however, currently, there is a large gap between P , NP and
the possibility of cryptography, which was clearly explained by Impagliazzo [Imp95].

Impagliazzo [Imp95] proposed five possible worlds which are consistent with the current
knowledge of complexity theory and named them as follows: Algorithmica, Heuristica, Pessi-
land, Minicrypt, and Cryptomania. Algorithmica is a world in which NP is easy in the worst
case, e.g., P = NP. Heuristica is a world in which there exists an efficient heuristic for NP, i.e.,
NP is easy on average, but NP is hard in the worst case. For example, one canonical definition
of Heuristica is a world in which P , NP and DistNP ⊆ AvgP.4 Pessiland is a world in which
NP is hard on average and there is no one-way function; this is the worst of all the possible
worlds. The existence of one-way functions is often considered as a minimal assumption under
which complexity-theory-based cryptography is possible [IL89]. In Pessiland, cryptography
is not possible and NP cannot be solved efficiently on average. Minicrypt is a world in which
one-way functions exist but a public-key cryptosystem does not exist. Finally, Cryptomania is
a world in which a public-key cryptosystem exists. A popular conjecture is that our world is
Cryptomania. The security of the RSA cryptosystem, which is widely used in practice, is not yet
broken despite significant efforts by many researchers; thus, it is reasonable to conjecture that
the RSA cryptosystem is secure (at least against classical computers [Sho99]) and, in particular,
our world is Cryptomania.

What is known about Impagliazzo’s five worlds? It is easy to see the following four
implications: ∃ a public-key cryptosystem =⇒ ∃ a one-way function =⇒ DistNP * AvgP
=⇒ NP , P =⇒ True. The converses of these implications correspond to the open problems
of excluding Minicrypt, Pessiland, Heuristica, and Algorithmica, respectively. Excluding
these worlds is equivalent to showing that our world is Cryptomania, i.e., a secure public-key
cryptosystem exists; excluding any one of them is one of the most important open questions in
complexity theory and cryptography. Currently, no world is excluded from Impagliazzo’s five
worlds. The difficulty is that there are many technical barriers suggesting that standard proof
techniques would not work. For example, to prove P , NP (i.e., to exclude Algorithmica from

3It is worth mentioning that Bitcoin also relies on a cryptographic primitive called Proof of Work [DN92], which
is based on average-case hardness of NP; see, e.g., [BRSV17; BRSV18; HS21].

4There are many variants of Heuristica, depending on what types of algorithms we consider. For example, a
world in which NP * BPP and DistNP ⊆ AvgBPP can be considered as a variant of Heuristica.
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Algorithmica

Heuristica

Pessiland

Minicrypt

Cryptomania

∃ public-key crypto.

∃ one-way functions

DistNP 1 AvgP

P , NP

True P = NP

DistNP ⊆ AvgP

@ one-way functions

@ public-key crypto.

?

?

?

?

Figure 3: Impagliazzo’s five worlds. “⇒” indicates known implications. “
?
⇒” indicates open

questions, each of which corresponds to excluding Algorithmica, Heuristica, Pessiland, and
Minicrypt.

the possible worlds), one needs to develop a proof technique that simultaneously overcomes
the relativization barrier [BGS75], the algebrization barrier [AW09], the natural proof barrier
[RR97], and the locality barrier [CHOPRS20]. Similarly, to exclude Heuristica, one needs to
develop a proof technique that simultaneously overcomes the limits of black-box reductions
[FF93; BT06b; AGGM06; BB15], the “impossibility” of hardness amplification procedures
[Vio05b; Vio05a], and the relativization barrier [Wat12; Imp11; HN21]. In this article, we
present a proof technique that is not subject to the first two barriers but is still subject to the
relativization barrier; overcoming the relativization barrier is left open.

3 Average-Case Complexity

The theory of average-case complexity studies a distributional problem (L,D), which is a pair
of a language L ⊆ {0, 1}∗ and a familyD = {Dn}n∈N of distributions over instances of “size” n.
For example, we define the uniform distributionU to be the family {Un}n∈N such thatUn is the
uniform distribution over {0, 1}n. In this specific example, all the strings in the support ofUn

are binary strings of length n; we call such a family of distributions length-preserving; however,
we emphasize that there is no restriction onDn in general, except thatDn is a distribution over
{0, 1}∗.5

The seminal work of Levin [Lev86] introduced a robust notion of average-case easiness. An
algorithm A is said to be an average-polynomial-time algorithm for (L,D) if A(x, 1n) = L(x)
for every x ∈ {0, 1}∗ and there exists some constant ε > 0 such that for all large n ∈ N, it
holds that Ex∼Dn [tA(x, 1n)ε] ≤ nO(1), where tA(x, 1n) is an upper bound on the running time of an
algorithm A on input (x, 1n).6 The class of distributional problems for which there exist average-
polynomial-time algorithms is denoted by AvgP. When there exists an average-case-polynomial
upper bound tA : {0, 1}∗ → N on the running time of A such that tA is computable in polynomial
time (in the worst case), we say that A is P-computable average-polynomial-time; the class
of distributional problems solvable by P-computable average-polynomial-time algorithms is

5One restriction that automatically follows fromD ∈ PSamp is that the length of any string in the support ofDn

is at most nO(1).
6We identify a language L ⊆ {0, 1}∗ with its characteristic function L : {0, 1}∗ → {0, 1}.
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denoted by AvgPP [Hir21a].
One may wonder why the constant ε in the definition of average-polynomial-time is not

fixed to 1. If ε = 1, the definition just says that the expected running time Ex∼Dn [tA(x, 1n)] of an
algorithm is bounded by a polynomial in the size parameter n, which appears to be a natural
definition at first glance. A short answer to this question is that having a constant exponent
ε > 0 in the definition makes average-case hardness results stronger: (L,D) < AvgP implies that
(L,D) cannot be solved by average-polynomial-time algorithms in the naïve definition.

Another reason is that AvgP is equivalent to another (perhaps more) intuitive notion: errorless
heuristic scheme [Imp95; BT06a]. A polynomial-time algorithm A is said to be an errorless
heuristic scheme if for every (n, δ−1) ∈ N,

Pr
x∼Dn

[
A(x, 1n, 1δ

−1
) , L(x)

]
≤ δ

and A(x, 1n, 1δ
−1

) ∈ {L(x),⊥} for every x ∈ supp(Dn), where ⊥ indicates a failure of A, i..e.,
the algorithm does not know the answer; that is, A is allowed to fail (i.e., output ⊥) but is not
allowed to err (i.e., output the wrong answer 1 − L(x)). For a function δ : N→ [0, 1], the class
of distributional problems that can be solved by errorless heuristics with failure probability δ(n)
on instances of size n is denoted by AvgδP.

What distributions should we consider? A family of distributions D = {Dn}n∈N is said to
be polynomial-time samplable if there exists a randomized polynomial-time algorithm M such
that the distribution of M(1n) is identical toDn for every n ∈ N. The class of polynomial-time
samplable distributions is denoted by PSamp. We define DistNP to be the class of distributional
problems (L,D) such that L ∈ NP andD ∈ PSamp.

It will be useful to consider a family D =
{
Da,b

}
a,b∈N of distributions indexed by a pair

(a, b) ∈ N2 of integers. Such a family can be converted into a familyD′ =
{
D′n

}
n∈N indexed by a

single integer n by defining D′
〈a,b〉 := Da,b for every (a, b) ∈ N2, where 〈-, -〉 : N × N → N is a

bijection defined as, for example, 〈a, b〉 :=
∑a+b

i=0 i + a.
Buhrman, Fortnow, and Pavan [BFP05] showed an important theorem that will be useful

throughout this article. They showed pr-BPP = pr-P in Heuristica, i.e., randomized polynomial-
time algorithms can be derandomized in polynomial time. The underlying tool of derandomiza-
tion is the notion of pseudorandom generator. A function G =

{
Gn : {0, 1}s(n) → {0, 1}n

}
n∈N

is
said to be a pseudorandom generator secure against linear-sized circuits if for all large n ∈ N,
for every circuit D of size n,∣∣∣∣∣∣ Pr

z∼{0,1}s(n)
[D(Gn(z)) = 1] − Pr

w∼{0,1}n
[D(w) = 1]

∣∣∣∣∣∣ ≤ 1
n
.

Note that the existence of a pseudorandom generator with seed length s(n) enables deran-
domizing randomized polynomial-time algorithms in time 2O(s(n)+log n); more background on
derandomization can be found in [Vad12].

Theorem 3 (Buhrman, Fortnow, and Pavan [BFP05]). If DistNP ⊆ AvgP, then there exists a
pseudorandom generator

G =
{
Gn : {0, 1}O(log n) → {0, 1}n

}
n∈N

computable in time nO(1) and secure against linear-sized circuits.
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Proof Sketch. Theorem 3 is based on the following four results.

1. DistNP ⊆ AvgP implies NE = E [BCGL92].

2. DistNP ⊆ AvgP implies pr-MA = pr-NP [KS04].

3. If NE = E and pr-MA = pr-NP, then E 1 i.o.SIZE(2εn) for some constant ε > 0 [BFP05].
(Proof Sketch: If not, we obtain E ⊆ i.o.MATIME(2o(n)) = i.o.NTIME(2o(n)) using a PCP
theorem. However, this contradicts the time hierarchy and NE = E; see [Hir20a] for the
details.)

4. If E 1 i.o.SIZE(2εn) for some constant ε > 0, then there exists a polynomial-time-
computable pseudorandom generator secure against linear-sized circuits [IW97].

�

4 Meta-Complexity of Time-Bounded Kolmogorov Complex-
ity

4.1 Kolmogorov Complexity
The Kolmogorov complexity K(x) of a string x ∈ {0, 1}∗ is defined to be the minimum length of a
program that prints x. For example, K(1n) = log n + O(1) because the string 1n can be described
by a program “print ‘1’ n times”, whose description length is log n + O(1). Note that an
integer n ∈ N can be represented as a binary string of length dlog ne and the length of the other
part of the program is constant.

The t-time-bounded Kolmogorov complexity Kt(x) of x is defined to be the minimum length
of a program that prints x in time t. We also consider the conditional Kolmogorov complexity
Kt(x | y) of x given y, which is the minimum length of a program that prints x given y as input in
time t. More generally, we consider oracle time-bounded Kolmogorov complexity:

Definition 4 (Time-bounded Kolmogorov complexity). For strings x, y ∈ {0, 1}∗, a time bound
t ∈ N∪ {∞}, and an oracle A, the A-oracle t-time-bounded Kolmogorov complexity of x given y
is defined as

Kt,A(x | y) := min
{
|M|

∣∣∣ MA outputs x in time t
}
.

Here, |M| denotes the length of a binary encoding of an oracle Turing machine M.7 We omit the
superscript A if A = ∅, the superscript t if t = ∞, and “ | y” if y is the empty string.

The Kolmogorov complexity of an n-bit string x ∈ {0, 1}n satisfies 0 ≤ K(x) ≤ n + O(1)
because any string x can be described by a program “print x”. The upper bound is almost
tight:

Fact 5. For any integer s ≥ 1, the number of strings x ∈ {0, 1}∗ such that K(x) < s is less than
2s. In particular, Prx∼{0,1}n [K(x) ≥ s] ≥ 1 − 2s−n.

7More formally, we fix an efficient universal Turing machine U such that for every oracle Turing machine
M, there exists a string dM ∈ {0, 1}∗ such that UA(dM , x) = MA(x) for every input x ∈ {0, 1}∗ and every oracle
A ⊆ {0, 1}∗. Then, we define |M| to be the length |dM | of dM .
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Proof. For every string x such that K(x) < s, there is a program Mx of length less than s that
prints x. The map x 7→ Mx is injective. The number of programs of length less than s is at most∑s−1

i=0 2i < 2s, so is the number of strings x such that K(x) < s. �

More background on Kolmogorov complexity can be found in the book of Li and Vitányi
[LV19].

4.2 Meta-Complexity
Here, we review the notion of meta-complexity that is relevant to Theorem 2. For broader
background on meta-complexity and its recent development, see the survey of Allender [All21].

We first introduce the representative meta-computational problem: MINKT [Ko91] is defined
to be the language

MINKT :=
{
(x, 1t, 1s)

∣∣∣ Kt(x) ≤ s
}
.

This is a problem in NP because given a program M as certificate one can check whether |M| ≤ s
and M prints x in time t. Its NP-completeness is a long-standing open question [Ko91]. Note
that MINKT is computationally equivalent to the problem of computing the t-time-bounded
Kolmogorov complexity Kt(x) of x on input (x, 1t); in other words, MINKT asks to compute
the time-bounded Kolmogorov complexity of x. The complexity of MINKT is referred to
meta-complexity, as MINKT itself asks for the complexity of printing an input x.

Although it is unknown whether MINKT can be solved exactly in Heuristica, we show in
the next section that an approximate version of MINKT, denoted by GapMINKT, can be solved
in Heuristica. To introduce the problem formally, we recall the framework of promise problems
[Gol06]. A promise problem Π is a pair (ΠYes,ΠNo) of languages. An algorithm A is said to
solve a promise problem Π = (ΠYes,ΠNo) if A accepts every x ∈ ΠYes and rejects every x ∈ ΠNo.
Note that if there exists an algorithm that solves a promise problem Π = (ΠYes,ΠNo), it must be
disjoint, i.e., ΠYes ∩ ΠNo = ∅. It is common to require a promise problem to be disjoint in the
definition; however, we also consider “non-disjoint” promise problems [Hir20b], i.e., promise
problems that are non-disjoint under plausible assumptions, which will be useful in Section 6.

Definition 6 ([Ko91; Hir20b]). For a polynomial τ : N→ N and an oracle A ⊆ {0, 1}∗, let

ΠA
Yes :=

{
(x, 1t, 1s)

∣∣∣ Kt,A(x) ≤ s
}
,

ΠA
No :=

{
(x, 1t, 1s)

∣∣∣ Kτ(|x|,t),A(x) > s + log τ(|x|, t)
}
.

Then, we define

• GapτMINKTA := (ΠA
Yes,Π

A
No) and

• Gapτ(K
A vs K) := (ΠA

Yes,Π
∅
No).

We say that GapMINKTA ∈ P if there exists some polynomial τ such that GapτMINKTA ∈ P.
For a complexity class C, we say that GapMINKTC ∈ P if GapMINKTA ∈ P for every A ∈ C.
We omit the superscript A if A = ∅.

For example, GapMINKTSAT is the problem of approximating SAT-oracle time-bounded Kol-
mogorov complexity. The problem Gap(KSAT vs K) is computationally harder than GapMINKTSAT

and is an example of “non-disjoint” promise problems: It is non-disjoint if ENP , E [Hir20b].
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Nevertheless, we show in Section 6 that Gap(KSAT vs K) can be solved in polynomial time if
DistPH ⊆ AvgP.

One common misunderstanding about GapMINKTSAT is that it should be NP-hard as SAT
is NP-complete. In fact, proving NP-hardness of GapMINKTSAT would significantly improve
Theorem 2: P , NP implies DistPH * AvgP if GapMINKTSAT is NP-hard. Thus, it is an
important open problem to prove the NP-hardness of GapMINKTSAT, despite the intuition that
approximating SAT-oracle time-bounded Kolmogorov complexity seems much harder than
computing SAT.

The problem GapMINKT can be equivalently defined as the problem of computing an
approximate value of Kt(x) up to some additive error.

Fact 7 ([Hir21a]). The following are equivalent.

1. GapMINKT ∈ P.

2. There exist a polynomial-time algorithm K̃ and a polynomial p such that

Kp(t)(x) − log p(t) ≤ K̃(x, 1t) ≤ Kt(x)

for every string x ∈ {0, 1}∗ and every integer t ≥ |x|.

Proof Sketch. Given a polynomial-time algorithm M that solves GapMINKT, the algorithm K̃
can be defined as follows:

K̃(x, 1t) := min
{
s ∈ N

∣∣∣ M(x, 1t, 1s) = 1
}
.

�

Fact 7 shows that GapMINKT is equivalent to the problem of computing Kt(x) up to an
additive error of

Kt(x) − (Kp(t)(x) − log p(t)) = cdt,p(t)(x) + log p(t),

where cdt,s(x) := Kt(x) − Ks(x) is called (s, t)-time-bounded computational depth. This notion
plays a key role in Section 8.

Definition 8 (Time-Bounded Computational Depth; [AFMV06; Hir21a]). For time bounds
s ∈ N and t ∈ N ∪ {∞} and a string x ∈ {0, 1}∗, the (s, t)-time-bounded computational depth of x
is defined as

cds,t(x) := Ks(x) − Kt(x).

We omit the superscript t if t = ∞.

The notion of (time-unbounded) computational depth cdt(-) was introduced by Antunes, Fort-
now, Melkebeek, and Vinodchandran [AFMV06]. One fundamental property of computational
depth is that it is small for most strings. For example, [AFMV06] showed that cdpoly(n)(x) ≤ k
holds with probability at least 1−2−k+O(log n) over a random input x drawn from a polynomial-time-
computable distributionD. Here, a polynomial-time-computable distribution is a distribution
whose cumulative function can be computed in polynomial time. Under a plausible assump-
tion, Antunes and Fortnow [AF09] generalized it to polynomial-time-samplable distributions;
[Hir21a] proved the same result in Heuristica.

Theorem 9 ([AF09; Hir21a]). Assume either E * i.o.DSPACE(2εn) for some constant ε > 0 or
DistNP ⊆ AvgP. Then, for every D ∈ PSamp, there exists a polynomial t such that for every
n ∈ N,

Pr
x∼Dn

[
cdt(n)(x) > k

]
≤ 2−k+log t(n).
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5 Non-Black-Box Worst-Case-to-Average-Case Reduction
Feigenbaum and Fortnow [FF93] and Bogdanov and Trevisan [BT06b] presented fundamental
limits of proof techniques called (black-box) reductions. A natural approach to showing a
worst-case-to-average-case connection would be to construct a reduction. In order to show the
implication from the worst-case hardness of a language L to the average-case hardness of a
distributional problem (L′,D), it suffices to design a reduction R that takes an arbitrary oracle O
that solves (L′,D) on average and decides L in the worst case. Typically, the correctness of a
reduction can be shown regardless of the complexity of an oracle O; i.e., RO decides L for every
oracle O ⊆ {0, 1}∗. Such a reduction R is called black-box. Bogdanov and Trevisan [BT06b]
showed the following limits of black-box reductions.

Theorem 10 ([BT06b]). Let L be any language outside NP/poly ∩ coNP/poly. Then, there is
no randomized polynomial-time nonadaptive reduction from L to DistNP.

To exclude Heuristica, it suffices to show that some NP-complete problem is reducible to
DistNP. NP-complete problems are believed to be outside NP/poly ∩ coNP/poly, as otherwise
PH collapses [Yap83]. Theorem 10 indicates that, unless PH collapses, NP-complete problems
cannot be reducible to DistNP via a randomized polynomial-time nonadaptive reduction.

How can we overcome this limits? One approach is to consider adaptive reductions. There
are adaptive reductions in the literature (e.g., [HILL99; MR07]) and there exists an artificial
language that admits an adaptive random-self-reduction but not nonadaptive one [FFLS94].
However, it is unknown if there exists an adaptive reduction for a natural language that goes
beyond the limits NP/poly ∩ coNP/poly of black-box reductions. The other approach is to use
non-black-box reductions. Here, we say that a reduction R is non-black-box if the reduction
exploits an efficiency of an oracle, i.e., RO may fail to decide L correctly if O cannot be decided
in polynomial time.8

We now demonstrate that GapMINKT admits a worst-case-to-average-case connection. The
connection is proved by a non-black-box reduction that exploits the efficiency of an oracle, i.e.,
an efficient hypothetical algorithm that solves DistNP.

Theorem 11 ([Hir18; Hir20b]). If DistNP ⊆ AvgP, then GapMINKT ∈ P.

To prove this theorem, we introduce a k-wise direct product generator [Hir20c], which
turned out to be a fundamental tool for analyzing Kolmogorov complexity. A k-wise direct
product generator DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k is defined as follows:

DPk(x; z) := (z1, . . . , zk, 〈z1, x〉, . . . , 〈zk, x〉)

for every x ∈ {0, 1}n and every z = (z1, . . . , zk) ∈ ({0, 1}n)k, where 〈x, y〉 denotes the inner
product of x and y ∈ {0, 1}n over GF(2), i.e., 〈x, y〉 := (

∑n
i=1 xiyi) mod 2. The k-wise direct

product generator DPk(x; -) is a pseudorandom generator secure against an algorithm D if
K(x | D) > k + O(log |x|). More formally, we have the following property:

Lemma 12 (Deterministic Reconstruction for DPk; see [Hir21a]). Assume that DistNP ⊆ AvgP.
Then, there exists a polynomial p such that, for every n ∈ N, x ∈ {0, 1}n, parameters k, ε−1, s ∈ N,
and for every randomized circuit D of size s such that∣∣∣∣∣Pr

z,r
[D(DPk(x; z); r) = 1] − Pr

w,r
[D(w; r) = 1]

∣∣∣∣∣ ≥ ε,
8In fact, more importantly, O should not depend on the input x, which is used in the proof of Theorem 11.
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where z ∼ {0, 1}nk, w ∼ {0, 1}nk+k, and r ∼ {0, 1}s, it holds that

Kp(ns/ε)(x | D) ≤ k + log p(ns/ε).

This lemma can be proved by standard proof techniques of pseudorandomness [Vad12,
Chapter 7] together with Theorem 3. We briefly present a proof sketch.

Proof Sketch. Using Yao’s next-bit predictor, given some prefix of DPk(x; z), the next bit can
be predicted. Note that the first nk bits of DPk(x; z) are completely uniform and cannot be
predicted. Thus, there exists some index i ∈ [k] such that 〈zi, x〉 can be predicted with probability
at least 1

2 + ε
k , given z1, . . . , zk, 〈z1, x〉, . . . , 〈zi−1, x〉 as input. Note that 〈zi, x〉 is the zi-th bit of

the Hadamard code of x. Using the list-decoding algorithm of Goldreich and Levin [GL89],
one can decode x from the next-bit predictor. We have described a randomized algorithm M
that prints x given z1, . . . , zk, 〈z1, x〉, . . . , 〈zi−1, x〉 as input. However, the random bits z1, . . . , zk as
well as the internal randomness of M can be generated from the pseudorandom generator G of
Theorem 3; i.e., there exists a short seed σ ∈ {0, 1}O(log n) from which z1, . . . , zk can be generated.
Now we are ready to describe a program M′ that prints x: Given a seed σ and an “advice
string” α := (〈z1, x〉, . . . , 〈zi−1, x〉) ∈ {0, 1}i−1, the program M′ computes (z1, . . . , zk) := G(σ) and
outputs the output of M on input z1, . . . , zk, 〈z1, x〉, . . . , 〈zi−1, x〉. The length of the program M′ is
approximately at most |σ| + |α| ≤ k + O(log n). �

In the literature of pseudorandom generator constructions and randomness extractors [TV07;
TUZ07; Uma09], the length of the advice string α is referred to as the advice complexity of the
pseudorandom generator construction DPk(x; -). Trevisan and Vadhan [TV07] showed that the
advice complexity of any pseudorandom generator construction that extends its seed by k bits
must be at least k − 3; thus, the simple pseudorandom generator construction DPk(x; -) achieves
the optimal advice complexity up to an additive logarithmic term.9

Given Lemma 12, the proof of Theorem 11 is fairly simple.

Proof of Theorem 11. Consider a family D :=
{
Dn,t

}
n,t∈N of distributions over instances of

MINKT such that Dn,t is the distribution defined by the following sampling procedure: Pick
x ∼ {0, 1}n uniformly at random and output (x, 1t, 1n−2).

Since (MINKT,D) ∈ DistNP ⊆ AvgP, there exists an errorless polynomial-time heuristic
M that solves (MINKT,D) with failure probability at most 1

4 . We now present a randomized
algorithm R that solves GapMINKT: The algorithm R takes (x, 1t, 1s) as input and accepts if and
only if M(DPk(x; z), 1t′) ∈ {1,⊥} for a random z ∼ {0, 1}nk, where n := |x|, k and t′ = poly(t, n)
are parameters chosen later.

To see the correctness of R, consider any Yes instance (x, 1t, 1s) of GapMINKT; i.e., Kt(x) ≤
s. Since the string DPk(x; z) can be described from the seed z and a program that prints x in time
t, we have

Kt′(DPk(x; z)) ≤ |z| + Kt(x) + O(log n) ≤ nk + s + O(log n) ≤ nk + k − 2

9In the original paper [Hir18], the pseudorandom generator of Theorem 3 is not used; in this case, to obtain
a small approximation error in Theorem 11, one needs to use a pseudorandom generator construction that has
small randomness complexity in addition to small advice complexity. Whether the approximation error of [Hir18]
can be improved or not under the assumption that MINKT is easy on average (under which the existence of a
pseudorandom generator is unknown) remains open.



BEATCS no 136

92

for a sufficiently large t′, where we choose a large k = s + O(log n) so that the last inequality
holds. This ensures that (DPk(x; z), 1t′ , 1nk+k−2) is a YES instance of MINKT for every z. By the
property of an errorless heuristic scheme, M outputs either 1 or ⊥ on input (DPk(x; z), 1t′ , 1s′);
hence, R accepts with probability 1 over a choice of z ∼ {0, 1}nk.

Conversely, we claim that R rejects any No instance (x, 1t, 1s) of GapτMINKT with high
probability over the internal randomness of R (i.e., the random choice z ∼ {0, 1}nk), where τ is
a polynomial chosen later. Intuitively, this is because an algorithm M cannot distinguish the
output distribution DPk(x; -) of the k-wise direct product generator from the uniform distribution
if Kpoly(t)(x | M) > k + O(log n) = s + O(log n). More formally, we prove the contrapositive:
Assume that R accepts (x, 1t, 1s) with probability at least 7

8 over a choice of z; that is,

Pr
z

[
M(DPk(x; z), 1t′) ∈ {1,⊥}

]
≥

7
8
.

We claim that (x, 1t, 1s) is not a No instance of GapτMINKT for some polynomial τ. If we pick
w ∼ {0, 1}nk+k, then by Fact 5, with probability at least 1

2 , it holds that K(w) > |w| − 2, in which
case (w, 1t′ , 1|w|−2) is a No instance of MINKT; hence,

Pr
w

[
M(w, 1t′) ∈ {1,⊥}

]
≤ Pr

w

[
M(w, 1t′) = ⊥

]
+ Pr

w

[
(w, 1t′ , 1|w|−2) ∈ MINKT

]
≤

1
4

+
1
2

=
3
4
.

Let D be a circuit such that D(w) := 1 iff M(w, 1t′) ∈ {1,⊥}. Then, it follows from the two
inequalities above that

Pr
z

[D(DPk(x; z)) = 1] − Pr
w

[D(w) = 1] ≥
7
8
−

3
4

=
1
8
.

By Lemma 12, we obtain
Kp(t,n)(x | D) ≤ k + log p(t, n)

for some polynomial p. Since the circuit D can be described using O(log t′) bits, we conclude
that

Kτ(t,n)(x) ≤ s + log τ(t, n) (1)

for some polynomial τ, which means that (x, 1t, 1s) is not a No instance of GapτMINKT.
We conclude that R is a one-sided-error randomized polynomial-time algorithm for GapτMINKT;

that is, GapτMINKT ∈ pr-coRP ⊆ pr-BPP = pr-P, where the last equality follows from Theo-
rem 3. �

Why is the reduction R constructed in the proof of Theorem 11 non-black-box? The key
point is that Eq. (1) may not hold when there is no polynomial-time algorithm M that decides
MINKT. Specifically, the circuit D comes from the hypothetical efficient algorithm M that
solves MINKT. It would be possible to show that Kτ(t,n),MINKT(x) ≤ s+log τ(t, n) unconditionally;
however, removing the MINKT oracle seems to be impossible in general. In fact, under plausible
conjectures, the reduction R must be non-black-box. For example, the conjecture by Rudich
[Rud97] implies that GapMINKT < coNP/poly; thus, if R were non-black-box, then we would
get a contradiction to the limits of black-box reductions (Theorem 10). Other evidences that
Theorem 11 is inherently non-black-box can be found in [Hir18; HW20].

It is instructive to emphasize that meta-complexity plays a key role in constructing the
non-black-box reduction. The problem GapMINKT is a meta-computational problem that asks
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the complexity of generating a given string x in a given time limit t. It is this meta-computational
property of GapMINKT that enables us to exploit the efficiency of a hypothetical algorithm M
in the proof of Theorem 11.

We mention that the proof techniques of Theorem 11 actually show the equivalence between
the worst-case hardness of GapMINKT and the existence of a polynomial-time-computable
hitting set generator. A family H =

{
Hn : {0, 1}s(n) → {0, 1}n

}
n∈N

is said to be a hitting set
generator secure against i.o.P if for every polynomial-time algorithm M, there exist infinitely
many integers n ∈ N such that Prx∼{0,1}n [M(x) = 1] ≥ 1

2 implies M(Hn(z)) = 1 for some seed
z ∈ {0, 1}s(n).

Proposition 13 ([Hir20a; Hir21b]). Under the assumption that E * i.o.SIZE(2εn) for some
constant ε > 0, the following are equivalent.

1. GapMINKT ∈ P.

2. There exists a constant c such that no polynomial-time-computable hitting set generator

H =
{
Hn : {0, 1}n−c log n → {0, 1}n

}
n∈N

is secure against i.o.P.

3. There exists a constant c such that (MINKT,U∗) ∈ Avg 1
4
P, whereU∗ =

{
U∗n,t

}
n,t∈N

is the

family of distributionsU∗n,t that sample (x, 1t, 1n−c log n) for x ∼ {0, 1}n.

4. For every length-preserving distribution D ∈ PSamp, there exists a polynomial t0 such
that for every t ≥ t0, there exists an errorless heuristic scheme that computes Kt(|x|)(x) over
a random instance x chosen fromD.

Although we include a proof sketch for completeness, the reader may skip the proof.

Proof Sketch. Item 2 ⇒ 1: The idea is to use a “universal” hitting set generator H = {Hn}.
Let Hn be the function that takes as input a program M of length less than n − c log n (which
can be encoded as a binary string of length n − c log n) and outputs the output of M if M
halts in time n2. Clearly, Hn is computable in poly(n). The image of Hn contains the set
Xn :=

{
x ∈ {0, 1}n

∣∣∣ Kn2
(x) < n − c log n

}
. Since H is not secure against i.o.P, there exists a

polynomial-time algorithm M that rejects every x ∈ Xn and accepts at least a half of all the
n-bit strings. Then, GapMINKT can be solved by the following algorithm R: Given (x, 1t, 1s)
as input, R picks z ∼ {0, 1}nk and w ∼ {0, 1}t randomly and outputs 1 − M(DPk(x; z) · w), where
n := |x| and k := s + O(log nt). Here, w is used for padding the input of M so that the time bound
|DPk(x; z) · w|2 is sufficiently larger than t. The correctness can be proved in a way similar to
Theorem 11. See [Hir20a, Theorem 8.7] for the details.

Item 1 ⇒ 3: Let M be a polynomial-time algorithm that solves GapτMINKT for some
polynomial τ. Then, an errorless heuristic M′ for (MINKT,U∗) can be defined as follows:
M′(x, 1t, 1s) := ⊥ if M(x, 1t, 1s) = 1; otherwise, M′(x, 1t, 1s) := 0, where s is fixed to n − c log n.
To see the correctness of M′, observe that M′ can err only on Yes instances of MINKT If
(x, 1t, 1s) ∈ MINKT, then we have M(x, 1t, 1s) = 1, which implies that M′ outputs ⊥; thus, M′

does not err. The probability that M′ outputs⊥ is bounded by the probability that M(x, 1t, 1s) = 1,
which happens only if (x, 1t, 1s) is not a No instance of GapτMINKT. It follows from Fact 5
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that K(x) ≥ n− 2 > s + log τ(n, t) = n− c log n + log τ(n, t) with probability at least 3
4 for a large

constant c; hence, the probability that M′ fails is at most 1
4 .

Item 3⇒ 2: Let c be a constant chosen later. Let H be an arbitrary family

H =
{
Hn : {0, 1}n−c log n → {0, 1}n

}
n∈N
,

which is computable in time � t(n). Given an errorless heuristic M for (MINKT,U∗), we
define M′ so that M′(x) := 0 if M(x, 1t(n), 1n−c′ log n) ∈ {1,⊥} and M′(x) := 1 otherwise, for every
x ∈ {0, 1}n. We show that M′ “avoids” H:

1. The algorithm M′ accepts at least a half of {0, 1}n because at least a (1 − o(1))-fraction of
{0, 1}n is a No instance of MINKT and the failure probability of M is at most 1

4 .

2. We claim that M′ rejects every string x in the image of Hn: Note that x ∈ {0, 1}n can be
described by an integer n ∈ N and a seed z ∈ {0, 1}n−c log n such that Hn(z) = x, which
implies that Kt(n)(x) ≤ n − c log n + O(log n) ≤ n − c′ log n for a sufficiently large c; this
means that (x, 1t(n), 1n−c′ log n) ∈ MINKT, which is rejected by M′.

Item 1⇔ 4: This is proved in [Hir21b] using SoI of Section 7. We omit the proof. �

We conclude this section by describing applications to derandomization. Given that a
hitting set generator is used to derandomize randomized algorithms [GVW11], it is natural
to wonder if one can characterize complexity-theoretic hitting set generators using the proof
techniques of Proposition 13. Here, a hitting set generator or a pseudorandom generator
G =

{
G : {0, 1}s(n) → {0, 1}n

}
n∈N

with seed length s(n) is said to be complexity-theoretic if it can
be computed in time 2O(s(n)+log n). This notion is more appropriate for derandomization [NW94]
and is weaker than cryptographic generators. For example, the pseudorandom generator of
Theorem 3 is complexity-theoretic. In [Hir20b], the existence of complexity-theoretic hitting set
generators is characterized by the worst-case hardness of approximating Levin’s Kt complexity
[Lev84], which is an exponential-time variant of time-bounded Kolmogorov complexity. We
refer the reader to [Hir20b] for details.

6 Algorithmic Language Compression
The language compression theorem [Sip83; BFL01; BLM05] for resource-unbounded Kol-
mogorov complexity refers to the following simple and fundamental fact:

Fact 14 (Language Compression). Let L be a decidable language. Then, for every n ∈ N and
every x ∈ {0, 1}n ∩ L,

K(x) ≤ log|L ∩ {0, 1}n| + O(log n).

Proof Sketch. Any string x ∈ L ∩ {0, 1}n can be described by the index of x in the enumeration
of L ∩ {0, 1}n and an integer n ∈ N. �

Sipser [Sip83] considered a time-bounded analogue of the language compression theorem
and showed that Kpoly(n),SAT(x | r) ≤ |L ∩ {0, 1}n| + O(log n) for x ∈ L ∈ P, where r is a
random string. Here, we show that the SAT oracle and the random string r can be removed
if DistNP ⊆ AvgP. At a very high level, the idea is that the SAT oracle can be replaced with
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an errorless heuristic for DistNP. We also remove the random string using Theorem 3. It will
be useful to state the language compression theorem for a family of languages indexed by an
integer t, which we call an ensemble of languages:

Definition 15 (Ensemble of Languages). For every language L ⊆ {0, 1}∗ and every t ∈ N, let Lt

denote
{
x ∈ {0, 1}∗

∣∣∣ (x, 1t) ∈ L
}
. We say that a language L ⊆ {0, 1}∗ is an ensemble of languages

if there exists a polynomial pL such that |x| ≤ pL(t) for any t ∈ N and any x ∈ Lt. We identify an
ensemble L ⊆ {0, 1}∗ of languages with a family {Lt}t∈N.

The language compression theorem can be stated as follows.

Theorem 16 (Time-Bounded Language Compression [Hir21a]). Let A be an oracle and L =

{Lt}t∈N ∈ NPA be an ensemble of languages. If DistNPA
⊆ AvgP, then there exists a polynomial

p such that
Kp(t)(x) ≤ log|Lt| + log p(t)

for every (x, 1t) ∈ L.

We present an “algorithmic” proof of the language compression theorem, which generalizes
the non-black-box reduction of Theorem 11. Instead of just showing Theorem 16, we construct
a polynomial-time algorithm that accepts x ∈ Lt and rejects any string x such that Kpoly(t)(x) >
log |Lt| + O(log t). Formally:

Theorem 17 (Algorithmic Language Compression [Hir21a]). Let A be an oracle and L =

{Lt}t∈N ∈ NPA be an ensemble of languages. If DistNPA
⊆ AvgP, then there exists a polynomial

p such that a promise problem Π = (ΠYes,ΠNo) defined as

ΠYes :=
{
(x, 1t, 1k)

∣∣∣ x ∈ Lt

}
,

ΠNo :=
{
(x, 1t, 1k)

∣∣∣ Kp(t)(x) > k + log p(t), k ≥ log|Lt| + 1
}

is in pr-P.

The language compression theorem follows from the disjointness of ΠYes and ΠNo.

Proof of Theorem 16 from Theorem 17. The existence of an algorithm that separates ΠYes from
ΠNo implies that ΠYes ∩ ΠNo = ∅. Consider any string x ∈ Lt. Let k := log|Lt| + 1. Since
(x, 1t, 1k) ∈ ΠYes, we obtain (x, 1t, 1k) < ΠNo, which implies that Kp(t)(x) ≤ k + log p(t) =

log|Lt| + 1 + log p(t). �

Now we present the algorithmic proof of the language compression theorem. The proof is
quite similar to Theorem 11: For an errorless heuristic B for some distributional problem in
DistNPA, we consider a randomized non-black-box reduction B′ that outputs 1 on input x iff
B(DPk(x; z)) ∈ {1,⊥} for a random choice of z.

Proof of Theorem 17. Let L′ =
{
(DPk(x; z), 1n, 1t, 1k)

∣∣∣ x ∈ Lt ∩ {0, 1}n
}
. We claim that L′ ∈

NPA. Note that (w, 1n, 1t, 1k) ∈ L′ if and only if there exist x ∈ {0, 1}n, a certificate y for
x ∈ Lt, and z ∈ {0, 1}n·k such that w = DPk(x; z), which can be verified in polynomial time; thus,
L′ ∈ NPA. Consider a distribution D =

{
Dn,t,k

}
n,t,k∈N such that Dn,t,k picks w ∼ {0, 1}nk+k and

outputs (w, 1n, 1t, 1k). Since (L′,D) ∈ DistNPA
⊆ AvgP, there exists an errorless heuristic B that

solves L′ with failure probability at most 1
4 .
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We first claim that the number of Yes instances in L′ is relatively small. For each n, t, and
k ∈ N, we have

Pr
w∼{0,1}nk+k

[
(w, 1n, 1t, 1k) ∈ L′

]
= Pr

w∼{0,1}nk+k

[
∃x ∈ Lt ∩ {0, 1}n,∃z ∈ {0, 1}nk,w = DPk(x; z)

]
≤ |Lt ∩ {0, 1}n| · 2nk · 2−nk−k ≤ |Lt| · 2−k. (2)

We present a randomized algorithm B′ that solves the promise problem Π defined in Theo-
rem 17. On input (x, 1t, 1k), the algorithm B′ lets n := |x| and picks z ∼ {0, 1}nk randomly, and
accepts if and only if B(DPk(x; z), 1n, 1t, 1k) ∈ {1,⊥}. We claim the correctness of B′ below. Let
pL be the polynomial of Definition 15.

Claim 18. For all large t ∈ N and every n ≤ pL(t), the following hold for every x ∈ {0, 1}n.

1. If (x, 1t, 1k) ∈ ΠYes, then Prz[B′(x, 1t, 1k; z) = 1] = 1.

2. If (x, 1t, 1k) ∈ ΠNo, then Prz[B′(x, 1t, 1k; z) = 1] < 7
8 .

Proof. Assume that x ∈ Lt. By the definition of L′, we have (DPk(x; z), 1n, 1t, 1k) ∈ L′ for every
z. Since B is an errorless heuristic, we obtain B(DPk(x; z), 1n, 1t, 1k) ∈ {1,⊥}, which implies that
B′(x, 1t, 1k; z) = 1. This completes the proof of Item 1.

To prove Item 2 by way of contradiction, we assume that Prz[B′(x, 1t, 1k; z) = 1] ≥ 7
8 ; that is,

Pr
z

[
B(DPk(x; z), 1n, 1t, 1k) ∈ {1,⊥}

]
≥

7
8
. (3)

On the other hand,

Pr
w

[
B(w, 1n, 1t, 1k) ∈ {1,⊥}

]
≤ Pr

w

[
L′(w, 1n, 1t, 1k) = 1

]
+ Pr

w

[
B(w, 1n, 1t, 1k) = ⊥

]
≤ |Lt| · 2−k +

1
4
, (4)

where the last inequality uses Eq. (2). Since (x, 1t, 1k) ∈ ΠNo, we have |Lt| · 2−k ≤ 1
2 . By Eqs. (3)

and (4), we obtain

Pr
z

[
B(DPk(x; z), 1n, 1t, 1k) ∈ {1,⊥}

]
− Pr

w

[
B(w, 1n, 1t, 1k) ∈ {1,⊥}

]
≥

7
8
−

(
1
2

+
1
4

)
=

1
8
.

By Lemma 12, we obtain Kp(t)(x) ≤ k + log p(t) for some polynomial p. This is a contradiction
to the assumption that (x, 1t, 1k) ∈ ΠNo. �

It follows from Claim 18 that Π ∈ pr-coRP. Using Theorem 3, we conclude that Π ∈

pr-BPP = pr-P. �

The algorithmic language compression theorem generalizes the non-black-box reduction of
Theorem 11. By algorithmically compressing an ensemble of languages Lt,s :=

{
x ∈ {0, 1}∗

∣∣∣ Kt(x) ≤ s
}
,

it can be shown that GapMINKT ∈ P. More generally:

Corollary 19 ([Hir20b]). Let A be an oracle. If DistNPA
⊆ AvgP, then Gap(KA vs K) ∈ P.
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Proof. Consider an ensemble L =
{
L〈n,t,s〉

}
n,t,s∈N of languages defined as10

L〈n,t,s〉 :=
{
x ∈ {0, 1}n

∣∣∣ Kt,A(x) ≤ s
}
.

Observe that |L〈n,t,s〉| ≤ 2s+1 by Fact 5. It is easy to observe that L ∈ NPA. Applying Theorem 17
to L, we obtain a polynomial-time algorithm that solves the promise problem (ΠYes,ΠNo) such
that

ΠYes :=
{
(x, 1〈n,t,s〉, 1k)

∣∣∣ Kt,A(x) ≤ s
}
,

ΠNo :=
{
(x, 1〈n,t,s〉, 1k)

∣∣∣ Kp(n,t,s)(x) > k + log p(n, t, s), k ≥ log
∣∣∣L〈n,t,s〉∣∣∣ + 1

}
for some polynomial p. Gapτ(K

A vs K) is reducible to this promise problem via the reduction
that maps (x, 1t, 1s) to (x, 1〈|x|,t,s〉, 1s+2) for some polynomial τ. �

The following lemma shows that any string that can be efficiently compressed with some
PH oracle can also be compressed without the oracle if DistPH ⊆ AvgP.

Lemma 20 ([Hir20b]). Let A be an oracle. If Gap(KA vs K) ∈ P, then there exists a polynomial
p such that, for every x ∈ {0, 1}∗ and every t ≥ |x|,

Kp(t)(x) ≤ Kt,A(x) + log p(t).

Proof. Let (ΠYes,ΠNo) := Gapτ(K
A vs K). The hypothesis implies that ΠYes ∩ ΠNo = ∅. Since

(x, 1t, 1s) ∈ ΠYes for s := Kt,A(x), we obtain (x, 1t, 1s) < ΠNo, which implies that Kτ(|x|,t)(x) ≤
s + log τ(|x|, t) = Kt,A(x) + log τ(|x|, t). �

7 Symmetry of Information
Yet another fundamental theorem of Kolmogorov complexity is symmetry of information, which
was established by Kolmogorov and Levin [ZL70]. It states that for every x ∈ {0, 1}∗ and
y ∈ {0, 1}∗,

K(x | y) + K(y) . K(x, y) . K(y | x) + K(x),

where “.” indicates that the inequality holds up to an additive logarithmic term. Note that the
second inequality is trivial because the pair of strings (x, y) can be computed by combining a
program of size K(x) that prints x with a program of size K(y | x) that prints y given x as input.
The highly non-trivial part of symmetry of information is the first inequality. Here, we consider
a time-bounded analogue of symmetry of information.

Definition 21. Symmetry of information for time-bounded Kolmogorov complexity (SoI) refers
to the following hypothesis: There exists a polynomial p such that for any strings x ∈ {0, 1}∗ and
y ∈ {0, 1}∗, for every t ≥ |x| + |y|,

Kp(t)(x | y) + Kp(t)(y) − log p(t) ≤ Kt(x, y). (SoI)
10We include n in the parameter so that L is an ensemble of languages.
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Longpré and Watanabe [LW95] showed that P = NP implies SoI, and that SoI implies
the non-existence of one-way functions. In terms of Impagliazzo’s five world, SoI holds in
Algorithmica, while SoI does not hold in Minicrypt. It has been a long-standing open question
to determine whether SoI holds in Heuristica or Pessiland. Recently, building on [Hir21a], this
open question was independently resolved by [Hir21b; GK22]: SoI holds in Heuristica.

Theorem 22 ([Hir21b; GK22]). If DistNP ⊆ AvgP, then SoI holds.

Proof. Let K̃ be the polynomial-time algorithm of Fact 7, which satisfies the property that there
exists a polynomial p such that for every x ∈ {0, 1}∗ and every t ≥ |x|,

Kp(t)(x) − log p(t) ≤ K̃(x; 1t) ≤ Kt(x) (5)

Fix strings x ∈ {0, 1}n and y ∈ {0, 1}m and an integer t ≥ n + m. The proof of SoI is given
by analyzing the following three values for z ∼ {0, 1}nk, w ∼ {0, 1}nk+k, z′ ∼ {0, 1}mk, and
w′ ∼ {0, 1}mk+k:

K̃( DPk(x; z), DP`(y; z′) ; 1t′),
K̃( w, DP`(y; z′) ; 1t′),
K̃( w, w′ ; 1t′),

where t′ = tO(1), k ≈ Kt(x, y) − `, and ` ≈ Kpoly(t)(y) are parameters chosen later.
First, observe that Fact 5 implies that K(w,w′) ≥ |w| + |w′| − 2 with probability at least 3

4 .
Let θ := |w| + |w′| − 2 − log p(t′); using Eq. (5), we obtain

Pr
w,w′

[
K̃(w,w′; 1t′) ≥ θ

]
≥

3
4
. (6)

Next, we set the parameter ` to be Kp′(t)(y)− log p′(t)− 1, where p′ is some large polynomial.
Consider a randomized circuit D that takes w′ as input as well as random bits w and outputs 1 if
and only if K̃(w,w′; 1t′) ≥ θ. By the contrapositive of Lemma 12, DP`(y; -) is a pseudorandom
generator secure against D; i.e., D cannot distinguish DP`(y; z′) and w′ in the sense that∣∣∣∣∣Pr

w,z′

[
K̃(w,DP`(y; z′); 1t′) ≥ θ

]
− Pr

w,w′

[
K̃(w,w′; 1t′) ≥ θ

]∣∣∣∣∣ < 1
4
,

which, together with Eq. (6), implies that

Pr
w,z′

[
K̃(w,DP`(y; z′); 1t′) ≥ θ

]
≥

1
2
.

Finally, we compare K̃(w,DP`(y; z′); 1t′) with K̃(DPk(x; z),DP`(y; z′); 1t′). On one hand,
since |w| = |z| + k and |w′| = |z′| + `, we have

Pr
w,z′

[
K̃(w,DP`(y; z′); 1t′) ≥ |z| + |z′| + k + ` − 2 − log p(t′)

]
≥

1
2
. (7)

On the other hand, observe that for some t′ := poly(t),

K̃(DPk(x; z),DP`(y; z′); 1t′) ≤ Kt′(DPk(x; z),DP`(y; z′)) ≤ Kt(x, y) + |z| + |z′| + O(log n)
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holds because the strings DPk(x; z) and DP`(y; z′) can be computed from k, `, z, z′, and a program
of size Kt(x, y) that outputs (x, y) in time t. We now set k := Kt(x, y) − ` + O(log t) so that

Pr
z,z′

[
K̃(DPk(x; z),DP`(y; z′); 1t′) < |z| + |z′| + k + ` − 2 − log p(t′)

]
= 1. (8)

Let Dy be a randomized circuit that takes an input w and random bits z′ and outputs 1 if and
only if K̃(w,DP`(y; z′); 1t′) < |z| + |z′| + k + ` − 2 − log p(t′). It follows from Eqs. (7) and (8) that

Pr
z,z′

[
Dy(DPk(x; z); z′) = 1

]
− Pr

w,z′

[
Dy(w; z′) = 1

]
≥ 1 −

1
2

=
1
2
.

Using Lemma 12, we obtain that

Kpoly(t)(x | Dy) ≤ k + O(log t) = Kt(x, y) − Kp′(t)(y) + O(log t).

It follows that for some large polynomial q,

Kq(t)(x | y) ≤ Kt(x | Dy) + Kt(Dy | y) + O(1) ≤ Kt(x, y) − Kp′(t)(y) + O(log t)

≤ Kt(x, y) − Kq(t)(y) + log q(t)

as desired. �

We mention that SoI holds if Gap(KSAT vs K) is easy because DistNP ⊆ AvgP follows from
Gap(KSAT vs K) ∈ P [Hir20a].

Corollary 23. If Gap(KSAT vs K) ∈ P, then SoI holds.

We conclude this section by raising an open question.

Open Question 24. Does SoI hold in Pessiland? That is, does the non-existence of one-way
functions imply SoI?

8 Universal Heuristic Scheme
Antunes and Fortnow [AF09] showed that the running time of a heuristic scheme that works
with respect to every polynomial-time-samplable distribution can be characterized by using the
notion of computational depth: Under a plausible assumption, {L} × PSamp ⊆ AvgP if and only
if there exists an algorithm S that decides L on input x in time 2O(cdpoly(|x|)(x)+log |x|), i.e., S runs in
exponential time in the time-unbounded computational depth cdpoly(|x|),∞(x). Here, we study a
faster algorithm that runs in exponential time in the time-bounded computational depth, which
we call a universal heuristic scheme.

A universal heuristic scheme for L is an algorithm that takes an additional parameter t and
decides L on input x in time 2O(cdt,p(t)(x)+log t). More formally:

Definition 25 (Universal Heuristic Scheme). An algorithm S is said to be a universal heuristic
scheme for a language L if there exists a polynomial p such that for every x and every t ≥ p(|x|),
the algorithm S outputs L(x) on input (x, t) in time 2O(cdt,p(t)(x)) · tO(1).

It is not hard to see that the existence of a universal heuristic scheme implies an algorithm
that runs in time 2O(n/ log n) on inputs of length n.
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Theorem 26 ([Hir21a]). If there exists a universal heuristic scheme S for a language L, then
L ∈ DTIME

(
2O(n/ log n)

)
.

Proof. Let p be the polynomial in Definition 25. We present an algorithm A that solves L on
inputs of length n. Let x be an input of length n. Let I be a parameter chosen later, and let
k := 2n/I. Define ti := p(i)(n) for each i ∈ [I]. The algorithm A simulates the universal heuristic
scheme S on inputs (x, 1t1), (x, 1t2), . . . , (x, 1tI ) in parallel. If one of the simulations halts with
output being b ∈ {0, 1}, then A outputs b and halts. In other words, A(x) is defined to be S (x, 1ti),
where i ∈ [I] is the index such that the running time of S (x, 1ti) is the smallest among i ∈ [I].

We claim that A solves L in time 2O(n/ log n). The correctness of A follows from the definition
that S outputs the correct answer L(x) when it halts. To bound the running time of A, consider
the following telescoping sum:

I∑
i=1

cdti,ti+1(x) = cdt1,tI+1(x) ≤ n + O(1),

where the last inequality follows because Kt1(x) ≤ n + O(1) and KtI+1(x) ≥ 0. By taking the
minimum term of the left-hand side, we obtain

I ·min
{
cdti,ti+1(x)

∣∣∣ i ∈ [I]
}
≤ n + O(1),

from which it follows that there exists i ∈ [I] such that cdti,ti+1(x) ≤ n/I + O(1) ≤ k. The running
time of S on input (x, 1ti) is at most 2O(cdti ,ti+1 (x)+log ti). Let c > 1 be a constant such that p(n) ≤ nc

for all large n; then, we have ti = p(i)(n) ≤ nci
for all large n and every i. In particular, if we

choose I = ε log n for some small constant ε > 0, we obtain ti ≤ 2cI log n ≤ 2
√

n. We conclude that
the running time of S on input (x, 1ti) is at most 2O(cdti ,ti+1 (x)+log ti) ≤ 2O(n/ log n). Thus, A also runs
in time at most 2O(n/ log n). �

Remark 27. Instead of the worst-case algorithm A, it is possible to construct an efficient
heuristic algorithm using Theorem 9. Specifically, one can construct an algorithm A′ such that
given parameters I ∈ N and δ−1 ∈ N, with probability at least 1 − δ over an instance x drawn
from a distributionD ∈ PSamp, the algorithm A′ decides L on input x in time 2O((log 1/δ)/I+cI log n)
for some constant c.

In light of Theorem 26, in order to prove Theorem 2, it suffices to construct a universal
heuristic scheme for each language in PH. It is easier to construct a weak variant of universal
heuristic schemes, which we introduce below.

Definition 28 ([Hir21a]). A weak universal heuristic scheme for a language L is a polynomial-
time algorithm S such that, for some polynomial p, for any n ∈ N, any t ≥ p(n), and any
x ∈ {0, 1}n, if cdt,p(t)(x) ≤ k, then S (x, 1t, 12k

) = L(x).

We also introduce a strong variant that can check an input x is an easy instance or not in
polynomial time.

Definition 29 ([Hir21b]). A strong universal heuristic scheme for a language L is a pair (S ,C)
of polynomial-time algorithms such that, for some polynomial p, for any n ∈ N, any t ≥ p(n),
and any x ∈ {0, 1}n,

1. if cdt,p(t)(x) ≤ k, then C(x, 1t, 1k) = 1, and
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2. if C(x, 1t, 1k) = 1, then S (x, 1t, 12k
) = L(x).

S and C are referred to as a solver and a checker, respectively.

These different notions of universal heuristic schemes are in fact equivalent in Heuristica.

Theorem 30 ([Hir21a; Hir21b]). Assume that GapMINKT ∈ P. Then, the following are
equivalent for any language L:

1. There exists a strong universal heuristic scheme for L.

2. There exists a universal heuristic scheme for L.

3. There exists a weak universal heuristic scheme for L.

Moreover, under the stronger assumption that DistNP ⊆ AvgP, the following statement is also
equivalent.

4. {L} × PSamp ⊆ AvgPP.

Proof. It is easy to show Item 1⇒ Item 2⇒ Item 3. Let (S ,C) be a strong universal heuristic
scheme. We define a universal heuristic scheme S ′ as follows: Given (x, 1t) as input, S ′ finds
the minimum k ∈ N such that C(x, 1t, 1k) = 1 and outputs S (x, 1t, 12k

). Note that k ≤ cdt,p(t)(x)
by the property of the string universal heuristic scheme (S ,C); thus, the running time of S ′

is bounded by 2O(k+log t) ≤ 2O(cdt,p(t)(x)+log t). Next, we show that any universal heuristic scheme
S ′ can be converted into a weak universal heuristic scheme S ′′. We define S ′′ as follows:
Given (x, 1t, 12k

) as input, S ′′ simulates S ′ on input (x, 1t) up to 2O(k+log t) steps and outputs the
output of S ′ if S ′ halts; if S ′ does not halt, the output is defined to be, e.g., 0. Then, S ′′ is a
polynomial-time algorithm. The correctness of S ′′ follows from the definition that S ′ halts in
time 2O(cdt,p(t)(x)+log t) ≤ 2O(k+log t) if cdt,p(t)(x) ≤ k.

We now show Item 3⇒ Item 1. Given a weak universal heuristic scheme S for L, we need to
construct a checker C. The idea of constructing C is to estimate the time-bounded computational
depth of an input by using the polynomial-time algorithm for GapMINKT whose existence is
guaranteed by Theorem 11. Let K̃ be the polynomial-time algorithm of Fact 7 such that for
every x ∈ {0, 1}∗ and every t ≥ |x|,11

Kp(t)(x) − log p(t) ≤ K̃(x, 1t) ≤ Kt(x).

Observe that

cdp(t),p(2)(t)(x) − log p(t) ≤ K̃(x, 1t) − K̃(x, 1p(2)(t)) ≤ cdt,p(3)(t)(x) + log p(3)(t). (9)

We define a checker C as follows: C(x, 1t, 1k) = 1 if and only if K̃(x, 1t) − K̃(x, 1p(2)(t)) ≤
k + log p(3)(t). We define a solver S ′ so that S ′(x, 1t, 12k

) := S ′(x, 1p(t), 12k′

), where k′ :=
k + log p(t) + log p(3)(t).

Below, we claim that (S ′,C) is a strong universal heuristic scheme by showing that it satisfies
the two properties of Definition 29.

11We may assume without loss of generality that the polynomial p in Fact 7 is the same polynomial with
Definition 28.
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1. If cdt,p(3)(t)(x) ≤ k, then by the upper bound of Eq. (9), we have C(x, 1t, 1k) = 1.

2. If C(x, 1t, 1k) = 1, then by the definition of C and by the lower bound of Eq. (9), we obtain
cdp(t),p(2)(t)(x) ≤ k + log p(t) + log p(3)(t) = k′. It follows from the property of the weak
heuristic scheme S that S ′(x, 1t, 12k

) = S (x, 1p(t), 12k′

) = L(x).

The implication from Item 1 to 4 can be proved using Theorem 9. The converse can be
proved by considering the “time-bounded universal distribution”. We omit the detailed proof of
the equivalence between Item 1 and Item 4, which can be found in [Hir21a]. �

9 Constructing Universal Heuristic Schemes
We now use SoI to construct a weak universal heuristic scheme for every language in PH. For
simplicity, we first construct a weak universal heuristic for every language in NP.

Theorem 31. If Gap(KSAT vs K) ∈ P, then for every language L ∈ NP, there exists a weak
universal heuristic scheme for L.

Proof. Let V be a polynomial-time verifier for L ∈ NP. For every x ∈ L, let yx denote the
lexicographically first certificate yx such that V(x, yx) = 1. The following claim is the key to the
construction of a weak universal heuristic scheme.

Claim 32. There exists a polynomial q such that for every x ∈ L and every t ≥ |x|,

Kq(t)(yx | x) ≤ cdt,q(t)(x) + log q(t).

Proof. Note that SoI holds because of Corollary 23. Using SoI, we obtain

Kp(3)(t)(yx | x)

≤Kp(2)(t)(yx, x) − Kp(3)(t)(x) + log p(3)(t) (by SoI)

≤Kp(t),SAT(yx, x) + log p(2)(t) − Kp(3)(t)(x) + log p(3)(t) (by Lemma 20)

≤Kt(x) − Kp(3)(t)(x) + O(log p(3)(t))

= cdt,p(3)(t)(x) + O(log p(3)(t)),

where the last inequality holds because yx can be computed from x in polynomial time given
oracle access to SAT. The claim follows by letting q(t) := p(3)(t)O(1). �

We now present a weak universal heuristic scheme S for L: The algorithm S takes (x, 1t, 12k
)

as input and computes the set Y of strings y ∈ {0, 1}∗ such that there exists a program of length
at most k + log q(t) that takes x as input and outputs y in time q(t). In other words, we define

Y :=
{
y ∈ {0, 1}∗

∣∣∣ Kq(t)(y | x) ≤ k + log q(t).
}

Note that |Y | ≤ 2k+log q(t)+1 and Y can be computed in time poly(|x|, t, 2k) by enumerating all the
programs of length at most k + log q(t). The algorithm S outputs 1 if and only if there exists
a string y ∈ Y such that V(x, y) = 1. Clearly, S is a polynomial-time algorithm. We prove the
correctness of S : It is evident that S does not err on any input x < L. Consider an input x ∈ L
such that cdt,q(t)(x) ≤ k. Then, by Claim 32 we have Kq(t)(yx) ≤ k + log q(t), which implies yx ∈ Y
and thus S accepts. �
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This enables us to complete a proof of a special case of Theorem 2.

Corollary 33. If DistPH ⊆ AvgP, then NP ⊆ DTIME(2O(n/ log n)).

Proof. See Fig. 4. �

DistPH ⊆ AvgP Gap(KSAT vs K) ∈ P

∀L ∈ NP admits
universal heuristic schemes

NP ⊆ DTIME(2O(n/ log n))

Corollary 19

Theorems 30 and 31

Theorem 26

Goal

Figure 4: The proof of Corollary 33.

To extend Theorem 31 to all the levels of PH, we use an inductive argument that constructs
weak universal heuristic schemes for the k-th level Σp

k of PH from weak universal heuristic
schemes for Σp

k−1.

Theorem 34. Let k ∈ N. If DistΣp
k+1 ⊆ AvgP, then for every language L ∈ Σp

k , there exists a
weak universal heuristic scheme for L.

Proof. We prove this by induction on k ∈ N. The base case (k = 0) is trivial because every
language L ∈ Σp

0 = P admits a weak universal heuristic scheme. Let k ≥ 1. Let V be a language
in Πp

k−1 such that x ∈ L if and only if V(x, y) = 1 for some y ∈ {0, 1}poly(|x|). For every x ∈ L, let
yx be the lexicographically first string y such that V(x, y) = 1. Using the same proof idea of
Claim 32, it is easy to prove the following.

Claim 35. There exists a polynomial q such that for every x ∈ L and every t ≥ |x|,

Kq(t)(yx | x) ≤ cdt,q(t)(x) + log q(t).

By the induction hypothesis, there exists a weak universal heuristic scheme S for V ∈ Πp
k−1.

Let p be the polynomial in Definition 28. Using S , we now present a weak universal heuristic
scheme S ′ for L: The algorithm S ′ takes (x, 1t, 12k

) as input and computes the set

Y :=
{
y ∈ {0, 1}∗

∣∣∣ Kq(t)(y | x) ≤ k + log q(t).
}

Note that |Y | ≤ 2k+log q(t)+1 and Y can be computed in time poly(|x|, t, 2k) by an exhaustive search.
The algorithm S ′ outputs 1 if and only if there exists a string y ∈ Y such that S ((x, y), 1t′ , 12k′

) = 1,
where t′ = tO(1) and k′ = O(k+log t) are parameters chosen later. Clearly, S ′ is a polynomial-time
algorithm.

We claim the correctness of S ′. Assume that cdt,2p(t′)(x) ≤ k. We claim that for some
parameter t′ = q(t)O(1) and for every y ∈ Y , the (t′, p(t′))-time-bounded computational depth of
(x, y) is at most k′, which will imply that the output of the weak universal heuristic scheme S is
correct on input (x, y). For every y ∈ Y , we have

cdt′,p(t′)(x, y) ≤Kq(t)(x) + Kq(t)(y | x) − Kp(t′)(x, y) + O(1)

≤ cdq(t),2p(t′)(x) + k + log q(t) + O(1)
≤ 2k + log q(t) + O(1) =: k′,
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where the first inequality follows from the definition of time-bounded computational depth,
the second inequality follows from the fact that K2p(t′)(x) ≤ Kp(t′)(x, y) + O(1) and y ∈ Y , and
the third inequality follows from the assumption that cdq(t),2p(t′)(x) ≤ cdt,q′(t)(x) ≤ k. By the
correctness of the weak universal heuristic scheme S , we obtain S ((x, y), 1t′ , 12k′

) = V(x, y).
If x ∈ L, Claim 35 implies that yx ∈ Y; thus, we have S ((x, yx), 1t′ , 12k′

) = V(x, yx) = 1,
which implies that S ′ outputs 1. If x < L, then V(x, y) = 0 for every string y; thus, we obtain
S ((x, y), 1t′ , 12k′

) = V(x, y) = 0, which implies that S ′ outputs 0. �

This completes the proof of the second item of Theorem 2, as shown in Fig. 5.

DistPH ⊆ AvgP Gap(KPH vs K) ∈ P

∀L ∈ PH admits
universal heuristic schemes

PH ⊆ DTIME(2O(n/ log n))

Corollary 19

Theorems 30 and 34

Theorem 26

Goal

Figure 5: The proof of the second item of Theorem 2.

Finally, we construct universal heuristic schemes for UP.

Theorem 36. If DistNP ⊆ AvgP, then for every language L ∈ UP, there exists a weak universal
heuristic scheme for L.

Proof. Let V be a UP-type verifier for L; that is, for every x ∈ L, there exists a unique certificate
yx such that V(x, yx) = 1. Consider an ensemble L =

{
L〈n,t,s〉

}
n,t,s∈N of languages defined as

L〈n,t,s〉 :=
{
(x, y)

∣∣∣ x ∈ {0, 1}n,V(x, y) = 1,Kt(x) ≤ s
}
.

It is easy to observe that L ∈ NP. Using that L ∈ UP, we can observe that |L〈n,t,s〉| ≤ 2s+1 because
the number of strings x such that Kt(x) ≤ s is at most 2s+1 by Fact 5 and for each x there is at
most one certificate y such that V(x, y) = 1. Applying Theorem 16 to L, there exists a polynomial
p such that for every t ≥ n, for every (x, yx) ∈ L〈n,t,s〉 such that s := Kt(x), it holds that

Kp(t)(x, yx) ≤ s + 1 + log p(t) = Kt(x) + log 2p(t).

Since SoI follows from Theorem 22, we have

Kp(2)(t)(yx | x) ≤ Kp(t)(x, yx) − Kp(2)(t)(x) + log p(2)(t).

Combining these two inequalities, we obtain

Kp(2)(t)(yx | x) ≤ cdt,p(2)(t)(x) + O(log t). (10)

We now present a weak universal heuristic scheme S for L. Given an input (x, 1t, 12k
) such

that cdt,p(2)(t)(x) ≤ k, the algorithm S computes the set

Y :=
{
y ∈ {0, 1}∗

∣∣∣∣ Kp(2)(t)(y | x) ≤ k + O(log t)
}

and accepts if and only if there exists y ∈ Y such that V(x, y) = 1. The correctness of S follows
from Eq. (10) because it implies yx ∈ Y for every x ∈ L. �
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This enables us to complete the proof of Theorem 2.

Proof of the first item of Theorem 2. Assume DistNP ⊆ AvgP. By Theorem 36, every language
L ∈ UP admits a weak universal heuristic scheme, which can be converted into a universal
heuristic scheme by Theorem 30, from which we obtain L ∈ DTIME(2O(n/ log n)) by Theorem 26.

�

In the original paper [Hir21a], a more general result than Theorem 36 was proved: DistNP ⊆
AvgP implies that NPsv admits universal heuristic schemes. Here, NPsv stands for size-verifiable
NP and is the class of languages L ∈ NP such that some AM protocols can verify that the number
of certificates for L is approximately small. The notion of size-verifiability was introduced
by Akavia, Goldreich, Goldwasser, and Moshkovitz [AGGM06]. It is easy to observe that
UP ⊆ FewP ⊆ NPsv ⊆ NP and that NPsv = NP if NP ⊆ coAM; however, the complexity of
NPsv is not well understood. It is an interesting open problem to extend UP of Theorem 36 to
NP.

Open Question 37. Does NP * DTIME(2O(n/ log n)) imply DistNP * AvgP? In particular, is it
possible to construct universal heuristic schemes for NP under the assumption that DistNP ⊆
AvgP?

10 Future Research Directions
We conclude this article by presenting three research directions which we believe are most
promising and exciting.

The first research direction is to develop non-relativizing proof techniques. The only
non-relativizing part of the proofs in this article is Theorem 3, which constructs a complexity-
theoretic pseudorandom generator in Heuristica. In fact, there is a relativizing proof showing
the existence of a pseudorandom generator from the stronger assumption that DistPNP ⊆ AvgP
[HN21]. Given that there is a quantitatively tight relativization barrier [HN21], we would need a
non-relativizing proof technique to obtain better worst-case-to-average-case connections for NP
or PH. A recent line of work [AHMPS08; HOS18; Ila20a; ILO20; Ila20b; ACMTV21; LP21;
Hir21b] developed apparently non-relativizing proof techniques: Although Ko [Ko91] showed
that GapMINKT cannot be shown to be NP-hard using a relativizing proof technique, NP-
hardness of computing sublinear-time-bounded conditional Kolmogorov complexity is proved
in [ACMTV21; LP21; Hir21b]. Note that NP-hardness of GapMINKT excludes Heuristica
by Theorem 11; even NP-hardness of GapMINKTPH would significantly improve Theorem 2.
Trying to prove NP-hardness of meta-computational problems would lead us to new non-
relativizing proof techniques. A state-of-the-art result along this research line is due to Ilango
[Ila20b; Ila21], who showed NP-hardness of variants of the Minimum Circuit Size Problem
[KC00], which is another representative meta-computational problem.

The second research direction is to use meta-complexity to exclude Pessiland. Impagliazzo
and Levin [IL90, Proposition 1] presented a proof sketch of the characterization of the existence
of a one-way function: there exists no one-way function if and only if the randomized t-time-
bounded Kolmogorov complexity of x can be approximated with high probability over a random
input x drawn from any unknown t-time-samplable distribution. Their results can be seen
as an approach toward excluding Pessiland: If the randomized t-time-bounded Kolmogorov
complexity is NP-hard under t′-time randomized reductions for t′ � t, then Pessiland does
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not exist, i.e, (error-prone) average-case hardness of NP implies the existence of a one-way
function. More recently, Liu and Pass [LP20] proved the equivalence between the non-existence
of a one-way function and the existence of a randomized polynomial-time error-prone heuristic
that computes Kt(x) with high probability over a random input x chosen from the uniform
distribution. The main gap between these results and the results presented in this article is the
difference between error-prone average-case complexity (denoted by HeurP in [BT06a]) and
errorless average-case complexity (AvgP), which was recently investigated in [HS22a]. An
intermediate statement is SoI, which is sandwiched between errorless heuristics for MINKT and
error-prone heuristics for MINKT [Hir21b]. Nanashima [Nan21] showed that the existence of a
one-way function follows from NP * BPP (i.e., both Heuristica and Pessiland can be excluded)
if there exists a randomized nonadaptive reduction from NP to the adversary of auxiliary-input
hitting set generators. Note that the existence of a hitting set generator is equivalent to the
hardness of GapMINKT, at least under non-black-box reductions (Proposition 13). Given these
results, we conjecture that meta-complexity would play a central role in excluding Pessiland, as
well as Heuristica.

The last research direction is to determine average-case complexity of natural distributional
problems in DistNP. We started off this article by explaining that the motivation of studying
average-case complexity is to understand the “real-life” complexity of (natural) distributional
problems. The original motivation of Levin [Lev86], who laid the foundation of average-case
complexity, was also the same and showed that the Tiling problem is DistNP-complete. However,
a relatively few distributional problems in DistNP are shown to be DistNP-complete, compared
to the highly successful theory of NP-completeness [Coo71; Lev73; Kar72]. The difficulty
is that an average-case reduction disturbs the distribution of distributional problems, which
makes it difficult to prove DistNP-completeness of distributional problems (L,D) for natural
distributionsD. We envision that meta-complexity could come to the rescue: Meta-complexity
enables us to analyze average-case complexity through the lens of worst-case complexity,
for which a reduction is easier to construct. [Hir20a; HS22b] showed that (MINKTPH,U) is
DistPH-complete, which may be a step toward determining average-case complexity of natural
distributional problems in DistPH or DistNP.
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(Christian Choffrut, IRIF Université Paris Diderot)

Most probably, if the reader of this bulletin has ever heard the term “profinite”
this is via Eilenberg’s theorem on pseudo-varieties of finite monoids. Actually,
Birkhoff’s theory of varieties had to be reworked in order to suit finite structures.
This is precisely what Reitermann did in 1982 by introducing a new type of “equa-
tions” or “identities” using operations that no longer belong to the structure, typi-
cally xω = xω+1 which can be understood as saying that the finite monoids of the
variety have only trivial subgroups. Technically, the idea is based on the notion
of free profinite monoid Â∗ generated by A (and its elements the pseudowords),
defined in two equivalent ways: “metrically” as completion of the free monoid
for a specific metric (two words are close if they can be distinguished by small
finite monoids) and “algebraically” as projective limits of finite monoids in the
same spirit that p-adic numbers are the projective limit of the rings /pn. The
free monoid A∗ is identified with the set of pseudowords having finite (profinite!)
length. This publication collects the very last results in the area since the “Finite
Semigroups and Universal Algebras” of Jorge Almeida in 1995.

Theoretical computer scientists are familiar with the notion of right infinite,
left infinite, two way infinite words and more generally linear structures labelled
by finite alphabets. The authors claim that pseudowords are a generalization and
that nonfinite pseudowords “start with a right infinite word, end with a left infinite
word and have something in the middle” which make them completely distinct
from the usual right-, left- or two-way infinite words and invite us to be cautious
with the possible misleading interpretation of the symbol ω. This formalism may
seem abstract but let me mention a known and old result showing the relevance to
the traditional theory of finite automata: there exists an isomorphism between the
algebra of clopen subsets of the free profinite monoid and the Boolean algebra of
recognizable languages (those recognized by finite automata).

The book starts with an alluring prelude arousing the curiosity of the reader.
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In particular and as an illustration of the concepts developed in further chapters,
it shows how to use p-adic arithmetic to elegantly prove Skolem-Mahler theo-
rem concerning the zeros of the series associated with rational fractions having
rational coefficients. Half of the rest recalls basic definitions and concepts: Haus-
dorff topological spaces, inverse limits, free groups, finite automata, semigroups,
Green relations for semigroups, shift spaces, bifix codes . . . The more advanced
part investigates the closure in Â∗ of the uniformly recurrent subsets appearing in
minimal shifts and their so-called return words. Most of these shifts are defined by
the finite blocks appearing in the fixed points of substitutions of the free monoid,
the best known examples of which are the Fibonacci and Thue-Morse words and
more generally the DOL-sequences introduced by Lindenmayer. Languages, i.e.,
subsets of finite words, can be profitably studied by algebraic structures such as
congruences and semigroups. This allowed M.P. Schützenberger to characterize
the star free regular languages as those languages having only trivial subgroups in
the syntactic monoid. In a somewhat similar but sophistigated manner, uniformly
recurrent subsets can be associated with so-called Schützenberger groups in Â∗.
The main result, due to the first two authors, shows that a combinatorial property
on finite graphs associated with the finite blocks of the shift is a sufficient con-
dition for this group to be a free profinite group. The last chapter has a slightly
different focus and works with bifix codes that are factors of some uniformly re-
current subsets. It shows in particular that under some assumptions these codes
are finite bases of a free group.

The book is self-contained. Almost all the results are proved in the text oth-
erwise they are referred to some among numerous solved exercices at the end of
each chapter. By always choosing the right arguments the proofs are remarkably
elegant and appear natural in spite of their technical difficulty.
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EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the EATCS Distinguished Dissertation Award, the Nerode
Prize (joint with IPEC) and best papers awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

Benefits offered by EATCS to Young Researchers also include:
- Database for Phd/MSc thesis
- Job search/announcements at Young Researchers area
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(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Jerusalem, Israel 1994
- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997

- Aalborg, Denmark 1998
- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013
- Copenhagen, Denmark 2014
- Kyoto, Japan 2015
- Rome, Italy 2016
- Warsaw, Poland 2017
- Prague, Czech Republic 2018
- Patras, Greece 2019
- Saarbrücken, Germany (virtual conference) 2020
- Glasgow, UK (virtual conference) 2021

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-
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mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Vienna), J. Hromkovič
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are D. Sannella (Edinburgh), L. Kari and P.G. Spirakis
(Patras).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Artur Czumaj,
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues are e 40 for a period of one year (two years for students / Young Researchers ). Young
Researchers, after paying, have to contact secretary@eatcs.org, in order to get additional
years. A new membership starts upon registration of the payment. Memberships can always be
prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 35 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 35 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.
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HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, contact the Secretary Office of EATCS:

Mrs. Efi Chita,
Computer Technology Institute & Press (CTI)
1 N. Kazantzaki Str., University of Patras campus,
26504, Rio, Greece
Email: secretary@eatcs.org,

Tel: +30 2610 960333, Fax: +30 2610 960490
If you are an EATCS member and you wish to prolong your membership or renew the subscription
you have to use the Renew Subscription form. The dues can be paid via paypal and all major credit
cards are accepted.
For adittional information please contact the Secretary of EATCS:

Prof. Emanuela Merelli
via Madonna delle Carceri, 9
Computer Science Build. 1st floor
University of Camerino,
Camerino 62032, Italy
Email: secretary@eatcs.org,

Tel: +39 0737402567


