
ISSN 0252–9742

Bulletin
of the

European Association for

Theoretical Computer Science

EATCS

EA
T

C
S

Number 137 June 2022

Council of the

European Association for

Theoretical Computer Science

President: Artur Czumaj United Kingdom
Vice Presidents: Anca Muscholl France

Giuseppe F. Italiano Italy
Treasurer: Jean-Francois Raskin Belgium
Bulletin Editor: Stefan Schmid Germany

Ivona Bezakova USA
Tiziana Calamoneri Italy
Thomas Colcombet France
Artur Czumaj UK
Javier Esparza Germany
Fabrizio Grandoni Switzerland
Thore Husfeldt Sweden, Denmark
Giuseppe F. Italiano Italy
Fabian Kuhn Germany
Slawomir Lasota Poland
Elvira Mayordomo Spain
Emanuela Merelli Italy

Anca Muscholl France
Luke Ong UK
Tal Rabin USA
Eva Rotenberg Denmark
Maria Serna Spain
Alexandra Silva USA
Jiri Sgall Czech Republic
Ola Svensson Switzerland
Jukka Suomela Finland
Till Tantau Germany
Sophie Tison France
GerhardWöeginger The Netherlands

Past Presidents:
Maurice Nivat (1972–1977) Mike Paterson (1977–1979)
Arto Salomaa (1979–1985) Grzegorz Rozenberg (1985–1994)
Wilfred Brauer (1994–1997) Josep Díaz (1997–2002)
Mogens Nielsen (2002–2006) Giorgio Ausiello (2006–2009)
Burkhard Monien (2009–2012) Luca Aceto (2012–2016)
Paul Spirakis (2016–2020)

Secretary Office: Efi Chita Greece
Emanuela Merelli Italy

EATCS Council Members
email addresses

Ivona Bezakova . ib@cs.rit.edu
Tiziana Calamoneri . calamo@di.uniroma1.it
Thomas Colcombet . Thomas.Colcombet@irif.fr
Artur Czumaj . A.Czumaj@warwick.ac.uk
Javier Esparza . esparza@in.tum.de
Fabrizio Grandoni . fabrizio@idsia.ch
Thore Husfeldt . thore@itu.dk
Giuseppe F. Italiano giuseppe.italiano@uniroma2.it
Fabian Kuhn . kuhn@cs.uni-freiburg.de
Slawomir Lasota . sl@mimuw.edu.pl
Elvira Mayordomo . elvira@unizar.es
Emanuela Merelli emanuela.merelli@unicam.it
Anca Muscholl . anca@labri.fr
Luke Ong . luke.Ong@cs.ox.a.uk
Tal Rabin . chair.sigact@sigact.acm.org
Jean-Francois Raskin . jraskin@ulb.ac.be
Eva Rotenberg . eva@rotenberg.dk
Maria Serna . mjserna@cs.upc.edu
Stefan Schmid . stefan.schmid@tu-berlin.de
Alexandra Silva alexandra.silva@cornell.edu
Jiri Sgall . sgall@iuuk.mff.cuni.cz
Ola Svensson . Ola.Svensson@epfl.ch
Jukka Suomela . jukka.suomela@aalto.fi
Till Tantau . tantau@tcs.uni-luebeck.de
Sophie Tison . sophie.tison@lifl.fr
GerhardWöeginger g.j.woeginger@math.utwente.nl

Bulletin Editor: Stefan Schmid, Berlin, Germany
Cartoons: DADARA, Amsterdam, The Netherlands

The bulletin is entirely typeset by pdfTEX and ConTEXt in TXfonts.

All contributions are to be sent electronically to

bulletin@eatcs.org

and must be prepared in LATEX 2ε using the class beatcs.cls (a version of
the standard LATEX 2ε article class). All sources, including figures, and a
reference PDF version must be bundled in a ZIP file.
Pictures are accepted in EPS, JPG, PNG, TIFF, MOV or, preferably, in PDF.
Photographic reports from conferences must be arranged in ZIP files layed out
according to the format described at the Bulletin’s web site. Please, consult
http://www.eatcs.org/bulletin/howToSubmit.html.

We regret we are unfortunately not able to accept submissions in other for-
mats, or indeed submission not strictly adhering to the page and font layout
set out in beatcs.cls. We shall also not be able to include contributions not
typeset at camera-ready quality.

The details can be found at http://www.eatcs.org/bulletin, including
class files, their documentation, and guidelines to deal with things such as
pictures and overfull boxes. When in doubt, email bulletin@eatcs.org.

Deadlines for submissions of reports are January, May and September 15th,
respectively for the February, June and October issues. Editorial decisions
about submitted technical contributions will normally be made in 6/8 weeks.
Accepted papers will appear in print as soon as possible thereafter.

The Editor welcomes proposals for surveys, tutorials, and thematic issues of
the Bulletin dedicated to currently hot topics, as well as suggestions for new
regular sections.

The EATCS home page is http://www.eatcs.org

vii

Table of Contents
EATCS MATTERS

Letter from the President . 3
Letter from the Editor . 13
The EATCS Award 2022 - Laudatio for Patrick Cousot . 15
The Presburger Award 2022 - Laudatio for Dor Minzer . 17
EATCS Distinguished Dissertation Award for 2021 19
EATCS-Fellows 2022 . 21
Alonzo Church Awards 2022 . 23
Edsger W. Dijkstra Prize in Distributed Computing 25
Ackermann Award 2022 - Call for Nominations 27
Obituary for Gerhard Woeginger . 29
Obituary for Rolf Niedermeier . 31

EATCS Golden Jubilee

EATCS Golden Jubilee: How EATCS was born 50
years ago and why it is still alive and well by
G. Ausiello, . 39
Silver Jubilee of EATCS . 51
Interview with Christos Papadimitriou 79
Interview with Anne Driemel . 85
Interview with Paul Spirakis . 89
Interview with Eva Rotenberg . 95
Interview with Leslie Ann Goldberg . 99
Interview with Mariangiola Dezani-Ciancaglini 105
Interview with Jean-Éric Pin . 109
Interview with Grzegorz Rozenberg . 115
Interview with Robert Cori . 121

EATCS COLUMNS

The Education Column, by J. Hromkovic and D. Komm
A Minimal Instruction Set for Education, by T. Kohn, 129

The Computational Complexity Column, by M. Koucky
Theory and Applications of Probabilistic
Kolmogorov Complexity, by Z. Lu, I. C. Oliveira, 141

The Theory Blogs Column, by L. Trevisan
Shtetl Optimized, by L. Trevisan . 187

The Distributed Computing Column, by S. Gilbert
Redbelly Blockchain: a Combination of Recent
Advances, by R. Network . 197

News and Conference Reports
Report on ICALP 2021, by A. Muscholl 219
Report on BCTCS 2022, by O. Petrovska, M. Seisenberger . . 227
Report on CPM 2022, by N. Pisanti . 241
Report from EATCS Japan Chapter, by Y. Yamauchi 243

EATCS LEAFLET . 243

EATCS Matters

E
A
T
C
S

The Bulletin of the EATCS

3

Dear EATCS members,

I hope my letter finds you and your family
safe and in good health. While we are
still living in the times marked by the
global coronavirus pandemic that has a
major impact on our lives and our
scientific activities, I hope that the
situation is improving and we will be able
to have a batter balance of online and of
networking activities. This spring I have
already attended a few international
workshops and conferences, and it seems
that we may be coming back to more active
scientific interaction. And most
importantly, we see some fantastic research
done by our community; and so I take the
opportunity to wish you all the best and
much success for your work.

As usual, the June issue of the Bulletin
will be available just before ICALP, the
flagship conference of the EATCS and an
important meeting of the theoretical
computer science community world-wide. The
49th EATCS International Colloquium on
Automata, Languages, and Programming (ICALP
2022), will be held in Paris, France, July
4–8, 2022 (URL:
https://icalp2022.irif.fr/). The
conference will be run in a hybrid mode,
with almost all talks delivered in-person,
though online participation will be made
possible. The conference chair Thomas
Colcombet, supported by his colleagues in
Paris, promises us an exciting scientific
event. I am very grateful to Thomas
Colcombet and his team (including Sandrine
Cadet, Olivier Carton, Geoffroy Couteau,
Hugo Férée, Irène Guessarian, Natalia

BEATCS no 137

4

Hacquart, Florian Horn, Maximilien
Lesellier, Simon Mauras, Valia Mitsou,
Sylvain Perifel, Amaury Pouly, Arnaud
Sangnier, Sylvain Schmitz, Mahsa
Shirmohammadi, Laurent Viennot) for the
extraordinary work they have done in
organizing ICALP 2022.

An important part of ICALP 2022 will be the
celebration of the 50th anniversary of both
the first ICALP and of EATCS — with year
1972 marking the birth of European
theoretical computer science. The first
ICALP conference was organized by Maurice
Nivat in July 1972 in Rocquencourt, Paris,
in the premises of IRIA, now INRIA. At
roughly the same time, the efforts to
establish a Europe-centered scientific
organization in Theoretical Computer
Science led to the submission to EEC and to
Belgian authorities of legal documents to
create EATCS on June 24, 1972; this is the
official date of the constitution of EATCS.
A royal decree by the King of Belgium from
September 4, 1972 officially created EATCS
and approved its statute. This has
happened thanks to the main founders of
EATCS: Giorgio Ausiello (Italy), Jaco de
Bakker (The Netherlands), Maurice Nivat
(France), Mike Paterson (UK), Manfred Paul
(Federal Republic of Germany), Michel
Sintzoff (Belgium), and Leo Verbeek (The
Netherlands), and with a broad support of
the Theory community. I hope to see many
of you joining us in these celebrations of
the 50th anniversaries of ICALP and of
EATCS during the ICALP 2022 conference in
Paris!

In the scientific part of the ICALP
program, the Programme Committee chairs
David Woodruff (track A) and Mikołaj

The Bulletin of the EATCS

5

Bojańczyk (track B) and their PCs have done
fantastic job selecting an impressive
collection of papers, 102 accepted papers
in track A and 24 in track B out of 429
submissions (342 for track A and 87 for
track B). The acceptance rate was 29.4
percent. The programme of ICALP 2022 will
highlight research across many areas within
theoretical computer science. I invite you
to attend and/or watch the talks even
outside your own research field.

The best paper awards at ICALP 2022 will go
to the following two articles:

• Track A: Ilan Newman and Nithin Varma.
Strongly Sublinear Algorithms for
Testing Pattern Freeness;

• Track B: Jakub Gajarský, Marcin
Pilipczuk, Michał Pilipczuk, Wojciech
Przybyszewski, and Szymon Toruńczyk.
Twin-width and Types.

The best student paper award for a paper
that is solely authored by a student will
go to the following three papers:

• Track A: Joakim Blikstad.
Sublinear-round Parallel Matroid
Intersection;

• Track A: Jakub Tĕtek. Approximate
Triangle Counting via Sampling and Fast
Matrix Multiplication;

• Track B: Gaëtan Douéneau-Tabot. Hiding
Pebbles when the Output Alphabet is
Unary.

Congratulations to the authors of the
award-receiving papers!

In addition to regular research talks,
ICALP 2022 will feature six invited talks
delivered by

BEATCS no 137

6

• Albert Atserias (Universitat
Politècnica de Catalunya),

• Constantinos Daskalakis (MIT),

• Leslie Ann Goldberg (Oxford),

• Madhu Sudan (Harvard, USA),

• Stéphan Thomassé (l’Ecole Normale
Supérieure de Lyon), and

• Santosh Vempala (Georgia Tech).

Apart from the invited and contributed
talks, ICALP 2022 will feature three
special presentations:

• of the EATCS Award 2022 to Patrick
Cousot (New York University), the
recipient of the award for introducing
and developing the framework of
abstract interpretation for program
analysis,

• of the Presburger Award 2022 to Dor
Minzer (MIT), the recipient of the
award for his deep technical
contributions towards resolving the
2-to-2 Games Conjecture, and

• of the Gödel Prize 2022 (sponsored
jointly by the EATCS and the ACM
SIGACT) for the seminal work making
transformative contributions to
cryptography by constructing efficient
fully homomorphic encryption schemes to
Zvika Brakerski (Weizmann Institute of
Science), Craig Gentry (Algorand
Foundation), and Vinod Vaikuntanathan
(MIT).

Moreover, during the conference, we will
honor the recipients of the 2021 EATCS

The Bulletin of the EATCS

7

Distinguished Dissertation Award and the
new group of EATCS Fellows.
The recipients of the 2021 EATCS
Distinguished Dissertation Award are

• Alexandros Hollender, University of
Oxford (advisor: Paul W. Goldberg),

• Jason Li, Carnegie Mellon University
(advisors: Anupam Gupta and Bernhard
Haeupler),

• Jan van den Brand, KTH Royal Institute
of Technology (advisor: Danupon
Nanongkai).

The new group of EATCS Fellows (class 2022)
recognized for their scientific
achievements in the field of Theoretical
Computer Science consists of

• Samson Abramsky (University College
London, United Kingdom), and

• Orna Kupferman (Hebrew University,
Israel).

Congratulations to the award winners and
new EATCS Fellows!

On behalf of the EATCS, I also heartily
thank the members of the awards,
dissertation and fellow committees for
their work in the selection of this stellar
set of award recipients and fellows. It
will be a great honor to celebrate the work
of these colleagues during ICALP 2022.
(More details about the EATCS Award 2022,
the Presburger Award 2022, the 2021 EATCS
Distinguished Dissertation Award, and the
EATCS Fellows are presented on the later
pages of this issue of the Bulletin.)

ICALP 2022 will also have nine satellite
workshops co-located with the main

BEATCS no 137

8

conference, taking place (online) on Sunday
and Monday before the main event:

• Parameterized Approximation Algorithms
Workshop

• Combinatorial Reconfiguration

• Recent Advances on Total Search
Problems

• LearnAut: 4th edition of the Learning
and Automata workshop

• Algorithmic Aspects of Temporal
Graphs V

• Trends in Arithmetic Theories

• Structure Meets Power 2022

• Straight-Line Programs, Word Equations
and their Interplay

• Graph Width Parameters: from Structure
to Algorithms

As usual, a more detailed report on the
ICALP 2022 conference will be published in
the October 2022 issue of the Bulletin.

Also, please allow me to remind you about
three other EATCS affiliated conferences
that will be taking place later this year.

• MFCS 2022: the 47th International
Symposium on Mathematical Foundations
of Computer Science, will be held in
Vienna, Austria, August 22—-26, 2022
(https://ac.tuwien.ac.at/mfcs2022/).

• ESA 2022: the 30th Annual European
Symposium on Algorithms, will be held
in Potsdam, Germany, September 5–9,
2022 (https://algo2022.eu/esa/).

The Bulletin of the EATCS

9

• DISC 2022: the 35th International
Symposium on Distributed Computing,
will be held in Augusta, Georgia,
October 25–27, 2022 (http://www.
disc-conference.org/wp/disc2022/).

In the recent months we have seen
announcements of numerous further awards
given to the members of theoretical
computer science. While more details about
many of these awards can be found on the
pages of this Bulletin and elswhere, let me
list some highlights here.

The Gödel Prize for outstanding papers in
the area of theoretical computer science is
sponsored jointly by the EATCS and the ACM
SIGACT. This year it has been awarded for
the seminal work making transformative
contributions to cryptography by
constructing efficient fully homomorphic
encryption schemes to the following two
papers:

• Zvika Brakerski and Vinod
Vaikuntanathan. Efficient Fully
Homomorphic Encryption from (Standard)
LWE. SIAM Journal of Computing 43(2):
831–871, 2014.

• Zvika Brakerski, Craig Gentry, and
Vinod Vaikuntanathan. (Leveled) Fully
Homomorphic Encryption without
Bootstrapping. ACM Transactions on
Computation Theory 6(3): 13:1–13:36,
2014.

The Edsger W. Dijkstra Prize in Distributed
Computing is awarded for outstanding papers
on the principles of distributed computing,
and is sponsored jointly by the ACM
Symposium on Principles of Distributed

BEATCS no 137

10

Computing (PODC) and the EATCS Symposium on
Distributed Computing (DISC). The 2022
Dijkstra Prize has been awarded to the
following two papers for providing the
first general approach to memory
reclamation in nonblocking data structures,
with significant impact both in research
and practice

• Maged M. Michael. Safe Memory
Reclamation for Dynamic Lock-Free
Objects Using Atomic Reads and Writes.
Proceedings of the 22nd ACM Symposium
on Principles of Distributed Computing
(PODC), pages 21—30, Monterey, CA, USA,
July 2002.

• Maurice Herlihy, Victor Luchangco, and
Mark Moir. The Repeat Offender
Problem: A Mechanism for Supporting
Dynamic-Sized, Lock-Free Data
Structures. Proceedings of the 16th
International Symposium on Distributed
Computing (DISC), pages 339—353,
Toulouse, France, October 2002.

The Alonzo Church Award for outstanding
contributions to logic and computation is
awarded annually in a collaboration of the
European Association for Theoretical
Computer Science (EATCS), the ACM Special
Interest Group on Logic (SIGLOG), the
European Association for Computer Science
Logic (EACSL), and the Kurt Gödel Society
(KGS). The 2022 Alonzo Church Award has
been awarded to Dexter Kozen (Cornell
University) for his fundamental work on
developing the theory and applications of
Kleene algebra with tests, an equational
system for reasoning about iterative
programs, published in

The Bulletin of the EATCS

11

• Dexter Kozen. Kleene Algebra with
Tests. ACM Transactions on Programming
Languages and Systems 19(3): 427–443,
1997.

The prize will be formally presented at the
Federated Logic Conference 2022 (FLOC2022),
held in August in Haifa, Israel.

EATCS also co-sponsors the EATCS-IPEC
Nerode Prize for outstanding papers in the
area of multivariate algorithmics, which
this year was awarded to Bruno Courcelle
for the following two papers:

• Bruno Courcelle. The Monadic
Second-Order Logic of Graphs. I.
Recognizable Sets of Finite Graphs.
Information and Computation 85(1):
12–75, 1990.

• Bruno Courcelle. The Monadic
Second-Order Logic of Graphs III:
Tree-Decompositions, Minors and
Complexity Issues. RAIRO — Theoretical
Informatics and Applications 26:
257–286, 1992.

EATCS also sponsors the Best ETAPS Paper
Award 2022 for the best theory paper at
ETAPS, which this year was awarded to the
following paper:

• Emmanuel Hainry, Bruce Kapron,
Jean-Yves Marion and Romain Péchoux,
Complete and Tractable
Machine-independent Characterizations
of Second-order Polytime.

Unfortunately, during the last months, we
received the sad news that two active
members of our community pass away:
Gerhard Woeginger and Rolf Niedermeier.
Gerhard Woeginger (RWTH in Aachen) was

BEATCS no 137

12

renowned for his research in approximation
algorithms, online algorithms, scheduling,
and also complexity theory, discrete
mathematics, graph drawing, optimization,
graph theory, social choice theory, and
NP-hard problems (also thanks to his
fantastic list of failed proofs of P vs
NP); he was a very active member of the TCS
community (including being the current
EATCS Council member and a member of
Academia Europaea). Rolf Niedermeier was a
professor of computer science at TU Berlin,
known for his research in computational
complexity theory, especially in
parameterized complexity, graph theory,
computational social choice, and social
network analysis. The entire Theory
community will miss both of them dearly.

As usual, let me close this letter by
reminding you that you are always most
welcome to send me your comments,
criticisms and suggestions for improving
the impact of the EATCS on the Theoretical
Computer Science community at
president@eatcs.org. We will consider all
your suggestions and criticisms carefully.

I look forward to seeing many of you at
ICALP 2022 and to discussing ways of
improving the impact of the EATCS within
the theoretical computer science community
at the general assembly.

Artur Czumaj
University of Warwick, UK

President of EATCS
president@eatcs.org

June 2022

13

Dear EATCS member,

This issue of the Bulletin of the EATCS is
a special one! For the Golden Jubilee,
Giorgio Ausiello looks back with us at the
50-year history of the EATCS, and shows why
it is still alive and well. The issue
further includes a historical article,
written by Ute and Wilfried Brauer, for the
Silver Jubilee of the EATCS.

We also invited several members of the
theoretical computer science community for
an interview, and I would like to thank
Robert Cori, Leslie Goldberg, Mariangiola
Dezani-Ciancaglini, Anne Driemel, Christos
H. Papadimitriou, Jean-Eric Pin, Eva
Rotenberg, Grzegorz Rozenberg, and Paul
Spirakis very much for sharing their
perspectives, thoughts and memories with
us.

As usual, the Bulletin includes technical
columns and other typical contents such as
book reviews, conference reports, and award
announcements. In particular, check out
Luca Trevisan’s conversation with Scott
Aaronson, the distributed computing column
on Redbelly Blockchain, the education
column about Tobias Kohn’s minimal
instruction set for education, or the
logics column by Kenichi Morita on making
reversible computing machines in reversible
cellular space.

This month, I also had the opportunity to
meet our logics editor, Yuri Gurevich, in
person, in Berlin: thank you very much
Yuri for your kind visit and all the
memories and stories you shared!

I wish everyone an interesting read and a

BEATCS no 137

14

look forward to seeing you at the EATCS
celebrations in Paris!

Stefan Schmid, Berlin
June 2022

15

The EATCS Award 2022
Patrick Cousot

The EATCS Award 2022 is awarded to

Patrick Cousot

Patrick Cousot and his late wife Radhia Cousot introduced and developed the
framework of abstract interpretation for program analysis. Abstract interpretation
formalizes the interplay of static abstraction with dynamic execution for reasoning
about the correctness of programs. Since its introduction in 1977, abstract inter-
pretation has become one of the fundamental concepts in programming languages
and compiler optimization and has greatly influenced the theory and practice of
many related fields, from verification and software engineering to real-time sys-
tems and security. Dozens of new instantiations, extensions, and applications of
the framework are published every year. Patrick has devoted a lifetime of research
to abstract interpretation, having not only formulated the elegant mathematics that
lies at the core the framework, but also leading its transition to industrial use, most
notably through the Astree project for the analysis of avionics and space software.
Recently Patrick summarized his life’s work in the textbook “Principles of Ab-
stract Interpretation.”

The EATCS Award Committee 2022

• Éva Tardos (chair)

• Johan Håstad

• Thomas Henzinger

BEATCS no 137

16

The award will be presented at ICALP 2022, in Paris.
The EATCS annually honors a respected scientist from our community with

this prestigious EATCS Distinguished Achievements Award, to acknowledge ex-
tensive and widely recognized contributions to theoretical computer science over
a life long scientific career (see http://eatcs.org/index.php/eatcs-award for more
information, including the list of previous recipients)

The following is the list of the previous recipients of the EATCS Awards:

2021 Toniann (Toni) Pitassi 2010 Kurt Mehlhorn
2020 Mihalis Yannakakis 2009 Gérard Huet
2019 Thomas Henzinger 2008 Leslie G. Valiant
2018 Noam Nisan 2007 Dana S. Scott
2017 Éva Tardos 2006 Mike Paterson
2016 Dexter Kozen 2005 Robin Milner
2015 Christos Papadimitriou 2004 Arto Salomaa
2014 Gordon Plotkin 2003 Grzegorz Rozenberg
2013 Martin Dyer 2002 Maurice Nivat
2012 Moshe Y. Vardi 2001 Corrado Böhm
2011 Boris (Boaz) Trakhtenbrot 2000 Richard Karp

17

The Presburger Award 2022
Laudatio for DorMinzer

The 2022 Presburger Committee has unanimously selected

Dor Minzer

as the recipient of the 2022 EATCS Presburger Award for Young Scientists for
his deep technical contributions towards resolving the 2-to-2 Games Conjecture.

The Unique Games Conjecture, formulated in 2002, is one of the central open
questions in theoretical computer science, providing a plausible explanation of
the hardness of approximation for a variety of natural problems, and weaving
connections between computational complexity, algorithms, analysis, and geom-
etry. While the jury is still out on this conjecture, the closely related variant of
the 2-to-2 Games Conjecture was recently resolved by Minzer and his co-authors
over a remarkable series of four papers between 2017 and 2018. "Lesser" vari-
ant notwithstanding, it has several important consequences, including establishing
the hardness of distinguishing between almost-4-colourable graphs from almost-
k-colourable graphs for constant k, and ruling out a polynomial-time-vs-truly-
exponential-time dichotomy for approximating constraint satisfaction problems.

The proof of the 2-to-2 Games Conjecture involves a complex process of re-
formulating and reducing it to a concrete combinatorial hypothesis about the ex-
pansion properties of Grassmann graphs, and then proving this hypothesis using
tools from the analysis of Boolean functions.

Minzer has also to his credit other strong and insightful results, in areas span-
ning property testing, information complexity, invariance and isoperimetry, noise
sensitivity, and more. Minzer’s work establishes him as a world leader in Boolean
function analysis, an area central to obtaining and understanding many diverse
and significant advances in theoretical computer science

The Presburger Committee 2022

BEATCS no 137

18

• Mikołaj Bojańczyk

• Uriel Feige

• Meena Mahajan (chair)

The Presburger Award is given to a young scientist (in exceptional cases to
several young scientists) for outstanding contributions in theoretical computer sci-
ence, documented by a published paper or a series of published papers. The award
is named after Mojzesz Presburger who accomplished his path-breaking work on
decidability of the theory of addition (which today is called Presburger arithmetic)
as a student in 1929.

The award includes an amount of 1000 € and an invitation to ICALP 2021 for
a lecture.

The following is the list of the previous recipients of the EATCS Pressburger
Awards:

2021 Shayan Oveis Gharan 2015 Xi Chen
2020 Dmitriy Zhuk 2014 David Woodruff
2019 Karl Bringmann and Kasper Green Larsen 2013 Erik Demaine
2018 Aleksander Mądry 2012 Venkatesan Guruswami and Mihai Patrascu
2017 Alexandra Silva 2011 Patricia Bouyer-Decitre
2016 Mark Braverman 2010 Mikolaj Bojanczyk

19

EATCS Distinguished Dissertation
Award for 2022

EATCS is proud to announce that, after examining the nominations received
from our research community, the EATCS Distinguished Dissertation Award Com-
mittee 2021, consisting of Susanne Albers, Nikhil Bansal, Elvira Mayordomo,
Jaroslav Nesetril, Damian Niwinski, David Peleg (chair), Vladimiro Sassone and
Alexandra Silva, has selected the following three theses as recipients of the EATCS
Distinguished Dissertation Award for 2021:

Alexandros Hollender: Structural Results for Total Search Complexity Classes
with Applications to Game Theory and Optimisation (University of Oxford; advi-
sor: Paul W. Goldberg).,

Jason Li: Preconditioning and Locality in Algorithm Design (Carnegie Mellon
University; advisors: Anupam Gupta and Bernhard Haeupler).,

Jan van den Brand: Dynamic Matrix Algorithms and Applications in Convex
and Combinatorial Optimization (KTH Royal Institute of Technology; advisor:
Danupon Nanongkai).

The award certificate will be presented to in the award ceremony of ICALP
2022, to take place in Paris, France, in July 4-8, 2022.

BEATCS no 137

20

The EATCS Distinguished Dissertation Award Committee 2021 consisted of

• Susanne Albers

• Nikhil Bansal

• Elvira Mayordomo

• Jaroslav Nesetril

• Damian Niwinski

• David Peleg (chair)

• Vladimiro Sassone

• Alexandra Silva

The EATCS Distinguished Dissertation Award has been established to promote
and recognize outstanding dissertations in the field of Theoretical Computer Sci-
ence. Any PhD dissertation in the field of Theoretical Computer Science success-
fully defended in 2020 has been eligible. The dissertations were evaluated on the
basis of originality and potential impact on their respective fields and on Theo-
retical Computer Science. Each of the selected dissertations will receive a prize
of 1000 Euro. The award receiving dissertations will be published on the EATCS
web site, where all the EATCS Distinguished Dissertations will be collected.

The list of the previous recipients of the EATCS Distinguished Dissertation
Award is available at https://eatcs.org/index.php/dissertation-award.

21

EATCS-Fellows 2022

The EATCS has recognized six of its members for their outstanding contribu-
tions to theoretical computer science by naming them as recipients of an EATCS
fellowship.

The EATCS Fellows for 2022 are:

Samson Abramsky, University College London, United Kingdom For funda-
mental contributions to logic in computer science, including domain theory in log-
ical form, game semantics, and category-theoretic foundations of quantum com-
puting.

Orna Kupferman, Hebrew University, Israel For fundamental contributions to
automata- and game-theoretic techniques aiming at the formal verification and
reactive synthesis of computing systems.

The aforementioned members of the EATCS were selected by the EATCS
Fellow Selection Committee, after examining the nominations received from our
research community.

The EATCS Fellow Selection Committee consisted of

• Christel Baier

• Mikołaj Bojanczyk

• Mariangiola Dezani (chair)

• Josep Diaz

• Giuseppe F. Italiano

The EATCS Fellows Program was established by the association in 2014 to
recognize outstanding EATCS members for their scientific achievements in the

BEATCS no 137

22

field of Theoretical Computer Science. The Fellow status is conferred by the
EATCS Fellows-Selection Committee upon a person having a track record of in-
tellectual and organizational leadership within the EATCS community. Fellows
are expected to be “model citizens” of the TCS community, helping to develop
the standing of TCS beyond the frontiers of the community.

The EATCS is very proud to have the above-mentioned members of the asso-
ciation among its fellows.

The list of EATCS Fellows is available at http://www.eatcs.org/index.php/eatcs-
fellows.

23

2022 Alonzo Church Award for
Outstanding Contributions to Logic

and Computation

The ACM Special Interest Group on Logic (SIGLOG), the European Associ-
ation for Theoretical Computer Science (EATCS), the European Association for
Computer Science Logic (EACSL), and the Kurt Gödel Society (KGS) are pleased
to announce that the 2022 Alonzo Church Award for Outstanding Contributions
to Logic and Computation is given to

• Dexter Kozen

for his fundamental work on developing the theory and applications of Kleene
Algebra with Tests, an equational system for reasoning about iterative programs,
published in:

Kleene Algebra with Tests. ACM Transactions on Programming Languages
and Systems 19(3): 427-443 (1997)

This work on Kleene Algebra with Tests (KAT) is one of the high points
among remarkable contributions of Dexter Kozen to logics of programs. It is a
culmination of a series of articles by Dexter Kozen that define and apply Kleene
Algebra with Tests (KAT), an equational system that combines Kleene Algebra
(the algebra of regular expressions) with Boolean Algebra (the tests). Together,
the terms of the two algebras are capable of representing while programs, and
their combined equational theory is capable of proving a wide range of important
properties of programs. Although reasoning in KAT under arbitrary commuting
conditions is undecidable, Kozen observes that when the commuting conditions
are limited to including tests, it is decidable and in PSPACE. He illustrates the
power of KAT with these decidable commuting conditions by proving a well-
known folk theorem: Every while program can be simulated by a program with
just one loop. KAT has been successfully applied to a variety of problems over the
past 25 years, including modeling and reasoning about packet-switched networks.

The 2022 Alonzo Church Award Committee:

• Thomas Colcombet

• Mariangiola Dezani,

BEATCS no 137

24

• Javier Esparza ,

• Radha Jagadeesan, (chair) and

• Igor Walukiewicz.

The list of the previous recipients of the Alonzo Church Award for Outstand-
ing Contributions to Logic and Computation is available at https://siglog.
org/awards/alonzo-church-award/.

25

2022 EdsgerW. Dijkstra Prize in
Distributed Computing

The 2022 Dijkstra Prize Award Committee concluded its deliberations and we
are happy to announce that the papers

• “Safe Memory Reclamation for Dynamic Lock-Free Objects Using Atomic
Reads and Writes,” by Maged M. Michael. Proceedings of the 22nd ACM
Symposium on Principles of Distributed Computing (PODC), Monterey,
CA, USA, July 2002, pages 21–30.

• “The Repeat Offender Problem: A Mechanism for Supporting Dynamic-
Sized, Lock-Free Data Structures,” by Maurice Herlihy, Victor Luchangco,
and Mark Moir. Proceedings of the 16th International Symposium on Dis-
tributed Computing (DISC), Toulouse, France, October 2002, pages 339–353.

have been selected by the committee to receive the Dijkstra Prize this year for
providing the first general approach to memory reclamation in nonblocking data
structures, with significant impact both in research and practice.

The Award Committee 2022:

• Christian Scheideler, Paderborn University (chair)

• Marcos Aguilera, VMware Research

• Alessandro Panconesi, Università La Sapienza, Rome

• Andrea Richa, Arizona State University

• Alexander Schwarzmann, Augusta University

• Philipp Woelfel, University of Calgary

The list of the previous recipients of the Edsger W. Dijkstra Prize in Dis-
tributed Computing is available at https://www.podc.org/dijkstra/.

BEATCS no 137

26

27

Ackermann Award 2022

The EACSL Outstanding Dissertation Award for

Logic in Computer Science 2022

Call for Nominations

Deadline: 1 July 2022

Nominations are now invited for the 2022 Ackermann Award. PhD dissertations in

topics specified by the CSL and LICS conferences, which were formally accepted

as PhD theses at a university or equivalent institution between 1 January 2020 and

31 December 2021 are eligible for nomination for the award. The deadline for

submission is 1 July 2022. Submission details follow below.

The 2022 Ackermann Award will be presented to the recipient(s) at CSL 2023,

the annual conference of the EACSL.

The award consists of

• a certificate,

• an invitation to present the thesis at the CSL conference,

• the publication of the laudatio in the CSL proceedings,

• an invitation to the winner to publish the thesis in the FoLLI subseries of

Springer LNCS, and

• financial support to attend the conference.

The jury consists of:

• Christel Baier (TU Dresden);

• Maribel Fernandez (King’s College London);

BEATCS no 137

28

• Delia Kesner (IRIF, U Paris);

• Slawomir Lasota (U Warsaw);

• Jean Goubault-Larrecq (ENS Paris-Saclay);

• Prakash Panangaden (McGill University);

• Simona Ronchi Della Rocca (University of Torino), the vice-president of

EACSL;

• Thomas Schwentick (TU Dortmund) , the president of EACSL;

• Alexandra Silva, (University College London), ACM SigLog representa-

tive;

• James Worrell (U Oxford).

The jury is entitled to give the award to more (or less) than one dissertation in a

year.

The candidate or his/her supervisor should submit

1. the thesis (ps or pdf file);

2. a detailed description (not longer than 10 pages) of the thesis in ENGLISH

(ps or pdf file); it is recommended to not squeeze as much material as possi-

ble into these 10 pages, but rather to use them for a gentle introduction and

overview, stressing the novel results obtained in the thesis and their impact;

3. a supporting letter by the PhD advisor and two supporting letters by other

senior researchers (in English); supporting letters can also be sent directly

to Thomas Schwentick (thomas.schwentick@tu-dortmund.de);

4. a short CV of the candidate;

5. a copy of the document asserting that the thesis was accepted as a PhD thesis

at a recognized University (or equivalent institution) and that the candidate

has received his/her PhD within the specified period.

The submission should be sent by e-mail as attachments to the chair of the jury,

Thomas Schwentick: thomas.schwentick@tu-dortmund.de

The e-mail should have the subject line Ackermann Award 22 Submission and

as text the name of the candidate and the list of attachments. Submissions can be

sent via several e-mail messages. If this is the case, please indicate it in the text.

29

Obituary GerhardWoeginger
(by Frits Spieksma)

1964–2022

He was unassuming. He was nice. He could think. He could write. And he
knew a lot. He died Friday, April 1, 2022. His name was Gerhard Woeginger, a
prolific computer scientist.

Some facts of his life and career can be easily summarized as follows. Born
on May 31, 1964 in Graz, he studied at the Graz University of Technology, and
got a PhD under Franz Rendl in 1991 with a thesis entitled "Geometric clustering,
Reconstruction and Embedding Problems: Combinatorial Properties and Algo-
rithms". He became a professor at the University of Twente (the Netherlands)
in 2001, and joined TU/e as a professor in 2004. In 2016 he moved to RWTH
Aachen. During his time at TU/e, he supervised around 10 PhD-students.

Describing the impact of his career on the field is not so easily summarized.
He was present in almost every field within theoretical computer science. Social
choice, bibliometrics, algorithms (especially online), approximability, computa-
tional geometry, and of course, one of his prime loves: computational complexity.
His talent to see connections between different problems was amazing. His ability
to distill the essentials, and then write it up in a way that it all seemed natural was
uncanny. And his drive and enthusiasm to distinguish easy from hard, was abso-
lutely infectious. His friendliness combined with a deep mathematical curiosity
has been a source of inspiration for all around him.

He was on the program committee of an enormous number of conferences, he
was program chair of ESA1997, MAPSP2005, IPCO2011, EURO2009, and he
was on the board of a dozen journals among which OR Letters. He set up, and
maintained the P-versus-NP page, a vintage Gerhard-style set of webpages that
discusses attempts to settle the P=NP question. To say that he contributed to the
Christmas puzzle (Advents Kalender) is an understatement, he single-handedly
ensured the existence of it. And there is much, much more to be said.

Above all, he could listen - he was able to identify truth in one’s unstructured
words. And then he’d write the paper, faster than one thought was possible. We
will miss his presence at conferences, his revealing questions at presentations,
his modest smile when the result was discovered, and his knowledge. He knew

BEATCS no 137

30

about the origins of the term NP-complete, he knew results from faraway times in
obscure journals; he also knew about the ideal composition of a darts board, and
he knew his soccer.

I am going to close with a personal anecdote. I visited Gerhard in Aachen,
where we had dinner. He said "I feel a bit guilty about something I did while at
TU/e - I stole something". I said: "Well, as TU/e is still standing, it can’t have been
too bad - what did you take?". "When they were cleaning out the library many
years ago, I found a copy of a PhD thesis from 1962, written by Duyvesteyn. In it,
Duyvesteyn finds a partition of a square into smaller squares. The corresponding
picture is still on the cover of the Journal of Combinatorial Theory. I took the
book with me, and actually, I have the book with me now. I want you to return it
to TU/e." "Are you sure?" I asked. "Yes, I am sure." he said.

31

Obituary for Rolf Niedermeier

With great sadness, we announce that Rolf Niedermeier recently passed away unexpectedly
at the age of 55. Many readers know Rolf from his book “Invitation to Fixed-Parameter Algo-
rithms”, which gave a welcoming and smooth introduction to the research area of parameterized
algorithms.

Rolf’s journey into the world of computer science started at TU Munich in 1986, where he
obtained a degree in computer science in 1991. He then continued at the University of Tübingen,
where he earned his PhD degree in 1996 and, after spending one year as a postdoc at Charles
University in Prague, started an independent research group on parameterized algorithms. He
then joined the University of Jena in 2004, where he obtained his first position as a professor and,
finally, TU Berlin in 2010 where he established and chaired the research group “Algorithmics and
Computational Complexity”.

During this time, he achieved several seminal contributions for example on the improvement
of depth-bounded search trees, the establishment of kernelization as a framework for parameter-
ized algorithms, and in the quest to turn parameterized algorithms into practical implementations.
He was one of the leading researchers in parameterized algorithmics, and worked on the appli-
cation of parameterized algorithms to problems from various fields such as computational social
choice, computational biology, and temporal graph theory with tireless enthusiasm.

Over his academic lifetime, Rolf supervised thirty Doctoral and countless Bachelor and Mas-
ter students, taught a variety of stimulating courses, and headed more than fifteen different DFG-
funded research projects. He was also co-organizer of numerous Dagstuhl workshops, includ-
ing the first two Dagstuhl seminars on Parameterized Algorithms in 2001 and 2003, “Adap-
tive, Output Sensitive, Online and Parameterized Algorithms” in 2009, “Application-Oriented
Computational Social Choice” and “Algorithms and Complexity in Phylogenetics” in 2019, and
“Temporal Graphs: Structure, Algorithms, Applications” in 2021. Moreover, he was the local
organizer for the “Workshop on Graph-Theoretic Concepts in Computer Science” (WG 2007),
the “Workshop on Challenges in Algorithmic Social Choice” (CASC 2014), and the “Sympo-
sium on Theoretical Aspects of Computer Science” (STACS 2019). In addition, he tirelessly
contributed to the research community in many different boards and committees (for example in
the computer science review board of the DFG and in the review panel for ERC Starting Grants),
as member of the steering committee for STACS, as dean of the faculty for Electrical Engineer-
ing and Computer Science at TU Berlin, as speaker of the algorithms group of GI, and in various
other capacities.

Beyond his unconditional dedication to academia, Rolf was known as a warm-hearted and
caring person who was always in the mood for a witticism. He used these to skillfully bridge any
distance between him and his students, since they always came with an implicit expectation to

BEATCS no 137

32

be returned with an equally pointed retort.
Rolf always had a positive attitude and was very approachable. You could always come to

his office and ask him about anything. He would probably offer you a cup of tea and definitely
give you his full attention—no matter how large the pile of other, more urgent or important work
on his desk was.

We mourn for an inspiring mentor, bright scientist, supportive colleague, and good friend.
Even though his passing leaves a large void, his influence will live on in all those who worked
with him.

Institutional
Sponsors

BEATCS no 137

34

CTI, Computer Technology Institute & Press "Diophantus"
Patras, Greece

CWI, Centum Wiskunde & Informatica
Amsterdam, The Netherlands

MADALGO, Center for Massive Data Algorithmics
Aarhus, Denmark

Microsoft Research Cambridge
Cambridge, United Kingdom

Springer-Verlag
Heidelberg, Germany

BEATCS no 137

36

EATCS
Golden Jubilee

EA
T

C
S

The Bulletin of the EATCS

39

EATCS Golden Jubilee:
How EATCS was born 50 years ago
and why it is still alive and well.

Giorgio Ausiello

Sapienza Università di Roma
ausiello@diag.uniroma1.it

The background
It was the year 1970 when Maurice Nivat, young mathematician, and his mentor
Marcel-Paul Schützenberger, recently appointed director at IRIA (now INRIA),
announce in a press conference, to about fifteen specialized journalists, the birth
of a new scientific discipline that they call ‘informatique thèorique’ (i.e. theoreti-
cal computer science): ‘the science which makes use of mathematical and logical
tools to clarify and study the notion of computation’. Also the three great domains
that formed the core of such new science were identified in the c onference: the
theory of automata and formal languages, the theory of algorithms and of com-
putational complexity, and the theory of computer programming. “I don’t know
what happened to us on that day” says Maurice Nivat in 2008, in an interview
with the journalist Isabelle Bellin. “The reality is that 40 years later this discipline
exists and the number of researchers devoted to this domain of computer science
has now increased fifty or may be one hundred times”1.

Actually, as we all know, the study of mathematical foundations of computer sci-
ence was not born in 1970; it had already a long history at that time. Theoretical
issues in computing had been a research subject since the years Thirties, when
the work of Alan Turing, Alonzo Church, Emil Post, and other logicians, had
been focused on the characterization of computability and on the discovery of non
computable functions and undecidable problems. Indeed these studies had been

1I. Bellin, Maurice Nivat: une vision à long terme de la recherche en informatique,
https://hal.inria.fr/hal-01350155/

BEATCS no 137

40

sources of inspiration for the creation of the first electronic computers. Subse-
quently, after the creation of the first generation of electronic computers technol-
ogy again passed the floor to theory. Throughout the years Fifties and Sixties, a
large amount of concepts and results regarding foundational aspects of computing
devices and programming had been achieved and in 1970 such concepts and such
results were already considered cornerstones of computer science. Just to make
a few examples, in the area of models of computation we can remember the con-
cepts of neural networks (McCulloch and Pitts, 1955) and the first examples of
non deterministic processes (Rabin and Scott, 1959); regarding program syntax,
we may remember the complete characterization of Chomsky languages in terms
of generating grammars and of recognizing automata (Oettinger, Schützenberger,
Myhill, Kuroda, Greibach, 1960-1965); regarding control structures in programs
we have the results of Böhm and Jacopini (1966) that are at the base of structured
programming; in program semantics we may consider the first notions of opera-
tional and denotational semantics (McCarthy, 1960, and Strachey, 1964), and the
notion of axiomatic semantics (Floyd and Hoare, 1969); finally it is worth remem-
bering the first results addressing the notion of computational complexity (Rabin,
1960, Hartmanis and Stearns, 1965, and Blum, 1966).

Two textbooks, appeared respectively in 1967 and in 1969, “Computation. Finite
and Infinite Machines" by Minsky, and "Formal Languages and Their Relation to
Automata” by Hopcroft and Ullman show that theoretical issues in computer sci-
ence were already well defined and present in university curricula when the press
conference of Nivat and Schützenberger took place.

So, what was the reason that moved Nivat and Schützenberger to announce the
birth of a new scientifique domain? Actually, if we look back at those times we
realize that there were many reasons to publicize and try to identify the new scien-
tific domain. First of all the relentless growth of computer applications in all fields
of human activity, banks, industry, public administration, that was taking place
in those years was characterizing informatics essentially from the technological
point of view, leaving in the back the foundational studies that were necessary to
improve correctness and efficiency of applications. This was leading, at least in
Europe, to lack of recognition in the academic world and inadequate funding for
theoretical computer science with respect to other established domains like mathe-
matics, physics, electrical engineering. In Italy mathematicians viewed computers
just as tools for numerical computing, totally ignoring that, behind the instrument,
another new mathematical discipline, the science of computing, was being shaped.
This was not only happening in Italy but was a general attitude of mathematicians
toward computer science. One of the leading figures in theoretical computer sci-
ence, Michael Rabin, recalls: “There was absolutely no appreciation of the work

The Bulletin of the EATCS

41

on the issues of computing. Mathematicians did not recognize the emerging new
field”, and from this point of view it is also interesting what Edsger Dijkstra said
about his appointment at the Department of Mathematics at Eindhoven University
of Technology: “Later I learned that I had been the department’s third choice, after
two numerical analysts had turned the invitation down” 2. In any case, despite im-
portant achievements in some fields such as, for example, programming language
design (think of the Algol 60 Report, mostly based on European contributions,
and of the creation of the language Simula 67, a prototype of object oriented
languages, implemented by Dahl and Nygaard) or software engineering (the first
conference in this field took place in Garmish in 1968 thanks to the energetic role
of various European scientists) European computer scientists were perceiving the
existence of a large gap between the great development of US research in all as-
pects of computer science, and in theory in particular, and the European situation.

Also from the organizational point of view the European situation was lagging
behind that in US. In 1968 ACM had created the Special Interest Group on Au-
tomata and Computability Theory (SIGACT, now Special Interest Group on Al-
gorithms and Computation Theory) and in 1969 Patrick Fisher, the first Chair of
SIGACT, professor at Waterloo, had started the Symposium on Theory of Com-
puting (STOC). This was the second important US conference entirely devoted
to theoretical computer science, the oldest being the IEEE Annual Symposium
on Switching Circuit Theory and Logical Design (created in 1959 and in 1966 re-
named Switching and Automata Theory 3). No such scientific environment existed
at European scale in the Sixties. Due to such situation European researchers did
not have suitable occasions to meet. It was more customary for an Italian, French,
British researcher to be in contact with US correspondents than with other Euro-
pean colleagues.

With all this in mind Maurice Nivat, Louis Nolin and Marcel-Paul Schützenberger
moved in 1971 a second step that has become crucial in the development of the
European theoretical computer science community. On June 25 a letter, prompted
by Maurice Nivat and his colleagues, was sent by the Director of the Mathemat-
ics Department of the University of Paris VII François Bruhat to the European
Commission. The letter recommended a cooperation concerning education and
research in theoretical computer science to be established among European uni-
versities. The objective of the cooperation would be “to promote the exchange
of information and of scientific results in the field and to organize specialized

2In this article various excerpts are taken from: G. Ausiello, The Making of a New Science,
Springer 2018.

3In 1975 the conference received the current title: Foundations of Computer Science (FOCS).

BEATCS no 137

42

schools and conferences, and visits of young researchers in laboratories of other
countries” (a kind of ante litteram Marie Curie fellowship program). Besides Paris
VII, the sites indicated as possible partners in the initiative were: Saarbrücken and
Munich in Germany, Rome, Pisa and Turin in Italy, Amsterdam and Brussels for
The Netherlands and Belgium, Paris VII and Toulouse for France. Furthermore,
in the United Kingdom (at the time not a member of the EEC) the universities of
Warwick, Edinburgh and Colchester would be invited to join the project.

According to Nivat’s memories: “It was an extraordinary moment for computer
science. University courses were started in various countries in Europe and else-
where, computers had allowed humanity to reach the moon but informatics was
not yet perceived as a real science. At the two Software Engineering conferences
in Garmisch (1968) and Rome (1969) it had been realized that informatics could
not be seriously developed without a solid methodological approach. But at the
same time it was made clear that programming techniques and methods conceived
by ‘software engineers’ could not reach their aims unless the notions of semantics,
and complexity of computation could be analyzed on the basis of mathematical
and logical rigorous foundations”.

Indeed Nivat remembers that already in 1968 he had discussed with Alfonso
Caracciolo, professor in Pisa, the possibility to create a European coperation in
theoretical informatics. “It was 1968 when in a meeting I met an Italian fellow,
Alfonso Caracciolo di Forino, who impressed me a lot for many reasons: he be-
longed to the noble Neapolitan family of the admiral Caracciolo who was hanged
in 1799, ... chatting after the meeting he told Schützenberger and myself that,
maybe, it would be possible to create a European entity dealing with the theoreti-
cal aspects of computer science since theory can be pursued with little money and
does not raise the unsolvable financial and economic problems that were at stake
when talking about cooperation in the software industry. He suggested that we
create a European association” 4.

Four years later it was thanks to the support of Alfonso Caracciolo, at that time
involved in the European PREST and COST initiatives for technological coopera-
tion, that the proposal of the French colleagues successfully led to the meeting in
Brussels that saw the birth of EATCS.

4M. Nivat, The True Story of TCS, Theoretical Computer Science, Special Issue for TCS 40th
Anniversary (2015).

The Bulletin of the EATCS

43

The Brussels meeting
The meeting took place on January 27th and 28th, 1972 under the title “Cooper-
ation in the Field of Theoretical Data Processing” and it was chaired by Alfonso
Caracciolo. The documents presented at the meeting contained three position pa-
pers on theoretical computer science.

The first, prepared by Nivat, Nolin and Schützenberger had been circulated since
June 1971 as an attachment to Bruhat’s letter. It was a 12 pages document contain-
ing, for the first time, the definition of the field of ‘informatique théorique’ (and
also of the mathematical domains that, although related to computing, could not be
classified theoretical computer science, such as numerical analysis and operations
research). The field was articulated in three main chapters, theory of automata
and formal languages, theory of algorithms and computational complexity, pro-
gramming theory and for each chapter examples of the main results achieved until
now were exposed. The second document had been prepared by Jaco de Bakker.
Here it is claimed that the most important applications of theoretical computer
science should be oriented toward i) improvements of ‘individual programs’ in
terms of efficiency and correctness, ii) to the study of ‘classes of programs’ such
as those for non-numerical applications and those devoted to data management,
iii) to the formal definition of ‘programming languages’ both in terms of syntax
and semantics, and finally iv) to the design of ‘operating systems’. The third doc-
ument had been prepared by Corrado Böhm. It starts by saying that ‘theoretical
informatics’ was at that time not yet settled and well understood but the results of
its development might have been ‘explosive’ with influence on all aspects of com-
puting: hardware, basic software (operating systems, networks, programming lan-
guages), applications (efficiency of algorithms, correctness, software certification
etc.). Overall we can observe that the vision of the founding fathers was definitely
wide and farsighted. Besides in Nivat’s document it was clearly stated that it was
impossible to circumscribe the areas of a newly born science whose results might
reach unforseeable goals.

Researchers from six countries plus several officers of the European Commission
took part in the meeting. France was represented by Maurice Nivat, Louis Nolin,
and the linguist Maurice Gross; Germany by Hans Langmaack and Karl Heinz
Böhling, The Netherlands by Leo Verbeek and Jaco de Bakker, the UK by Mike
Paterson, Belgium by Michael Sintzoff, Italy by Corrado Böhm, Ugo Montanari
and Giorgio Ausiello. The agenda of the meeting included a survey of the activity
of the Group PREST, the presentation by Louis Nolin of the French document
containing the definition of the field of ‘informatique théorique’ and an overview
of the importance of the field, an examination of the situation in the different

BEATCS no 137

44

countries, and finally the presentation, discussion and, possibly, approval of the
proposal prepared by Maurice Nivat on the cooperation among universities. This
was indeed the hottest issue. Finally the general idea of the creation of a European
organization for theoretical computer science was approved.

At first the idea was to follow the EMBO (European Molecular Biology Organi-
zation) example and to ask for a substantial funding from European institutions
(80.000 US dollars for the first year supposed to grow to 200.000 US dollars in
the subsequent years). In fact a few years before, in 1966, EMBO had been cre-
ated with the aim to promote such discipline and to support scientific cooperation
at European level among research institutions and universities, and had been as-
signed a relevant dowry that allowed to develop an ambitious program foreseeing
organization of conferences, fellowships, exchange of visits, etc. After not so long
it became clear that the EMBO experience could not be followed because to obtain
funds from EEC was becoming hard. This is also reflected in the changes in the
title of the initiative and in the articles of the proposed statute. At the beginning
a document dated February 7th has the title ‘Institut Européen d’Informatique
Théorique’ and considers that the institute should consist of ‘associated institutes’
and of simple ‘members’. Subsequently the proposal had been transformed into
Association Européenne d’Informatique Théorique – AEIT (in English European
Association for Theoretical Computer Science – EATCS), and while still open to
the participation of institutional members it had been conceived essentially as an
association of ‘individual members’.

Various provisional drafts of the statutes of the association prepared by EEC legal
experts were circulated. On June 24th (official date of the constitution of EATCS)
Michael Sintzoff met with de Bakker, Nivat and Paterson and they prepared the
final documents for the creation of EATCS to be submitted to EEC and to Bel-
gian authorities. The document would carry the names of the founders: Giorgio
Ausiello (Italy), Jaco de Bakker (The Netherlands), Maurice Nivat (France), Mike
Paterson (UK), Manfred Paul (Germany, rather, to be more precise, the Federal
Republic of Germany), Michel Sintzoff (Belgium), and Leo Verbeek (The Nether-
lands). In the same meeting it was decided to nominate Leo Verbeek as president,
Manfred Paul and Mike Paterson as vice-presidents, Maurice Nivat as secretary
and Michael Sintzoff as treasurer. The process had its conclusion on September
4th, 1972 with the signature of a royal decree by the King of Belgium which set
forth the creation of the ‘Association Européenne d’Informatique Théorique’ and
the approval of its statute.

So, formally the association was there but how to give it life? After the creation
of the scientific organization it was necessary to create the scientific community.

The Bulletin of the EATCS

45

The first steps
The first step in the creation of the European theoretical computer science com-
munity was indeed already moved in July 1972 with the conference that Maurice
Nivat organized in Paris (in the premises of IRIA). The title of the conference re-
flected the taxonomy of theoretical computer science that Maurice and his French
colleagues had sketched in the charter of ‘informatique théorique’: Colloque sur
la Théorie des Automates, des Langages et de la Programmation. The Program
Committee was composed by outstanding computer scientists: Corrado Böhm,
Samuel Eilenberg, Pat Fischer, Seymour Ginzburg, Gunther Hotz, Michael Ra-
bin, Arto Salomaa, Adriaan van Wijngaarden. It was chaired by the father of the
French school of theoretical computer science: Marcel-Paul Schützenberger. The
conference had a big success and was attended, either as speakers or as partici-
pants, by a large group of young scientists that would make the history of theo-
retical computer science in the future years. The proceedings were published by
North Holland and contained 49 papers. It is interesting to know that 34 papers
were in English, 14 in French, and 1 in German. ICALP (the International Col-
loquium on Automata, Languages and Programming) was born. While the first
edition of the conference was sponsored by ACM-SIGACT since the edition of
1974 the conference will be sponsored by EATCS and since 1976 will become the
big annual event that we all know, one of the major world events in theoretical
computer science.

The next important step that was taken to make EATCS grow was to get involved
in the project a large number of colleagues from all over the world. In September
1972 Maurice Nivat sent an invitation letter to a long list of scientists in Europe,
US and Israel (but he already had in mind the involvement of computer scientists
also from Soviet Union, India and Japan). Nivat was soliciting our colleagues to
join EATCS “not only to give it life but also to contribute to define aims, scope
and activities”. As we will see the need to open the scope of EATCS beyond the
research fields defined in the first documents has been a constant objective of the
founders. One of the characters that make EATCS alive and well after so many
years derives from the effort that, throughout these years, the scientists that have
led the Association have put to constantly update the scientific horizon of our
research domain and to open the annual conference to new hot and stimulating
subjects.

March 24th-25th, 1973 marks another important date: the first General Assembly
of EATCS took place in Warwick, hosted by Mike Paterson. During the meeting
the first Council of EATCS was elected by adding to the founding members six
leading figures of theory of computing from Europe and US (C. Böhm, W. Brauer,

BEATCS no 137

46

B. Mayoh, R. Milner, J.F. Perrot, D. Scott).

Then the Council appointed Maurice Nivat President of EATCS and de Bakker
and Paterson Vice-Presidents. In order to circulate information and promote the
exchange of ideas in the community it was decided that beside organizing an an-
nual conference and supporting specific informal events EATCS would have initi-
ated to edit a scientific bulletin containing information regarding open problems,
events and activity of research groups. A second General Assembly took place
in Hamburg on October 7, 1973 and in that occasion the Council was further en-
larged to include members from Israel (Z. Manna), Switzerland (E. Engeler) and
Finland (A. Salomaa).

In December 1973 Maurice Nivat edited the first EATCS Bulletin. Again the issue
of broadening the scope of the Association is addressed by Nivat in the Editorial
when he says that the initial list of topics identifying the scope of the Association
is by no means limitative: “defining the limits of theoretical computer science is at
least as difficult as defining the limits of computer science itself. And we strongly
believe that a science is what the scientists at work make it: certainly new areas of
computer science will be open to theory in the near future. Let us start small and
grow: we are sure many of you will help to achieve this necessary growth up to the
point where our Association will be a natural link between all European theoreti-
cal computer scientists”. The first issue of the Bulletin also contained reports from
Universities and research centers that help to understand what was the scientific
atmosphere in Europe in those years: abstract computational complexity, Linden-
mayer systems, grammatical inference, reproduction of automata, correctness of
recursive programs, recursive and iterative program schemes, program semantics,
combinatory logic and lambda-calculus.

Two more steps have contributed to establish the role of EATCS already in the
years Seventies and Eighties of the last century: the creation by Maurice Nivat
of the journal ‘Theoretical Computer Science’ in 1975 and the launch in 1981
of other important editorial initiatives: the ‘EATCS Monographs on Theoretical
Computer Science’ and the ‘EATCS Texts on Theoretical Computer Science’. All
such initiatives were not autonomous but were based on the collaboration with
commercial publishers (North Holland - Elsevier in the first case and Springer in
the second and third case); what matters is that although started in the restricted
EATCS circle they were directed to, and reached, the entire world community of
theoreticians. Initially the project to start a journal was communicated by Mau-
rice Nivat to the EATCS Council as an initiative involving the EATCS community.
While the journal was not formally linked to the Association it had seven mem-
bers of the EATCS Council in its Editorial Board and (as Maurice said in a letter

The Bulletin of the EATCS

47

to EATCS members) the creation of the journal had been ‘inspired’ by the Asso-
ciation. Indeed, since volume 12, in 1980, to volume 80, in 1991, the front page
of the journal carried the words: ‘The journal of the EATCS’. But at beginning of
the year Nineties the roads of the Association and of the journal started to diverge
mostly because EATCS felt the need to adopt an open attitude towards all journals
devoted to theory of computing.

As far as the EATCS Monographs and Texts book series are concerned, this might
again be considered a success story in the life of the Association. When the ini-
tiatives started in 1983 the Editors of the series were Wilfried Brauer, Grzegorz
Rozenberg and the EATCS President Arto Salomaa. Many of the first volumes
rapidly became fundamental textbooks in the field, reaching a public much wider
than the EATCS members and carrying the EATCS logo on the desk of students
worldwide.

The life of EATCS
In the paper Silver Jubilee of EATCS (1997) Ute and Wilfried Brauer say: “That
EATCS members identify themselves with their association is mainly due to the
ICALP series and to the Bulletin”. Twentyfive years later we can undoubtedly
confirm that ICALP and the Bulletin still are the pillars of the life of the Asso-
ciation but to them we should add several other initiatives that today make our
Association so dynamic and vital.

I do not think it is worth now to enumerate all the developments that underwent
along the life of the Association so let me just outline what I think are the most
fundamental aspects that show why EATCS is ‘well and alive’ 50 years after its
creation.

ICALP. The success of ICALP and its standing among the top world confer-
ences in theory of computing is well known. Every year it is confirmed by about
500 papers submitted by excellent researchers, from 40-50 countries, mostly from
Europe, America and Asia. The conservative selection rate (ranging from 28.2
and 29.8 in the last 10 years) is a guarantee of the quality of the conference and
all years several good papers cannot be accepted due to the tough competition.
Throughout the years EATCS has made an effort to update format and content of
the conference in view of the scientific evolution of theoretical computer science.
In the year 1997 the decision was taken to divide the conference in two tracks:
Track A, Algorithms, Complexity and Games, and Track B, Automata, Logic, Se-
mantics and Theory of Programming, somewhat corresponding to the two tracks

BEATCS no 137

48

in which the journal Theoretical Computer Science had been split in 1991. The
field was growing both in terms of number of papers and number of results pub-
lished in the world (in particular the field of algorithms and complexity was ex-
ploding and attracting a growing number of researchers), but also, most important,
in terms of subfields that needed to be addressed and understood and were getting
the theoreticians involved. From the original subjects that dominated the scene in
1972 the years Eighties and Nineties saw a shifting interest toward new topics (just
to make a few examples: approximation algorithms, on-line algorithms, dynamic
data structures, parameterized complexity, algorithmic game theory, parallel and
distributed systems, database theory, a variety of approaches to semantics of pro-
grams, program logics, etc.). Always with this spirit in mind in 2005 the program
was split in three tracks by adding a Track C to the traditional two tracks A and B.
The idea was that Track C might have been devoted, from time to time, to some
hot topic that could not be completely hosted in the other two tracks. Since 2005
till 2008 Track C has been devoted to Foundations of Security and Cryptography.
In subsequent years, since 2009 till 2019 Track C has been devoted to Foundations
of Networked Computation: Models, Algorithms and Information Management.
Other reasons that had great impact on the success of ICALP has been the peri-
odic co-location with other top conferences (e.g. LICS) and the organization of
satellite events, in some cases, at least at the beginning, intended to present results
of research projects (e.g. ALGOSENSORS) in other cases devoted to emerging
research topics (e.g. temporal graphs, real-time systems, quantum computational
complexity, etc.). Finally it is important to remember that since 2016 the ICALP
Proceedings, that previously were published by Springer in the ARCoSS subline
of Lecture Notes in Computer Science, are published open access in the Leib-
niz International Proceedings in Informatics (LIPIcs) series in cooperation with
Schloss Dagstuhl – Leibniz Center for Informatics. This is a very important con-
tribution that not only provides a service to the international theory of computing
community but also gives ICALP (and EATCS) worldwide visibility.

Bulletin. From the first two issues (edited by Maurice Nivat and by Giorgio
Ausiello respectively) that were only twenty or thirty pages long, with the ener-
getic role of the subsequent editors Hermann Maurer and Grzegorz Rozenberg the
Bulletin became a fundamental vehicle of information for the community, reach-
ing often the size of 400-500 pages full of informal notes, open problems, news
from research centers, conference reports and especially the ‘columns’. In the last
thirty years the enrichment and updating of the Bulletin with new features (from
abstracts of PhD theses, book reviews, and entertaining contributions, down to
the most recent ‘Interview’, ‘Viewpoint’, ‘Theory Blogs’ Columns) has been con-
stantly pursued. At the same time the most important step to strengthen the role
of the Bulletin has been the decision taken by Luca Aceto (President) and Kazuo

The Bulletin of the EATCS

49

Iwama (Bulletin Editor) about eight years ago to give open access to the Bulletin
to the entire world theory community. This farsighted decision is again an impor-
tant scientific service provided free of charge by EATCS. From this point of view
it is paradigmatic the success of some Bulletin issues that have been downloaded
10.000 or even 17.000 times like issues 81 of 2003 and issue 84 of 2004.

Awards. Finally the Awards. EATCS members can be proud to contribute to an
impressive series of prizes and recognitions with which the Association rewards
excellence of research work of theoretical computer scientists from all around the
world in a wide variety of fields. The first initiative of this kind has been taken
jointly with the ACM Special Interest Group on Algorithms and Computation
Theory (SIGACT) almost 30 years ago, in 1993, the Gödel Prize for ‘outstanding
papers in the area of theoretical computer science’ (in particular “recent’ results
that have not appeared more than 13 years before the year of the award). The
Prize is presented alternately at ICALP and at STOC. In 2022 it will be delivered
at ICALP in Paris and the Committee, chaired by Samson Abramsky, consists,
as usual, of three members indicated by SIGACT and three indicated by EATCS.
Until now 77 scientists have received the Gödel Prize for the relevance and ex-
cellence of their papers. Taking into consideration the need to broaden the fields
of theoretical computer science that deserved a recognition for relevant theoreti-
cal results, since the year 2000 EATCS decided to collaborate again with ACM
to reward with the Dijkstra Prize outstanding papers on principles of distributed
computing, ‘with evident significance and impact on the theory and/or practice
of distributed computing’. The Prize, sponsored jointly by the ACM Symposium
on Principles of Distributed Computing (PODC) and the EATCS Symposium on
Distributed Computing (DISC) is presented alternately at each of the two con-
ferences. Until now 53 scientists have received the prize, sometimes repeatedly
(Leslie Lamport has been awarded three times with this prize). For the same rea-
son in 2015 EATCS and the ACM Special Interest Group for Logic and Compu-
tation (SIGLOG) established an annual award, called the Alonzo Church Award
for ‘outstanding contributions to logic and computation’, in collaboration with
the European Association for Computer Science Logic (EACSL), and the Kurt
Gödel Society (KGS). In this case the contribution is required to have established
evidence of lasting impact and depth over a time span of 25 years. To a more
focused, but not less important, research field EATCS has decided to devote the
IPEC Nerode Prize ‘for outstanding papers in the area of multivariate algorith-
mics’. Since 2013 the prize is presented annually at IPEC (International Sympo-
sium on Parameterized and Exact Computation) and until now it has been awarded
to 35 scientists. Beside all the prizes that we have introduced until now, that as we
saw are meant to reward specific papers and specific results achieved in various
domains, we have now to mention, of course, what we might call the flagship of

BEATCS no 137

50

the EATCS award initiatives, the EATCS Distinguished Achievements Award
that was presented for the first time in the year 2000 and that is aimed at ac-
knowledging ‘extensive and widely recognized contributions to theoretical com-
puter science over a life long scientific career’. The name of the award reflects
that it represents the highest recognition that the EATCS community expresses
with respect to outstanding figures whose vision, work, and scientific results have
inspired and shaped European and worldwide theoretical computer science. Fi-
nally, since all the mentioned awards tend to recognize the work of mature re-
searchers, another important decision was taken by EATCS in 2009: to create an
award aimed at providing a recognition for the research work of young scientists:
the Presburger Award ‘for outstanding contributions in theoretical computer
science, documented by a published paper or a series of published papers’. The
name of the award refers to Mojzesz Presburger who accomplished his fundamen-
tal research work on decidability of the theory of addition as a student in 1929.
Since 2010 till today the prize has been awarded to 14 young researchers. To con-
clude the list of these important contributions of EATCS to reward excellence of
research work we have to mention the Best Paper Awards and the Best Student
Paper Awards that are annually presented at conferences sponsored by EATCS
(ICALP in primis, of course, but also ESA, ETAPS, MFCS etc.). As most scien-
tific associations EATCS has also started, in 2014, the EATCS Fellows Program
to recognize ‘outstanding EATCS Members for their scientific achievements in
the field of theoretical computer science and for their intellectual and organiza-
tional leadership within the EATCS community’. Until now the status of EATCS
Fellow has been awarded to about 40 EATCS members.

* * * * *

In conclusion we think that in order to celebrate EATCS 50th Anniversary the
most important aspect to underline is how, during its life, thanks to the constant
participation and contribution of its members, the Association has operated to pro-
mote the relevance of foundations of computer science, to support excellence of
research work, and to disseminate scientific results to a very broad community of
researchers. As we have noted, by means of a variety of initiatives EATCS has
played and continues to play a fundamental role not only for European theoreti-
cians but for the whole theoretical computer science world community.

Long life to EATCS!

51

Silver Jubilee of EATCS

Call for Nominations

Deadline: 15 February 2022

The Foundation
25 years ago ended an intensive discussion among some theoritical computer sci-

entists from several West European Countries.The main persons inmolved (who
later became the foundation members) were

• Giorgio Ausiello / Italy

• Jacobus de Bakker / Netherlands

• Maurice Nivat / France

• Michael Paterson / Great Britain

• Manfred Paul / Federal Republic of Germany Michel Sintzoff / Belgium

• Leo Verbeek / Netherlands.

Their essential concerns were concentrated on the question how to support
Theoretical Computer Science with respect to research and education, which means

• how to improve and to accelerate the exchange of ideas and results in re-
search,

• how to establish a closer cooperation between scientists interested in theo-
retical informatics,

• how to influence research programs and education curricula.

BEATCS no 137

52

It was clear that the creation of a European association of theoretical computer
scientists could be very helpful to reach these goals. but how should this associa-
tion look like? Should it become an umbrella organization to the already existing
national computer science societies with a limited number of representatives, or
would it be more effective to have individual membership. But the main ques-
tion was how to get financial support for the aims of this European association.
The first address to ask for money seemed to be the Commission of the European
Communities in Brussels.

One question concerning the association did obviously never arise, namely
which language to use officially - from the very beginning on the association was
bilingual with English and French. The end of these discussions was the begin-
ning of the Association Européenne d’Informatique Théorique (AEIT) / European
Association for Theoretical Computer Science (EATCS).

An authentic description of this very beginning was given by Maurice Nivat
in 1972; here are some parts of it:

„un point d’histoire: c’est en Janvier 1972 à Bruxelles, dans les bâtiments
de la Commission des Communautés Européennes, et à l’instigation de celle-ci
que se sont réunis un certain nombre d’informaticiens, connus pour la nature
assez théorique de leurs travaux. M. Caracciolo présidait cette réunion. Un
texte élaboré par les membres de l’Université de Paris VII présents à cette réu-
nion fut présenté à cette occasion pour tenter de définir ce que l’on peut appeler
l’Informatique Théorique, ... Les principaux sous-chapitres, mais cette liste n’est
pas limitative au contraire, en seraient
- la théorie des algorithmes et de leur complexité
- la théorie des automates et des langages formels
- la théorie de la programmation (sémantique formelle des langages de program-
mation).
En même temps fut proposé la création d’une Association Européenne qui per-
mettrait de favoriser le développement de cette discipline ... Le cadre juridique
permettant un tel regroupement a été trouvé dans la loi belge régissant les asso-
ciatons scientifiques et ceci explique comment l’accord entre les partipants de la
réunion initiale a abouti après quelques mois d’efforts de notre premier Prési-
dent provisoire, Michel Sintzoff, au dépôt, auprès des autorités belges, des statuts
d’une assocation".

An English version might be:
A bit of history: It was in January 1972 in Brussels, in the buildings of the Com-
mission of the European Communities, and instigated by it, that some informati-
cians, known for the rather theoretical nature of their work, got together. Mister
Caracciolo di Forino presided the meeting. A text, elaborated by the members of
the University Paris VII which were present at the meeting, was presented at this

The Bulletin of the EATCS

53

occasion in order to try to define what one could call Theoretical Informatics...
The principal parts of it, but this list is not limitative, just the opposite, would be
- the theory of algorithms and their complexity - the theory of automata and of
formal languages - the theory of programming (formal semantics of programming
languages).

At the same time the creation of a European Association was proposed which
would allow to favour the development of this discipline... The legal frame for
such a grouping had been found in the Belgian law regulating the scientific asso-
ciations, and this explains how the agreement between the participants of the ini-
tial meeting has finally lead, after several month of efforts of our first provisional
President, Michel Sintzoff, to the submission of the statutes of an association to
the Belgian authorities".

The submission date, June 24, 1972, is the date of constitution of EATCS. On
that day the foundation members agreed on the statutes and rules and elected the
first officers of the association. Leo Verbeek became President, Michel Sintzoff
treasurer; and it was fixed that the legal seat of EATCS, which had to be a place
in Belgium is the home of the treasurer.

The statutes of EATCS, originally written in French, were approved by the
Belgian Minister of Justice, and then the Belgian King Baudoin accorded the sta-
tus of legal person to EATCS on September 4, 1972.

The Rise
The first, but clandestine, appearance of AEIT / EATCS took place from July 3 to
7, 1972 - i.e. immediately after its constitution and even before its official approve-
ment - it was at Paris/Rocquencourt by a colloquium on „Automata, Languages
and Programming" organized by IRIA (Institut de Recherche d’Informatique et
d’Automatique). The idea of this symposium was originated by M. Nivat, L.
Nolin and M.P. Schützenberger. This was the first ICALP! It was sponsored by
SIGACT, the proceedings were published in 1973 by North-Holland Publishing
Company. It was sponsored by SIGACT, the proceedings were published in 1973
by North-Holland Publishing Company.On September 6, 1972 - two days after
AEIT / EATCS became a legal person - Maurice Nivat wrote a letter to several
persons whom the founders wanted to become members. Already at that early
date it was decided to invite Israeli to this European association, but it was only
discussed whether to solicite from the beginning on persons from Eastern Euro-
pean countries. It was quite a long list of potential members: 8 from the UK, 7
from West Germany, 6 from France, from Israel and from Italy, 3 from the Nether-
lands and from Scandinavia, 2 from Switzerland and 1 from Austria.

Many of these persons came to Warwick on March 24-25, 1973, where the
first general assembly and the first council together with an informal scientific
meeting took place, organized by Mike Paterson at his university. Main topics

BEATCS no 137

54

were the aims of AEIT / EATCS, the relations to existing computer societies, and
how far membership should be open. It was decided to

• have an informal news bulletin

• support informal working conferences

• organize regular formal conferences, like that at IRIA in 1972.

Finally there were elections: the council, consisting, up to now, of the founda-
tion members only, was enlarged by C. Böhm (I), W. Brauer (D), B. Mayoh (DK),
R. Milner (UK), J.F. Perrot (F), D. Scott (UK) while M. Paul retired. Maurice Ni-
vat became president, J. de Bakker and M. Paterson vice presidents, M. Sintzoff
stayed as treasurer and B. Mayoh became secretary. (Bulletin no. 1).

The second council meeting was at Hamburg University, it had been organized
by W. Brauer on Sunday, October 7, 1973 the day before and at the place where
the 3rd annual conference of the German informatics society (GI) took place, such
that council members were able to give talks at the conference or to participate in
a panel discussion on „What point is there to formal semantics?".

The main topics, discussions and decisions taken at the council were (Bulletin
no. 1)

• to accept members from other non-European countries,

• that Maurice Nivat took the responsibility of editing and publishing the first
issue of a Bulletin with the support of IRIA; it appeared under the date of
December 1973,

• that a presentation of AEIT / EATCS should be sent with a covering letter
to the science

• academies of the East European countries to enlist their cooperation.

• that SIGACT and GI should be informed about the activities of AEIT /
EATCS.

Three new council members were elected: E. Engeler (CH), Z. Manna (IL), A.
Salomaa (SF).

From the beginning of 1974 till the end of 1976 AEIT / EATCS was visible
mainly through conference activities; be it by sponsoring the Advanced Course
on the Foundation of Computer Science in Amsterdam 1974, the conference on
l- calculus in Rome 1975 or its own International Colloquia on Automata, Lan-
guages and Programming. The second ICALP took place in Saarbrücken in sum-
mer 1974 with the proceedings published for the first time in the series Lecture

The Bulletin of the EATCS

55

Notes in Computer Science by Springer-Verlag; the third one in Edinburgh in July
1976, its proceedings appeared at the Edinburgh University Press.
During this ICALP an informal EATCS meeting was arranged; president M. Nivat
had had an unfortunate car accident such that vice president M. Paterson had to
chair. It was suggested that there should be a reduced ICALP registration fee for
members, the amount of the reduction being comparable to the membership sub-
scription; further it was decided to solicit membership among colloquium atten-
dees (and not only by invitation), the annual dues could be paid at the colloquium
registration desk. G. Ausiello agreed to edit the EATCS Bulletin for at least one
year. (Bulletin no. 2)

With the help of the Instituto di Automatica, Rome the second issue of the
bulletin appeared in December 1976. From that time on the great annual events of
EATCS are the ICALPs and the Bulletins.

In 1977, again in July, there was the 4th ICALP, again in another country (this
alternation became an aim of EATCS), namely in Turku, Finland. From now on,
according to a formal agreement, the Springer-Verlag, Heidelberg published the
ICALP proceedings as volumes of the Lecture Notes in Computer Science.

The second general assembly was run during ICALP’77. Mike Paterson be-
came president, M. Nivat and J. de Bakker, vice presidents and the new coun-
cil members G. Rozenberg (then in Antwerp) and H. Maurer (Karlsruhe, FRG)
agreed to serve as treasurer and as secretary plus bulletin editor, respectively.
From now on an EATCS general assembly took place at each ICALP, and almost
always on the Tuesday of the ICALP week.

In 1977 the 3rd bulletin appeared in October; its production was supported by
the university of Karlsruhe; this was the first of the many „Maurer Bulletins".

One may say that in 1977 the character of EATCS was determined and became
visible; or to cite president M. Paterson. (Bulletin no. 3, p.1):

„What is accomplished so far? EATCS is a substantial international body of
academics and researchers which can already claim to represent those in Europe
with a declared interest in theoretical computer science. Independent of any mas-
sive parent organization, it has reached a stature adequate to attain many of our
original goals. One realized aim, with benefits now taken for granted, is the es-
tablishment of an orderly sequence of international colloquia in Europe. By the
formal sponsorship of other meetings we may avoid the unforeseen clash of inde-
pendently arranged events, too similar in time and subject."

Structure and Management
Now, at the age of five, EATCS had got a personality - to a certain extend at least.

It is common human attitude to look at and to treat a child differently before
and after entering school. Little children are carefully watched more or less per-
manently and their development is recorded in detail. School kids, however, are

BEATCS no 137

56

more autonomous, have a more complex behaviour, and a much broader spectrum
of interests, therefore one studies their different types of activities and aspects of
their personalities.

Similarly we now consider specific features of EATCS.

Statutes and Rules
The first statutes and rules in their original French version were never published;
only in January 1980 a little sloppy English translation was printed in EATCS Bul-
letin no.10 in order to modify them. They originally defined an association which
is quite different from the actual EATCS, although the general goals, expressed in
article 2 of the statutes, seem to resemble the current ones. The main differences
lie in the membership concept. The AEIT / EATCS was conceived as a very small
group of scientists, who could be individual members or people representing insti-
tutional members (article 3). New members could only be invited by the council
(article 4), and according to a complicated procedure specified by the rules; for
example an individual member could only propose one new member per year and
had to find two supporting members for such a proposal; per year not more than
10 individual members could be accepted; all members had to be consulted about
a proposal, and it was accepted only if at least 50 % of the answers were positive
(articles 1 and 2 of the rules). Also, the statutes set the quorum for the general as-
sembly to 50 % of all indivial member votes and 50 % of the institutional member
votes where one member could only represent up to two other members (articles
8 and 11).

The general assembly had to take place only every three years; in the mean
time the council had to direct and manage the association (articles 12 and 14).
The council (7 to 15 members) had to be elected by the general assembly on the
basis of candidatures signed by at least 6 members, subject to the restriction that
one member could sign only for one candidature (article 7 of the rules). On the
other hand nothing was said about the procedure for electing the board. It was
stated however, that the president could be reelected only once (article 13 of the
statutes).

Moreover it was obviously envisaged to have a secretariat with staffmembers,
since article 14.2 of the statutes reads: „Le secrétaire général assure la gestion
courante... Il nomme et révoque le personnel de secrétariat"; i.e. „The secretary
general is charged with the daily management.... he appoints and dismisses the
staff of the secretariat". EATCS developed rather soon differently from what the
founders had envisaged: on the one hand the close contact with and the money
from the European Commission did not come, on the other hand the new members
invited after the installment of EATCS were not aware of the statutes and rules
and therefore from the first general assembly on drove the association into the
direction of an open society of individual members.

The Bulletin of the EATCS

57

That the gap between the theoretical concept and the practical realization of
EATCS was very large and could create real problems was not seen or ignored for
some time. It was Arto Salomaa who immediately after being elected as president
stated in his first and second Letter from the President (Bulletin no. 9, 10): „it is
now literally impossible to run things exactly according to the original statutes"
and even more „ If you read carefully through the old Statutes and Rules, you must
realize that practically everything we have been doing has been illegal". And he
acted consequently. Together with H. Maurer, M. Paterson and G. Rozenberg he
proposed a drastically modified version of the statutes in Bulletin no. 10, with the
following commentary:

„Basically, the modified version proposed below has been obtained by
(i) getting rid of the obsolete apparatus but still preserving the things necessary
for the „Belgian" aspect;
(ii) removing restrictions on membership;
(iii) implementing explicitly the central functions of EATCS: ICALP and the Bul-
letin;
(iv) reducing certain things, such as the quorum for the General Assembly, to a
practical level;
(v) giving more explicit rules for the election of the council"

There was no modified version of the rules because the essentail points of the
„old" rules had been implemented in the „new" statutes.

With minor changes this proposal was accepted „without dissentient votes" by
the general assembly 1980 (see Bulletin no. 12), and in 1986, in Bulletin no. 30
(p.4), A. Salomaa could state: „Perhaps a future historian can find out ... whether
or not the ratification of the new statutes at the ICALP’80 was done legally. Any-
way, after that nobody questioned the legal status of EATCS". Nevertheless it was
felt in 1988 that the statutes should be streamlined even more. Burkhard Monien,
Secretary of EATCS wrote in Bulletin no. 40: „On its meeting during ICALP’88
in Tampere, Finland, the council formed the statutes committee consisting of W.
Brauer, B. Monien, A. Salomaa and P. Turakainen (under the chairmanship of
A. Salomaa) whose task was to propose a revision of the statutes. The statutes
committee has presented its suggestion at the concil meeting during ICALP’89 in
Stresa, Italy. The council formulated then a proposal for the new statutes which
is given below. The main changes consist of stating the main functions of EATCS
more explicitly in Article 2, and removing unrealistic requirements and unneces-
sary complications from the statutes.

EATCS members are asked to vote on the statutes by sending back the voting
form enclosed in this issue...".

BEATCS no 137

58

In Bulletin no. 41 B. Monien reported that 166 of the 172 postal votes obtained
were in favor such that the new statutes are in force since June 1990. Important
new aspects of the statutes are the introduction of a postal referendum for statutes
modification purposes, the restriction to 5 of the number of proxies a general as-
sembly member may use in voting, the dropping of the upper bound for the num-
ber of council members and of the terms of office of the president, the denial of
EATCS’s „liability for any activity carried out partly or wholely on its behalf" and
the legalization of the enlargement of the board by the editors of the TCS journal
and the EATCS Monograph series (in addition to the editor of the EATCS Bulletin
who legally belongs to the board since 1980). That the past presidents since 1973
are also board members is covered by the statement that „other members, at the
discretion of the council" may be board members (article 10f).

Due to the continuous efforts of A. Salomaa EATCS now has statutes which
proved to be reasonable and practical. EATCS owes a lot to Arto Salomaa.

EATCS officers
EATCS as a non-profit organization is run by scientists only on a honorary basis,
they all do voluntary work. EATCS is directed and managed by the council, which
itself is controlled by the general assembly, i.e. the GA has to ratify the decissions
of the council.

Major concerns of the council are to discuss proposals, initiate activities (like
the Monograph series) and to decide about cooperations with other organizations
(i.e. SIGACT). Its main activity consists in planning and monitoring the „Interna-
tional Colloquia on Automata, Languages and Programming" (ICALP):

• to give (or to change) guidelines for the organization of an ICALP (about
structure, finances, program committee work)

• to get proposals for hosting ICALPs and to preselect the site.

The council prepares the GA, it meets before and in case there had been elec-
tions, after the GA.

According to the statutes, the term of office of a council member is three years.
The members are proposed by the council to the general assembly, thereby it is
taken into account that the composition of the council mirrors the geographical
and scientific distribution of the members of EATCS.

From its beginning on EATCS treated Israel like a European country, therefore
it was natural to have an Israelian council member as soon as possible: it was Zo-
har Manna in 1976. But already in 1977 the first „non-European" became council

The Bulletin of the EATCS

59

member: Ron Book from Santa Barbara, USA, followed in 1979 by the first Cana-
dian: Derick Wood, and in 1982 with Masako Takahashi the first Japanse joined
the council. East Europeans however were elected to the council only in 1985: F.
Gécseg from Szeged and J. Gruska from Bratislava.

Besides the intention of having an international council there is the need to
have a Belgian member in the council because EATCS has its official seat in Bel-
gium.

Additionally, since 1989 the chairperson of SIGACT is council member, vice
versa the EATCS president is council member of SIGACT.

The council started in 1972 with seven members, the founders of EATCS. It
was in 1973 enlarged to 15 people (the maximum allowed by the statutes). From
1977 on there were always 20 or more members (this was legalized by the 1980
statutes). The maximum number of 29 members was reached in 1991.

According to the first and second statutes the council had to elect the board
out of its members - This was changed in 1990: Now the board members need
not be council members. The board originally consisted of the president, two
vice presidents, the treasurer and the secretary; since 1976 the bulletin editor was
considered member of the board.

Obviously the council had decided, maybe in 1977, to have the past presidents
as ex-officio members of the board. But astonishingly L. Verbeek has never been
listet as past president; Verbeek served as council member until 1979. Other ex-
officio members of the board are the TCS editor (listed for the first time in June
1983), who from the beginning on was and still is Maurice Nivat, and since 1991
the Monographs editors W. Brauer, G. Rozenberg and A. Salomaa. The members
of the board are responsible for the day-today management of ETACS. It seems
that they have never met and decided as a seperate organ; the board obviously
conceived itself always as part of the council.

Changes in the board of EATCS

BEATCS no 137

60

For more information see the statistics by M. Kudlek in Bulletin no. 52 (pp. 116,
117).

Membership
Created by European scientists as a European association AEIT / EATCS almost
immediately became a worldwide organization; there has obviously been a big
need all over in the informatics community to have such an association, which
not only enables the European theoreticians to inform each other more quickly
and through this to have more effective cooperations but also serves as a partner
for non-Europeans who want to know more about and to get into contacts with
Europeans working in the same field. EATCS had the right aims at the right time
and realized them with the right means, namely with a series of colloquia , the
ICALPs, and with a bulletin. After the EATCS Bulletin started to appear regu-
larly three times per year, the membership nearly increased by a factor of 4 within
a year.

The Bulletin of the EATCS

61

Until 1991 EATCS was a fast growing society. In 1992 a decrease in mem-
bership began, which unfortunately continues and seems to have the same speed
as the growth had. This development has to be seen in the frame of the general
decline in economy. In many countries it became much harder for scientists to get
their expenses (or at least part of it) for participation in an ICALP payed; and even
to get the permission to leave the job or project for a stay at ICALP is not always
easy. As we know, it is not only EATCS which suffers from the harder constraints
scientists are faced with. It is a particular problem that the membership from the
US has drastically declined to now less than half of the number of 1991 - this
happens after the USA members had for a long time formed the largest national
group in EATCS. From July 85 till July 90 they were outdoing the Germans who
from an early time on were by far the largest member contingent.

Membership Fee and Sponsoring
An association like EATCS is not only proud of its many members, it really needs

BEATCS no 137

62

them because of the fees which at the beginning constitute its only income.
In 1986 president G. Rozenberg succeded in his efforts to get institutional

sponsors for EATCS; the first two sponsors were: BULL France and the Danish
Datamatics Centre, Lyngby (Bulletin no. 28, p. 2), and by the end of the same year
joined IBM Belgium and Philips Research Lab., Eindhoven, The Netherlands, of
which still Philips continues as sponsor - for 12 years already! Other long lasting
sponsors have been BULL (9 years) and still are Siemens ZTI, München, Ger-
many, Nixdorf Computer AG (now Siemens-Nixdorf) Paderborn, Germany (both
10 years) and IASI- GNR, Rome (9 years). At the moment EATCS has nine in-
stitutional sponsors, some even from outside Europe: PWS Publishing Company,
Boston, USA and UNU / IIST UN University, International Institute for Soft-
ware Technology, Macau. Institutional sponsors may present themselves, their
activities, aims and scopes in the Bulletin, where their names are listed regularly.
EATCS owes not only a strong financial support to its institutional sponsors but
also gained recognition as an association worth to be sustained.

At the beginning of AEIT / EATCS members were often urged to pay their fee.
In the first Bulletin (p. 4) under the date of November 12, 1973 secretary Brian
Mayoh complained - in a very polite way: „As the list of those who have returned
the application forms to the secretary does not coincide with the list of those who
have paid their fee to the treasurer, there is some confusion". And this confusion
continued. The fact that the annual fees were not regularly payed was neither due
to their exorbitant amount - from 1972 till June 1976 they were only 100 Belgium
Francs (which was equivalent to 2,70 US$ or 7 DM), in July 76 they were raised
to 2 British Pounds (or 3,30 US$ or 8 DM) and from July 77 till July 81 they
amounted to 5 US$ per year (i.e. 11,50 DM in 1977 and only 9 DM in 1980) - nor
to the lazynes of the EATCS members but it was due to the time- consuming and
costly procedure to send the money from one country to another, be it by cash,
cheque or money order.

The fee increased slowly from US$ 5 via 8 (from July 1981 to July 1982) to
10 (until March 1990). And the problems with sending the money to the Belgium
bank account increased also: In June 1984 treasurer Paredaeans warned that fees
can be paid by bank cheques or cash but „anyhow a member cannot pay by Inter-
national Post Money Order" (Bulletin no. 23, p.2). Little later, in October 1985,
it became more complicated, treasurer Paredaens wrote in Bulletin no. 27, p.3:
„If the transfer is in US$ then the annual membership payment equals US$ 10. If
the transfer is in a currency other than US$ then the annual membership payment
must be equivalent to US$ 12 (the difference is used to cover the bank charges)
...".

In 1990 the last but one change with respect to membership fee was decided,
treasurer D. Janssens wrote in Bulletin no. 40, p. 8: „The agreed amount was the
equivalent (at that time) of 30 DM (German marks): US$ 10. However, since 1972

The Bulletin of the EATCS

63

the conversion rate of the US$ towards the DM has decreased quite considerably,
in particular during the last five years. In the meantime, the cost of printing and
mailing the Bulletin has increased. For these reasons the council of EATCS has
decided at its meeting of July 13, 1989 in Stresa, Italy, that from March 1, 1990 the
EATCS membership fee will be DM 30. Those members, in particular outside
Europe, who wish to continue paying their fee in US$, can evidently do so; hence
they should pay the amount equivalent to DM 30, which at present is US$ 18".
Since 1996 the fee had to be increased to 45 DM, but now the membership dues
can be payed by using credit cards.

Before this very elegant solution could be achieved the EATCS council had
tried to facilitate the payment for the members in various ways. At first the mem-
bers were asked to pay their fees for some years in advance to lower the total bank
charges; this was not unfair because of the small amount of the annual fee. The
second possibility to avoid high bank charges was to have the EATCS membership
fee payed together with the ICALP conference fee. This was very helpful for the
quantity of members; but through this procedure the number of EATCS members
became strongly dependent on the number of ICALP participants. The third idea
was to build national groups which collect the EATCS fees of members of one
country and transfer the total sum to the EATCS treasurer. It seems that this gave
an impetus to set up the Chapters.

Another challenge to EATCS was that theoretical computer scientists from
East European countries did not only have problems with bank charges but that
most of them were unable to get hard currency for paying the membership fee,
but they would have very much liked to have access to the Bulletin or even to
become member of EATCS. Therefore it was a good idea by G. Rozenberg and
excellent initiative by Dines Bjorner, Denmark when he wrote on August 12, 1987
to the EATCS members: „With this letter I would like to invite you to become a
sponsor of ’The EATCS- Membership and - Bulletin Subscription Fund’. The
purpose of this fund is to support a number of colleagues in „foreign currency
constrained" countries, either in their becoming members of the EATCS, or in
obtaining a subscription of the EATCS Bulletin. Sponsorship will cost you any
multiple of the EATCS membership fee (currently 10 US$).

... Some colleagues may be able to receive a subscription, but not become a
member of the EATCS - oftentimes the latter requires cumbersome and problem-
atic approval procedures from public authorities, usually ending with refusals..."

It seems that this letter was quite successful, however the list of donors and
receptors has been and still is kept confidential. In March 1994 Dan Simpson,
Brighton, UK who had succeeded D. Bjorner who had moved to Macau, informed
EATCS members that „Last year, thanks to the generosity of EATCS members
we were able to offer well over 100 individuals in currency constrained countries
full membership benefits of EATCS. I can assure you that your efforts are fully

BEATCS no 137

64

appreciated. ..." (Bulletin no. 53, p. 35).
The fund still exists because some former East European countries continue to

suffer from financial difficulties.

The Chapters
Mainly due to the initiative of president G. Rozenberg two chapters have been
founded within EATCS, the Italian and the French chapter. Both of them have in
common, that

• they share the same aims with EATCS,

• they operate within the same field of activity,

• a member of a chapter is automatically member of EATCS,

• a chapter cooperates with other organizations of it own country,

• a chapter runs national conferences, workshops and schools on theoretical
computer science,

• reports and contributions of the chapters are regularly published in the EATCS
Bulletin.

The main difference between the two chapers consists in their statutes. While
the EATCS statutes are binding for the Italian chapter, the French chapter has
modeled its statutes according to French law. It therefore is an autonomous or-
ganization with its own name: Association Francaise d’Informatique Théorique
(AFIT); that it is mainly the French Chapter of EATC is due to an extra agreement
between EATCS and AFIT. The Italian Chapter of EATCS was founded on July
3, 1987 after preparatory work had been done by Bruno Apolloni, Aldo De Luca
and one of the founders of EATCS, Giorgio Ausiello. Alberto Bertoni, Milano
became the first president; the actual president is Giancarlo Mauri, Milano.

AFIT, was founded, on March 14, 1988 here, too a founder of EATCS was
involved: Maurice Nivat who was chosen as first president of AFIT - and still is.
The first secretary was Brigitte Rozoy, Universite de Caen followed in 1995 by
Ph. Schoebelen, ENS Cachan.

EATCS has profited in two ways from the creation of the chapters: it got more
members and its European bases became stronger.

Cooperations
Informatics has two roots - the theory of computing (initiated mainly by Herbrand,
Gödel, Kleene, Church, Post and Markov) and the construction and programming
of computers. Although the theory of computing is not only older than the first

The Bulletin of the EATCS

65

functioning computers but also has influenced the development of hardware and
of programming tools from the very beginning on, in the public opinion (i.e. by
most people who are not theoretical informaticians) theoretical informatics is con-
sidered as a secondary issue, usually as an a posteriori reflection on the inventions
of hard- and software engineers. What people see and use are hard- and software
and not the theory behind.

This situation is mirrored within the spectrum of computer and informatics so-
cieties. In many countries theoretical computer scientists were in former times not
very well represented in the computing-related societies. This has for sure been a
main reason for EATCS to find such a positive acceptance. Notable exceptions -
and therefore potential cooperation partners - were ACM, IEEE Computer Soci-
ety and GI (the West German informatics society) which, already rather early had
special committees or interest groups on theory. In addition to these, some later
established groupings like BCS-FACS, IFIP-SGFCS and EACSL became „sister
organizations". Basically the benefit of these cooperations consists in a systematic
and detailed information about each other and the respective activities, in particu-
lar conference coordination and sponsoring.

Unfortunately no formal relationships to the organizing bodies of the East Eu-
ropean conference series MFCS and FCT were possible because of political rea-
sons - via informal and personal contacts however informations and reports about
these conferences were published regularly in the Bulletin.

ACM-SIGACT
SIGACT, the ACM Special Interest Group for Automata and Computability The-
ory, which was founded in 1969 has been a model for EATCS. Their aims and
activities are rather similar. A decisive diffference is that EATCS is not an off-
spring of a mother organization like ACM, thus it did and does not get such a
basic support as SIGACT obtains from ACM.

The major difference, however is due to the geographical region in which
their main conference activities take place. To cite D.S. Johnson (from the first
SIGACT Chairman’s Column in the EATCS Bulletin, no. 34, p. 27/28, February
1988): „SIGACT is an international organization, with roughly a third of its 2000
members coming from Europe and the Far East. The bulk of its members and
most of its activities, however, are centered in North America ... SIGACT is best
known for the conferences it sponsors, in particular the annual „ACM Symposium
on Theory of Computing" or „STOC" conference ... This and the mirror-image
„FOCS" conference („Symposium on Foundations of Computer Science") held in
the fall, are the two main general-interest theory conferences in North America
analogous to EATC’s ICALP" (Indeed, they were initially models for the creation
of ICALP).

„SIGACT sponsors only STOC, not FOCS. The latter job is taken by a second

BEATCS no 137

66

organization, the IEEE Computer Society Technical Committee on Mathemati-
cal Foundations of Computing, or simply „TCMFC" ... Although SIGACT and
TCMFC share the same „turf" so to speak, they are not rivals. In practise they
act mostly like one organization with two overlapping heads. These two „heads",
the Executive committees of the two organizations, provide a useful method for
dividing the responsibility for putting on conferences. Their intersection includes
the Chairs of the two organizations as well as a Conference Site Coordinator and,
to improve cooperation with Europe, the EATCS chair. TCMFC is the older of
the two organizations, having been in existence under various names since 1960,
when the first FOCS conference was held, although it was then called a „Sympo-
sium on Switching Circuit Theory and Logical Design" ... Besides the conferences
we sponsor, our most visible product is SIGACT News. This publication in effect
serves as a joint SIGACT / TCMFS newsletter... It is not presently, however, as
substantial and useful a publication as is the EATCS Bulletin, and we are working
hard to improve it". The contents lists of the SIGACT News are published in the
EATCS Bulletin since 1988.

The cooperation between the three organizations which began with the first
ICALP and was intensified by a proposal of Ron Book (Bulletin no. 6, p. 3) for
exchanging more information and mutual reduction of conference fees as well as
by a call for contributions by the SIGACT News editor M. Blattner in Bulletin
no. 18 (p. 8), includes in particular also the coordination or joint sponsoring of
conferences in Europe and North America.

The most important outcome of the cooperation between SIGACT and EATCS,
however, is the installment and continuous sponsoring of the Gödel Prize.

The Gödel Prize
Theoretical informaticians in Europe, or at least in Germany are more reluctant
than in North America to award prizes. This may be a reason why only in June
1992 (in Bulletin no. 37) EATCS together with SIGACT announced the sponsor-
ing of a new theory award, the Gödel Prize. The first ideas concerning it were
already published by D.S. Johnson in the SIGACT Chairman’s Column of Bul-
letin no. 37 (February 1989). He gave several good arguments for prizes: „A
well-positioned prize does far more than allow an occasional researcher to pocket
a check or hang a medallion on the wall: it draws positive attention to the field"
and „they help certify a body of potential spokespersons for the field".

The prize is for outstanding papers on theoretical computer science in a broad
sense, published by a single author or a team of authors in the recent six years.
Beginning in 1994 the Gödel Prize has been accompanied by a US 5.000 award
which is provided by a grant from PWS Publishers in cooperation with Interna-
tional Thompson Publishing (ITP).

The selection committee consists of 6 well-known scientists representing a

The Bulletin of the EATCS

67

diversity of areas, appointed for a term of 3 years by EATCS and SIGACT - at
the beginning each organization appointed 3 members, from then on each year
two are leaving the committee and each organization appoints a new member.The
chair is always coming from the region where the award is presented.

• The first committee, for the 1993 prize consisted of St. A. Cook, Toronto;
R. A. Karp, Berkeley, R. Milner, Edinburgh, B. Monien, Paderborn, A. K.
Salomaa, Turku, A. C. Yao, Princeton (chair).

• For 1994 B. Monien and A. C. Yao left and J. v. Leeuwen, Utrecht and M.
Rabin, Harvard and Jerusalem came in, A. Salomaa was chairman.

• In 1995 J. Hartmanis and G. Plotkin replaced St. A. Cook and R. Milner, R.
A. Karp was chairman.

• For 1996 committee was M. Rabin, D.S. Johnson and G. Rozenberg had
replaced R. A. Karp and A. Salomaa; chairman was M. Rabin.

The prize is given annually at ICALP or STOC alternatingly. The first prize,
for 1993, has been presented during the Federated Computing Research Confer-
ence 1993 (FCRC’93) at STOC’93 in San Diego, the following prizes were given
at ICALP’94 in Jerusalem, at STOC’95 in Las Vegas and during FCRC’96 at
STOC’96 in Philadelphia.And, naturally all past winners are listed in the Bul-
letin; for the newest list see Bulletin no. 60, p.19 (October 1996).

BCS - FACS
The „British Computer Society Specialist Group - Formal Aspects of Computing
Science" (BCS-FAC) was inaugurated on March 16, 1978 with five closely related
aims of which the central one seems to be: „to bring together groups from both
industrial and academic departments who have interests in the formal aspects of
computing science" (Bulletin no. 23, p.117). The formation of FACS was pre-
pared by a meeting on November 30,1977, where a preparatory committee lead
by Dan Simpson and John Cooke was formed.

„One of the major services offered to members of FACS is the ability to easily
join EATCS in conjunction with FACS membership. About 80 % of FACS mem-
bers take advantage of the scheme" (D.J.Cooke, D.Simpson, Bulletin no. 37, p.52,
February 1989).

In Bulletin no. 23 and from Bulletin no. 37 on rather regularly, Dan Simpson
and since Bulletin no. 58 Ann Wrightson (sometimes with the help of colleagues)
present a rather broad spectrum of informations on FACS; they report on internal
FACS matters and developments and on workshops, foreign guests, publications,

BEATCS no 137

68

government research programs etc. In a way FACS can be seen as a kind of chap-
ter of EATCS.

IFIP - SGFCS
IFIP, the International Federation for Information Processing, is a multinational
federation of professional and technical organizations (or national or regional
groupings) concerned with information processing and computer science. The
aims of IFIP are to promote informatics and information technology by foster-
ing international cooperation, stimulating research, development and application
of informatics, furthering dissemination and exchange of information, encour-
aging education. IFIP was formally established in January 1960 after (similar
to EATCS) the first International Conference on Information Processing (now
counted as the first IFIP World Congress) which was held in Paris in June 1959
under the sponsorship of UNESCO. Its technical work is managed by 12 Tech-
nical Committees (TCs), each of which has several Working Groups. Although
several of its TCs, in particular TC 2 (Software: Theory and Practise) and TC
7 (Computer System Modelling), comprise theoretical aspects the field of theo-
retical computer science in its entirety was not represented adequately in IFIP.
Therefore, in 1989, the IFIP president-elect, B. Sendov (Bulgaria), and W. Brauer
(West German General Assembly member and TC 3 chairman) invited a number
of well-known theoretical computer scientists from around the world (in particu-
lar many EATCS council members) to participate in the creation of a Specialist
Group on Foundations of Computer Science (SCFCS) in order to give theory a
stronger position within IFIP. At the IFIP World Congress 1989 in San Francisco
a well-attended preparatory meeting took place and right after that the IFIP Gen-
eral Assembly inaugurated the group; J. Gruska (then chairman of the theory track
of the 1989 World Congress) was appointed chairman (Bulletin no. 40, p.330).

The first meeting of SGFCS took place during ICALP’90 in Warwick (Bulletin
no. 42, p.1). A rather extensive report on SGFCS is given by J. Gruska in the
section on sister organizations of Bulletin no. 52 (pp. 155-162).

In September 1996 the IFIP General Assembly transformed SGFCS into Tech-
nical Committee 1 (Foundations of Computer Science) - this was a great success
for theory and for SGFCS chairman J. Gruska. Since January 1997 the TC 1 chair-
man is Giorgio Ausiello - one of the founders of EATCS! This gives a strong hope
that the close cooperation between EATCS and IFIP TC 1 will continue success-
fully.

EACSL
The European Association for Computer Science Logic (EACSL) was founded
on July 14, 1992, at the conference centre Schloss Dagstuhl, Germany „by com-
puter scientists and logicians from 14 countries" (Bulletin no. 48, p.449, October

The Bulletin of the EATCS

69

1992). Two of the Executive Members of EACSL are closely related to EATCS:
C. Boehm (early council member from 1973 till 1982) and Y. Gurevich (current
council member since 1991). EACSL promotes CSL as „an interdisciplinary field
between mathematical logic and computer science... in the areas of scientific re-
search and education", in particular by organizing the annual international con-
ference on CSL whose proceedings (i.e. a selection of the papers presented) are
published in the Springer LNCS series.

EACSL president E. Börger reports regularly in the Bulletin since 1992.

ESPRIT - Basic Research Actions
Originally, in 1982, the ESPRIT (European Strategic Programme for Research and
Development in Information Technology) initiative of the European Community
had the objectives: „1. To promote European industrial cooperation in precom-
petitive Research and Development in Information Technology. 2. To provide
European IT industry with the basic technologies it needs in the early 90’s. 3. To
pave the way for standards." (G. Metakides, Bulletin no. 37, p.59).

Five to six years later this very strong industry-oriented position had slightly
changed as G. Metakides stated in Bulletin no. 37, p.61: „The second half of
this century is replete with examples of research ideas which, although conceived
without even thought to applications, led to technological developments with ma-
jor industrial and social impact". A result „is a growing consensus that supporting
basic fundamental research in IT is a solid investment whose payback, even if it
does not come in the form of short term industrial applications, will be great. Ba-
sic Research performed at universities and research institutes serves the dual role
of providing new knowledge and helping to ensure the future availability of high-
calibre scientists and engineers. Both of these are key elements in the long-term
ability of Europe to compete in global markets."

These considerations seem to have led to the establishment of the ESPRIT
Basic Research Actions. The first call for proposals was published in the Journal
of the European Communities in March 1988. It is clear that now EATCS got
very much interested in the topics and results of this program. On the other hand
the project officers of the ESPRIT Basic Research Actions wished to have their
projects as widely known as possible. Therefore at ICALP’89 in Stresa descrip-
tions of five ESPRIT-BRA projects were presented, which then were published in
EATCS Bulletin no. 39 (October 1989). From that time on reports on ESPRI-
BRA projects are published in a special section of the Bulletin, and in addition
to these, general reports about the ongoing of the ESPRIT-BRA program and on
calls for proposals as well as their results can be found regularly in the Bulletin.

In 1994 the ESPRIT-BRA program was replaced by a „Long Term Research"
concept (Bulletin no. 53, p.74, June 1994) which looks for projects „motivated by
industrial needs", which „combine the long term characteristics of research with

BEATCS no 137

70

high industrial relevance" (Bulletin no. 57, p.79, October 1995). The last report
on a BRA-project appeared in Bulletin no. 59.

Scientific Publications
From its very beginning on it was one of the aims of EATCS to promote the pub-
lication of research results (article 2 of the first statutes). But it was a long and
cumbersome way to reach the current position of EATC as the sponsor of four im-
portant scientific publication means: the EATCS journal „Theoretical Computer
Science" published by North-Holland, the EATCS book series Monographs on
Theoretical Computer Science, and the EATCS book series Texts on Theoretical
Computer Science, both published by Springer, the ICALP proceedings series, as
a subseries of the LNCS series of Springer.

The comparatively easiest thing was the establishment of the agreement with
Springer-Verlag on the ICALP proceedings: Springer liked their quality, EATCS
the ease of production and the financial support by Springer (to the proceedings
editor and the EATCS treasurer); from June 1980 (Bulletin no. 11) on Springer
gave also an 25 % discount on all ICALP proceedings volumes for each EATCS
member.

The good cooperation with Springer also resulted, in spring 1983, in the estab-
lishment of the „EATCS Monographs in Theoretical Computer Science", which
was announced by the editors (W. Brauer, G. Rozenberg, A. Salomaa) in Bulletin
no. 20 (June 1983) and presented at ICALP’84 in Antwerp - already with the first
3 volumes published (and 10 more in preparation) and „quite a pleasant surprise ...
the cocktail party given by Springer-Verlag before the conference dinner on July
19, on the occasion of launching the new monograph series". (cited from Jozef
Gruska’s report on ICALP’84 in Bulletin no. 24, p. 157).

For the first time the idea to create an EATCS Monograph series was men-
tioned at the council meeting at ICALP’80 in Nordwijkerhout, Netherlands (see
Bulletin no. 12, p. 1) where „Ron Book presented a proposal about such a series"
(Bulletin no. 20, p. 3). In the 1981 general assembly R. Book’s proposal „was
considered to be preferable" (Bulletin no. 15, p. 6) and he „was asked to negotiate
a contract with the publisher proposed by him". It was thought, that „the final
decisions on this" could „be taken by the monographs series committee within the
next few months" (Bulletin no. 15, p. 7) - the committee consisted of R. Book, H.
Maurer, G. Rozenberg, A. Salomaa. Unfortunately the envisaged publisher (Aca-
demic Press) seemed „to be no longer seriously interested. Thus it was decided
to consult many scientific publishers in order to find an outlet for a monograph
series" (Bulletin no. 18, p. 5, October 1982). Also Jan van Leeuwen was very
active in this matter.

That the monographs series was a great success right from the beginning was
also due to an intensive advertisement campaign by the Bulletin editor G.Rozenberg

The Bulletin of the EATCS

71

and the EATCS president A. Salomaa, who in each Bulletin from no. 20 till no
24 mentioned in their „letters from the ..." this series. The regular announcement
of the book series in the Bulletin started however only in June 1987 (Bulletin no.
32), although it was announced (and tried) already in Bulletin no. 28 (February
1986). After 10 years of success, the monographs series was split into two series,
The Monographs and the Texts (see Bulletin no. 54), since it had turned out, that
some of the monographs were, by the time, really used in graduate classes, and
that there is also a need for advanced texts covering the field between the usual
textbooks and research monographs. Needless to say, that EATCS members get a
25% discount on all books of the two series.

The EATCS journal TCS really is the child of Maurice Nivat - in spite of many
difficulties he brought it up in a process of several years. Already by a letter of
June 18, 1973 to the EATCS council he proposed the creation of the journal and
presented a draft of an agreement with North Holland Publishing Company. In
his letter he writes: „This proposal was made after discussions I had with Mr. E.
Fredriksson in which we asked ourselves whether it would be possible to have our
European Association play a role in this creation.

The idea we came to was that the Association could appoint say 5 members
of the future Editorial Board among whom hopefully one would be the managing
editor and that these 5 people would discuss with North Holland the numerous
questions to be solved: other members of the editorial board, scope of the journal,
etc...".

It was envisaged that the first issue of journal should appear in March 1974.
In September 1973 M. Nivat reported to the council: „ The project I submitted
to you has been shaped during the past months and I shall present it to you in
Hamburg: a tentative list of 18 members of the editorial board has been made,
seven at least of which are members of our association. The idea is now to create
a truly international journal, which would not be linked with our association by
any other link than the fact that some of us will sit in the editorial board".

The council in Hamburg was not so happy about the dissociation of EATCS
and TCS. The minutes of the meeting say: „The report of M. Nivat on his dis-
cussions with N. Holland about a new journal in theoretical computer science was
approved. This question no longer concerns the association". (Bulletin no. 1, p.
5).

But M. Nivat did not give up; in early summer 1976 he wrote to the EATCS
council members: „... and 7 members of the counicl of EATCS stand on the edito-
rial board of TCS. And TCS works well: a bad choice of the first printer delayed
the publication, but a new printer has been found so that we hope to be on sched-
ule at the end of 1976". He also announced that he would propose in the general
assembly at ICALP’76 in Edinburgh „to tie together the journal TCS and the asso-
ciation", he had in mind that EATCS members should get a large discount on the

BEATCS no 137

72

journal price. Because of his car accident there was no regular general assembly
and in the informal meeting the discussion on his written proposal did not lead to
any decision. And also in the 1977 general assembly it was decided that EATCS
„should concentrate - on the publication of a Bulletin and - on sponsoring the con-
ferences of the ICALP series". (Bulletin no. 3, p.3). The break-through came with
the agreement between North-Holland and EATCS „...signed by a representative
of North-Holland, the President of EATCS (M. Paterson) and the Editor-in-chief
of TCS (M. Nivat)". (Bulletin no. 5, p.2,3). Main parts of this agreement (which
was ratified by the EATCS general assembly in July 1978, see Bulletin no. 6, p. 3)
are: „The journal Theoretical Computer Science will be published from now on
as „The journal of the European Association for Theoretical Computer Science".
Precisely this is what will be printed on the front cover of TCS below the title of
TCS which remains Theoretical Computer Science". „As an effect of this agree-
ment, and that was the main purpose in signing it, a personal subscription rate will
be offered to EATCS members. ... Otherwise there will be no change in the edito-
rial policy of TCS which remains an international journal open to authors from all
over the world. It should be clear that no „preference" will be given to European
authors, all papers being refereed according to the usual international rules. No
change in the Editorial Board is planned for the time being. the link between
TCS and the EATCS is now ensured by the fact that 9 members of the Editorial
Board of TCS are council members of the EATCS. (In fact the Association and
the Journal were created a few years ago by the same group of people). It seems
reasonable that this proportion of half the members of the Editional Board of TCS
being members of EATCS, agreed upon by the general assembly of EATCS, be
respected in the future. And also that when the Editor in Chief resigns he be re-
placed by someone who is agreed upon by the EATCS general assembly." And M.
Nivat continues:

„This means that the Editor in Chief of TCS takes the engagement (even if this
is not written in the above mentioned agreement) to keep the EATCS informed to
every change in the Editorial Board, or in the editorial policy, to send his resig-
nation to the president of EATCS at the same time as to North Publishing Cy, to
resign immediately if the general assembly of EATCS emits a note towards this
effect. He also takes the engagement to give periodically informations about the
status of TCS in this Bulletin, including titles of forthcoming papers, length of the
backlog and whatever seems proper to be brought to the knowledge of EATCS
members. This will start in the next issue of the Bulletin. Right now the Editor in
Chief of TCS would be very happy to receive all comments, complaints sugges-
tions ... of EATCS members as concerns TCS". Since that time M. Nivat, who
is still Editor-in-Chief has reported regularly to council and general assembly and
occasionally in the Bulletin - e.g. when the split into sections A (automata, alge-
bra und algorithms) and B (logic, semantics and related topics) was decided upon

The Bulletin of the EATCS

73

(Bulletin no. 45, p.2,3, October 1991); the contents lists of the current TCS issues
are printed regularly in the Bulletin since 1983).

The Bulletin
The best at the end.

That EATCS members identify themselves with their association is mainly
due to the ICALP series and to the Bulletin. The success of the Bulletin - i.e. that
people really like to read it - has several reasons: the high level and broad scope
of its scientific contributions, the many informations about conferences, activities
in institutes and organisations, etc., and as a very important part the fotos and the
DADARA cartoons. Therefore it is not simply the EATCS Bulletin but it is our
Bulletin.

One of the supports the Bulletin had given to EATCS and which should not
be undervalued are the logos. The first logo of AEIT / EATCS can be found
in the first Bulletin, edited by M.Nivat and printed at IRIA (Institut de Recherche
d’Informatique et d’Automatique); it vanished rather soon, maybe because EATCS
developed into a purely English speaking society.

Already on the cover of Bulletin no. 3 the now famous EATCS emblem ap-
peared. It had been designed by M. Hennemann, Karlsruhe. The Bulletin editor
H. Maurer also asked for further ideas. And there was a further idea by G. Rozen-
berg; his symbol is used in combination with the list of council members since
Bulletin no. 4.

According to an agreement with Springer-Verlag the EATCS symbol is printed
on the spine of each ICALP proceedings since the 5th ICALP as distinguishing
mark from the other LNCS volumes. Moreover in 1984 the „European map" but-
ton was created by M. Kudlek and awarded to persons who, according to strong
rules, did major contributions to ICALP. In Bulletin no. 5 (p. 115) from June 1978
the „European map" logo of EAT CS developed its own life with the help of M.
Jantzen, Hamburg.

Textual Contributions
The EATCS Bulletin really is a wide-spectrum journal where each theoretical in-
formatician may find useful informations from almost each aspect of scientific
activities; typically an issue contains over 20 (even up to 27) sections. Different
from the periodicals of other organizations the Bulletin is purely science-oriented,
for example, there are no business advertisements - neither payed nor indirect ones
- there are no stories about persons, instead the concentration is on scientific work
and scientific results.

This has been the scope of the Bulletin from its first issue on. No. 1, the
Nivat-Bulletin, from December 1973, contains already in addition to what is now
called EATCS matters, some reports on computer science departments and insti-

BEATCS no 137

74

tutes (from 3 places in the Netherlands, from the university of Torino, and from
the university Paris VI), a report on the second MFCS conference, and some con-
ference announcements".

In the Ausiello-Bulletin (no. 2, December 1976) additionally the first two
„Technical Contributions" can be found. This Bulletin is the first one in which all
(exactly 100) EATCS members are listed; in Bulletin no. 9 (October 1979) again
such a list was published, it took 30 pages and contained 526 names.

At the beginning of the regular publication of the Bulletin in October 1979
(no. 3) the Bulletin editor H. Maurer refined and augmented the section structure
of the Bulletin - which had been introduced by G. Ausiello. Moreover he made
an explicit call for contributions: „Contributions of all kind for the Bulletin are
solicited now. Information on the following items would be particularly useful:
short technical contributions and announcements of new results, titles of new re-
search reports, thesis etc. from your institution, information on the structure, aims
and on-going research of your institution, information on conferences, working
groups etc. you are planning, any other new items of interest".

No. 4 is remarkable not only for the first fotos but also because of its 116
pages, containing 6 „Technical Contributions" and 8 „Reports on Conferences".
From that time on the Maurer-Bulletins found a strong resonance, a growing num-
ber of people did not only read them but also sent contributions - the success of
the Bulletin became obvious. In 1981 the era of the Maurer-Bulletins ended, and
G. Rozenberg startet with Bulletin no. 15 (October 1981). In his next Bulletin
(February 1982) he already introduced two new sections „Reports on computer
science organizations" and „Book reviews", and had announced that from then on
he wanted to have „Reports on Computer Science Departments and Institutes" on
a regular basis. In June 1982 G. Rozenberg came up with „Problems and Solu-
tions", which for quite a while was a very popular topic of the Bulletin series. The
section „Abstracts of Ph.D. Theses" was started in no. 19 (February 1983), fol-
lowed in no. 20 (June 1983) by „Contents of TCS". In this way, by continuously
producing new topics, the Bulletin editor strongly motivated people to read and to
contribute to the Bulletin; the sizes of the Bulletins became bigger and bigger.

Although G. Rozenberg has been taken up since 1983 additionally with the
EATCS Monograph series together with W. Brauer and A. Salomaa - his creativ-
ity for the Bulletin continued: in no. 25 (February 1985) „Surveys and Tutorials"
started, in no. 28 (February 1986) „EATCS Monographs"; since February 1987
exists the „Columns", since June 1988 the series „News from" starting with
Australia and Japan, later in February 1991 Latin America followed and in Octo-
ber 1993 New Zealand. Furthermore should be mentioned the sections „Sister Or-
ganizations" (since October 1988) and „ESPRIT - Basic Research Actions" (since
February 1989). This list of sections is by no means a complete one, and but as a
continuation of what has happened up to now Bulletin readers can be sure to find

The Bulletin of the EATCS

75

pretty soon again a new topic - but what will come next?

Picture Contributions
Each family starts sooner or later to collect fotos of its members, taken in par-
ticular on special events. Vice versa if fotos of a community are taken maybe at
special events, this community feels like a family. That’s what happened to the
EATCS members.

In Bulletin no. 4 from January 1978 the first fotos were reproduced, they doc-
umented ICALP’77 in Turku and MFCS’77 in Tatranská Lomnica, Czechoslo-
vakia. Already since June 1979 the EATCS Bulletin has its official picture editor:
Peter van Emde Boas, Amsterdam, The Netherlands had agreed not only to take
pictures, to urge other members to send pictures to him, but also to compile and
print them at the Mathematical Centre in Amsterdam; it was a hard job for him but
very enjoyable for the Bulletin readers. Since October 1989 M. Kudlek, Hamburg,
Germany is picture editor. He is wellknown for his systematic fotodocumentation
of the speakers of ICALPs and other conferences although only few of them can
be reproduced in the Bulletin. Let us hope that he will, besides his many jobs in
ICALP, continue to take care of the fotos.

The other pictures which catch the attention as soon as a new Bulletin has
arrived are the DADARA cartoons. In Bulletin no. 27, October 1985 they ap-
peared for the first time, signed with „DR"" which is still used in no. 28; from
no. 29 one the excellent DADARA cartoons can be found in each Bulletin. Who
is DADARA? It is not a secret: he is Daniel Rozenberg, the son of Grzegorz
Rozenberg; meanwhile he is quite a famous artist with TV presentations and art
exhibitions in different parts of Europe and in the US. EATCS can be very proud
to have DADARA’s contributions in its Bulletin.

Printing and Mailing
Bulletin readers might think that printing and mailing of the Bulletin is of mi-
nor interest to them since it deals only with organization and finances. But from
the very beginning on this has been the major obstacle for the installation of the
Bulletin. In a letter from January 17, 1975 M. Nivat wrote to EATCS council
members with regard to Bulletin no. 1, which was to appear in December 1973:
„The shipment of the first issue of the Bulletin to all the members who payed 100
belgian francs, which I asked my secretary in IRIA to make in October was im-
possible due to a major mail strike in France. This issue of the Bulletin is very
obsolete". M. Nivat obviously meant October 1974; no. 1 presumely reached its
readers only in 1975.

It was mainly because of lack of money that the series of Bulletins could not
start till October 1977 when H. Maurer got „the support of the University of Karl-
sruhe and of the Institute für Angew. Inf. u. Form. Beschreibungsverfahren of

BEATCS no 137

76

that University" (see cover of Bulletin no. 3). This subsidy lasted only till H.
Maurer left Karlsruhe and moved to Graz in 1978. Bulletin no. 6 got „the support
of the Technical University of Graz and of the Research Centre Graz". But be-
cause of high mailing costs from Austria to overseas members surface mail had to
be used. D. Wood, McMaster University, Hamilton, Ontario, Canada offered his
help, he even had the volumes of Bulletin no. 8 for the 45 North American mem-
bers printed in Hamilton and distributed from there. Unfortunately this procedure
could not be continued.

Bulletin no. 11 was the first issue for which more material had been sent
to H. Maurer than he could include since for financial reasons the weight of a
volume should not exceed 250g i.e. some 180 pages. But the problems became
even greater; in no. 12 (October 1980) secretary Th. Ottmann reported that H.
Maurer: „... explained that not the editing but the actual production has become a
big problem for him. To print about 120.000 pages and to mail over 600 Bulletins
three times a year consumes already more time of his staff than he can justify.
Latest after one further year, another solution for producing the Bulletin must be
found".

Therefore from no. 13 on printing and mailing of the Bulletin became an
additional duty for the secretary. Consequently it was again the University of
Karlsruhe which supported the Bulletin. In spite of this help by Th. Ottmann, H.
Maurer was unable to continue the job as Bulletin editor and from October 1981
on the new Bulletin team consisted of: G. Rozenberg (editor), P. van Emde Boas
(picture editor) and secretary Th. Ottmann (production and distribution). Some
problems had been solved, i.e. overseas members had to pay an extra fee to get
the Bulletin by airmail but in general the financial shortage persisted. From 1983
on there was a little hope, because in October 1983 (no. 21) treasurer J. Paredaens
announced: „Until now the only source of funds has been the membership fees,
which are used exclusively for the Bulletin. In near future some other resources,
e.g. publications, will be available". This was mainly due to G. Rozenberg. The
excellent Bulletin team Rozenberg, van Emde Boas, Ottmann edited and managed
the Bulletin during 5 years.

At the council meeting at ICALP’86 in Rennes B. Monien from Paderborn,
West Germany was approved as secretary and consequently from no. 31 (February
1987) on the Bulletin was produced in and mailed from Paderborn. B. Monien and
his staff members, in particular Walter Unger at the University of Paderborn were
more and more confronted with the growth of the Bulletins, the volumes became
fatter and fatter and heavier: from 298 pages (no. 31) to 323 pages (no. 34),
423 pages (no. 38) to 536 pages (no. 40); since then the number of pages varied
between about 400 and 565 (no. 50), i.e. between 550g and 770g. In 1989 the
team changed, M. Kudlek, Hamburg, Germany succeeded P. van Emde Boas.

At the council meeting at ICALP’95 in Szeged secretary B. Monien resigned

The Bulletin of the EATCS

77

and B. Rovan, from Bratislava, Slovakia became his follower. The team: Rozen-
berg, van Emde Boas /M. Kudlek, Monien had published 27 issues of the Bulletin.
During nine years the university of Paderborn, B. Monien, W. Unger and several
other people in Paderborn had strongly supported the production and distribution
of the Bulletin. Bulletin no. 58 was the first produced in Bratislava; there not only
the printing but also the mailing costs are fortunately a little less than in Germany.
The actual Bulletin team: Rozenberg, Kudlek, Rovan will hopefully act at least as
long as the previous did for the benefit of the EATCS Bulletin.

Using the Bulletin
It is worthwhile to contribute to the Bulletin - at each ICALP the contributers to
the last three issues are awarded with a little present by G. Rozenberg; this dates
back to ICALP’84 in Antwerp. It is worthwhile to bring your own June issue of
the Bulletin to the General Assembly at ICALP to get a nice prize from G. Rozen-
berg. It is worthwhile to read old Bulletins again! Looking on the Bulletin fotos
it is a real surprise to realize how much or how less some persons have changed
during the last 20 years.

There are a few Bulletins which contain texts which do not exactly meet the
scope of the Bulletin but instead give a more private flavour and therefore should
not be forgotten: one is the Bulletin no. 15 where on pages 7 and 8 a letter
from J. W. Thatcher, IBM Research Center, Yorktown Heights is printed who
after having met Ivan M. Havel in Prague in 1981 gives a very touching report
on the situation of Havel and his family as consequence of their connection with
the Charter 77 movement. And also in no. 15, pp. 8-21 A. Salomaa explained in
a purely scientific manner „What computer scientists should know about Sauna"
a reprint can be found in no. 35, pp. 15-26. Bulletin no. 20 is remarkable for
a contribution in French „Vive ICALP!" by M. Nivat - it has been the last non-
English text. The translation into English which is given together with Nivats text
caused some problems; the translator team consisted of a native Dutch, Polish and
American. Finally the no. 50 has to be mentioned as the thickest Bulletin up to
now (565 pages), containing a history of the EATCS Bulletin series demonstrated
by clippings by Lila Kari and Arto Salomaa.

Surely each Bulletin reader will find her or his favoured volumes but whatever
volume is chosen, very likely it will be due to Grzegorz Rozenberg. You read
right now the 48th Rozenberg-Bulletin. He very much improved and determined
the character of the Bulletin, moreover he is the heart of the Bulletin series - let us
hope that his heart will continue to beat for the EATCS Bulletin.

For the Future
To complete our personal view on the history of EATCS, an appreciation of ICALP,
the best known activity of EATCS, should be indispensable. However, next year

BEATCS no 137

78

EATCS will celebrate its 25th ICALP in Aalborg, Denmark and this merits an
extra and a special report which will be given by the ICALP expert, M. Kudlek;
he is the only person in the world who had been to all ICALPs, therefore who else
could do this job better than he!

For those who think that one year is much too long to wait for the ICALP
history, please look into Bulletin no. 52, pp. 32-134 (February 1994) where
detailed informations and statistics have already been given by M. Kudlek.

EATCS has reached its goal to be a leading society for theoretical computer
science. During the past 25 years EATCS was a valuable, comfortable and well-
esteemed scientific home for theoreticians. Let us hope that also in the future
scientists shall be willing to do - on a honorary base - hard and continuous work
for EATCS. EATCS - that is its members and their activities. Congratulations to
EATCS and all the best for the coming 25 years.

Ute Brauer
Wilfried Brauer

Technische Universität München

79

Know the Person behind the Papers

Today: Christos Papadimitriou

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

Christos: Yannakakis and me is unusual. We went to the same high school
in Athens, studied in the same department in Polytechneio, and we both got our
PhDs at Princeton (I was 2 years ahead in all this). He does not always admit
it, but I recruited him to TCS during his first PhD year, when he was enamored
to Communication Theory. When I succeeded, I remember thinking “I have now
done enough for TCS”. Our CVs intersect only by some small fraction, but this
fraction contains some interesting work. The picture is from a time in the 1980s
when we had begun to look similar, and people at conferences had started to get
confused. Then we diverged a bit. Joining him at Columbia five years ago (our
office doors are 3 meters apart) was like a dream come true. When we work
together, our bandwidth – the depth of our shared intellectual and life experience
– is beyond anything that I have known.
The second picture is recent, by my good friend Muli Safra, who is the most
talented photographer that I know.

Can you please tell us something about you that probably most of the readers
of your papers don’t know?

BEATCS no 137

80

Christos: My student years in Greece were miserable. The country was under
a US-supported fascist dictatorship which lasted roughly throughout my student
years, and Polytechneio, my university, was an authoritarian place in a way that
was not altogether unrelated. I hated my studies but I was doing okay. Students
were trying to resist, but we were getting nowhere, except to jail and abuse. When
I graduated I got a job as an engineer, but had to join the army first. My year in
khaki was by far the worst of my life. I saw evil in the eye, every day, and I was
powerless. My health suffered badly. I decided I had to leave Greece, and graduate
school was my only way out. Princeton was one of two schools that admitted me,
and they informed me that I was to join their Computer Science group – a category
I was completely unaware of. They classified me this way probably because the
only phrase in my statement of purpose that they could understand was “IBM
1460”. I ran to Princeton in 1973, two weeks after my discharge from the army.
I was not serious about my studies, and I was opening my eyes to New York and
the new opportunities around. Then I looked at my first homeworks – in Logic
and Automata Theory – and I was hooked. Here is an intellectual endeavor that
existed only in my dreams and prayers, and now I can explore it, and on top of it
all I seem to be good at it! For a few weeks I was in heaven. Then in November,
the students at my former school, the Polytechneio, started a rebellion that was
crushed by tanks. People I knew were killed. I was a deserter – in fact, one who
had fled behind enemy lines.
Such are the contradictions that defined me. In 1980 I left my job at MIT to teach
at the same Polytechneio. For a few years I became a European TCS researcher,
and I was on the board of EATCS – I even organized the 1985 ICALP at Nafplio.
Those who were there have not forgotten: Don Knuth gave a talk on “Theory and
Practice” in the ancient theater of Epidavros, and was introduced in fiery left-wing
prose by famed actor Melina Merkouri, then minister of culture. Four decades
after the fact, confessions come easy: I had written that speech.

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

Christos: Alan Turing’s two most famous papers – or is this too much of a
cliché? I occasionally teach a course on “Classics in CS” where I cover – well,
the classics. Besides Turing we go over Gödel, von Neumann’s interim report,
Shannon, Danzig and Edmonds, Cook-Levin-Karp, Codd, Dijkstra, etc. Even
Euler and his bridges. It is good to remind yourself once in a while that there
are times when a researcher – in most cases in their 20s – realizes that there is
something terribly wrong with the science around them, and takes time to fix it.
But Alan Turing is special to me. A tribute titled “Alan and I” was published in
CACM on Turing’s centennial in 2012. It narrates how, all of a sudden, in 1997
I started to write fiction, inspired by Turing. Before that I had written nothing

The Bulletin of the EATCS

81

besides math, and yet after this experience I realized that I will never stop writing
stories. My first novel “Turing (a novel about computation),” an oblique homage
to Alan Turing, led me to a collaboration that ended up with the graphic novel
“Logicomix,” which became a kind of best seller. Then I wrote “Independence,” a
story about modern Greece (including the Polytechneio insurrection) narrated by
a failed mathematician and backgammon champ named Christos P.

Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

Christos: “A biologically plausible parser” (2022) describes a parser of En-
glish that is implemented exclusively by neurons and synapses. It is based on
intricate TCS (work with Santosh Vempala), which however is only in the refer-
ences here. It is the latest step in my quest to understand how the brain works,
something I have been thinking about for many years now. Develop a formal,
computational understanding of the brain at a level of detail bridging the two ex-
tremes: individual neurons and synapses, and cognitive phenomena at the other
end. Nothing I have done compares in difficulty or excitement.

What do you do when you get stuck with a research problem? How do you
deal with failures?

Christos: Ours is a good life that runs in a very peculiar pattern: months of
frustration, then a moment of elation, and then you must write a technical paper.
Repeat. There is a second kind of joy and longing: when you have identified a
problem worthy of a research life, but feel completely powerless in front of it.
And yet another moment of importance: when you turn your back to the problem,
but promise yourself to return in good time, and take a fresh look.

Is there a nice anecdote from your career you like to share with our readers?
Christos: There is a picture on the web of me playing piano with Don Knuth,

clad in regalia. In 2003 the two of us were about to receive honorary doctor-
ates from the University of Macedonia in Thessaloniki, and the music department
asked virtuoso Don to play something at the ceremony. To my horror, he re-
sponded: “I will play only if Christos agrees to play à quatre mains with me.”
I did play rock-and-roll keyboards as a teenager but by then I was very rusty. I
spent months practicing the pieces with my daughter, and when the day came I
was ready. We practiced with Don in the morning of the ceremony, and he could
cover all my inadequacies. That afternoon, after we sat in front of the piano with
our heavy academic gowns and started Debussy’s “En evoquer Pan,” I burst out
laughing, and Don noticed the problem at about the same time: with our long-
sleeved gowns we could never cross hands as required by the piece! There were
two hilarious bars of musical chaos before we ended with gusto.

BEATCS no 137

82

A couple of years later my musical career took a different turn: I played with a
rock band called “The Positive Eigenvalues.” Mike Jordan was my drummer, and
David Culler my guitarist – not many keyboard players can say this. I also wrote
the original songs of the band, and some of them were about TCS – this blogpost
contains a couple of examples http://blog.geomblog.org/2013/10/focs-reception-
sing-along.html
By the way, you may have noticed a pattern in my life’s account: All my closest
friends are computer scientists. It’s not that I don’t have a life, it’s that computer
scientists are all so amazing!

Do you have any advice for young researchers? In what should they invest
time, what should they avoid?

Christos: If you do not feel an irresistible attraction to your research, you
are in the wrong place. Don’t work on a problem just because somebody else
could not solve it. No math you learn is useless. Even the hardest problems are
likely to crumble eventually, make sure to be there when they do. Create your own
problems as often as you can; your advisor is there to advise you, not to dictate
problems to you. Read Manuel Blum’s advice to young researchers.

What are the most important features you look for when searching for grad-
uate students?

Christos: What are you looking for in your new-born child? A huge moment,
a life-long relationship is starting, the future is present, words fail you.

Do you see a main challenge or opportunity for theoretical computer scien-
tists for the near future?

Christos: Modern TCS started around 1970 with the realization – through
the papers of Cook and Strassen, to pick only two – that elegant mathematical
work can inform computation in a direct and consequential way. In its first quar-
ter century it bloomed: it articulated one of the greatest questions in all of science
(“can exhaustive search always be avoided?”), and provided mathematical help
for the solution of a few epic engineering problems: compilers, databases, secu-
rity, chips, networks, more. Then the Internet came, applied CS fields developed
home-grown theories and theoreticians, and TCS changed course. It started on
its new dual mission: develop even more sophisticated math for the big problems
of algorithms and complexity, and use the profound insights into computation we
have absorbed over the decades to illuminate other sciences and make progress
on their important problems. This is where we are now. With luck, there will be
even more exciting progress on both of these research modes and fronts. And the
interplay between the two will grow as well.

The Bulletin of the EATCS

83

How was your research affected by the pandemic? How do you think it will
affect us as a community?

Christos: Research happens in the world, and the world changed these two
years. We may be wiser, more humble, well versed in zoom, more in touch with
the planet’s unity. And yet we are also more unequal: if you were rich or poor,
powerful or powerless, you are probably more so now. I fear that wealth inequality
is a timer of planetary disaster that may be even more ominous than climate.

BEATCS no 137

84

85

Know the Person behind the Papers

Today: Anne Driemel

Bio: Anne Driemel received her doctorate in 2013 from Utrecht University,
after studies of computer science at the Free University of Berlin and the
University of Pennsylvania. Following stations at the TU Dortmund and the
TU Eindhoven, she moved to the University of Bonn in 2018, where she is
now a professor at the Institute of Computer Science and a member of the
Hausdorff Center for Mathematics. Since 2022 she is an elected member of
the Computational Geometry Steering Committee (term 2022-2026).

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

Anne: This photo was taken in our home in Eindhoven. My husband is also
a computer scientist and when we first moved in together, we wanted to have a
proper chalk board in the home office. It turned out later that we did not use it
much for work, but our children liked to draw on it. The second picture shows
what is going on behind the scenes.

BEATCS no 137

86

Can you please tell us something about you that probably most of the readers
of your papers don’t know?

Anne: Before I discovered theoretical computer science as a subject, I often
wanted to become a writer. However, there was no clear career path. Besides, I
didn’t know what to write about. I thought I first had to get some life experience
before I could write a book. I guess you could say that I am an author now,
although it is not quite how I envisioned it.

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

Anne: I was intrigued by "The nature of statistical learning theory" by Vladimir
Vapnik, where he explains central ideas and the historical context of the VC-
theory, which is important for PAC-learning. More generally, I recommend read-
ing older concept papers in artificial intelligence. I think those are highly relevant
to the field of computer science as a whole today, because many of these ideas
have shaped the field from the beginning.

Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

Anne: This would be my paper with Peyman Afshani on the complexity of
range searching among curves. The story behind it is that Peyman was looking
for a range searching problem that is strictly harder than simplex range searching.
I was interested in the problem of range searching under the Fréchet distance and
whether multi-level partition trees could be used for that. Peyman had developed
a technique for proving lower bounds that he wanted to apply. There is also a
deeper question involved, namely whether the additional logarithmic factors, that

The Bulletin of the EATCS

87

are caused by extra levels in a multi-level partition tree, are somehow artifacts
of the construction, or if we can find a range searching application that observes
these extra factors in a lower bound. It turns out that the Fréchet distance has this
property.

When (or where) is your most productive working time (or place)?
Anne: This used to be in the evenings. Now that I have a family, the pro-

ductive times come and go and I don’t see a clear pattern. I am probably most
productive when I can forget everything around me. This has less to do with a
certain time or place, but with the circumstances that allow me to let go of things
(e.g. reliable good quality child care).

What do you do when you get stuck with a research problem? How do you
deal with failures?

Anne: I learned that it is good to cycle through a small stack of problems.
Whenever you get stuck on one problem, you move to the next in the stack. Ide-
ally, by the time you reach the problem again, where you got stuck, you have
cleared your mind of the stuckness. Also, it really helps to collaborate with oth-
ers on research problems, not only to share expertises, but simply because talking
about the problem can help tremendously to sharpen the focus and to distill the
questions that are important.

Is there a nice anecdote from your career you like to share with our readers?
Anne: I can’t think of anything interesting right now.

Do you have any advice for young researchers? In what should they invest
time, what should they avoid?

Anne: Find a topic area or application that you care about and try to for-
mulate a new concept or fundamental problem within that area that has not been
studied before. Avoid chasing after low-hanging fruits in competition with others.
Collaborate, share your problems with others.

What are the most important features you look for when searching for grad-
uate students?

Anne: Ideally, I would like to know if the candidate knows how to write and
in particular if they are able to develop their own ideas and thoughts in writing.
Another question is how well the candidate is motivated for an academic career.
Both things are often difficult to assess, but sometimes the application letter and
the interview give away enough hints.

Do you see a main challenge or opportunity for theoretical computer scien-
tists for the near future?

BEATCS no 137

88

Anne: Climate change.

What kind of opportunities should EATCS offer to researchers, and espe-
cially to young researchers?

Anne: I think we could do more to support young researchers with young chil-
dren. Often, these different challenges come together at a time when an academic
career is the most volatile, namely during the postdoc phase. Travel support for
conference trips with young children would be great, e.g., to support travel costs
of a care-taker person that travels with you.

What can be the role of EATCS in solving the challenges of our society?
Anne: I think we should not underestimate the role of theoretical computer

science in society. Sometimes, good theoretical work needs some time to flourish
and establish itself, but eventually it may have an impact in unforeseen ways.

Please complete the following sentences:

• My favorite movie is the Three Colours Trilogy by Krzysztof Kieślowski.

• Being a researcher is being free to decide which great problems to spend
your time and energy on.

• My first research discovery is the notion of c-packedness that charac-
terizes a realistic class of curves for which the Fréchet distance can be
approximated in near-linear time (together with Sariel Har-Peled and
Carola Wenk).

• Theoretical computer science in 100 years from now will be based on the
same mathematical foundations.

• EATCS in 50 years from now will look very different (but I don’t know
how).

• Being respected is key to being a happy academic.

89

Know the Person behind the Papers

Today: Paul Spirakis

Bio: Paul Spirakis was the director of the Greek Computer Technology Institute
(CTI) from 1996 to 2016. He is now in the leadership team of the Leverhulme
Research Center for new materials design of the University of Liverpool , a fac-
ulty member in U. Liverpool and also in U. Patras. He graduated from the Na-
tional Technical University of Athens and earned his Ph.D. from Harvard Uni-
versity.Among other, Spirakis is known for his contributions in probabilistic tech-
niques in algorithms , foundations of distributed computing and algorithmic game
theory. He co-established the present form of the Computer Technology Institute
and Press "Diophantus" in Greece. He played an important role in the establish-
ment of several Conferences such as the European Symposium on Algorithms , the
Conference on Distributed Computing (DISC) and the Conference on the Internet
and Network Economics (WINE). He was the President of EATCS from 2016 to
2020 and he is a Member of Academia Europaea and also the Editor-in-Chief of
the TCS-A journal. He served in several research related EU bodies and chaired
the ERC Informatics Panel.

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

Paul:
I share two photos. The first is in Boston on 1980 with my advisor John Reif.

My wife Asimina is at the right corner (not so visible).The second is me and my
youngest student (my grandson Marios) in Liverpool on 2019.This photo shows
that I can teach theory to very young students, even in the street, buying food.

Can you please tell us something about you that probably most of the readers
of your papers don’t know?

Paul: When I started my undergraduate studies in 1973 in Greece (in Electri-
cal Engineering) I had never used a computer. In 1975 I started to interact with a
mainframe by punching and submitting cards to a person who was responsible for
compiling and delivering the output to us in printed form. The first computer lan-
guage I used was FORTRAN. In 1977 I started my undergraduate Diploma Thesis

BEATCS no 137

90

on the subject "Information processing in the nervous system of man". I learned
then about neurons and I wanted to do graduate work in biomedical engineer-
ing. At the same time I started learning about Markov Processes and I proposed a
Markov Chain for the information processing in the cerebellum ! As an Electrical
Engineer I was facsinated from the use of stochastic processes.

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

Paul: A year after starting my graduate work at Harvard I read the paper of
Dana Angluin and Leslie Valiant on Fast Probabilistic Algorithms for Hamiltonian
Circuits and Matchings (appeared in 1977 , I read it in 1979). This was the first
time I saw the Chernoff bounds. I used them later in my Ph.D. Thesis. At that
time almost nobody was using tail bounds on sums of random variables.

Very young I read the book of Karl Marx "Das Kapital". I suggest it to every-
body independently of political beliefs.

Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

Paul: Read the paper "An Optimization Approach for Approximate Nash
Equilibria" (Internet Mathematics 2008) by Haralampos Tsaknakis and myself.
Haralampos was a mathematical genius. He is no longer in life and I want to point
out this paper so that we all remember him. At that time Haralampos was working
in a managerial post in some firm in Greece. I met him first when we were both
high-school students in Thessaloniki in 1972. We met again around 2005 and he

The Bulletin of the EATCS

91

was working on some security problems in his spare time. Thn I told him "do
you want to work on a nice problem in Game Theory ?" . And this paper (whose
achieved approximation ratio is not beaten till now) came out afterwards.

When (or where) is your most productive working time (or place)?
Paul: I am an evening person. I start working in the morning but not very

BEATCS no 137

92

early. During the day I interact with students , go to meetings, teach and adminis-
trate , write some reports etc. My evenings are usually devoted to research , some
time until late at night.

The schedule is different when I travel but nowadays this is not a problem.
My favorite work place is my office (and my office at home) but I can think

and work almost everywhere (even in train or plane)

What do you do when you get stuck with a research problem? How do you
deal with failures?

Paul: Failures are much more frequent than successes. When I am stuck I
keep trying and I try to understand the problem better. Also I discuss the problem
with colleagues and students. Hard problems need lots of trying. Sometimes I
become disappointed and wnat to forget the problem but it comes again in my
mind. It helps to work on more than one problem at the same time. When you are
tired of one you can switch to the other. My experience is that when I insist on
a problem , something comes out eventually , maybe not on the original problem
but on a related one.

Is there a nice anecdote from your career you like to share with our readers?
Paul: When I was applying for graduate studies I was mostly applying to the

U.S. (Greece had not graduate studies at that time in 1978. And I was mostly
applying for biomedical engineering or cybernetics. Then one day I got a phone
call from Christos Papadimitriou. He was visiting Harvard and my application to
Harvard somehow arrived to him. He told me if I knew a lot about the subjects
I was looking for. I honestly told him that I had no idea but I was fascinated
by subject names. He told me "here we have some different topics , such as
algorithms , automata etc.". I took the risk to accept the offer (was coming with
a fellowship and my parents could not pay for graduate studies). I was lucky in
my decision then.The funny thing is that in my first year at Harvard I worked on
performance evaluation of computer systems (not on algorithms) Was natural , it
involved some queuing theory and I knew a bit of that from my undergraduate
studies. After a year I switched subject (and advisor !) and I started working on
algorithms with John Reif. John influenced me a lot and inspired me to work on
those , new for me then , topics. I owe a lot to John for his direction and for
helping me to start a career.

Do you have any advice for young researchers? In what should they invest
time, what should they avoid?

Paul: They should work on subject that psyche them ! They should avoid cur-
rent fashion (unless they really want to work on topics related to current fashion).
Think deeply , make research your way of life.

The Bulletin of the EATCS

93

What are the most important features you look for when searching for grad-
uate students?

Paul: Mathematical talent and desire to work even on subjects they are not
very familiar with.

Do you see a main challenge or opportunity for theoretical computer scien-
tists for the near future?

Paul: Theoretical computer science has a great future. New topics and ques-
tions arise all the time : population protocols in distributed computing , economics
and algorithms , new models of dynamic and random graphs , theory of learning
and big data , new complexity classes , are some examples.

In my career I switched topics several times starting to work on topics that
were not so known (or even did not exist) before.

What kind of opportunities should EATCS offer to researchers, and espe-
cially to young researchers?

Paul: EATCS is a scientific association. It offers already many opportunities
, ranging from prizes and awards to schools and to job openings announcements.
Most importantly it supports several theory conferences (including its flagship
conference ICALP) and thus offers to researchers (especially to young ones) the
opportunity to meet peers and older scientists and gain in wisdom and coopera-
tion. EATCS is a big family of european theorists. The bulletin itself highlights
important topics and discoveries. Hard to find out if EATCS misses to offer some
opportunities to researchers. If there is any I am sure that the EATCS bodies will
spot it and act on it also via continuous interaction with european researchers.

What can be the role of EATCS in solving the challenges of our society?
Paul: Well , it could motivate the relation of such challenges to theory ! For

example , I think we need a theory of humane algorithms. When theorists (es-
pecially young ones) become aware that their skills and scientific goals can also
help society then an additional quite strong team of thinkers will be added to the
people that try to solve the challenges of our society.

BEATCS no 137

94

Please complete the following sentences?

• My favorite movie is...Matrix (the first one).

• Being a researcher...is big pleasure and a way of life.

• My first research discovery...was not on theory but on performance anal-
ysis of computer systems.

• Theoretical computer science in 100 years from now...will be even
stronger but perhaps very different from now.

• EATCS in 50 years from now...will have many more members and will be
be key in relating theory to societal challenges.

• Love for research and for teaching ... is key to being a happy academic.

95

Know the Person behind the Papers

Today: Eva Rotenberg

Bio: Motivated by curiosity and the search for mathematical elegance, Eva Roten-
berg’s research focuses on graph algorithms, particularly dynamic graphs, and
touches upon other areas within algorithms. Eva Rotenberg is an associate pro-
fessor at the Technical University of Denmark, and holds a PhD from the Uni-
versity of Copenhagen from 2017. Eva Rotenberg currently holds a grant from
Independent Research Fund Denmark, and starting grants from the Villum Foun-
dation and the Carlsberg Foundation.

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

Eva: In this picture, I am trying to illustrate the problem of online matching
with recourse to a small general public audience, using toy figurines and origami
boxes of different colours. Everyone could sympathise that having to move fig-
urines between boxes all the time was really cumbersome, and were relieved to
hear that a very simple algorithm was mathematically guaranteed to make very
few moves in total. (See Online Bipartite Matching with Amortized O(log2n) Re-
placements [?].)

BEATCS no 137

96

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

Eva: Let me recommend: “Dynamic Representations of Sparse Graphs” by
Gerth Stølting Brodal and Rolf Fagerberg [?].

When Jacob Holm and I were working on an algorithm for fully-dynamic
planarity testing [?], we suddenly realised that an analysis similar to that in this
paper would help us take a big step towards solving our problem.

Today, I use this paper in our advanced algorithms class when introducing the
students to the topic of dynamic graph algorithms.

Is there a paper of your own you like to recommend the readers to read?
Eva: One suggestion could be: “A Hamiltonian Cycle in the Square of a

2-connected Graph in Linear Time”, joint work with Stephen Alstrup, Agelos
Georgakopoulos, and Carsten Thomassen [?]. Working with Carsten Thomassen
has taught me a lot about simplicity and elegance in proofs and algorithms.

When (or where) is your most productive working time (or place)?
Eva: The question is hard to answer because there are so many different ways

of being productive, that are all necessary in order to solve problems. Different
kinds of productivity flourish under different conditions. Sometimes it is even
possible to just wake up with a new, vague idea, that gives a new perspective on
some problem. One of my favourite ways to work is to stand by a board and
discuss ideas with other people.

What do you do when you get stuck with a research problem?
Eva: Regardless of whether a specific idea works and solves the problem,

it is interesting to understand the power of that idea: does it work under other
assumptions or restrictions? Is there a version of the problem that it solves?

Often when we are stuck, it is because there is this one annoying case, that
stands in the way of our original algorithmic idea working. Then, it can be helpful
to draw and describe this particular case – I prefer first to draw it in a a very
imprecise high-level way. Then starts the work of really, intensely, understanding
the nature of this annoying case and why it annoys us. Hopefully, in this process,
one gains insights that inspire new algorithmic ideas.

Do you have any advice for young researchers?
Eva: Sometimes, PhD students worry that they are educating themselves too

broadly, working on seemingly unrelated problems within theoretical computer
science, and publishing papers on very diverse topics. The way I see it, there is
nothing wrong with having a broad set of skills and a broad range of interests.

The Bulletin of the EATCS

97

What kind of opportunities should EATCS offer to young researchers?
Eva: We want to have a safe and welcoming environment for students and

newcommers. It would be great to offer summer schools and workshops, e.g. in
connection with ‘our’ conferences. We could also consider supplementing our
best student paper awards with a best student presentation awards, inspired by the
computational geometry community.

Please complete the following sentences?

• My favorite movies are... old. Yet, I prefer not to see the same one twice.

• I like theoretical computer science because... it is difficult, fun, interest-
ing and aestestically pleasing.

• For me, collaboration ... is key to being a happy academic.

BEATCS no 137

98

99

Know the Person behind the Papers

Today: Leslie Ann Goldberg

Bio: Leslie Ann Goldberg is the Head of the Department of Computer Science
at the University of Oxford. Her work is in the area of Randomised Algorithms
and in the related area of Approximate Counting. Leslie received her BA in 1987
from Rice University and her PhD in 1992 from the University of Edinburgh. She
was awarded an ERC Advanced Grant in 2014, and was elected to Academia
Europaea in the same year. In 2016 she received a Suffrage Science Award. She
and her co-authors have won four best-paper prizes at ICALP.

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

Leslie: Like some others, I’ve included two photos here. The first one was
taken in 2016 in the “green room” at the Hay Festival of Literature and Arts. I
was there because I was giving a public lecture entitled “Algorithms and their
Limitations” about P vs NP. I really like doing this kind of outreach, and I chose

BEATCS no 137

100

this photo partly for that reason, and partly because my main non-academic hobby
is reading fiction. The annual festival has grown from its original literary purpose
to now include science, politics, and music. I’m pretty sure that I look both ner-
vous and excited in that photo. Partly nervous about my talk, and partly about
being in the presence of literary giants. Salman Rushdie had just walked by!

The second photo is a “context” photo. This is a tiny piece of Mike Paterson’s
computer science “family tree”. Standing below Mike is his once-student Les
Valiant, and below Les is his once-student, Mark Jerrum. Below Mark are my
husband, Paul Goldberg, and myself, both once-students of Mark. On the next

The Bulletin of the EATCS

101

row are Paul’s then-student Edwin Lock and my then-student Jacob Focke. On the
bottom row is Andreas Galanis, a really important collaborator for me. Andreas
fits into the picture because he is a former student of Eric Vigoda, who is a former
student of Alistair Sinclair, who is also a former student of Mark. I chose the
photo because of the great TCS context — so many great colleagues to whom I
owe so much!

Can you please tell us something about you that probably most of the readers
of your papers don’t know?

Leslie: I was a latecomer to Maths and Computer Science. My dream, as
a young person, was to be a civil rights lawyer. At Rice University, I took a
double major in Political Science and Computer Science. Political Science, to
prepare for postgraduate study in law, and Computer Science because I mistook
it for vocational training which would give me a way of paying for my study in
law! Theoretical Computer Science was my first introduction to open problems in
mathematics. I was overwhelmed by how fascinating it was.

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

Leslie: I think that papers in Theoretical Computer Science do age a bit with
time, given the speed of advances in the field. Two papers that were hugely in-
fluential on me when I was a PhD student were Valiant’s “The Complexity of
Computing the Permanent” and “The Complexity of Enumeration and Reliabil-
ity Problems”, which essentially introduced the field of Computational Counting
(one of the many fields that Les has initiated!). I was definitely also influenced
by Jerrum and Sinclair’s “Approximating the Permanent” which introduced some
great techniques and ideas. They also write very well.

Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

Leslie: I can’t really imagine recommending that anybody should “study” one
of my own papers! That feels very arrogant and strange. Let me say instead that I
am usually most enthusiastic about some of my recent work. At the moment I am
very excited about contention resolution, which is something that I really liked
working on a long time ago with Mike Paterson and others, and which I’ve very
recently come back to with John Lapinskas. I’m very excited about our new paper
“Instability of backoff protocols with arbitrary arrival rates”.

When (or where) is your most productive working time (or place)?
Leslie: I’d love to be one of those people who can work perfectly well in

noisy places in odd snatches of 10 minutes, but in fact I work best when I have

BEATCS no 137

102

long quiet periods alone, especially in the morning. When I was a PhD student I
once solved a problem that I’d been stuck on for many months during a walk. I
was with others who had much better gear for Scottish peaks (something I fixed
later!) and I was too cold to continue to the top with them, so I spent the day
with the sheep much lower down. It was a blow to the pride to drop out of the
excursion to the top, but it was good compensaton to be rewarded with an idea for
my problem!

What do you do when you get stuck with a research problem? How do you
deal with failures?

Leslie: I think the right approach to getting stuck is to divide time between (a)
persisting and (b) working on something else. You want to do the first because you
can’t solve a problem if you don’t even try. You want to do the second because
the original problem might not be solvable! Failures are actually kind of nice
because they give you problems that you can “carry around” to come back to later
in life. The main open problem from my PhD (the complexity of approximating
the cycle index polynomial) is still open. The main problem that I was working on
with Mike Paterson at Warwick around 20 years ago is the source for what John
Lapinskas and I have picked up recently.

Is there a nice anecdote from your career you like to share with our readers?
Leslie: When I was a young researcher Martin Dyer asked me whether I’d

been invited to a certain Oberwolfach meeting and I admitted that I hadn’t been
invited. He rushed to explain “Oh, don’t worry. It isn’t what you know. It is who
you know.” I hadn’t actually been very upset about not being invited — after all,
only a small number of people can attend — but I was very touched by Martin’s
kind reassurance. He was a good mentor, to me and to others.

Do you have any advice for young researchers? In what should they invest
time, what should they avoid?

Leslie: The following advice is something that I learned from Robin Milner.
At the time I was struggling to find a PhD topic and my supervisor, Mark Jerrum,
was also pretty young, so we went to Robin for advice. He advised me to stop
thinking so much about the “big picture” and instead to focus on a small problem
that I enjoyed working on. His comment was that the small problem would always
lead to something else, so there was no need to do so much planning. I think it is
good advice.

What are the most important features you look for when searching for grad-
uate students?

The Bulletin of the EATCS

103

Leslie: Enthusiasm for the topic. Problem-solving ability. Being curious
about problems. Being hard-working.

Do you see a main challenge or opportunity for theoretical computer scien-
tists for the near future?

Leslie: I see many opportunities for theoretical computer science! Computing
is becoming more and more important and I don’t expect that to change. But as
computing becomes more and more ubiquitous, foundational questions like “how
long does it take” and “what is actually possible” become increasingly important.
Right now “deep learning” is proving to be useful for many practical problems.
But it will have limits and I expect TCS to be at the forefront of figuring out what
those limits are, and what can be done instead.

What kind of opportunities should EATCS offer to researchers, and espe-
cially to young researchers?

Leslie: In addition to offering outstanding conferences, EATCS offers a sense
of community. I think this is particularly important for young researchers.

What can be the role of EATCS in solving the challenges of our society?
Leslie: I’m strongly of the belief that the best way to obtain research that has

a societal impact is to support “blue-skies” curiosity-driven research. There are
lots of examples of curiosity-driven research that later turned out to have a big
“impact” (consider, for example, radar, x-rays, or even calculus). This is true in
science generally, and it is also true in the Theory of Computing. Oded Goldreich
and Avi Wigderson have written a nice essay about this entitled “The Theory of
Computing: A scientific Perspective”. My main point is that the EATCS does and
should stay focussed on “discovery of truth” and “foundational understanding”.
This is the best way to contribute to societal challenges.

BEATCS no 137

104

Please complete the following sentences?

• My favorite movie is... perhaps “Before Sunrise” — I’m not really the
sort of person that has a “favourite movie”. I’m not even sure whether
there are any movies that I’ve seen more than twice, apart from maybe
“Casablanca”.

• Being a researcher... is a very rewarding career!

• My first research discovery... was probably written on a piece of paper
that I don’t have anymore!

• Theoretical computer science in 100 years from now... will be making
lots of fascinating discoveries that we can’t predict now.

• EATCS in 50 years from now... will hopefully continue to be at the centre
of this fascinating area.

• intellectual curiosity ... is key to being a happy academic.

105

Know the Person behind the Papers

Today: Mariangiola Dezani-Ciancaglini

Bio: Mariangiola graduated in Physics the same year when Corrado Böhm joined
the University of Torino as the responsible of the new degree in Computer Science.
Mariangiola, having an interest both in research and in teaching, was planning
to pursue an academic career in Theoretical Physics, but when she meet Corrado
by chance she was totally fascinated by his imaginative way of investigating prob-
lems. Therefore, Mariangiola started to do research in Computer Science under
the superb guidance of Corrado. She was always employed at the University of
Torino, but she loved travelling and working with different people, hence she vis-
ited many universities and research centres during her career. As a self-present
for her 50th birthday, Mariangiola got a PhD at the University of Nijmegen with
her friend and co-author Henk Barendregt being her supervisor. At the core of the
research activity of Mariangiola there are types, starting with intersection types
for building models of the λ-calculus. Later, she devised types for object calculi,
biological systems and concurrent processes, in particular session types for web
services. Mariangiola became EATCS Fellow in 2015.

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

Mariangiola: I share two photos which represent my main research interests.
The first photo was taken in 1978 at the “Spring School on λ-calculus” and it
appears in the book “The Lambda Calculus” by Henk Barendregt. In the second
photo I am giving a talk in Novi Sad about session types in 2008.

BEATCS no 137

106

Can you please tell us something about you that probably most of the readers
of your papers don’t know?

Mariangiola: I always loved to play with children and this activity frequently
had a good influence on my scientific discoveries.

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

Mariangiola: One of the first papers Corrado suggested me to read was
“Toward a mathematical semantics for computer languages” by Dana Scott and
Christopher Strachey. This paper has influenced my love for semantics.

Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

Mariangiola: Somebody interested to intersection types could look at “A tale
of intersection types”. I wrote this paper with my friend and ex-student Viviana
Bono during the confinement for the Covid pandemic. My isolation was softened
by this work.

When (or where) is your most productive working time (or place)?
Mariangiola: I can work everywhere, also surrounded by noise, but I like to

sleep in the morning, while I can be productive late in the evening.

What do you do when you get stuck with a research problem? How do you
deal with failures?

Mariangiola: I always try to work in parallel to more than one paper and with
different people. In this way, when I find a difficult problem I can abandon it for
some time. This usually helps in gaining a fresh look. Of course this is not a
universal recipe, I have papers I will never finish.

Is there a nice anecdote from your career you like to share with our readers?
Mariangiola: My conversations with Corrado were always about science

only. The day when I gave birth to my first child, Corrado called me and just
after congratulating he asked me something about a joint paper. That was the only
time in which I did not try to answer to an interesting question.

Do you have any advice for young researchers? In what should they invest
time, what should they avoid?

Mariangiola: To be open in collaborating with people having different back-
grounds. This can strongly widen the view.

What are the most important features you look for when searching for grad-
uate students?

The Bulletin of the EATCS

107

Mariangiola: I look for scientific curiosity and open-minded vision.

Do you see a main challenge or opportunity for theoretical computer scien-
tists for the near future?

Mariangiola: In my long career I saw with pleasure many interesting results
springing from theoretical computer science. I like to mention the isomorphism
between Combinatory Logic terms with intersection types and proofs of the mini-
mal relevant logic (“Intersection types as logical formulas” by Betti Venneri) and
a formalisation of communication protocols between distributed peers (“Multi-
party asynchronous session types” by Kohei Honda, Nobuko Yoshida, and Marco
Carbone).

I must confess I was almost always incapable to predict these developments.
Today, being retired and unable to meet colleagues because of the Covid restric-
tions, it is even more difficult for me. I can only say that I am sure the future of
theoretical computer scientists will be full of success.

What kind of opportunities should EATCS offer to researchers, and espe-
cially to young researchers?

Mariangiola: The EATCS and also its Italian Chapter played a crucial role in
my scientific development. In particular, the EATCS support to the organisation
of conferences and workshops allowed my colleagues and myself fundamental
scientific exchanges, unfortunately made impossible in the last two years by the
pandemic. I am sure EATCS will take again this role as soon as the Covid pan-
demic will be over.

A big help for all researchers, and in particular for the young ones (usually
also those with less research funds), would be a manifest in favour of open ac-
cess publications without author fees and against the unjustified prices required
by publishing houses. Moreover, the authors today prepare their manuscripts in
the LaTeX style suggested by the journals, but frequently the typographers use a
different style with the result of introducing meaningless breaks inside formulas
and sometimes also mistakes to be fixed. This should be avoided with a clear
benefit also for the printing costs.

What can be the role of EATCS in solving the challenges of our society?
Mariangiola: One of the main problem today is to fill the gap between the

first and the third world. Open access publications without author fees will allow
members of all research centres to keep up-to-date and to submit their manuscripts
more easily. EATCS can play a fundamental role for the scientists working in the
field of theoretical computer science.

BEATCS no 137

108

Please complete the following sentences?

• My favorite movie is “The Gospel according to Matthew” by Pier Paolo
Pasolini.

• Being a researcher made my life full of exciting discoveries.

• My first research discovery was looking at the λ-calculus as a paradigm
of functional programming languages.

• Theoretical computer science in 100 years from now will only appear in
open access publications without author fees.

• EATCS in 50 years from now will celebrate the 100 year jubilee with
many members from all parts of the world.

• Love of research and teaching is key to being a happy academic.

109

Know the Person behind the Papers

Today: Jean-Éric Pin

Bio: Jean-Éric Pin is a theoretical computer scientist known for his contributions
to the algebraic automata theory and semigroup theory. Former head of LITP
and LIAFA1, he is currently an Emeritus CNRS research director at IRIF. Pin is a
member of the Academia Europaea (2011) and an EATCS fellow (2014). In 2018,
Pin became the first recipient of the Salomaa Prize in automata theory, formal
languages, and related topics. He is also the editor of the recent Handbook of
Automata Theory.

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

J.-É.: I share two photos. The first one was taken in Trois-Rivières (Québec),
on Denis Thérien’s farm, during the summer of 1980. Howard Straubing is seen

1Both research units of CNRS (National Center for Scientific Research), ancestors of IRIF.

BEATCS no 137

110

standing and giving a presentation. Sitting on the chairs in the foreground, John
Brzozowski (right) and myself (left). On the patio, from left to right, Stuart Mar-
golis, Denis Thérien and my daughter Garance, who kindly lent us her children’s
blackboard. More than forty years later, I have fond memories of that time.

The second photo was taken in 2018 at the Calouste Gulbenkian Museum in Lis-
bon, where I was trying to convert coffees into new results.

Can you please tell us something about you that probably most of the readers
of your papers don’t know?

J.-É.: I owe much to Klaus Keimel, a German researcher from Darmstadt who
sadly died in 2017. Going back to 1976, I had to attend a series of lectures given
by him. By an incredible coincidence, I met him on the suburban train to Paris
and we started talking. I had written an article on semigroups, but didn’t know
what to do next. He not only helped me to ultimately publish this article, but
he also directed me to the French School founded by Schützenberger, a decisive
input in my career. Later on, in 1996, Klaus would introduce me to Mai Gehrke in
Nashville. Years later, this led to a best paper award with Mai and Serge Grigorieff
at ICALP 2008.

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

J.-É.: Wolfgang Thomas’ article Classifying regular events in symbolic logic
led me to learn enough logic to understand it. Similarly, the articles by Schützen-
berger and Straubing led me to deepen my knowledge of semigroups and au-
tomata. I would also like to recommend two papers: the little known paper by

The Bulletin of the EATCS

111

J. Berstel and L. Boasson, Towards an algebraic theory of context-free languages
(1996), for its conciseness and elegance and the impressive survey paper by T.
Eiter, G. Gottlob, T. Schwentick, Second-order logic over strings — regular and
non-regular fragments (DLT 2001).

Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

J.-É.: My most recent paper, coauthored with C. Reutenauer, A noncommuta-
tive extension of Mahler’s interpolation theorem, to be published in the Journal of
Noncommutative Geometry https://hal.archives-ouvertes.fr/hal-03579151.
It corresponds quite well to my research in TCS: a combination of algebra, com-
binatorics, topology and automata theory. It is the culmination of research work
begun in 2008 with P. Silva, and it has therefore taken more than twelve years to
complete.

When (or where) is your most productive working time (or place)?
J.-É.: It can be at any time, including at night. As for the location, it is rarely

in my office, except for collaborative work. I remember having successful ideas
on the beach in the isle of Ré, on la Fouly pass in Switzerland while waiting for a
bus, or in the kitchen of H. Straubing in Boston.

What do you do when you get stuck with a research problem? How do you
deal with failures?

J.-É.: First of all, try to understand the difficulty, and if possible have a battery
of examples and counter-examples. Always keep the problem in mind, but do not
obsess over it and work on other issues at the same time. Discuss with colleagues,
look more carefully on the related bibliography. A new idea may come from
thinking again, reading an article or listening to a lecture, even on different topics.
It is a bit like a difficult crossword puzzle, where the discovery of a single letter
can unlock the situation.

Is there a nice anecdote from your career you like to share with our readers?
J.-É.: I was a member of the national committee for scientific research, and

another member of this council was an engineer at Bull, a French computer com-
pany. Taking the opportunity of seeing many CVs, he occasionally hired a re-
searcher for Bull. One day, jokingly, I asked him when he would hire me, but
to my surprise, I got a concrete job offer as an answer! And so from 1991 to
1993, I joined the Bull research center, where I first met Jean Goubault-Larrecq, a
very rewarding experience. In addition, the management training offered by Bull
proved to be very useful when, barely back in the academic world, I was appointed
director of LIAFA in 2003.

BEATCS no 137

112

Do you have any advice for young researchers? In what should they invest
time, what should they avoid?

J.-É.: It certainly helps to have a solid background in mathematics. However,
it is very difficult to predict which branches of mathematics will be useful to you.
It is also important to attend regular research seminars or working groups. You
should also read the reference articles in depth. The aim is to achieve a level of
understanding that makes you as intimate with the article as the author. A final
advice is to keep a copy of P.R. Halmos’ article "How to write mathematics" on
your bedside table. And always remember that any “theorem” less than twenty-
four hours old is wrong...

What are the most important features you look for when searching for grad-
uate students?

J.-É.: Apart from the obvious academic criteria, original ideas and a strong
motivation for research are excellent indicators.

Do you see a main challenge or opportunity for theoretical computer scien-
tists for the near future?

J.-É.: I am really curious to know how far proof assistants and theorem
provers can go in the future. It would be nice if they could prevent people to
use hand-waving arguments.

What kind of opportunities should EATCS offer to researchers, and espe-
cially to young researchers?

J.-É.: There has been so far only four EATCS young researchers schools. I
hope that the health situation will allow many more to be organised. In addi-
tion, after creating the Monographs in Theoretical Computer Science almost forty
years ago, EATCS could consider creating an audiovisual platform dedicated to
theoretical computer science.

What can be the role of EATCS in solving the challenges of our society?
J.-É.: Given the circumstances, working for peace seems to be the most im-

portant thing.

The Bulletin of the EATCS

113

Please complete the following sentences?

• My favorite movie is ... Children of Paradise (Les enfants du Paradis)
directed by Marcel Carné and written by Jacques Prévert, see https:
//en.wikipedia.org/wiki/Children_of_Paradise. The title is
somewhat misleading, since the ’paradis’ is the colloquial name for the
gallery in a theatre. The heroine of the film is called Garance. . .

• Being a researcher... is a permanent pleasure.

• My first research discovery... When I was a child, I tried for years to solve
the quadratic equation, but I finally got there. I observed that the equation
x2+ax+b = 0 could be written as x(x+a) = −b and I noticed the similarity
with a geometry problem: given the area of a rectangle and the difference
between its two sides, determine its length and width. This latter question
can be easily solved using the identity (x + y)2 = (x − y)2 + 4xy.

• Theoretical computer science in 100 years from now... What a question!
A hundred years ago, TCS was limited to algorithms and a bit of com-
putational number theory. Since then, most research topics have been in-
spired by technological advances, and this creation of totally new fields
will certainly continue in the future. To guess the future of the current
open questions in TCS, one can try to rely on the only available estimate:
Hilbert problems. Of these twenty-three problems, two are considered
too vague and one is more of a physics problem, eight are considered
solved, eight partially solved and four are still open, including the Rie-
mann hypothesis. This is a rather encouraging result, given the difficulty
of the problems. So let us trust the theoretical computer scientists of the
future to solve some of the big open questions!

• EATCS in 50 years from now... Above all, I hope that EATCS will con-
tinue to promote open science. It includes open access to publications
and free dissemination of the results, methods and products of scientific
research.

• Enjoy research ... is key to being a happy academic.

BEATCS no 137

114

115

Know the Person behind the Papers

Today: Grzegorz Rozenberg

Bio: Grzegorz Rozenberg is Professor Emeritus of the Leiden Institute of Ad-
vanced Computer Science, Leiden University, The Netherlands and Adjoint Pro-
fessor of the department of Computer Science, University of Colorado at Boulder,
USA. He was EATCS president for 9 years, the editor of the EATCS Bulletin for
23 years, the founding editor-in-chief of the journal Theoretical Computer Science
C: Theory of Natural Computing, and a founding editor-in-chief of the Interna-
tional Journal on Natural Computing. Rozenberg is known for his contributions
to formal languages and automata theory, concurrency theory, and natural com-
puting. He is sometimes referred to as a guru of natural computing, as he coined
the name and defined the scope of this area. He graduated from the Technical
University of Warsaw, Poland and obtained his Ph.D. in mathematics from the In-
stitute of Mathematics of the Polish Academy of Science, Warsaw, Poland. Among
the prizes he received are: 6 honorary doctorates, the EATCS 2003 award, the
first award of the Developments in Formal Languages conference, and in 2017 he
was knighted in the Order of the Netherlands Lion.

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

BEATCS no 137

116

Grzegorz: There are two pictures I would like to share.
(1) I like giving talks on my research. One can accommodate many more

subtleties in a lecture than in a paper. Also, it is easier to introduce someone to a
research topic through a lecture than through a “dry” technical paper.

It is a popular “wisdom” that the art of giving lectures is very much like the art
of conducting an orchestra: a lecturer must be able to synchronize the minds in the
audience on the topic of the lecture. The first picture is made by a member of the
audience, when I was giving a lecture on reaction systems, currently my favorite
research topic. I was really flabbergasted to see this picture, where it looks like I
am, indeed, conducting the “audience orchestra”.

(2) I am a performing magician specialized in card magic (no apparatus, just
my two hands and a pack of playing cards with no distance from the spectators).
Although science is rational and magic emotional, there are many similarities be-
tween the two. For example, magic teaches you not to accept things on their face
value. This principle also plays a crucial role in science. A goal of the highest
level magic is to approximate, as closely as possible, something impossible which
is also a key inspiration of the highest level science (for example, disproving a
long standing conjecture). My magician’s business card says “Be Astonished by
the Impossible”.

I enjoy to perform at science conferences as this gives me a chance to discuss
the nature of magic with scientists (in fact, I performed at several ICALPs). The
second picture shows me performing at a conference.

Can you please tell us something about you that probably most of the readers
of your papers don’t know?

Grzegorz: I wrote above that the double helix, formed by the helices of sci-
ence and magic, underlies a big part of my creative life. This is known through my
papers, books, and talks as well as through my magic performances at scientific
events. However there is a third helix.

I have studied the paintings and drawings by Hieronymus Bosch for the past
50 years, and am now an acknowledged specialist on Bosch. By chance, I bought
a book with reproductions of his paintings and immediately fell in love with his
art. The attractiveness of his art for me is the best described by the statement “it
is amazing that a single mind could imagine so many things” made by a Spanish
monk and historian, José de Sigüenza, in the 16th century. Interestingly, at the
top of one of his well-known drawings there is an inscription in Latin which says
“For poor is the mind that always uses the ideas of others and invents none of its
own”. Quite possibly this was the motto of his workshop. Obviously, it should be
a leading motto for researchers.

When reflecting on my long life, I feel very fortunate that the structure of
my creative life was determined by the triple helix of science, magic, and Bosch.

The Bulletin of the EATCS

117

Through it I got embedded in three wonderful, but very different communities
(scientists, magicians, and art historians).

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

Grzegorz: My research directions were influenced by a number of papers and
books from various areas of science (mathematics, computer science, biology,
linguistics, chemistry and electronics). A theoretical computer science paper that
had a big influence at the beginning of my research career is “Finite Automata
and their Decision Problems” by Michael Rabin and Dana Scott (see [2]). This
paper had an enormous influence on the development of automata theory. It is
beautifully written and very inspiring (no wonder, as the authors are real giants of
theoretical computer science). In fact, I remember that even during the reading of
the paper I started to develop my own ideas on multitape automata.

Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

Grzegorz: Before I recommend a paper, I would like to mention a concern
I have had for many years. I never liked the name “computer science”, which
somehow suggests that this is a discipline centered around (the use and construc-
tion of) specific devices, viz., computers. This view was quite prevalent for a long
time during my career. Unfortunately (from my perspective), this point of view
is sill quite common. For me computer science is the science of information pro-
cessing and in this way it is a fundamental science for many scientific disciplines.
Therefore the European term “informatics” is a much better name.

Natural Computing is a good example of this broad understanding of com-
puter science. It is the research area concerned with human-designed computing
inspired by nature as well as with computing taking place in nature (i.e., it inves-
tigates, in terms of information processing, phenomena taking place in nature).
Although a majority of research in natural computing is centered in computer sci-
ence, it is genuinely interdisciplinary and it forms a solid bridge between computer
science and natural sciences.

Research in (both strands of) natural computing constitutes a big part of my
research activities. Therefore I would like to recommend the paper “The Many
Facets of Natural Computing” by L. Kari and myself (see [1]). Even though the
paper was published in 2008 it is still a relevant “nontechnical” introduction to
natural computing directed at the general audience of computer scientists. As a
follow up, I would like to recommend the “Handbook of Natural Computing”,
G. Rozenberg, T. Bäck, and J. Kok, editors (see [3]). Just by browsing through
it (e.g., through the preface and the table of contents) one can get a sense of the

BEATCS no 137

118

excitement and relevance of this area as well as the understanding of its enormous
importance for the development of computer science.

When (or where) is your most productive working time (or place)?
Grzegorz: I am not well organized in this respect, i.e., I do not have specific

times of the day reserved for research. Sometimes it is a whole day when I work
on research problems and sometimes it is just plugged into “free slots” during a
busy day. My favourite writing places are my home and cafes. I always carry a
writing pad with me. In the office I work with my collaborators, students, . . . – for
this I need a blackboard (or, nowadays, a whiteboard).

What do you do when you get stuck with a research problem? How do you
deal with failures?

Grzegorz: I am always working on a number of research problems in an
interleaving fashion, meaning that when I work on a specific problem, my notes
on the other problems are set aside. So when I stop working on the given problem
(e.g., because I feel that I do not make enough progress on it), the notes on it are
set aside and I pick up one of the problems in the waiting line – sometimes it is
a problem I set aside a short time ago and sometimes it is a problem from years
ago.

I do not accept the negative term “failure” used in the question. It is the process
of working on interesting (a subjective term) problems, that makes the life of an
active researcher so exciting. Moreover, if you do not succeed in “solving” a
problem that you chose to work on, you often learn a lot, produce new interesting
notions and/or results, and as a result of this experience start a new research line.

Is there a nice anecdote from your career you like to share with our readers?
Grzegorz: Here is an anecdote I find hilarious, which is well-known among

my friends, scientists and magicians. It shows how the perception and appre-
ciation of various professions may be age dependent. One day, when my son,
Daniel, was a teenager, I got back home from the office and entered our house.
Daniel was then in the hall with his friend, Ferdie. I said “hello”, and went to
the kitchen. Since the door from the hall was open, I could hear Ferdie asking
Daniel about my profession. Daniel answered “he is a university professor” and a
moment later he added: “but he is not stupid, he is a very good magician”.

Do you have any advice for young researchers? In what should they invest
time, what should they avoid?

Grzegorz: Invest your time and energy in following your scientific curiosity
and passion but avoid to be “chained” to one specific line of research. Try to get
some insight into various research areas (e.g., by reading tutorials or following

The Bulletin of the EATCS

119

schools). This may lead to working on different sorts of research issues, which is
also good for your intellectual development.

What are the most important features you look for when searching for grad-
uate students?

Grzegorz: Clearly, there must be a “proof” (the master thesis, study grades,
presentations) that they are intellectually qualified. But then, I always look for
signs of curiosity, passion, and motivation which will allow them to be successful
in getting good results and happy with working on them.

Do you see a main challenge or opportunity for theoretical computer scien-
tists for the near future?

Grzegorz: Computer science is evolving towards the science of information
processing and is accepted as such by many scientific disciplines. As an example
of this acceptance I can quote the famous biologist Sydney Brenner, Nobel prize
winner, who stated that “biology is essentially (very low energy) physics with
computation”. For many disciplines computer science provides not only instru-
ments but also a way of thinking. Therefore, the science part of computer science
will become a foundational science for many areas of science.

I am convinced that one of the Grand Challenges of computer science is to un-
derstand the world around us in terms of information processing. Working on this
challenge is a huge opportunity as it also enriches the scope of research problems
for theoretical computer science. For example, theoretical computer scientists are
already making essential contributions to the fundamental understanding of self-
assembly, a central phenomenon of nanoscience.

What kind of opportunities should EATCS offer to researchers, and espe-
cially to young researchers?

Grzegorz: In the spirit of my reflections above, I would like to suggest that
EATCS gets involved in organizing “broad perspective schools” which would
cover, in a tutorial fashion, currently interesting developments in various areas of
computer science. By attending such schools, young researchers will get an op-
portunity to broaden their vision of theoretical computer science and (hopefully)
get actively involved in new research directions.

What can be the role of EATCS in solving the challenges of our society?
Grzegorz: In the context of theoretical computer science, our research ad-

vances contribute to the foundations of understanding nature, science, and new
technologies, all of which will impact lives of people around the world.

The role of EATCS should be extending the scope of theoretical computer
science and promoting interdisciplinary research. Extending the scope of research

BEATCS no 137

120

widens our opportunities to make a progress in a multitude of issues important for
our society. The scope of these opportunities is certainly broadened by promoting
interdisciplinary research.

Please complete the following sentences?

• My favorite movie is . . . “Blow-up” by Michelangelo Antonioni.

• Being a researcher . . . is a wonderful way of living.

• My first research discovery . . . was in category theory.

• Clever juggling of research, teaching, and administration and a feeling
of success/satisfaction in at least one of those areas . . . is key to being a
happy academic.

References
[1] Lila Kari, Grzegorz Rozenberg. The many facets of natural computing. Commun.

ACM 51 (2008) 72–83. doi: 10.1145/1400181.1400200

[2] Michael O. Rabin, Dana S. Scott. Finite Automata and Their Decision Problems.
IBM J. Res. Dev. 3 (1959) 114–125.

[3] Grzegorz Rozenberg, Thomas Bäck, Joost N. Kok. Handbook of Natural Comput-
ing. (4 volumes) Springer 2012. doi: 10.1007/978-3-540-92910-9

121

Know the Person behind the Papers

Today: Robert Cori

Bio: In 1967, Robert Cori was a doctoral student of Marco Schützenberger join-
ing a pioneering research team in Paris where, among others, J. Berstel, M. Nivat,
J.-F. Perrot created the French School of theoretical computer science. His first
subject in research was the use of context-free languages as a tool for getting enu-
merative results for families of graphs. After defending his thesis he obtained a
professorship in the University of Bordeaux. There computer science was just a
tiny bud in the math department. The bud grew after the arrival of B. Courcelle,
X. Viennot and A. Arnold in the next years. In 1982 he was in charge of creating
a French collaborative program named Greco de Programmation, this helped to
attract people and funds in Bordeaux and build the LaBRI. In 1992, he obtained
a part-time teaching position at the Ecole Polytechnique in Paris, which he kept
for 15 years. He rubbed shoulders with many computer science researchers there,
including J.J. Levy, Claire Mathieu, P. Rosenstiehl and supervised a few doctoral
smart students. He is Emeritus Professor at the University of Bordeaux since
2009.

BEATCS no 137

122

We ask all interviewees to share a photo with us. Can you please tell us a little
bit more about the photo you shared?

Robert: I share two photos. The first above was taken in June 2009 during a
three-day meeting organized for my 65th birthday. It also corresponded to the end
of my teaching years. The place is in front of the LaBRI building at the University
of Bordeaux. On this photo you may recognize researchers who were my doctoral
students, some colleagues from LaBRI, others in Paris or Italy, and some Master’s
students from Polytechnique who came to Bordeaux for the occasion.

The second picture is taken in 1988 in Paris 7 University, I am sitting between
Marco Schützenberger and Dominique Perrin during a meeting of a thesis jury.

Can you please tell us something about you that probably most of the readers
of your papers don’t know?

Robert: Readers of my articles probably don’t know that I view research
primarily as a kind of game that has allowed me to play with many co-authors and
many very brilliant PhD students. However, although teaching is considered by
many scholars to be the second most important duty after research, I have devoted
time to it as my first priority. It is not easy at certain times to obtain psychological
well-being by only doing research, on the contrary I have always achieved it by
giving well-prepared courses in front of brilliant students.

Is there a paper which influenced you particularly, and which you recom-
mend other community members to read?

Robert: I recommend many articles by Deepak Dhar which are motivated by
describing physical phenomena in mathematical terms which can be very close

The Bulletin of the EATCS

123

to theoretical computer models like finite automata or cellular automata. These
articles can give rise to many developments thinking the matter inside as models in
theoretical computer science. One of them is Theoretical studies of self-organized
criticality, which inspired my research, I suspect that many others published by
him more recently may give rise to pertinent questions about automata and graphs
which may open up new problems in these subjects.

Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

Robert: I recommend the paper we wrote with Dominique Rossin entitled
"On the Sandpile group of Dual graphs", it appeared in 2000 in the European
Journal of Combinatorics. A first version of this paper was a preprint written in
1998 which was available at the Computer Science Lab in Polytechnique. We
thought with Dominique that we were the first to give an algebraic presentation
of the Sandpile model introduced by Dhar. In fact this was not correct since the
model was also considered by N. Biggs with the Chip Firing Game introduced by
Björner, Lovasz and Schor. So that the publication of our paper was only possible
since it contained a special result on dual planar graphs. However our paper was
read by Don Knuth who was inspired to find an algorithm generating all spanning
trees of a graph. He presented this algorithm and made a few presentations of ours
around the world giving a good advertising for the paper. He also delivered a talk
on our version of sandpiles and spanning trees in Stanford for his eleventh annual
Christmas Tree Lecture in December 2004.

When (or where) is your most productive working time (or place)?
Robert: When I work alone the best is very early at home in my office. But

I also very often try to chat with others at any time in front of a blackboard with
chalk in the past or now whiteboards with markers.

What do you do when you get stuck with a research problem? How do you
deal with failures?

Robert: I do not consider as a failure to spend time on a research problem,
if I did not succeed to solve an open problem I consider that I learned a lot while
reading the papers of other researchers working on it.

Is there a nice anecdote from your career you like to share with our readers?
Robert: When I started my thesis with Marco Schützenberger as a referent,

I occupied a shared office at the Institut Blaise Pascal in Paris. The building was
left by an abandoned factory and was located in the far north of Paris. There
was no space available in the Quartier Latin for the huge computer dedicated
to the Department of Applied Mathematics of the Faculty. The Henri Poincaré

BEATCS no 137

124

Institute where Algebraic Geometry and Differential Analysis flourished could
not accommodate offices for Theoretical Computer Science.

I shared an office with a researcher working in Artificial Intelligence, his daily
behavior puzzled me. He walked into the office every day with a huge deck of
punched cards. It contained the chess player’s algorithm program he had de-
signed. He had taken it to the computer center before coming to the office with
also a quantity of paper listing the outputs of the execution of the program on
the computer. It was the program’s response to the motion it gave as input to
the program. Then, his concern was to analyze this answer and to proceed to the
improvement of the program.

This led him to remove some cards from the deck to go punch many others, add
them to the game and return it to the computer center. He often had the opportunity
to repeat this process once in the afternoon. Because I was reluctant to chat with
a researcher ten years my senior, and he was very busy, we didn’t talk much. This
behavior did not make me consider changing the subject of my research. The
discussions with Marco on the theory of languages were a far superior attractor.

Do you have any advice for young researchers? In what should they invest
time, what should they avoid?

Robert: I don’t have very original advice on this subject. I think that one
must above all avoid remaining alone on a difficult question. So a young re-
searcher should ask for another direction of research if the current one seems to
him intractable.

What are the most important features you look for when searching for grad-
uate students?

Robert: Since I am emeritus I am not allowed to advise PhD students. In
the past I often hired those students who attended my master courses or were
interested in a talk I gave in a conference or in a seminar.

Do you see a main challenge or opportunity for theoretical computer scien-
tists for the near future?

Robert: It suffices to consult recent scientific journals devoted to this field to
see the number of interesting open problems. Applications of theoretical computer
science to other sciences have great developments.

What kind of opportunities should EATCS offer to researchers, and espe-
cially to young researchers?

Robert: The surveys and tutorials in EATCS journal are often excellent texts
helping to introduce new subjects to PhD students. Conferences should not be

The Bulletin of the EATCS

125

limited to hundreds of people each one speaking less than 20 minutes of his last
result. ICALP seems to go in the good direction by proposing many invited talks.

What can be the role of EATCS in solving the challenges of our society?
Robert: This is a big question that deserves long reflection and discussion

with those responsible for education. EATCS may just promote minimal knowl-
edge of what an algorithm really is and what a machine can actually learn.

BEATCS no 137

126

Please complete the following sentences?

• My favorite movie is... Amadeus by Milos Forman, a brilliant demon-
stration that happy people are pleased by the happiness of others and the
miserable are poisoned by envy.

• Being a researcher... is a wonderful gift given to you.

• My first research discovery.. allowed me to cross for the first time the
Atlantic in order to present it in a conference and to meet William Tutte.

• Theoretical computer science in 100 years from now ... will concern a
few people working in a hot planet.

• EATCS in 50 years from now will... still help researchers to understand
what is real progress and what is just a gimmick .

• Considering research and teaching as essential activities and do not
spending too much time on administrative tasks ...is the key to being a
happy academic.

EATCS
Columns

128

The Bulletin of the EATCS

129

The Education Column
by

Juraj Hromkovič and Dennis Komm

ETH Zürich, Switzerland and PH Graubünden, Chur, Switzerland
juraj.hromkovic@inf.ethz.ch and dennis.komm@phgr.ch

BEATCS no 137

130

A Minimal Instruction Set for Education

Tobias Kohn
University of Utrecht
t.kohn@uu.nl

Abstract

Computer science education is often caught between the desire to teach
algorithmics and the necessity to build a solid basis of programming to prop-
erly implement algorithms. We thus raise the question of how much pro-
gramming we need before we can start tackling interesting computational
problems and demonstrate how important computational concepts emerge
almost naturally with a minimal set of programming constructs needed.

1 Introduction
The quest of a minimal instruction set is an old and solved problem. How many
instructions does a computing system need in order to be Turing complete? In a
nutshell, combine increment/decrement with a while-loop and you are good to go
(with numerous alternatives existing, of course, some rather surprising [1, 3]).

Let us consider the same question from a different perspective, though. Pic-
ture a group of students with virtually no prior experience in programming. Your
objective is to enable them to solve ‘interesting’ computational problems. How in-
teresting? Think, e.g., ‘graph algorithms’ or ‘Project Euler’ [4] kind of problems.
Your target audience starts from scratch and you want to minimise the time needed
for teaching programming and get to solve problems as quickly as possible.

In this setting the set of minimal instructions is no longer dictated by pure
logic and a desire for Turing completeness. Rather, psychological factors quickly
dominate the discussion. For instance, as trained professionals we would hardly
seek to include multiplication into a minimal computing instruction set, whereas
we can safely include it into our education setting because students are already
highly familiar with it and the necessary amount of teaching is practically null.

On the flip side, we find that the modulo or remainder operation is surprisingly
expensive. Even though division and computing the remainder might even be
one and the same underlying program running on an actual machine, the modulo
operation is significantly harder to understand, apply and hence teach.

The Bulletin of the EATCS

131

So, can we discuss core concepts of computer science with merely a handful
of well chosen, ‘easily teachable’ instructions and programming constructs?

Much of what follows is highly reminiscent of functional programming, al-
though it is not. Our contemplation is based on imperative programming with
Python. We embrace its lists as mutable data structures and use iteration instead
of recursion. The similarity to functional programming might arise due to two
factors: a limited and cautious use of variables and avoidance of list indices.

2 From Code to Data and Back Again
We usually start our introductory programming courses with turtle graphics. The
virtual turtle robot is a simple and concrete device that leaves a trace so as to
draw figures. Both the set of its capabilities as well as its purpose are thus imme-
diately obvious and in stark contrast to full-blown computing devices with their
unbounded complexities.

The set of initial commands consists essentially of forward(s) and back(s)

for movement, and left(a) and right(a) for turning (on the spot). When talk-
ing about finding a minimal set of instructions half of these four instructions are
evidently superfluous—even more so when considering that left(a) can equally
be written as right(-a). In fact, a single unified command that moves the turtle
one step forward and turns it by a given angle might suffice.

This example neatly demonstrates how ‘engineering minimalism’ differs from
‘educational minimalism’. The commands left(a) and right(a) express the
same concept and, moreover, directly reflect concepts from the students’ everyday
experience. Reducing this to a single turn() command would rather increase the
difficulty as the student would also have to consider which (arbitrary) direction is
meant by a ‘positive’ angle.

The idea of a single unified command comes up later in the course when we
introduce for-loops. While for-loops lend themselves to a wide variety of applica-
tions, one that stands out is the representation of figures (e.g., draw by the turtle)
through data. The introduction of the turtle naturally leads to programs that build
intricate figures out of long sequences of instructions. By means of a for-loop and
a list, we can now abstract from those long sequences of instructions and retain
the data part of them only. The only problem is that the sequences of instructions
alternate between movement and rotation. As a first step we therefore have to
keep one of these fixed, i.e., stipulate that all rotations are replaced by a left-turn
by 45◦ with zero-movement interspersed where necessary, or, alternatively, keep
all forward instructions to ten steps, say (Program 1).

Luckily, Python allows us to create lists of tuples very easily so that we can in-
clude an argument for both the forward motion and the angle of rotation. Nonethe-

BEATCS no 137

132

Program 1 Two ways of drawing a square using a simple for-loop.

for a in [90, 90, 90, 90]:
forward(10)
left(a)

for s in [10, 0, 10, ..., 0]:
forward(s)
left(45)

less, from an abstract point of view, we end up with a ‘single instruction’ (or a
single parametrised action if you prefer), something like move_and_turn(s, a).
Alternatively, you might also choose to use coordinates along with the instruction
setpos(x, y) as the basis for all drawings.

Hence, the step from an instruction- to a data-based format brings us back to
the necessity of having a single instruction and therefore considering an extremely
minimal set of instructions that suffice to draw as many figures as possible. This
example also illustrates the power that comes from single-instruction machines.
The extremely regular interface allows for the introduction of a new level of ab-
straction.

As a perhaps final step along this ladder we might wish to differentiate further
between possible actions. So, let us move away from the idea of a single instruc-
tion that churns through a list of data and enrich the data with (textual) hints as to
which action to perform.

For the sake of simplicity, let us stick with the commands we have already
introduced. A minimalistic program might then look as shown in Program 2. If
you look closely you will discover that we have come full circle here. The ‘data’
in the list we are processing is in fact program code in what looks very much like
a dialect of Lisp or Logo [5].

Program 2 A simple interpreter for a Logo-like language.

for (cmd, arg) in [(’fd’, 50), (’rt’, 90), (’fd’, 20)]:
if cmd == ’lt’:

left(arg)
if cmd == ’rt’:

right(arg)
if cmd == ’fd’:

forward(arg)

So what did we gain if we end up still writing our drawings as program code,
only now with the additional overhead of the for-loop that executes the instruc-
tions? We have stumbled on one of the most fundamental ideas in computer sci-
ence: the ‘equivalence’ of data and code. Replace the textual instructions above
with numeric constants and you are but a small step away from Gödel numbers.

To put it differently, at this stage our students have written their first interpreter.
Their programs no longer draw specific pictures, but are in principle capable of

The Bulletin of the EATCS

133

running any other program that draws a picture. Although this is far away from
Turing completeness and lacks most attributes of an actual computer, we nonethe-
less have just introduced the concept of a universal machine.

3 Iterating Over Lists
Our journey from sequences of instructions to data processing above was made
possible by the use of lists and for-loops.1 It is quite natural, of course, that
abstracting from code to data meant that a sequence of instructions turns into a
sequence of data. Moreover, Python’s lists are very versatile data structures that
can take the role of arrays, lists, stacks, sets or even maps. Let us therefore spend
some time taking a closer look at Python’s lists.

True to the overall topic of this article we argue that a set of three list opera-
tions, namely iteration through a list, appending an element to a list and testing for
inclusion (i.e., whether a list contains a specific element) is sufficient for tackling
a range of interesting problems. Most importantly, all three of these basic op-
erations are conceptually simple enough to be integrated into teaching relatively
early on.

The choice to use for-loops and lists comes at a price, though. The result-
ing loops are clearly bounded and we forgo Turing completeness (i.e., we only
have primitive recursion and cannot implement partial recursive functions). On
the other hand, considering that educational problem instances are typically quite
small and by choosing sufficiently large numbers, we still achieve a working ap-
proximation to Turing completeness.

Lists in Python. Lists in Python are implemented as arrays that can grow in
size. Accessing elements (both retrieval and modification) are thus in O(1) and
appending elements is in amortised O(1) [6]. Using for-loops together with ‘ap-
pend’ allows us to easily implement ‘map’ and ‘filter’ as shown in Program 3.
Naturally, writing ‘reduce’ in Python is not much more difficult and follows the
same pattern as ‘map’ as shown in Program 4.

There is direct syntactic support for checking whether an element occurs in a
list (which is performed through a linear O(n) search). Although this could also
be done with a ‘reduce’ pattern, we include it in our ‘instruction set’ as it allows
us to conveniently use lists like sets with minimal teaching effort.

Based on the basic elements of ‘filter’, ‘map’ and ‘reduce’ we can implement
functions like ‘pop’ and ‘cons’ (Program 5) known from functional programming.

1NB: Python’s for-loop corresponds to ‘for each’ loops in other languages and does not have
the generality of for-loops in C, say.

BEATCS no 137

134

Program 3 Implementations of ‘filter’ and ‘map’ in Python.

def filter(p, lst):
mod_lst = []
for i in lst:

if p(i):
mod_lst.append(i)

return mod_lst

def map(f, lst):
mod_lst = []
for i in lst:

mod_lst.append(f(i))
return mod_lst

Program 4 A generic implementation of ‘reduce’ or ‘fold’ and a more concrete
instance of ‘sum’.
def reduce(f, lst, init = 0):

acc = init
for i in lst:

acc = f(acc, i)
return acc

def sum(lst):
acc = 0
for i in lst:

acc += i
return acc

Variables and conditionals. Apart from the three list processing primitives in-
troduced above we also make use of variables and conditional execution, thereby
adding two further concepts. Furthermore, the code examples also use function
definition and the return-statement, but those are not necessarily needed when
using and implementing the presented concepts with students.

The most problematic aspect of these constructs is variable assignment, in
particular updating a variable’s value. To mitigate this issue we restrict variable
modification to a small set of operations such as acc += x or acc *= 2 etc.

Instead of ‘append’ we could also have gone for list concatenation along the
lines of list = list + [item] or its short form list += [item]. At first
glance this seems not only to be more powerful, but also easier as you do not need
a special function, but rely on the concept of ‘adding’ instead. However, there
are some subtle rules to consider for variable assignments in Python in terms of
scoping. Python infers the scope of variables from context, unless explicitly de-

Program 5 The ‘pop’ function to split a list into its head and tail is a combination
of ‘filter’ and ‘reduce’ from above whereas ‘cons’ follows a ‘reduce’ pattern.

def pop(lst):
head = None
tail = []
for item in lst:

if head == None:
head = item

else:
tail.append(item)

return head, tail

def cons(head, tail):
result = [head]
for i in tail:

result.append(i)
return result

The Bulletin of the EATCS

135

clared as global, which adds a large and complex topic to the teaching curriculum.
In short, using ‘append’ avoids some common pitfalls, helps us reduce the use
of variable (re)assignments and is therefore in line with our aim to strive for a
minimum set of instructions from an educational perspective.

Implementing Dijkstra’s algorithm. As a proof of concept we present an im-
plementation of Dijkstra’s algorithm for finding the shortest path in an (undi-
rected) graph in Program 6. The graph itself is defined close to its mathematical
formulation with two lists representing vertices and edges. However, the actual
vertex coordinates are used in the edge set, too, so as to avoid the use of indices.

Program 6 An implementation of Dijkstra’s algorithm in Python.

vertices = [(0, 0), (10, -2), (1, 15), (10, 10), ...]
edges = [(7, (0, 0), (10, -2)), (14, (0, 0), (1, 15)), ...]
visited = [(0, 0)]
visited_dists = [((0, 0), 0)]

def dijkstra():
for k in range(1, 50):

for (anchor, cur_dist) in visited_dists:
for (w, p1, p2) in edges:

if cur_dist + w == k:
if anchor == p1 and p2 not in visited:

(x, y) = p2
visited.append((x, y))
visited_dists.append(((x, y), k))

if anchor == p2 and p1 not in visited:
(x, y) = p1
visited.append((x, y))
visited_dists.append(((x, y), k))

The algorithm presented here works without queues, minima or relaxation.
This is achieved by iterating over possible path lengths (k in Program 6), i.e., first
establishing all paths with length 1, then with length 2, etc. Once a vertex has been
added to the ‘visited’ set, no other path can reach it with a shorter path length.

On the flip side, we achieve this ‘simplification’ and reduction to our minimal
set of instructions by sacrificing performance. During each iteration for a specific
path length, we iterate over all edges to find suitable candidates. For larger graphs,
this is clearly not practical. However, the graphs used in education tend to be small
enough, particularly when considering that we aim to write such programs as early
in the curriculum as possible.

Although we have also implemented Prim’s algorithm for finding a minimum
spanning tree with a similar approach, we omit it here for the sake of brevity.

BEATCS no 137

136

However, note that these algorithms frequently form a basis for solving ‘interest-
ing’ graph problems (see, e.g., Skiena and Revilla [7]).

4 Accessing Items by Index
The attentive reader will have noticed that we have not made use of Python’s facil-
ities to directly access any element in the list by its index, although we mentioned
O(1) support. Moreover, the syntax for indexed access includes slices with custom
strides. Retrieving every other element from a list L is thus as simple as L[::2]
and getting a list with its elements in reversed order is L[::-1].

Experienced programmers find thus a very convenient and simple syntax in
Python’s slices. Novice programmers, on the other hand, tend to struggle with the
concept of accessing an element by its index. Consider: the syntax for building
lists and stating its member elements almost coincides with the syntax for access-
ing an element by its index:

primes = [2, 3, 5, 7, 11, 13, 17, 19]
print(primes[3], primes[4])

Given the syntactic similarity we should not be surprised that some students ex-
plain the above code as: ‘First prints the element 3 because it is actually in the list
and then throws an error or something because 4 is not in the list’ (cf. Boulay [2]).

At this point we have not even touched upon the famous issue of starting the in-
dexing with zero and the ‘off-by-one’ problems this quickly leads to. How quickly
can you tell which elements are to be found in the slice primes[2:5]? It is the
three numbers 5, 7, 11—the number 13 at index 5 is excluded as Python’s ‘inter-
vals’ always include the first but exclude the last element.

Dealing with a lack of indices. We recently asked students as part of a program-
ming challenge to determine whether a given short sequence occurs in a longer list
of numbers. For instance, the sequence 2, 4 does indeed occur in the following list:
[1, 4, 2, 5, 2, 2, 4, 7, 2, 3, 4]

With the tools provided and, in particular, the absence of indices and slices it may
seem very hard to solve this challenge for a general case. Perhaps the canonical
approach is to build a finite state machine for the short sequence—an approach,
however, that does not scale well with the length of the sequence to find.

Program 7 demonstrates an alternative solution with nothing more than the
three basic list operations introduced earlier. The bulk of the program consists in
listing every possible sequence of the correct length occurring in the given list.
The actual test whether the sequence then occurs happens in the very last line.

The approach in Program 7 can equally be used to solve a challenge posed
as part of the Swiss Olympiad in Informatics competition 2021/22 [8, ‘Peaks’].

The Bulletin of the EATCS

137

Program 7 Determining whether a list contains a given sequence.

seq = [2, 4]
numbers = [1, 4, 2, 5, 2, 2, 4, 7, 2, 3, 4]
part_lists = []
for num in numbers:

part_lists.append([])
for lst in part_lists:

if len(lst) < len(seq):
lst.append(num)

print(seq in part_lists)

Given a sequence of numbers count the number of local maxima, i.e., how often a
number Ni is larger than its two immediate neighbours: Ni > Ni−1 and Ni > Ni+1.
The follow-up challenge asks the student to find a subsequence of length K with
the highest amount of local maxima in it. This can, again, easily be solved using
the approach introduced above.

As before, however, we also have to concede that there are far superior ap-
proaches in terms of performance. That is, our solution is probably not fit to
compete in such contests, but again demonstrates that the tools provided suffice to
solve ‘interesting’ problems.

5 Turing’s Return
After having implemented searches in graphs and sequences, let us tackle another
classic problem: sorting. At this point, it should be fairly obvious what minimum
sort would look like. So, let us focus on merge sort instead.

When implementing merge sort we have to deal with two challenges: merging
two lists and the recursive structure of the problem decomposition. Merging two
lists is difficult because we have to advance the iteration in both list separately and
non-uniformly. However, Program 8 shows how we may use the pop() function
from above to address this and perform explicit iteration.

While merging two lists without list indices is challenging from a technical
point of view, we may find ourselves more interested in the main function where
we have to deal with the recursive ‘tree’ structure of the problem. Our approach
uses a ‘todo’ buffer containing all the already sorted lists. The algorithm then
picks two lists from this buffer, merges them and replaces the original two lists
by the merged one until only one unified list remains. With only an ‘append’
operation for lists, it may not be immediately obvious how to do this.

Luckily, Python’s for-loop iterator and the ‘append’ function are compatible
with each other. We may append elements to the list we are currently iterating
over and the for-loop will correctly pick up these additional elements. This gives
us a neat queue data structure that acts as our buffer (Program 9).

BEATCS no 137

138

Program 8 Merging two lists for merge sort requires ‘explicit iteration’.

def merge(lstA, lstB):
result = []
(a, tailA) = pop(lstA)
(b, tailB) = pop(lstB)
for _ in range(len(lstA) + len(lstB)):

if b == None or (a != None and a <= b):
result.append(a)
(a, tailA) = pop(tailA)

else:
result.append(b)
(b, tailB) = pop(tailB)

return result

Program 9 The core function of merge sort where we use the list todo as a queue.
By both iterating over todo and simultaneously appending elements to it, we ef-
fectively end up with a while-loop.

def merge_sort(lst):
todo = []
for k in lst:

todo.append([k])
first = None
for item in todo:

if first == None:
first = item

else:
todo.append(merge(first, item))
first = None

return first

Because we may extend the list we are iterating over inside the loop, we have
a tool to control whether the loop shall terminate at any one point. More impor-
tantly, though, we can keep the loop going for an indefinite amount of time! Let us
reiterate this point: although Python’s for-loops can only iterate over lists, they are
still as powerful as while-loops (when combined with if-conditions, of course). In
other words, the small set of instructions we chose is Turing complete after all.

6 Conclusion

What a ride! By drawing figures with a turtle we accidentally wrote an interpreter
and stumbled on a data-code-equivalency. Moreover, by restricting ourselves to
iteration and simple list operations, we implemented our own while-loop and dis-

The Bulletin of the EATCS

139

covered that our minimal set of instructions is Turing complete after all.
All this was achieved with a minimal set of instructions. It is thus perhaps

tempting to interpret these ideas so as to de-emphasise the teaching of program-
ming. However, using the small set of programming constructs the way we have
in this article requires training in how to use and apply them as well as a thorough
and solid understanding of their effects. In reality, this is very difficult to achieve,
but puts the focus of learning on the right topics and concepts.

In fact, there is a tendency in programming courses to introduce a wealth
of programming constructs early on with endless listings of available functions,
methods and data types. Yet, if we are interested in core concepts of computer sci-
ence, in algorithmics and computational thinking, we might actually be better off

with a minimalistic set of instructions and data types. We would even argue that
a minimalistic instruction set automatically places much more emphasis on algo-
rithm design and problem solving. On any account, we have demonstrated that
core concepts of computer science emerge almost naturally even with such a min-
imal set of instructions. Programming is not only a prerequisite for implementing
algorithms but also a fertile ground for discovering and discussing algorithms.

References
[1] M. Böhme and B. Manthey. The computational power of compiling C++. Bulletin of

the European Association for Theoretical Computer Science, 81:264–270, 2003.

[2] B. Du Boulay. Some difficulties of learning to program. Journal of Educational
Computing Research, 2(1):57–73, 1986.

[3] S. Dolan. mov is Turing-complete (2013).

[4] C. Hughes et al. Project Euler. https://projecteuler.net.

[5] S. Papert. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc.,
USA, 1980.

[6] Python Wiki: Time Complexity. https://wiki.python.org/moin/
TimeComplexity.

[7] S. S. Skiena and M. A. Revilla. Programming Challenges. Springer, 2003.

[8] Swiss Olympiad in Informatics. https://soi.ch.

140

The Bulletin of the EATCS

141

The Computational Complexity Column
by

Michal Koucký

Computer Science Institute, Charles University
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

koucky@iuuk.mff.cuni.cz

https://iuuk.mff.cuni.cz/~koucky/

BEATCS no 137

142

Theory and Applications of Probabilistic
Kolmogorov Complexity

Zhenjian Lu∗ Igor C. Oliveira†

Abstract
Diverse applications of Kolmogorov complexity to learning [CIKK16],

circuit complexity [OPS19], cryptography [LP20], average-case complex-
ity [Hir21], and proof search [Kra22] have been discovered in recent years.
Since the running time of algorithms is a key resource in these fields, it is
crucial in the corresponding arguments to consider time-bounded variants of
Kolmogorov complexity. While fruitful interactions between time-bounded
Kolmogorov complexity and different areas of theoretical computer science
have been known for quite a while (e.g., [Sip83, Ko91, ABK+06, AF09], to
name a few), the aforementioned results have led to a renewed interest in
this topic.

The theory of Kolmogorov complexity is well understood, but many use-
ful results and properties of Kolmogorov complexity are not known to hold
in time-bounded settings. Unfortunately, this creates technical difficulties
or leads to conditional results when applying methods from time-bounded
Kolmogorov complexity to algorithms and complexity theory. Perhaps even
more importantly, in many cases it is desirable or even necessary to con-
sider randomised algorithms. Since random strings have high complexity,
the classical theory of time-bounded Kolmogorov complexity might be in-
appropriate or simply cannot be applied in such contexts.

To mitigate these issues and develop a more robust theory of time-bounded
Kolmogorov complexity that survives in the important setting of randomised
computations, some recent papers [Oli19, LO21, LOS21, GKLO22, LOZ22]
have explored probabilistic notions of time-bounded Kolmogorov complex-
ity, such as rKt complexity [Oli19], rKt complexity [LOS21], and pKt com-
plexity [GKLO22]. These measures consider different ways of encoding
an object via a probabilistic representation. In this survey, we provide an
introduction to probabilistic time-bounded Kolmogorov complexity and its
applications, highlighting many open problems and research directions.

∗University of Warwick, UK. E-mail: zhen.j.lu@warwick.ac.uk
†University of Warwick, UK. E-mail: igor.oliveira@warwick.ac.uk

The Bulletin of the EATCS

143

1 Introduction
Consider an arbitrary binary string x ∈ {0, 1}∗, e.g.,

x = 1010101010101010101011110010110000101011 . (1)

The Kolmogorov complexity of x, K(x), is the length |M| of the shortest program
M that prints x when computing over the empty input string.1 Intuitively, K(x) can
be seen as a measure of the “randomness” of x, in the sense that simple strings
exhibiting an apparent pattern have bounded Kolmogorov complexity (e.g., the
leftmost 20 bits of the string x from Equation (1)), while a typical random n-bit
string has K(x) close to n, i.e., it cannot be compressed. The investigation of
Kolmogorov complexity has uncovered surprising connections to distant areas of
mathematics and computer science, ranging from computability, logic, and algo-
rithm design to number theory, combinatorics, statistics and a number of other
fields. We refer to [SUV17, LV19] for a comprehensive treatment of Kolmogorov
complexity and its applications.

Despite the appealing nature and wide applicability of Kolmogorov complex-
ity, its results and techniques tend to be inappropriate in settings where the running
time of algorithms is of concern, e.g., in complexity theory, computational learn-
ing theory, and cryptography. This is because K(x) does not take into account the
time that the machine M takes to output x. To address this issue, several authors
have contributed to the development of time-bounded Kolmogorov complexity. In
order to proceed with our discussion, we describe two prominent time-bounded
Kolmogorov complexity notions. (A formal treatment appears in Section 2.)

In an influential paper, Levin [Lev84] introduced Kt(x), a variant of Kol-
mogorov complexity that simultaneously takes into account the running time t
and description length |M| of all programs M that output x. More precisely, given
a string x ∈ {0, 1}∗, we let

Kt(x) = min
M, t≥1

{
|M| + dlog te | M outputs x in t steps

}
. (2)

To provide intuition and give a concrete example of the usefulness of this time-
bounded variant of Kolmogorov complexity to algorithms and complexity theory,
we consider the following computational problem at the intersection of mathemat-
ics and computer science:

Explicit Construction of Primes: Given an integer n ≥ 2, deterministically com-
pute an n-bit prime number.2

1We formally define (time-bounded) Kolmogorov complexity in Section 2.
2For instance, the string x in Equation (1) is a 40-bit prime (733008047147 in decimal repre-

sentation).

BEATCS no 137

144

The fastest known algorithm that solves this problem runs in time Õ(2n/2)
[LO87], and it is a longstanding open problem to improve this bound (see [TCH12]).
Let A(n) denote this procedure, and consider the sequence {pn}n≥2 of primes out-
put by A(n). Since we can encode the fixed algorithm A using O(1) bits and any
fixed number n using O(log n) bits, it follows that some program M of descrip-
tion length O(log n) runs in time t = Õ(2n/2) and prints pn. Consequently, there
is an n-bit prime pn such that Kt(pn) ≤ O(1) + O(log n) + log t ≤ n/2 + O(log n).
More generally, a faster algorithm yields improved bounds on the Kt complexity
of some sequence of prime numbers. Conversely, it is possible to prove that if
there is a sequence {qn}n≥2 of n-bit primes such that Kt(qn) = λn, then the prob-
lem of explicit constructing primes can be solved in time Õ(2λn).3 This shows
that one can completely capture the problem of explicitly constructing primes via
time-bounded Kolmogorov complexity!

Note that in Kt complexity the time bound is not fixed and depends on the best
possible description of x. In some contexts, it is desirable to restrict attention to
programs M that run under a specified time bound t(n), e.g., in time ≤ n3. This is
captured by Kt complexity (see, e.g., [Sip83]), where t : N→ N is a fixed function:

Kt(x) = min
M

{
|M| | M outputs x in t(|x|) steps

}
. (3)

As a recent application of time-bounded Kolmogorov complexity, Liu and Pass
[LP20] connected one-way functions (OWF), a primitive that is essential to cryp-
tography, to the computational difficulty of estimating the Kt complexity of an
input string x, when t is a fixed polynomial. A bit more precisely, they showed
that OWFs exist if and only if it is computationally hard on average to estimate
Kt(x) for a random input string x (see their paper for the exact statement). This
provides another striking example of the power and reach of time-bounded Kol-
mogorov complexity.

While connections between time-bounded Kolmogorov complexity and dif-
ferent areas of theoretical computer science have been known for a long time
(see, e.g., [Sip83, Ko91, ABK+06, AF09]), recent applications of it to cryptog-
raphy [LP20, RS21, LP21], learning [CIKK16, HN21], average-case complex-
ity [Hir21], circuit complexity [OPS19], and proof search [Kra22] have led to
much interest in this topic and to a number of related developments. We refer the
reader to these papers and to [All92, All01, For04, Lee06, All17, LV19, All21]
for more information on different time-bounded Kolmogorov complexity mea-
sures and their applications.

3As discovered by Levin, this is achieved by an algorithm that attempts to compute an n-bit
prime by carefully simulating all programs of small description length for an appropriate number
of steps until an n-bit prime is found.

The Bulletin of the EATCS

145

Probabilistic (Time-Bounded) Kolmogorov Complexity. The need to use time-
bounded Kolmogorov complexity in certain applications can create issues that are
not present in the case of (time-unbounded) Kolmogorov complexity. More pre-
cisely, several central results from Kolmogorov complexity are not known to hold
in a time-bounded setting. Some of them do survive under a plausible assump-
tion (e.g., a source coding theorem holds for Kt under a strong derandomisation
assumption [AF09]), but this leads to conditional results only. In other cases,
the validity of a result in the setting of time-bounded Kolmogorov complexity is
closely tied to a longstanding open problem in complexity theory (e.g., the compu-
tational difficulty of estimating Kt(x) and the aforementioned connection to OWFs
[LP20]). We refer to [Lee06] for an extensive discussion on the similarities and
differences between Kolmogorov complexity and its time-bounded counterparts.

Going beyond the technical difficulties of employing time-bounded Kolmogorov
complexity, which some papers such as [Hir21] managed to overcome with the
right assumptions in place, there is perhaps a more relevant issue in the appli-
cation of notions such as Kt and Kt to algorithms and complexity: these classi-
cal measures refer to deterministic algorithms and programs. However, in many
cases it is desirable or even necessary to consider randomised algorithms. Since
the random strings that are part of the input of a randomised algorithm have high
complexity, the classical theory of time-bounded Kolmogorov complexity might
be inappropriate or simply cannot be applied in such contexts.

To mitigate these issues and develop a more robust theory of time-bounded
Kolmogorov complexity that can be deployed in the important setting of ran-
domised computations, some recent papers have explored probabilistic notions of
time-bounded Kolmogorov complexity [Oli19, LO21, LOS21, GKLO22, LOZ22].
For this to make sense, we must conciliate the high complexity of a random string,
which can be accessed by a randomised algorithm, with the goal of obtaining a
succinct representation of x ∈ {0, 1}∗. Note that simply storing a good choice of
the random string r for a small program M that prints x when given r does not
lead to a succinct representation of x.

The key concept employed in the aforementioned papers is that of a probabilis-
tic representation of the string x. In other words, this is the code of a randomised
program M such that, for most choices of its internal random string r, M prints x
from r. Observe that the representation itself is a deterministic object: the code
of M. However, to recover x from M, we must run the randomised algorithm M,
meaning that we obtain x with high probability but there might be a small chance
that M outputs a different string.4 If |M| is small, we obtain a succinct probabilis-
tic representation of x. It is possible to introduce different variants of probabilistic
time-bounded Kolmogorov complexity, and we properly define them in Section 3.

4This is similar to the notion of a pseudodeterministic algorithm from [GG11].

BEATCS no 137

146

The investigation of probabilistic Kolmogorov complexity and of probabilistic
representations is motivated from several angles:

(i) If we are running a randomised algorithm over an input string x, then stor-
ing a probabilistic representation of x instead of x can be done without loss
of generality. There is already a small probability that the randomised al-
gorithm outputs an incorrect answer, so it makes sense to tolerate a small
probability of computing over a wrong input as well (i.e., when x is not
correctly recovered from its probabilistic representation).

(ii) We will see later in the survey that probabilistic Kolmogorov complexity al-
lows us in some cases to obtain unconditional versions of results that previ-
ously were only known to hold under strong complexity-theoretic assump-
tions.

(iii) As alluded to above, there are situations where the deterministic time-bounded
measures simply cannot be applied due to the presence of randomised com-
putations involving random strings of high complexity.

(iv) Finally, advances in probabilistic Kolmogorov complexity can be translated
into results and insights for the classical notions of Kt complexity and Kt

complexity, under certain derandomisation hypotheses.

Before describing our results and explaining the points mentioned above in
more detail, we present a list of five fundamental questions to guide our investi-
gation and exposition of probabilistic Kolmogorov complexity.

Q1. Usefulness: Are there shorter probabilistic representations for natural ob-
jects, such as prime numbers? Can such representations detect structure in data
that is inaccessible for Kt and Kt?

Q2. Probabilistic Compression: If succinct probabilistic representations exist,
how can we efficiently compute one such representation? This is particularly rel-
evant for data compression.

Q3. Applications: Are there interesting applications of probabilistic time-bounded
Kolmogorov complexity to algorithms and complexity theory?

Q4. Computational Hardness: If provably secure cryptography exists, it must
be impossible to efficiently detect certain patterns in data. Is it computationally
hard to decide if a string admits a succinct probabilistic representation?

The Bulletin of the EATCS

147

Q5. Finding an Incompressible String: Can we explicitly produce a string that
does not admit a short probabilistic representation? What are such strings use-
ful for?

In the remaining parts of this article, we explain the recent progress on Ques-
tions Q1-Q5 achieved by references [Oli19, LO21, LOS21, GKLO22, LOZ22].
Along the way, we highlight some concrete open problems and present directions
for further research. Due to space constraints, we often provide only a sketch of
the underlying arguments, referring to the original references for more details.

Organisation and Overview. For convenience of the reader, we provide below
a brief overview of each remaining section of this survey and how it relates to
Questions Q1-Q5 described above.

– Section 2 fixes notation and formalises the deterministic time-bounded Kol-
mogorov complexity notions Kt and Kt.

– Section 3 formalises the intuitive concept of probabilistic representations dis-
cussed above. We introduce the probabilistic measures rKt, rKt, and pKt and de-
scribe some simple applications.

– Section 4 addresses Question Q1 (Usefulness) and explains a result from [LOS21]
showing that infinitely many primes admit efficient probabilistic representations
of sub-polynomial complexity. This is a significant improvement over the afore-
mentioned ≈ n/2 bound for Kt complexity.

– Section 5 covers the relation between sampling algorithms for a distribution
over strings and the existence of probabilistic representations for individual strings
[LO21, LOZ22]. Such results are called source coding theorems and have appli-
cations to Question Q2 (Probabilistic Compression).

– Section 6 approaches Question Q3 (Applications) and discusses applications of
rKt, rKt, and pKt to average-case complexity and learning [GKLO22, LOZ22].
We employ these notions to simplify previous proofs, obtain new results that cru-
cially rely on probabilistic Kolmogorov complexity, and establish unconditional
analogues of theorems that were only known under derandomisation hypotheses.

– Section 7 is connected to Question Q1 (Usefulness) and focuses on the relation
between time-bounded deterministic and probabilistic measures. We observe that
these notions essentially coincide under strong enough derandomisation assump-
tions [Oli19, GKLO22]. Assuming them, insights from probabilistic Kolmogorov
complexity readily translate into information about Kt and Kt.

BEATCS no 137

148

– Section 8 sheds light on Question Q4 (Computational Hardness) by uncondition-
ally establishing that certain computational problems about estimating the proba-
bilistic time-bounded Kolmogorov complexity of an input string cannot be solved
in probabilistic polynomial time [Oli19, LOS21].

– Section 9 shows that Question Q5 (Finding an Incompressible String) is closely
related to the existence of hierarchy theorems for probabilistic time [LO21, LOS21],
a fundamental question in computational complexity theory.

– Section 10 provides some concluding remarks and prospects for the potential
impact of (probabilistic) time-bounded Kolmogorov complexity in algorithms and
complexity.

Acknowledgements. We thank Michal Koucký for the invitation to write this
survey. We are grateful to Eric Allender, Bruno P. Cavalar, Lijie Chen, Valentine
Kabanets, Michal Koucký, Ninad Rajgopal, and Marius Zimand for sharing com-
ments and suggestions on a preliminary version of the text. This work received
support from the Royal Society University Research Fellowship URF\R1\191059
and from the EPSRC New Horizons Grant EP/V048201/1.

2 Preliminaries
For a positive integer m, we let [m] def

= {1, 2, . . . ,m}. Given a non-negative real
number α, we let dαe ∈ N denote the smallest integer a such that α ≤ a. For a
string w ∈ {0, 1}∗, we use |w| ∈ N to denote its length. We let ε represent the empty
string.

Let U be a Turing machine. For a function t : N → N and a string x ∈ {0, 1}∗,
we let

Kt
U(x) def

= min
p∈{0,1}∗

{
|p| | U(p, ε) outputs x in at most t(|x|) steps

}
be the t-time-bounded Kolmogorov complexity of x. The machine U is said to be
time-optimal if for every machine M there exists a constant cM such that for all
x ∈ {0, 1}n and t : N→ N satisfying t(n) ≥ n,

KcM ·t log t
U (x) ≤ Kt

M(x) + cM,

where for simplicity we write t = t(n). It is well known that there exist time-
optimal machines (see, e.g., [LV19, Chapter 7]). We fix such a machine, and drop
the index U when referring to time-bounded Kolmogorov complexity measures.

The Bulletin of the EATCS

149

Given strings x, y ∈ {0, 1}∗, we can also consider the conditional t-time-bounded
Kolmogorov complexity of x given y, defined as

Kt(x | y) def
= min

p∈{0,1}∗

{
|p| | U(p, y) outputs x in at most t(|x|) steps

}
.

In the definitions above, the function t : N → N is fixed in advance. In many
situations, it is also useful to consider a notion of time-bounded Kolmogorov com-
plexity where the time bound of the machine is not fixed but instead affects the re-
sulting complexity measure. One of the most prominent such measures is Levin’s
Kt complexity, defined as

Kt(x) def
= min

p∈{0,1}∗, t∈N

{
|p| + dlog te | U(p, ε) outputs x in at most t steps

}
.

This definition can be extended to conditional Kt complexity Kt(x | y) in the natu-
ral way.

From now on, we will not distinguish between a Turing machine M and its
encoding pM according to U. While the running time t of M on an input y and the
running time of the universal machine U on (pM, y) might differ by a multiplicative
factor of O(log t), this will be inessential in all results and applications discussed
in this survey.5

We use K(x) to refer to the (time-unbounded) Kolmogorov complexity of the
string x.

3 Probabilistic Notions of Kolmogorov Complexity:
rKt, rKt, and pKt

In Section 2, we introduced two deterministic notions of time-bounded Kol-
mogorov complexity: Kt and Kt. In order to extend these definitions to the setting
of randomised computations, we consider an algorithm with a short description
that outputs a fixed string x ∈ {0, 1}n with high probability. Intuitively, the code of
this algorithm serves as a probabilistic representation of x.

A bit more formally, we consider a randomised Turing machine (RTM) M
such that

Pr
M

[M(ε) outputs x] ≥ 2/3.

Since we are interested in time-bounded representations, in our definitions we
must decide if we require (1) M(ε) to run in time ≤ t over all computation paths;

5It is also possible to consider prefix-free notions of Kolmogorov complexity. Since our results
hold up to additive O(log |x|) terms, we will not make an explicit distinction.

BEATCS no 137

150

or (2) with probability ≥ 2/3, M(ε) runs in time ≤ t and outputs x. It turns out that
this distinction is not really crucial for the results discussed in this survey, since
they are robust to additive overheads of order log n. In more detail, by specifying
and storing a positive integer i ∈ [n], which can be represented using just log n
bits, we can always enforce the machine M to stop in time 2i.

Remark 1. In the definitions presented below, we abuse notation and refer to
a machine M and its code. Formally, as in the definitions from the preceding
section, M should be an arbitrary string (and not be restricted to a string that is
a well-formed description of a machine) that is provided as input to the machine
U.6 This is important to guarantee that the Kolmogorov complexity of an arbitrary
string of length n is at most n + O(1). Defining Kolmogorov complexity and its
time-bounded variants using the code of a machine might only allow us to prove
an upper bound of O(n), which can create issues in some applications where a tight
worst-case bound is needed. To simplify the presentation, we blur this distinction
in the remaining parts of this survey.

rKt Complexity [BLvM05, LOS21].7 This is the randomised analogue of Kt,
where the time function t : N→ N is fixed in advance. For a string x ∈ {0, 1}∗, we
let

rKt(x) def
= min

RTM M

{
|M| | M(ε) outputs x in t(|x|) steps with probability ≥ 2/3

}
denote its randomised t-time-bounded Kolmogorov complexity. As an example of
the use of rKt, suppose a computationally unbounded party A holds a string x, and
that A would like to communicate x to a t-time-bounded party B that has access to
random bits. Then A can send k = rKt(x) bits to B by communicating the descrip-
tion of a randomised Turing machine M as above. B is able to recover x from M
with high probability simply by running M(ε).

pKt Complexity [GKLO22]. Fix a function t : N→ N, as before. For a string x ∈
{0, 1}∗, the probabilistic t-time-bounded Kolmogorov complexity of x is defined as

pKt(x) def
= min

{
k ∈ N

∣∣∣∣∣∣ Pr
w∼{0,1}t(|x|)

[
∃TM M ∈ {0, 1}k, M(w) outputs x within t(|x|) steps

]
≥

2
3

}
.

Note that M is a deterministic machine in the above definition. In other words,
if k = pKt(x), then with probability at least 2/3 over the choice of the random
string w, given w the string x admits a t-time-bounded encoding of length k, i.e.,
Kt(x | w) ≤ k. In particular, if two parties share a typical public random string w,

6We assume that U has access to a tape with random bits.
7[BLvM05] refers to this notion as CBPt complexity.

The Bulletin of the EATCS

151

then x can be transmitted with k bits and decompressed in time t = t(|x|). For a
reader familiar with standard complexity classes, the condition Kt(x) ≤ s is remi-
niscent of NP, while rKt(x) ≤ s and pKt(x) ≤ s essentially correspond to MA and
AM, respectively.

The definition of pKt complexity is more subtle than the definitions of Kt and
rKt. In particular, small pKt complexity provides a short efficient description only
in the presence of a fixed, “good” random string. Interestingly, pKt turns out to
be surprisingly useful in applications of time-bounded Kolmogorov complexity,
as discussed in Sections 5 and 6.

The following inequalities immediately follow from these definitions.

Fact 2. For every string x ∈ {0, 1}∗ and function t : N → N, we have pKt(x) ≤
rKt(x) ≤ Kt(x).

rKt Complexity [Oli19]. We can also consider the randomised Kt complexity of
a string x ∈ {0, 1}∗, defined as

rKt(x) def
= min

RTM M, t∈N

{
|M| + dlog te | M(ε) outputs x in t steps with probability ≥ 2/3

}
.

All these probabilistic notions of time-bounded Kolmogorov complexity can
be generalised to capture the conditional complexity of x given y in the natural
way. As a concrete example, suppose a Boolean formula F(x1, . . . , xn) admits a
satisfying assignment α ∈ {0, 1}n such that rKt(α | F) ≤ k. Then we can find
in time Õ(2k · |F|) and with probability ≥ 2/3 a satisfying assignment of F by
performing the following randomised computation: for each i ∈ [k], enumerate
all RTM M of description length i, run M(F) for at most 2k−i steps, and output the
first string β ∈ {0, 1}n generated in one of the simulations such that F(β) = 1.

An important property of Kolmogorov complexity is that, by a simple counting
argument, most strings of length n are incompressible, i.e., they do not admit
representations of length noticeably shorter than n. Similarly, most strings do not
admit succinct probabilistic representations, even in the presence of a fixed advice
string y.

Proposition 3 (Incompressibility). Let n ≥ 1 and consider an arbitrary time
bound t(n). For each string y ∈ {0, 1}∗, measure C ∈ {rKt, pKt, rKt}, and inte-
ger k ≥ 1, the following holds.

Pr
x∼{0,1}n

[
C(x | y) < n − k

]
= O(2−k).

Proof Sketch. For C ∈ {rKt, rKt}, the result follows from a simple counting argu-
ment, using that a valid probabilistic representation represents a single string (i.e.,

BEATCS no 137

152

the success probability of printing the string is ≥ 2/3, so it is uniquely specified
given the machine).

On the other hand, when C = pKt, we argue as follows. If a large fraction
of n-bit strings x have bounded pKt complexity, by an averaging argument, there
is a fixed choice of the random string w ∈ {0, 1}t(n) such that, given w, a large
fraction of the n-bit strings admit bounded descriptions for this choice of w as the
random string. We can then use a similar counting argument to show that this is
contradictory. See [GKLO22] for the details. �

It is also possible to define pKt complexity, in analogy with the aforementioned
definitions. However, since we are not aware of an interesting application of pKt,
we will not discuss it here.

Other notions of time-bounded Kolmogorov complexity involving randomised
computations have been considered in the literature. For instance, [BLvM05]
considers CAMt, a variant that combines randomness and nondeterminism. Due
to space constraints, this survey will only cover rKt, rKt, pKt and their recent
applications.

4 Prime Numbers with Short Descriptions and Pseu-
dodeterministic PRGs

As briefly discussed in Section 1, an important question about prime numbers
is whether they admit succinct representations, which is tightly connected to the
fundamental problem of generating large primes deterministically. While this re-
mains a notoriously difficult question to answer, we can still ask whether prime
numbers admit succinct probabilistic representations. Results for this question
were recently obtained in [OS17b, LOS21], by considering different notions of
(time-bounded) randomised Kolmogorov complexity.

Before describing these results, we first note that it is impossible to compress
every prime, given the Prime Number Theorem, which asserts that the number of
primes whose values are less than or equal to N is roughly N/ log N. In particular,
by a simple counting argument, this means that we cannot compress every n-bit
prime to o(n) bits. Therefore, here we ask whether there is an infinite sequence
{pm}m∈N of increasing primes pm that admit non-trivial probabilistic representa-
tions. The first non-trivial result of this form was established for rKt complexity.

Theorem 4 (rKt Upper Bounds for Primes [OS17b]). For every ε > 0, there is an
infinite sequence {pm}m≥1 of increasing primes pm such that rKt(pm) ≤ |pm|

ε, where
|pm| denotes the bit-length of pm.

The Bulletin of the EATCS

153

Theorem 4 was proved via the construction of a pseudodeterministic pseudo-
random generator. Informally, a pseudorandom generator (PRG) is an efficient
procedure mapping a short string (called seed) to a long string, with the property
that its output “looks random” to algorithms with bounded running time.8 A PRG
G is called pseudodeterministic if there is a probabilistic algorithm that, given a
seed z, computes G(z) with high probability. The following pseudodeterministic
PRG was obtained in [OS17b].

Theorem 5 (A Pseudodeterministic Sub-Exponential Time PRG [OS17b]).
For every ε > 0 and c, d ≥ 1, there exists a generator G = {Gn}n≥1 with Gn : {0, 1}n

ε
→

{0, 1}n for which the following holds:

Running Time: There is a probabilistic algorithm that given n, x ∈ {0, 1}n
ε
, runs

in time O
(
2nε

)
and outputs Gn(x) with probability ≥ 2/3.

Pseudorandomness: For every algorithm A that runs in time at most nc, there
exist infinitely many input lengths n such that∣∣∣∣∣∣ Pr

x∼{0,1}n
[A(x) = 1] − Pr

z∼{0,1}n
ε
[A(Gn(z)) = 1]

∣∣∣∣∣∣ ≤ 1
nd .

Assuming Theorem 5, we show how to obtain Theorem 4.

Proof of Theorem 4. Let A be a deterministic polynomial-time algorithm for pri-
mality testing (e.g., [AKS02]), which takes as input an n-bit integer x and outputs
1 if and only if x is a prime. Suppose A runs in time nc for some constant c > 0.
Note that by the Prime Number Theorem, a uniformly random n-bit integer is a
prime number with probability at least 1/O(n).

Let ε > 0 be any constant, and consider an infinitely often pseudodeterministic
PRG {Gn}n from Theorem 5 with Gn : {0, 1}n

ε/2
→ {0, 1}n that is secure against (nc)-

time algorithms and has associated error parameter γ = 1/n2. By the second item
of Theorem 5, for infinitely many values of n, we have∣∣∣∣∣∣ Pr

x∼{0,1}n
[A(x) = 1] − Pr

z∼{0,1}n
ε/2

[A(Gn(z)) = 1]

∣∣∣∣∣∣ ≤ 1
n2 ,

which implies

Pr
z∼{0,1}n

ε/2
[A(Gn(z)) = 1] ≥

1
O(n)

−
1
n2 ≥

1
O(n)

.

8Unconditionally constructing such PRGs is tightly connected to the derandomisation of prob-
abilistic algorithms. While this remains a longstanding open problem, there has been progress in
designing pseudodeterministic PRGs.

BEATCS no 137

154

In particular, this means that there exists some z ∈ {0, 1}n
ε/2

such that p := G(z) is
an n-bit prime. By hardcoding n and this seed z, and using that G(z) is a uniform
procedure that can be computed probabilistically in time t(n) = O

(
2nε/2

)
, we get

that for infinitely many values of n, there is an n-bit prime p such that

rKt(p) ≤
(
nε/2 + O(log n) + O(1)

)
+ log

(
O
(
2nε/2

))
≤ nε,

as desired. �

For those primes shown to have small rKt complexity, given the corresponding
encoding, one can probabilistically recover the prime in sub-exponential time. We
can then further ask whether we can obtain succinct representations that can be
decoded more efficiently, say, in polynomial time. Note that this is precisely to
show that there are infinitely many primes whose rKpoly complexity is small. This
question was answered in the affirmative by a subsequent work of Lu, Oliveira
and Santhanam.

Theorem 6 (rKpoly Upper Bounds for Primes [LOS21]). For every ε > 0, there
is an infinite sequence {pm}m≥1 of increasing primes pm such that rKt(pm) ≤ |pm|

ε,
where t(n) = nk for some constant k = k(ε) ≥ 1, and |pm| denotes the bit-length of
pm.

Similar to Theorem 4, Theorem 6 was proved via the construction of a cer-
tain pseudodeterministic PRG. Note that the reason why we got sub-exponential
decoding time in Theorem 4 is due to the fact that the PRG from Theorem 5 re-
quires sub-exponential time to compute. Then to obtain a polynomial decoding
time as in Theorem 6, it suffices to construct a (pseudodeterministic) PRG that can
be computed in polynomial time. Such a PRG was obtained in [LOS21] using a
more sophisticated approach that builds on [OS17b].

Theorem 7 (A Pseudodeterministic Polynomial-Time PRG with 1 Bit of Ad-
vice [LOS21]).
For every ε > 0 and c, d ≥ 1, there exists a generator G = {Gn}n≥1 with Gn : {0, 1}n

ε
→

{0, 1}n for which the following holds:

Running Time: There is a probabilistic polynomial-time algorithm that given
n, x ∈ {0, 1}n

ε
, and an advice bit α(n) ∈ {0, 1} that is independent of x, outputs

Gn(x) with probability ≥ 2/3.

Pseudorandomness: For every algorithm A that runs in time at most nc, there
exist infinitely many input lengths n such that∣∣∣∣∣∣ Pr

x∼{0,1}n
[A(x) = 1] − Pr

z∼{0,1}n
ε
[A(Gn(z)) = 1]

∣∣∣∣∣∣ ≤ 1
nd .

The Bulletin of the EATCS

155

Using Theorem 7, it is easy to show Theorem 6 by mimicking the above proof
of Theorem 4, with one caveat that computing the PRG in Theorem 7 requires one
bit of advice. However, this extra bit can be hardcoded into the encoding without
affecting its length by much.

We remark that the results presented above work in much more generality,
and can be used to show that any dense language decidable in polynomial time
admits infinitely many positive inputs of sub-polynomial rKtpoly complexity. The
set of primes is just one interesting example of such a language. We refer to
[OS17b, LOS21] for additional applications of pseudodeterministic PRGs and for
the proofs of Theorems 5 and 7.

We end this section with a couple of open problems. Note that both Theorem 4
and Theorem 6 show only that there are infinitely many values of n such that some
n-bit prime has rKt or rKpoly complexity at most nε.

Problem 8. Show that for each ε > 0, there exists n0 such that for every n ≥ n0,
there is an n-bit prime pn such that rKt(pn) ≤ nε.

Also, can we improve the sub-polynomial upper bounds to, say, poly-logarithmic?

Problem 9. Prove that there is a constant C ≥ 1 and an infinite sequence {pm}m≥1

of increasing primes pm such that rKt(pm) = (log |pm|)C.

5 Sampling Algorithms, Coding Theorems, and Search-
to-Decision Reductions

The coding theorem for Kolmogorov complexity roughly states that if a string
x can be sampled with probability δ by some algorithm A, then its Kolmogorov
complexity K(x) is at most log(1/δ) + OA(1). In particular, strings that can be
generated with non-trivial probability by a program of small description length
admit shorter representations. The coding theorem is a fundamental result in Kol-
mogorov complexity theory that has found many applications in theoretical com-
puter science (see, e.g., [LV92, Lee06, Aar14, IRS21]). In fact, [Lee06] regards
the coding theorem as one of the four pillars of Kolmogorov complexity.9

The proof of the coding theorem crucially explores the time-unbounded fea-
ture of the Kolmogorov complexity measure, and it is unclear how it can be
extended to the time-bounded setting. Ideally, we would like to show that if a
string x can be generated with probability δ by some efficiently samplable dis-
tribution, then its time-bounded Kolmogorov complexity Kt(x) is about log(1/δ).
One reason why such a time-bounded coding theorem is hopeful is that it can

9The other three are incompressibility, language compression, and symmetry of information.

BEATCS no 137

156

be proven under certain strong derandomisation assumption [AF09].10 In par-
ticular, under such an assumption, if a polynomial-time samplable distribution
outputs a string x with probability at least δ, then Kt(x) ≤ log(1/δ) + O(log n).
However, the latter result is only conditional, in the sense that it relies on an
unproven assumption that seems far beyond the reach of currently known tech-
niques. Moreover, strong assumptions of this form could even be false. While
it remains unclear whether we can obtain a coding theorem for Kt, [LO21] con-
sidered the problem of establishing an unconditional coding theorem in the ran-
domised time-bounded setting. Somewhat surprisingly, it can be shown uncon-
ditionally that if a string x can be sampled efficiently with probability δ, then
rKt(x) ≤ O(log 1/δ) + O(log n). In a subsequent work [LOZ22], this result is
further improved to rKt(x) ≤ (2 + o(1)) · log 1/δ + O(log n).

Theorem 10 (Coding Theorem for rKt [LOZ22]). Suppose there is an efficient
algorithm A for sampling strings such that A(1n) outputs a string x ∈ {0, 1}n with
probability at least δ. Then

rKt(x) ≤ 2 log(1/δ) + O
(
log n + log2 log(1/δ)

)
,

where the constant behind the O(·) depends on A and is independent of the remain-
ing parameters. Moreover, given x, the code of A, and δ, it is possible to compute
in time poly(n, |A|), with probability ≥ 0.99, a probabilistic representation of x
that satisfies this rKt-complexity bound. (The running time of this algorithm does
not depend on the time complexity of A.)

Similar to the results in the previous section that are concerned with the com-
pressibility of prime numbers, the results of [LO21, LOZ22] again show the power
of utilizing randomness in Kolmogorov complexity, which enables us to establish
results for time-bounded Kolmogorov complexity that seem very difficult to show
in the deterministic setting. We refer to these papers for a discussion of the tech-
niques employed to show an unconditional coding theorem for rKt.

We note that (as in previous work of [LO21]) the coding theorem in Theo-
rem 10 has an unexpected constructive feature: it gives a polynomial-time prob-
abilistic algorithm that, when given x, the code of the sampler, and δ, outputs a
probabilistic representation of x that certifies the claimed rKt complexity bound.
(Additionally, the running time of this algorithm does not depend on the running
time of the sampler.) Such an efficient coding theorem has interesting implications
for search-to-decision reductions for rKt. Recall that a search-to-decision reduc-
tion is an efficient procedure that allows one to find solutions to a problem from the

10The assumption in [AF09] states that there is a language L ∈ TIME
[
2O(n)

]
that requires

Boolean circuits of size 2Ω(n) for all but finitely many n, even in the presence of oracle gates
to a Σ

p
2 -complete problem in the circuit.

The Bulletin of the EATCS

157

mere ability to decide when a solution exists. Using results from [LO21, LOZ22],
one can show the following search-to-decision reduction for rKt.

Theorem 11 (Instance-Wise Search-to-Decision Reduction for rKt [LO21]). Let
O be a function that linearly approximates rKt complexity. That is, for every x ∈
{0, 1}∗,

Ω(rKt(x)) ≤ O(x) ≤ O(rKt(x)).

Then there is a randomised polynomial-time algorithm with access toO that, when
given an input string x, outputs with probability ≥ 0.99 a valid rKt representation
of x of complexity O(rKt(x)). Furthermore, this algorithm makes a single query q
to O, where q = x.

Proof Sketch. We would like to invoke Theorem 10 to efficiently compute an rKt
representation of x, but the “moreover” part of this result requires the explicit code
of a sampler. The idea is to construct a “universal” sampler that outputs x with the
desired probability, then to hit this sampler with an appropriate coding theorem
for rKt. For simplicity, suppose we knew the exact value k = rKt(x) ∈ N. Consider
the following sampler A:

A(1n): Randomly selects a randomised program M of length k among all strings
in {0, 1}k. Run M for at most 2k steps, then output the n-bit string that M outputs
during this simulation (or the string 0n if M does not stop or its output is not an
n-bit string).

Note that A runs in time t = poly(n, 2k) = poly(2k) (since k ≥ log n for any n-
bit string), and that it outputs x with probability at least δ = 2−k · 2/3, since by the
definition of k at least one such program prints x with probability at least 2/3. By
the coding theorem for rKt from [LO21] (which is stated in a slightly more general
form than Theorem 10), one obtains that rKt(x) = O(log(1/δ)) + O(log t) = O(k).
Since A is an explicit algorithm, crucially, its “moreover” part implies that we can
efficiently output an rKt-representation of x of complexity O(k). This completes
the sketch of the proof.

We refer to [LO21, Section 4] for the formal proof of Theorem 11, which is a
simple adaptation of the idea described here. �

An interesting feature of the above search-to-decision reduction is that it is
instance-wise in the sense that to produce a near-optimal rKt representation of x,
we only need to make a single query to a decision oracle for rKt on the same x.11

Note that there are known search-to-decision reductions in the context of time-
bounded Kolmogorov complexity with respect to various notions of complexity

11This is also called a search-to-profile reduction in some references in Kolmogorov complexity
[RSZ21].

BEATCS no 137

158

(e.g., [CIKK16, Hir18, Ila20, ILO20, LP20, Ila21]), but they require an oracle to
the decision problem that is correct on all or at least on a large fraction of inputs.
As a consequence of this feature, we can easily derive the following result.12

Corollary 12 (“Short Lists with Short Programs” [LO21]). Given a string x of
length n, it is possible to compute with probability ≥ 0.99 and in polynomial time
a collection of at most ` = log(n) strings M1, . . . ,M` such that at least one of these
strings is a valid rKt representation of x of complexity O(rKt(x)).

Proof. We run the instance-wise search-to-decision reduction on the input x. While
it is not clear how to efficiently estimate rKt(x), we can still “guess” the rKt com-
plexity of x to be of order 2i, for each i ∈ {1, 2, . . . , log n}. We run the procedure on
each possible guess, obtaining a list of strings M1, . . . ,M`, where ` = log n. Since
there is at least one value i such that 2i = Θ(rKt(x)), we have the guarantee that in
this case the reduction outputs with probability at least 0.99 a valid rKt represen-
tation of x of similar complexity. Therefore, the list contains with probability at
least 0.99 a representation of the desired form. �

While the above coding theorem for rKt is a novel development after a long gap
in an area with only conditional results, it has an important drawback: the rKt up-
per bound is at least 2 log(1/δ)) and hence is sub-optimal. In contrast, the bounds
in the time-unbounded setting and in the conditional result of [AF09] mentioned
above have the form log(1/δ). A natural question then is whether we can show a
coding theorem for rKt with an optimal dependence on the probability parameter
δ, which is crucial in many applications of the result. It turns out that under a cer-
tain hypothesis about the security of cryptographic pseudorandom generators13,
the rKt bound in Theorem 10 is essentially optimal if we consider only coding
theorems that are efficient, i.e., where an rKt representation can be constructed
in polynomial time regardless of the running time of the sampler. In particular,
[LOZ22] showed that in this case, there is no efficient coding theorem that can
achieve a bound of the form rKt(x) ≤ (2 − o(1)) · log(1/δ) + poly(log n). On the
other hand, the conditional coding theorem for Kt in [AF09] is not efficient. This
leads to the following open problem on (unconditionally) showing an existential
coding theorem for rKt with optimal parameters.

12Results of this form were previously known in time-unbounded Kolmogorov complexity (see
[BMVZ18]).

13The hypothesis states that there is a pseudorandom generator G : {0, 1}`(n) → {0, 1}n, where
(log n)ω(1) ≤ `(n) ≤ n/2, computable in time poly(n) that is secure against uniform algorithms
running in time 2(1−Ω(1))·`(n). Note that every candidate PRG of seed length `(n) can be broken in
time 2`(n) · poly(n) by trying all possible seeds. This hypothesis can be viewed as a cryptographic
analogue of the well-known strong exponential time hypothesis (SETH) about the complexity of
k-CNF SAT [IP01].

The Bulletin of the EATCS

159

Problem 13. Show that if there is an efficient algorithm A for sampling strings
such that A(1n) outputs a string x ∈ {0, 1}n with probability at least δ, then rKt(x) ≤
log(1/δ) + poly(log n).

To this point, we have mentioned the existence of an optimal coding theorem
for time-unbounded Kolmogorov complexity and an optimal conditional coding
theorem for Kt (in fact, the conditional result holds even for Kt for t = poly(n)).
Also, an unconditional coding theorem can be obtained for rKt but its dependency
on the probability parameter δ is not log(1/δ) (Theorem 10). Note that rKt can be
viewed as a “relaxed” notion of Kt and is intermediate between K and Kt. If we
consider some further relaxed notion of time-bounded Kolmogorov complexity,
can we show a coding theorem that is both unconditional and optimal?

Note that the time-bounded measure pK can be viewed as an intermediate
notion between time-unbounded Kolmogorov complexity and time-bounded rK.
It turns out that pKt admits an optimal coding theorem.

Theorem 14 (Coding Theorem for pKt [LOZ22]). Suppose there is a randomised
algorithm A for sampling strings such that A(1n) runs in time T (n) ≥ n and outputs
a string x ∈ {0, 1}n with probability at least δ > 0. Then

pKt(x) = log(1/δ) + O
(
log T (n)

)
,

where t(n) = poly(T (n)) and the constant behind the O(·) depends on |A| and is
independent of the remaining parameters.

The proof of Theorem 14 is similar in spirit to that of the conditional coding
theorem for Kpoly in [AF09]. As an application of the latter, [AF09] showed a
conditional characterisation of the worst-case running times of languages that are
in average polynomial time over all samplable distributions. Using Theorem 14,
[LOZ22] provided an unconditional characterisation, and this will be discussed in
Section 6.

Finally, we can connect the time-bounded coding theorems discussed in this
section to the compressibility of prime numbers discussed in the previous section,
via the following equivalence.

Theorem 15 (Equivalence Between Samplability and Compressibility [LO21]).
Let δ : N → [0, 1] be a time-constructible function. The following statements are
equivalent.

(i) Samplability. There is a randomised algorithm A for sampling strings such
that, for infinitely many (resp. all but finitely many) n, A(1n) runs in time
(1/δ(n))O(1) and outputs an n-bit prime qn with probability at least δ(n)O(1).

BEATCS no 137

160

(ii) Compressibility. For infinitely many (resp. all but finitely many) n, there is
an n-bit prime pn with rKt(pn) = O(log(1/δ(n))).

Proof Sketch. The implication from (i) to (ii) relies on the existing coding theorem
for rKt. The other direction employs a universal sampler in the spirit of the proof
of Theorem 11 sketched above. See [LO21] for the details. �

Theorem 15 can be seen as an analogue of the relation between deterministi-
cally constructing large primes and obtaining Kt upper bounds for primes, which
was explained in Section 1. Using this result, the problem of showing that prime
numbers have smaller rKt complexity (Problem 9) can be reduced to showing the
existence of a faster sampling algorithm for primes. In particular, if we can sam-
ple an n-bit prime pn in time 2poly(log n) with probability at least 2− poly(log n), then
rKt(pn) ≤ poly(log n).

We remark that an even tighter equivalence between samplability and com-
pressibility can be established using pKt complexity, thanks to the optimality of
Theorem 14.

6 Applications to Average-Case Complexity and Learn-
ing Theory

Understanding the relation between the average-case complexity of NP and
its worst-case complexity is a central problem in complexity theory. More con-
cretely, if every problem in NP is easy to solve on average, can we solve NP
problems in polynomial time in the worst case? While addressing this question
remains a longstanding open problem, significant results have been achieved in re-
cent years using techniques from time-bounded Kolmogorov complexity [Hir20a,
Hir21, CHV22] (see [Hir22a] for an overview). Related techniques have also led
to the design of faster learning algorithms under the assumption that NP is easy on
average [HN21]. Interestingly, the problems investigated in these references make
no reference to Kolmogorov complexity. Still, the corresponding proofs rely on
Kt complexity and its properties in important ways.

In this section, we describe recent applications of pKt complexity to average-
case complexity and learning theory [GKLO22, LOZ22]. While the definition of
pKt is more subtle compared with Kt and rKt, its use comes with important bene-
fits. As we explain later in this section, depending on the context, pKt complexity
allows us to extend previous results to the important setting of randomised compu-
tations, significantly simplify an existing proof, or obtain an unconditional result.

Average-Case Complexity. We first review some standard definitions from average-
case complexity theory (see [BT06] for a survey of this area). Recall that D =

The Bulletin of the EATCS

161

{Dn}n≥1, where each Dn is a distribution supported over {0, 1}∗, is called an ensem-
ble of distributions. We say that D ∈ PSamp (or D is P-samplable) if there is
a randomised polynomial-time algorithm A such that, for every n ≥ 1, A(1n) is
distributed according to Dn.

Let D be an ensemble of distributions. We say that a language L is solvable in
polynomial time on average with respect to D if there is a deterministic algorithm
A such that, for every n and for every x in the support of Dn, A(x; n) = L(x),
and there is a constant ε > 0 such that Ex∼Dn[tA,n(x)ε/n] = O(1), where tA,n(x)
denotes the running time of A on input (x; n). We remark that this is equivalent to
the existence of a deterministic algorithm B and of a polynomial p such that the
following conditions hold:

• For every n, δ > 0, and string x in the support of Dn, B(x; n, δ) outputs either
L(x) or the failure symbol ⊥;

• For every n, δ > 0, and every string x in the support of Dn, B(x; n, δ) runs in
time at most p(n, 1/δ);

• For every n and every δ > 0,

Pr
x∼Dn

[B(x; n, δ) = ⊥] ≤ δ.

We refer to [BT06] for more information about this definition and its motivation.
A pair (L,D) is a distributional problem if L ⊆ {0, 1}∗ and D is an ensemble

of distributions. For a complexity class C (e.g., C = NP), we let DistC denote the
set of distributional problems (L,D) with L ∈ C and D ∈ PSamp. We say that
(L,D) ∈ AvgP if L is solvable in polynomial time on average with respect to D.

Note that in the equivalent definition of AvgP the deterministic algorithm is
never incorrect on an input x in the support of the distribution. Similarly, it is pos-
sible to consider average-case complexity with respect to randomised errorless
heuristic schemes. Roughly speaking, such randomised algorithms are allowed to
sometimes output the wrong answer, provided that on every input x in the support
of the distribution, the fraction of random strings for which the algorithm outputs
the wrong answer is small compared to the fraction of random strings for which
it outputs either the right answer or the fail symbol ⊥. Analogously to the defi-
nition of AvgP, if a distributional problem (L,D) admits a randomised errorless
heuristic scheme, we say that (L,D) ∈ AvgBPP. We refer again to [BT06] for the
precise definition of this class and for an extensive discussion of this notion and
its extensions.14

14It is also possible to consider randomised algorithms that can sometimes be incorrect on an
input x with high probability over their internal randomness. This leads to the class HeurBPP of
distributional problems. Relaxing some assumptions in this section to the setting of HeurBPP is
an interesting research direction (see, e.g., [HS22]).

BEATCS no 137

162

6.1 Worst-Case Time Bounds for Average-Case Easy Problems
Suppose that a language L is average-case easy. That is, L is solvable in deter-

ministic polynomial time on average with respect to all P-samplable distributions.
What can we say about the time needed to solve L in the worst case? In a beautiful
work, Antunes and Fortnow [AF09] characterised the worst-case running time of
such a language using the notion of computational depth [AFvM01]. Here the
computational depth of a string x for a time bound t is defined as the difference
Kt(x) − K(x). It was shown in [AF09], under a strong derandomisation assump-
tion, that a language L is average-case easy if and only if it can be solved in time
2O(Kpoly(x)−K(x)+log(|x|)) for every input x ∈ {0, 1}∗. The proof of this result crucially
relied on the use of an optimal coding theorem for Kt. Since such a coding the-
orem is only known under a strong derandomisation assumption (see Section 5),
the aforementioned characterisation is subject to the same unproven assumption.

As also mentioned in Section 5, it was observed in [LOZ22] that an optimal
coding theorem can be unconditionally proved for pKt (Theorem 14). It turns
out that such a coding theorem enables us to show an unconditional version of
Antunes and Fortnow’s characterisation, where the worst-case running times for
languages that are average-case easy can be characterised using a notion of prob-
abilistic computational depth.

A key idea in the proof of this result is a notion of universal distribution
via pKt. More specifically, for a computable time bound function t, we define
mt to be the (semi-)distribution whose probability density function is mt(x) def

=

2−pKt(x)−b log |x|, where b > 0 is a large enough constant (that depends only on t).15

Theorem 16 (Unconditional “Worst-Case Time Bounds for Average-Case Easy
Problems” [LOZ22]). The following conditions are equivalent for any language
L ⊆ {0, 1}∗.16

1. For every P-samplable distribution D, L can be solved in polynomial time
on average with respect to D.

2. For every polynomial p, L can be solved in polynomial time on average with
respect to mp.

15The reason why we define mt(x) this way instead of using just 2−pKt(x) is to make sure that it
forms a (semi-)distribution, i.e., that the sum of the probabilities is at most 1. More specifically,
for every t, there is some constant b > 0 such that K(x) ≤ pKt(x)+b log |x| for every x (see [LOZ22,
Lemma 32]), so

∑
x∈{0,1}∗ 2−pKt(x)−b log |x| ≤

∑
x∈{0,1}∗ 2−K(x) ≤ 1, where the second inequality follows

from Kraft’s inequality. (Formally, to apply Kraft’s inequality we need to consider prefix-free
encodings. This is not an issue here, as a large enough constant b makes this possible.)

16In this statement and in its proof, we do not make a distinction between distributions and
semi-distributions. (In a semi-distribution, the sum of the probabilities might add up to less than
1.)

The Bulletin of the EATCS

163

3. For every polynomial p, there exists a constant c > 0 such that the running
time of some algorithm that computes L is bounded by 2O(pKp(x)−K(x)+c log(|x|))
for every input x ∈ {0, 1}∗.

Proof Sketch. For simplicity, to sketch the proof of this theorem we will also con-
sider the notion of average-case easiness with respect to single distributions in-
stead of ensembles of distributions,17 which does not incur a loss of generality
(see [BT06, Section 6]).

We first sketch the equivalence between Item 1 and Item 2. We need to show
that the class of distributions mpoly is “universal” for the class of P-samplable
distributions, in the sense that a language L is polynomial-time on average with
respect to mpoly if and only if the same holds with respect to all P-samplable
distributions. Recall that if a distribution D dominates another distribution D′

(i.e., D(x) & D′(x) for all x) and L is polynomial-time on average with respect to
D, then the same holds with respect to D′. Therefore, to show the “universality”
of mpoly, it suffices to establish the following claims.

1. Every P-samplable distribution is dominated by mp, for some polynomial
p.

2. For every polynomial p, mp is dominated by some P-samplable distribution.

The first item above says that for every P-samplable D, mp(x) & D(x) for some
polynomial p, which, by the definition of mp, means pKp(x) . log(1/D(x)). Note
that this is essentially an optimal coding theorem for pKpoly and hence follows
from Theorem 14. To see the second item, consider any polynomial p. We define
a P-samplable distribution roughly as follows. We first pick n with probability

1
n·(n+1) , and then randomly pick k ∈ [2n], w ∈ {0, 1}p(n), and a program M ∈ {0, 1}k.
We then run M(w) for at most p(n) steps and output the string that M outputs. It
is easy to see that for every x ∈ {0, 1}n , the above sampling process outputs x with
probability at least 2−pKp(x)/nO(1) and hence dominates mp.

It remains to show the equivalence between Item 2 and Item 3. Here we de-
scribe the implication from Item 2 to Item 3, which highlights the use of a fun-
damental result in Kolmogorov complexity called Language Compression. The
other direction follows from a simple calculation (see [LOZ22]).

Consider the time bound t described by an arbitrary polynomial p. Let A be an
algorithm that solves L in polynomial time on average with respect to mt, and let
tA(x) denote the running time of A on input x. For n, i, j ∈ N with i, j ≤ n2, define

S i, j,n
def
=

{
x ∈ {0, 1}n | 2i ≤ tA(x) ≤ 2i+1 and pKt(x) + b log |x| = j

}
.

17An algorithm A runs in polynomial time on average with respect to a (semi-)distribution D
if there exists a constant ε such that,

∑
x∈{0,1}∗

tA(x)ε

|x| D(x) ≤ O(1), where tA(x) denotes the running
time of A on input x.

BEATCS no 137

164

Consider a nonempty set S i, j,n, and let r ∈ N be such that 2r ≤
∣∣∣S i, j,n

∣∣∣ < 2r+1. We
claim that for every x ∈ S i, j,n, its (time-unbounded) Kolmogorov complexity

K(x) ≤ r + O(log n). (4)

To see this, note that given i, j, n, we can first enumerate all the elements in S i, j,n,
which can be done since t is computable, and then using additional r + 1 bits, we
can specify x in S i, j,n. We remark that the core idea behind the above argument is
the language compression theorem for (time-unbounded) Kolmogorov complex-
ity, which states that for every (computable) language L, K(x) ≤ log |L ∩ {0, 1}n| +
O(log n) for all x ∈ L ∩ {0, 1}n.18

Now fix any n and i, j ≤ n2. Let r be such that 2r ≤
∣∣∣S i, j,n

∣∣∣ < 2r+1. Then by
assumption and by the definition of S i, j,n, we have for some constants ε, d > 0,

d ≥
∑

x∈S i, j,n

tA(x)ε

|x|
·mt(x) ≥ 2r ·

2ε·i

n
· 2− j = 2ε·i+r− j−log n,

which yields ε · i + r − j − log n ≤ log d. By Equation (4) and using j = pKt(x) +

b log n, this implies that for every x ∈ S i, j,n,

ε · i ≤ pKt(x) − K(x) + O(log n).

Therefore, we have that for every x ∈ S i, j,n,

tA(x) ≤ 2i+1 ≤ 2ε
−1·(pKt(x)−K(x)+O(log n)) = 2O(pKt(x)−K(x)+c log(|x|)),

where c > 0 is a large enough constant independent of n = |x|. Since it is not hard
to see that every x ∈ {0, 1}n is in some set S i, j,n, the result follows. �

6.2 Probabilistic Average-Case Easiness Implies Worst-Case Up-
per Bounds

The section covers recent developments from [GKLO22], which build on the
breakthrough results of [Hir21] and on the subsequent papers [CHV22, GK22,
Hir22b]. In short, the results from [Hir21] hold in the setting of deterministic
computations, while [GKLO22] provides a framework that allows new relations
between average-case complexity and worst-case complexity to be established in
the more robust setting of randomised computations.

18In fact, it is possible to slightly modify the above argument, by appropriately defining a lan-
guage with slices in correspondence to the sets S i, j,n, so that language compression can be applied
directly.

The Bulletin of the EATCS

165

Next, we provide a high-level exposition of some results from [GKLO22] and
their proofs. In particular, we explain the role of (conditional) versions of “lan-
guage compression” and “symmetry of information” for pKt, and how pKt turns
out to be a complexity measure that is particularly well-suited for these applica-
tions (see Remark 21 on “Why pKt complexity?”).

Our goal is to show a worst-case complexity upper bound for an arbitrary
language L ∈ NP under an average-case easiness assumption, such as DistNP ⊆
AvgP or the weaker DistNP ⊆ AvgBPP. Note that Theorem 16 naturally suggests
an approach: if L is easy on average (Item 1), then we can compute L on every
input x ∈ {0, 1}∗ (Item 3) in time

2O(pKp(x)−K(x)) · poly(|x|),

where p(·) is a fixed but arbitrary polynomial. Therefore, if we could show that
the quantity pKp(x) − K(x) is bounded for every x, we would be done. (Note that
this is indeed the case for a uniformly random x, since pKt(x) and K(x) are close
to n = |x| with high probability.)

This is not possible, but we can still hope to adapt the proof of Theorem 16
to obtain a more useful bound, under the assumption that DistNP ⊆ AvgBPP.
A closer inspection of the argument reveals that the value K(x) in the bound
pKp(x)−K(x) comes from the use of language compression for (time-unbounded)
Kolmogorov complexity, which is applied to the sets S i, j,n. If we had a language
compression theorem for a time-bounded measure γ (e.g., γ = Kt), we would be
able to derive a worst-case running time exponent of the form pKp(x)− γ(x). This
makes progress towards our goal, since γ(x) ≥ K(x). This initial idea turns out to
be feasible, for γ = pKq (think of q(·) as a polynomial larger than p(·)).

Theorem 17 (Language Compression for pKt under DistNP ⊆ AvgBPP; Infor-
mal19). If DistNP ⊆ AvgBPP, then for every language S ∈ AM, there is a polyno-
mial q such that for every x ∈ S ∩ {0, 1}n,

pKq(x) ≤ log |S ∩ {0, 1}n| + log q(n).

In order to implement the aforementioned plan, we need to make sure that the
sets S i, j,n provide a language S that is easy to compute, since this is an assumption
in Theorem 17. One can sidestep this issue by settling for a weaker result which
assumes that the running time tA of the average-case algorithm on a given input can
be efficiently estimated without running the algorithm. This notion leads to a class
of distributional problems called AvgBPPBPP in [GKLO22], and to the stronger

19For technical reasons, the actual formulation of this result considers an ensemble of promise
problems with padded inputs of the form (x, 1m), where |x| = `(m). For simplicity, we omit this
here. See [GKLO22] for the precise statement.

BEATCS no 137

166

initial assumption that DistNP ⊆ AvgBPPBPP. Another crucial idea, which we will
not cover in more detail here, is to prove that pKt(y) can be efficiently estimated
for every string y under the assumption that NP is easy on average. We can then
apply (an extension of) Theorem 17 to appropriately modified sets S ′i, j,n, which
yields a worst-case running time of the form

2O(pKp(x)−pKq(x)) · poly(|x|).

One could hope for the quantity pKp(x)−pKq(x), called the (p, q)-probabilistic
computational depth of x, to be bounded for every string x. While this is not clear
for the polynomials p(n) and q(n), a simple but neat argument involving a tele-
scoping sum [Hir21, GKLO22] shows that, for any string x of length n, for some
time bound t(n) ≤ 2O(n/ log n) we have pKt(x)−pKpoly(t)(x) = O(n/ log n). Intuitively,
if we could adapt the previous strategy so that it yields more general worst-case
upper bounds involving (t, poly(t))-probabilistic computational depth, then a non-
trivial exponent of O(n/ log n) would be achieved by applying the argument to
each choice of t ≤ 2O(n/ log n).

A careful implementation of this plan leads to the following stronger conse-
quence, where the worst-case upper bound holds for any language L ∈ AM.

Theorem 18 ([GKLO22]). If DistNP ⊆ AvgBPPBPP, then AM ⊆ BPTIME[2O(n/ log n)].

Can we obtain a similar worst-case upper bound under the weaker and more
natural assumption that DistNP ⊆ AvgBPP? (In other words, without assuming
that the running time of the average-case algorithm can be efficiently estimated?)
This is currently open. However, it is possible to prove the following implica-
tions, which can be seen as a strengthening of some results from [Hir21] to the
randomised setting. Recall that UP denotes the set of languages in NP whose
positive instances admit unique witnesses.

Theorem 19 (Probabilistic Worst-Case to Average-Case Reductions [GKLO22]).
The following results hold.

1. If DistNP ⊆ AvgBPP, then UP ⊆ RTIME
[
2O(n/ log n)

]
.

2. If DistΣP
2 ⊆ AvgBPP, then AM ⊆ BPTIME

[
2O(n/ log n)

]
.

3. If DistPH ⊆ AvgBPP, then PH ⊆ BPTIME
[
2O(n/ log n)

]
.

The proof of Theorem 19 relies on Symmetry of Information, another pillar
of Kolmogorov complexity (see [Lee06]). To describe a pair (x, y) of strings,
one can combine the most succinct representation of x with the most succinct
representation of y when x is given as advice. In Kolmogorov complexity, this

The Bulletin of the EATCS

167

is captured by the inequality K(x, y) ≤ K(x) + K(y | x) + O(log(|x| + |y|)). The
symmetry of information principle is a theorem in Kolmogorov complexity stating
that this is essentially the most economical way of describing the pair (x, y). In
other words: K(x, y) ≥ K(x) + K(y | x) − O(log(|x| + |y|)). One can then easily
derive that K(x) − K(x|y) = K(y) − K(y | x), up to a term of order O(log(|x| + |y|)).
Roughly speaking, the information that x contains about y is about the same the
information that y contains about x.

The proof of symmetry of information for K requires an exhaustive search,
which is not available in the time-bounded setting. Nevertheless, different forms
of the principle can still be established in this more delicate setting under average-
case easiness assumptions [GK22, Hir22b, GKLO22].

Theorem 20 (Symmetry of Information for pKt under DistNP ⊆ AvgBPP [GKLO22]20).
If DistNP ⊆ AvgBPP, then there exist polynomials p and p0 such that for all suf-
ficiently large x, y ∈ {0, 1}∗ and every t ≥ p0(|x|, |y|),

pKt(x, y) ≥ pKp(t)(x) + pKp(t)(y | x) − log p(t).

Assuming Theorem 20, we provide a high-level exposition of the proof of a
variant of Item 2 from Theorem 19: If DistΣP

2 ⊆ AvgBPP then NP ⊆ RTIME[2O(n/ log n)].
(A detailed informal presentation of Item 2 of Theorem 19 can be found in [GKLO22,
Section 1.3].) Assume that DistΣP

2 ⊆ AvgBPP, and let L ∈ NP. Fix some NP-
verifier V for this language. For a string x ∈ L of length n, let yx be the lexico-
graphic first string such that V(x, yx) = 1.

1. On the one hand, it follows from Theorem 20 that there is a universal constant
a ≥ 1 such that, for every large enough t, pKta(yx | x) ≤ pKt(x, yx) − pKta(x) +

O(log t).

2. On the other hand, under the assumption that DistΣP
2 ⊆ AvgBPP, it is possible

to prove that, for some universal constant ε > 0 and for every large enough t,
pKt(x, yx) ≤ pKtε(x) + O(log t). This is non-trivial: while it is possible to recover
yx from x with a powerful enough oracle, we must obtain a description of the pair
(x, yx) from (a fixed but arbitrary) x without the aid of such an oracle, using only
an average-case easiness assumption.

3. Putting together the previous inequalities from Steps 1 and 2, we get that for
every large enough t, pKta(yx|x) ≤ pKtε(x) − pKta(x) + O(log t). Consequently, we
can upper bound pKta(yx|x) by the (tε, ta)-probabilistic computational depth of x
plus O(log t), for any t ≥ poly(n), where n = |x|.

20A more general version of this result is used by [GKLO22] to establish Theorem 19 and its
extensions.

BEATCS no 137

168

4. As in the proof sketch of Theorem 18, one can show that for every x there is
some t(n) = 2O(n/ log n) such that pKtε(x) − pKta(x) = O(n/ log n). Consequently,
using that pKt1(·) ≤ pKt2(·) if t1 ≥ t2, there is a constant C ≥ 1 such that, for every
string x of length n, we have pKγ(yx | x) ≤ C · n/ log n, where γ(n) = 2C·n/ log n.

5. Finally, given a positive instance x of L and the upper bound on pKγ(yx | x) from
Step 4, we can recover yx with probability ≥ 2/3 in time 2O(n/ log n). Indeed, this
follows from the definition of conditional pKt complexity: by sampling a random
string w of length 2C·n/ log n and simulating all machines M of length ≤ C · n/ log n
on input (x,w) for at most 2C·n/ log n steps, we generate yx with probability at least
2/3 over the choice of w. Since we can test each string produced in this way using
the polynomial-time verifier V(x, ·), it follows that L ∈ RTIME[2O(n/ log n)].

Remark 21 (Why pKt complexity?). Both language compression (Theorem 17)
and symmetry of information (Theorem 20) are established using techniques from
computational pseudorandomness related to the design and analysis of pseudo-
random generators (PRGs). This approach has proven extremely useful in time-
bounded Kolmogorov complexity (see, e.g., [ABK+06]). In a bit more detail,
in the proof of both results we are interested in establishing bounds on the Kol-
mogorov complexity of a string x. A way of doing this is by considering the string
x as a source of “hardness” (e.g., view x as a hard truth-table) in the construction
of a generator Gx. The typical analysis of a PRG provides a reconstruction rou-
tine, i.e., an algorithm implementing the proof that if we can break Gx using a
distinguisher D, then x cannot be hard. In other words, we obtain bounds on the
conditional time-bounded Kolmogorov complexity of x given D. Crucially, under
assumptions such as DistNP ⊆ AvgBPP, it is often possible to break the corre-
sponding PRG Gx. This provides a powerful way of analysing the time-bounded
Kolmogorov complexity of strings in the context of Theorems 18 and 19. More re-
cently, the papers [Hir20b, Hir21] have highlighted the importance of a particular
“direct product” generator Gx = DPx, which has near-optimal “advice” complex-
ity in its reconstruction procedure and provides tighter bounds on the complexity
of x. In the randomised reconstruction procedure of DPx, the advice depends
on the particular choice of the random string employed by the procedure, which
shows that for a noticeable fraction of random strings w, x has a small description
if we are given the random string w. Now observe that this corresponds precisely
to pKt complexity! In previous work [Hir21], this issue is not present because the
stronger assumption that DistNP ⊆ AvgP provides near-optimal derandomisation
[BFP05] that allows one to directly get Kt bounds. However, the same PRG is not
known to be available under the weaker assumption that DistNP ⊆ AvgBPP.

As explained in [GKLO22], while previous works have employed various
techniques to remove randomness from their arguments in order to analyze Kt

The Bulletin of the EATCS

169

complexity, the idea of incorporating randomness in the framework (via pKt)
comes with other benefits beyond the extension of results to the setting of ran-
domised computations. For instance, [CHV22] established fine-grained connec-
tions between worst-case and average-case complexity. Among other results, they
showed that if NTIME[n] can be deterministically solved in quasi-linear time on
average, then UP ⊆ DTIME[2O(

√
n log n)]. While the argument from [CHV22] re-

quires the construction of an extremely fast PRG via a delicate analysis, the same
result can be proved using pKt complexity with a simpler proof [GKLO22].

As a potentially accessible direction, we pose the following problem related
to Theorem 18 and Item 1 of Theorem 19.

Problem 22. Show that if DistNP ⊆ AvgBPP then NP ⊆ BPTIME[2O(n/ log n)].

6.3 Learning Algorithms from Probabilistic Average-Case Eas-
iness

This section describes an application of probabilistic Kolmogorov complex-
ity to computational learning theory. More precisely, we show that if DistNP ⊆
AvgBPP, then polynomial-size Boolean circuits can be (agnostically) PAC learned
under any samplable distribution in polynomial time. While it is not hard to learn
general Boolean circuits under a worst-case easiness assumption (e.g, NP ⊆ BPP)
using Occam’s razor (see, e.g., [KV94]), here we obtain an interesting conse-
quence for learning under a weaker average-case easiness assumption.

The proof adapts a similar learning result from [HN21], established under
the assumption that DistNP ⊆ AvgP (i.e., average-case easiness for deterministic
algorithms). This exhibits a natural example of a result that can be lifted to the
randomised setting with little effort via pKt complexity.

Let C be a class of Boolean functions. In the PAC learning model, a learner
has access to examples (x, f (x)) labelled according to an unknown function f ∈ C.
The examples x are drawn according to an unknown probability distribution Dn

supported over {0, 1}n. The goal of the learning algorithm is to produce, with
high probability over its internal randomness and draw of labelled examples, a
hypothesis h such that Prx∼Dn[h(x) , f (x)] ≤ ε.

We say that the distribution Dn ∈ Samp[T (n)]/a(n) if it can be sampled by
an algorithm that runs in time T (n) and has advice complexity a(n). (A sampler
described by a uniform machine of code length a counts as advice of length a.)
We consider the learnability of the class C = SIZE[s] of Boolean circuits of size
at most s(n), with respect to an unknown distribution Dn from Samp[T (n)]/a(n).

As in [HN21], the result described below also holds in the more challenging
setting of agnostic learning, where the function f only needs to be close to some
function in C. (See [GKLO22] for a concise presentation of this learning model.)

BEATCS no 137

170

Theorem 23 (Agnostic Learning from Probabilistic Average-Case Easiness of
NP [GKLO22]).
If DistNP ⊆ AvgBPP, then for any time constructible functions s,T, a : N → N,
and ε ∈ [0, 1], SIZE[s(n)] is agnostic learnable on Samp[T (n)]/a(n) in time
poly

(
n, ε−1, s(n),T (n), a(n)

)
.

For the proof of this result, the main idea is to design a random-right-hand-
side-refuter (RRHS-refuter; see [Vad17, KL18]). In short, this is an algorithm
that distinguishes the distribution

(
x(1), . . . , x(m), f (x(1)), . . . f (x(m))

)
from the dis-

tribution
(
x(1), . . . , x(m), b(1), . . . b(m)

)
, where each x(i) is picked from a fixed but

unknown distribution Dn, f ∈ C is a fixed but unknown function and each b(i) is
a uniformly random bit. It is known that such an algorithm can be converted into
an agnostic learner for C under the distribution Dn.

In [HN21] an efficient RRHS-refuter is constructed using an algorithm that
estimates the Kt complexity of a given string, which can be shown to exist under
the assumption that DistNP ⊆ AvgP [Hir21]. In more detail, [HN21] proved that
if a string is sampled from the first distribution, where Dn is efficiently samplable
and f is computable by a polynomial size circuit, then it is likely to have bounded
Kt complexity (for carefully chosen parameters m and t). On the other hand, using
symmetry of information and optimal coding for Kt, which hold under an average-
case easiness assumption [Hir21], it can be shown that a random string from the
second distribution is likely to have large Kt complexity.

In contrast, under the weaker assumption that DistNP ⊆ AvgBPP, we design
an efficient algorithm that estimates the pKt complexity of a given string, which
is a more delicate measure than Kt. Combining this algorithm with the symmetry
of information for pKt (Theorem 20), which holds under the same probabilistic
average-case easiness assumption, and the optimal coding result for pKt (Theo-
rem 14), we are able to construct in a similar way an efficient randomised RRHS-
refuter. As before, this is sufficient to obtain the desired learning conclusion.

It would be interesting to understand if under the same average-case easiness
assumption one can non-trivially learn general Boolean circuits with respect to an
arbitrary distribution, i.e., in the standard sense of the PAC learning model.

Problem 24. Suppose that DistNP ⊆ AvgBPP. Is it possible to PAC learn
Boolean circuits of size O(n) (say, with error ε = 1/10) in time 2n/nω(1)?

We note that this would be possible (via Occam’s Razor) if the same average-
case easiness assumption led to stronger worst-case upper bounds for languages
in NP, such as the conclusion that NP ⊆ BPTIME[2n0.499

].

The Bulletin of the EATCS

171

7 Probabilistic Versus Deterministic Time-Bounded
Kolmogorov Complexity

We have seen that some questions that remain open for classical notions of
time-bounded Kolmogorov complexity (such as Kt) can be unconditionally an-
swered in the case of rKt, rKt, and pKt. For instance, we presented better bounds
for primes with respect to rKt (Theorem 4) and rKt (Theorem 6) in Section 4, and
stated an optimal coding theorem for pKt (Theorem 14) in Section 5. Moreover,
we exhibit several applications of probabilistic time-bounded Kolmogorov com-
plexity to algorithms and complexity in Section 6. It is perhaps a good point to
discuss in more detail the relation between deterministic and probabilistic notions
of Kolmogorov complexity.

It turns out that, under strong enough derandomisation hypotheses, for ev-
ery string x, its deterministic and probabilistic time-bounded Kolmogorov com-
plexities essentially coincide. For instance, for Kt and rKt we have the following
relation.21

Theorem 25 ([Oli19]). The following results hold.

• If promise-BPE ⊆ promise-E, then Kt(x) ≤ O(rKt(x)) for every string x.

• If Kt(x) ≤ O(rKt(x)) for every string x, then BPE ⊆ E/O(n).

In particular, rKt and Kt are linearly related measures if E * i.o.SIZE
[
2Ω(n)

]
.

Note that the connection between derandomisation of probabilistic complexity
classes and time-bounded Kolmogorov complexity holds in both directions: in
a sense, collapsing Kt and rKt for every string x (up to a constant multiplicative
factor) is essentially equivalent to the derandomisation of (promise) BPE, as stated
in Theorem 25.

Similarly, under strong enough assumptions, we can show that pKpoly(x), rKpoly(x),
and Kpoly(x) coincide up to an additive term of order O(log n).

Theorem 26 ([GKLO22]). The following results hold.

• If E * i.o.SIZE
[
2Ω(n)

]
, then there is a polynomial p such that Kp(t)(x) ≤

rKt(x) + log p(t), for every n-bit string x and time bound t(n) ≥ n.

21Recall that E = DTIME[2O(n)] refers to the set of languages that can be decided in deterministic
time 2O(n), while BPE = BTIME[2O(n)] is the set of languages that can be decided in probabilistic
time 2O(n). The promise version of E is defined in the natural way. Recall that for promise-BPE
we do not enforce the acceptance probability of the randomised machine to be bounded away from
1/2 on inputs that do not satisfy the promise.

BEATCS no 137

172

• If E * i.o.NSIZE
[
2Ω(n)

]
, then there is a polynomial p such that Kp(t)(x) ≤

pKt(x) + log p(t), for every n-bit string x and time bound t(n) ≥ n.

• If BPE * i.o.NSIZE
[
2Ω(n)

]
, then there is a polynomial p such that rKp(t)(x) ≤

pKt(x) + log p(t), for every n-bit string x and time bound t(n) ≥ n.

Proof. We describe the proof of the first item. The other two relations can be es-
tablished by an appropriate modification of the argument, and we refer to [GKLO22]
for the details.

Let x ∈ {0, 1}n, and let t(n) ≥ n. First, the assumption E * i.o.SIZE
[
2Ω(n)

]
im-

plies that there is a PRG G : {0, 1}O(log s)
→ {0, 1}s that (1/s)-fools size-s Boolean

circuits and has running time poly(s) [IW97]. Suppose rKt(x) ≤ k. Let M ∈ {0, 1}k

be a probabilistic machine of running time at most t that outputs x with probability
at least 2/3.22 Consider the following function C on inputs of length t:

C(w) = 1 ⇐⇒ M(w) = x.

Clearly, C can be implemented as a poly(t)-size circuit. By definition, the accep-
tance probability of C is at least 2/3. Consequently, there is a seed z ∈ {0, 1}O(log t)

such that C(G(z)) = 1, which in turn implies that M(G(z)) = x. This means
that, given the description of M and z, we can deterministically compute x in time
poly(t). In particular, Kp(t) ≤ k + log p(t), for some large enough polynomial p(·).
This polynomial is selected as a function of the overhead in running time and de-
scription length caused by the PRG. For this reason, it does not depend on x and
t. This completes the proof. �

As a consequence of these (conditional) equivalences, new insights about
probabilistic time-bounded Kolmogorov complexity can also shed light on the
classical deterministic notions.23 In particular, if one believes in the correspond-
ing derandomisation assumptions, establishing certain results for rKt, rKt, and pKt

can be seen as a necessary step before we are able to obtain similar statements for
Kt and Kt. One such example is the task of showing better upper bounds on the
time-bounded Kolmogorov complexity of prime numbers (Section 4).

Of course, one of the main advantages of probabilistic time-bounded Kol-
mogorov complexity is that certain results are known unconditionally. In partic-
ular, in applications there is often no need to rely on unproven conjectures from
complexity theory.

22If M runs for more than t steps on some computation path, we simply truncate its computation.
23As a concrete example, after proving Theorem 11 in [LO21], we noticed that a similar result

also holds for Kt, unconditionally. See [LO21] for more information on this.

The Bulletin of the EATCS

173

8 Unconditional Hardness of Estimating Time-Bounded
Kolmogorov Complexity

In this section, we turn our attention to meta-computational problems, which
are problems that are themselves about computations and their complexity. An
example of such a problem is MCSP (Minimum Circuit Size Problem), where we
are given the truth table of a Boolean function f : {0, 1}m → {0, 1} (represented
as a Boolean string x of length n = 2m) and a size bound s, and must decide if
f can be computed by a Boolean circuit containing at most s gates. Similarly,
we can consider the problem of computing the Kt complexity of an input string
x ∈ {0, 1}n, where t(n) is some fixed polynomial, such as t(n) = n3. In both cases, it
is not hard to see that we obtain a problem in NP. Due to their meta-computational
nature, intriguing properties (e.g., [OPS19]), and connections to other areas such
as learning theory (e.g., [CIKK16]) and cryptography (e.g., [LP20]), it is possible
that the investigation of the complexity of meta-computational problems can offer
a fruitful path towards a proof that P , NP.

Given the challenge of establishing strong unconditional lower bounds for
problems in NP, it is also interesting to consider the complexity of computing
other notions of time-bounded Kolmogorov complexity, such as Kt and rKt. For
instance, given a string x ∈ {0, 1}n, can we efficiently estimate Kt(x)? Note that
this can be done in exponential time using a brute-force search, which places the
decision version of this problem in E = DTIME[2O(n)]. Intuitively, it seems that
computing Kt and rKt should be computationally hard for the following reasons:

(i) It looks like we must perform an exhaustive search over machines of non-
trivial description length.

(ii) Thanks to the definitions of Kt and rKt, even the mere act of checking
whether a specific machine M prints the string x could require an expo-
nential time simulation.

Note that (ii) is not present in problems such as MCSP. (We will revisit this
intuition later in the section.)

The next result shows that MrKtP, the Minimum rKt Problem, is computation-
ally hard for randomised algorithms. Indeed, even a gap version of the problem
remains difficult. Note that the result provides an unconditional complexity lower
bound for a natural problem.24

24As observed by [Oli19], the problem stated next can be solved in randomised exponential
time.

BEATCS no 137

174

Theorem 27 (Complexity Lower Bound for Estimating rKt [Oli19]). For any 0 <
ε < 1, consider the promise problem Πε

rKt = (YESn,NOn)n∈N, where

YESn = {x ∈ {0, 1}n | rKt ≤ nε},
NOn = {x ∈ {0, 1}n | rKt(x) ≥ n − 1}.

Then Πε
rKt < promise-BPTIME[npolylog(n)].

Proof Sketch. The proof can be described in different ways. Here we provide a
high-level exposition of the argument using insights from computational learning
theory. For simplicity, we consider the weaker lower bound Πε

rKt < promise-BPP.
Assume towards a contradiction that Πε

rKt ∈ promise-BPP. We proceed as
follows.

1. Under this assumption, it is possible to show that there is a (promise) natural
property (in the sense of [RR97]) against functions computed by circuits of
size 2δn, for some δ > 0. In other words, we can efficiently distinguish
truth-tables of bounded complexity from random truth-tables.

2. By the main result of [CIKK16], this implies that Boolean circuits of size s
can be PAC learned under the uniform distribution with membership queries
in time poly(s).

3. Exploring the connection between learning and circuit lower bounds from
[OS17a], the existence of such learning algorithms implies that BPE *
SIZE(poly), where SIZE(poly) denotes the set of languages computed by
Boolean circuits of polynomial size.

4. Finally, we argue that if Πε
rKt is in promise-BPP then BPE ⊆ SIZE(poly).

Roughly speaking, this step explores techniques from pseudorandomess
[ABK+06] to show that every L ∈ BPE non-uniformly reduces to Πε

rKt.
Since by assumption this problem can be solved by efficient probabilis-
tic algorithms, and such algorithms can be non-uniformly simulated by
polynomial-size circuits, the inclusion follows.

Given that Items 3 and 4 are in contradiction, we obtain the desired complexity
lower bound. (A proof that employs a different perspective is provided in [Oli19].)

�

Curiously, establishing an analogous lower bound for MKtP remains a noto-
rious open problem (see, e.g., [ABK+06]). Here MKtP refers to the problem of
deciding, given a string x and a positive integer s, whether Kt(x) ≤ s. While it is
believed that MKtP < P, we currently only know how to resolve the randomised

The Bulletin of the EATCS

175

version of the problem (Theorem 27).25 This provides another setting where prob-
abilistic time-bounded Kolmogorov complexity offers an advantage over its deter-
ministic counterpart. Note that Theorem 27 implies that MKtP < BPP under a
derandomisation assumption (Theorem 25).

Before presenting a different lower bound, we revise our initial intuition about
the hardness of computing rKt and Kt. In light of Corollary 12, a result established
after [Oli19], we now understand that the hardness of the gap version of MrKtP
can be blamed on Item (ii) only. Interestingly, an unexpected algorithmic result
sheds light on the hardness of estimating rKt complexity. At the same time, this
tells us that different techniques will be needed to understand the computational
hardness of problems such as MCSP or computing Kt, where the hardness must
come from the analogue of Item (i).

Next, we discuss a complexity lower bound for estimating the rKpoly complex-
ity of an input string.

Theorem 28 (Complexity Lower Bound for Estimating rKpoly [LOS21]). For any
0 < ε < 1 and d ≥ 1 there exists a constant k ≥ 1 for which the following holds.
Consider the promise problem Πε,k

rKt = (YESn,NOn)n∈N, where

YESn = {x ∈ {0, 1}n | rKt(x) ≤ nε},
NOn = {x ∈ {0, 1}n | rKt(x) ≥ n − 1},

and t(n) = nk. Then Πε,k
rKt < promise-BPTIME[nd].

Proof. We establish the weaker result that Πε,k
rKt < promise-DTIME[nd]. The lower

bound against probabilistic time can be established in a similar way, using that
the pseudodeterministic PRG from Theorem 7 also fools probabilistic algorithms
(see [LOS21] for the details).

Fix 0 < ε < 1 and d ≥ 1. Let ε′ = ε/2, d′ = 1, and c′ = d. Instantiate the
pseudodeterministic PRG from Theorem 7 with the parameters ε′, c′, and d′, and
assume that Gn : {0, 1}n

ε′

→ {0, 1}n can be computed probabilistically in time nk′ ,
for some constant k′ (when provided with the correct advice bit α′(n)). We let
k = 2k′.

Now suppose, towards a contradiction, that Πε,k
rKt ∈ promise-DTIME[nd]. Let

A be a deterministic algorithm running in time nd that accepts YESn and rejects
NOn, for every large enough n. We argue that the existence of A contradicts the
infinitely often guarantee of pseudorandomness provided by the PRG Gn. Indeed,
fix a large enough input length n for which Gn succeeds. On the one hand, by our

25The proof of Theorem 27 explores randomised computation to perform an indirect diagonal-
isation, and it is not clear how to implement a similar strategy when only deterministic computa-
tions are available.

BEATCS no 137

176

choice of k and ε′, it is easy to see that every string y ∈ {0, 1}n in the image of
Gn satisfies rKnk

(y) ≤ nε. For this reason, Prz∼{0,1}nε
′ [A(G(z)) = 1] = 1. On the

other hand, by a counting argument, a random string x ∼ {0, 1}n satisfies rKnk
(x) ≥

n − 1 with probability Ω(1) (Proposition 3). This implies that Prx∼{0,1}n[A(x) =

1] ≤ 1 − Ω(1), since A rejects strings in NOn. Now notice that this violates the
pseudorandomness of Gn. In other words, we get that Πε,k

rKt < promise-DTIME[nd].
�

A complexity lower bound for computing Kt against deterministic polynomial-
time algorithms and for t = nω(1) was established by Hirahara [Hir20b] using
different techniques. In both cases, the time bound in the definition of the Kol-
mogorov complexity measure is larger than the time bound of the algorithm try-
ing to compute or estimate Kolmogorov complexity. Needless to say, it would be
extremely interesting to establish a complexity lower bound for computing Kol-
mogorov complexity with respect to a fixed polynomial t in Kt or rKt that holds
against arbitrary polynomial-time algorithms (see [LP20]).

A lower bound question that should be more accessible is presented next.

Problem 29 (Exponential Hardness of Estimating rKt). Show that for any constant
0 < ε < 1 there is a constant δ > 0 such that Πε

rKt < promise-BPTIME[2nδ].

9 Constructing Strings of Large rKt Complexity and
Hierarchy Theorems

The problem of explicitly constructing mathematical objects of different types
(beyond merely showing their existence) has received much attention in computer
science and mathematics. For instance, in Section 1 we described the problem of
deterministically producing an n-bit prime. In this section, we are interested in
the problem of constructing incompressible strings. Some problems of this form
are particularly challenging, since given a long incompressible string (e.g., with
respect to circuit size or Kpoly complexity), several other constructions problems
can be solved (see, e.g., [San12, Kor21]).

In more detail, here we consider the problem of explicitly constructing strings
that have large rKt complexity. To provide intuition, let us first consider the much
simpler case of Kt complexity. Our goal is to design a deterministic algorithm
that, given 1n, outputs an n-bit string x such that Kt(x) ≥ n/10. Does this problem
admit a polynomial-time algorithm? It is easy to see that this problem cannot be
solved in time 2o(n). Indeed, it follows from the very definition of Kt complexity
that any deterministic algorithm A(1n) running in time 2o(n) can only print an n-
bit string of Kt complexity o(n). However, it is not hard to see that this explicit

The Bulletin of the EATCS

177

construction problem can be solved in time 2O(n) via an exhaustive search (for
instance, by enumerating all strings produced in time ≤ 2n/10 by machines of
description length ≤ n/10).

Similarly, we ask if there is an algorithm that runs in time 2O(n) and produces
an n-bit string x such that rKt(x) ≥ n/10. The natural brute-force approach to solve
this problems involves the simulation of randomised algorithms. For this reason,
we relax our goal as follows: Is there a randomised algorithm A(1n) that runs in
time 2O(n) and outputs with probability at least 2/3 a fixed n-bit string wn such that
rKt(wn) ≥ n/10? In other words, we would like to have a pseudodeterministic
construction of strings of large rKt complexity, in the sense of [GG11].

A careful inspection of the natural brute-force approach that works for Kt re-
veals that it simply does not work in the case of rKt: roughly speaking, the simula-
tion of different randomised machines comes with uncertainties, and it is not clear
if after all the simulations we isolate the same string wn with high probability.

In [LOS21], we connected the problem of constructing strings of large rKt
complexity to the longstanding question of establishing a strong time hierarchy
theorem for probabilistic computations. Recall that, while it is known that BPEXP *
BPP, it is consistent with current knowledge that inclusions such as BPTIME[2n] ⊆
BPTIME[2n0.01

] and BPTIME[n50] ⊆ BPTIME[n2] might hold.26

Theorem 30 (Explicit Construction Problem for rKt and Probabilistic Time Hier-
archies). The following statements are equivalent:

(1) Pseudodeterministic construction of strings of large rKt complexity: There
is a constant ε > 0 and a randomised algorithm A that, given m, runs in
time 2O(m) and outputs with probability at least 2/3 a fixed m-bit string wm

such that rKt(wm) ≥ εm.

(2) Strong time hierarchy theorem for probabilistic computation: There are
constants k ≥ 1 and λ > 0 for which the following holds. For any con-
structive function n ≤ t(n) ≤ 2λ·2

n
, there is a language L ∈ BPTIME[(t(n)k]

such that L < i.o.BPTIME[t(n)]/ log t(n).

The proof of Theorem 30 is elementary, and proceeds by associating with a
language L a sequence of truth-tables, one for each input length n (each truth-
table can be seen as a string of length m = 2n). For a sketch of the argument and
a detailed proof, see [LOS21].

Note that the connection between the explicit (pseudodeterministic) construc-
tion problem for rKt and hierarchy theorems goes in both ways. More generally,
[LOS21] explored the fruitful relation between pseudodeterministic PRGs (see

26Some separations have been established if we allow advice bits in the upper bound and lower
bound. For instance, BPTIME[n50]/1 * BPTIME[n2]/1 (see, e.g., [Bar02, FS04]).

BEATCS no 137

178

Section 4), the explicit construction problem for rKt complexity, and hierarchy
theorems for probabilistic time to make advances in all these areas. On the other
hand, [LO21] connected rKt complexity and its coding theorem (Theorem 10) to
the study of time hierarchy theorems for sampling distributions (cf., [Wat14]).

10 Concluding Remarks
We presented key results in probabilistic Kolmogorov complexity and applica-

tions to several areas, including explicit constructions, complexity lower bounds,
sampling algorithms, average-case complexity, and learning theory. The proba-
bilistic measures rKt, pKt, and rKt are particularly useful in settings that involve
randomised algorithms. While it is quite possible for these complexity measures
to be essentially equivalent to their deterministic counterparts (Section 7), they
allow us to obtain unconditional results that do not rely on derandomisation as-
sumptions. In some cases, probabilistic Kolmogorov complexity can significantly
simplify existing arguments or is the only known approach to certain results.

The results presented in the preceding sections naturally suggest several prob-
lems and directions. For example, we believe that it should be possible to make
progress on the following fronts:

– Designing improved pseudodeterministic PRGs and obtaining better upper
bounds on the rKt complexity of prime numbers.

– Establishing new unconditional lower bounds on the complexity of meta-
computational problems such as MKtP and MrKtP.

For a more precise formulation of these problems, we refer to the concrete ques-
tions stated in the corresponding sections of the article (Section 4 and Section 8).
Additional questions of interest are presented in other parts of the survey.

Given the number of recent advances and applications of time-bounded Kol-
mogorov complexity to algorithms and complexity theory (see Section 1), it is
hard to predict which directions will be more fruitful. Nevertheless, we are par-
ticularly optimistic about the role that probabilistic Kolmogorov complexity can
take in the investigation of the relations between average-case complexity and
worst-case complexity, cryptography, and learning algorithms. In particular, anal-
ogously to results of [Hir21], under the assumption that DistNP ⊆ AvgBPP,
all main pillars of Kolmogorov complexity are known to hold for pKt complex-
ity: incompressibility (Proposition 3), coding theorem (Theorem 14), language
compression (Theorem 17), and symmetry of information (Theorem 20). Tak-
ing into account the wide applicability of these results and the ubiquitous role of
randomised algorithms in theoretical computer science, we expect to see further

The Bulletin of the EATCS

179

developments in average-case complexity powered by tools and perspectives from
probabilistic Kolmogorov complexity.

References
[Aar14] Scott Aaronson. The equivalence of sampling and searching. Theory

Comput. Syst., 55(2):281–298, 2014.

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melke-
beek, and Detlef Ronneburger. Power from random strings. SIAM J.
Comput., 35(6):1467–1493, 2006.

[AF09] Luis Antunes and Lance Fortnow. Worst-case running times for
average-case algorithms. In Conference on Computational Complex-
ity (CCC), pages 298–303, 2009.

[AFvM01] Luis Antunes, Lance Fortnow, and Dieter van Melkebeek. Compu-
tational depth. In Conference on Computational Complexity (CCC),
pages 266–273, 2001.

[AKS02] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.
Ann. of Math., 2:781–793, 2002.

[All92] Eric Allender. Applications of time-bounded Kolmogorov complexity
in complexity theory. In Kolmogorov complexity and computational
complexity, pages 4–22. Springer, 1992.

[All01] Eric Allender. When worlds collide: Derandomization, lower bounds,
and Kolmogorov complexity. In International Conference on Foun-
dations of Software Technology and Theoretical Computer Science
(FSTTCS), pages 1–15. Springer, 2001.

[All17] Eric Allender. The complexity of complexity. In Computability and
Complexity, pages 79–94. Springer, 2017.

[All21] Eric Allender. Vaughan Jones, Kolmogorov complexity, and the new
complexity landscape around circuit minimization. New Zealand
Journal of Mathematics, 52:585–604, 2021.

[Bar02] Boaz Barak. A probabilistic-time hierarchy theorem for “slightly non-
uniform" algorithms. In International Workshop on Randomization
and Approximation Techniques (RANDOM), pages 194–208, 2002.

BEATCS no 137

180

[BFP05] Harry Buhrman, Lance Fortnow, and Aduri Pavan. Some results on
derandomization. Theory Comput. Syst., 38(2):211–227, 2005.

[BLvM05] Harry Buhrman, Troy Lee, and Dieter van Melkebeek. Language
compression and pseudorandom generators. Comput. Complex.,
14(3):228–255, 2005.

[BMVZ18] Bruno Bauwens, Anton Makhlin, Nikolai K. Vereshchagin, and Mar-
ius Zimand. Short lists with short programs in short time. Comput.
Complex., 27(1):31–61, 2018.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity.
Found. Trends Theor. Comput. Sci., 2(1), 2006.

[CHV22] Lijie Chen, Shuichi Hirahara, and Neekon Vafa. Average-case hard-
ness of NP and PH from worst-case fine-grained assumptions. In In-
novations in Theoretical Computer Science (ITCS), 2022.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and
Antonina Kolokolova. Learning algorithms from natural proofs. In
Conference on Computational Complexity (CCC), pages 10:1–10:24,
2016.

[For04] Lance Fortnow. Kolmogorov complexity and computational complex-
ity. Complexity of Computations and Proofs. Quaderni di Matematica,
13, 2004.

[FS04] Lance Fortnow and Rahul Santhanam. Hierarchy theorems for proba-
bilistic polynomial time. In Symposium on Foundations of Computer
Science (FOCS, pages 316–324, 2004.

[GG11] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with
unique answers and their cryptographic applications. Electronic Col-
loquium on Computational Complexity (ECCC), 18:136, 2011.

[GK22] Halley Goldberg and Valentine Kabanets. A simpler proof of the
worst-case to average-case reduction for polynomial hierarchy via
symmetry of information. Electron. Colloquium Comput. Complex.,
7:1–14, 2022.

[GKLO22] Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C.
Oliveira. Probabilistic Kolmogorov complexity with applications to
average-case complexity. In Computational Complexity Conference
(CCC), 2022.

The Bulletin of the EATCS

181

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reduc-
tions within NP. In Symposium on Foundations of Computer Science
(FOCS), pages 247–258, 2018.

[Hir20a] Shuichi Hirahara. Characterizing average-case complexity of PH by
worst-case meta-complexity. In Symposium on Foundations of Com-
puter Science (FOCS), pages 50–60, 2020.

[Hir20b] Shuichi Hirahara. Unexpected hardness results for Kolmogorov com-
plexity under uniform reductions. In Symposium on Theory of Com-
puting (STOC), pages 1038–1051, 2020.

[Hir21] Shuichi Hirahara. Average-case hardness of NP from exponential
worst-case hardness assumptions. In Symposium on Theory of Com-
puting (STOC), pages 292–302, 2021.

[Hir22a] Shuichi Hirahara. Meta-computational average-case complexity: A
new paradigm toward excluding heuristica. Bull. EATCS, 136, 2022.

[Hir22b] Shuichi Hirahara. Symmetry of information in heuristica. Manuscript,
2022.

[HN21] Shuichi Hirahara and Mikito Nanashima. On worst-case learning in
relativized heuristica. In Symposium on Foundations of Computer Sci-
ence (FOCS), 2021.

[HS22] Shuichi Hirahara and Rahul Santhanam. Errorless versus error-prone
average-case complexity. In Innovations in Theoretical Computer Sci-
ence Conference (ITCS), 2022.

[Ila20] Rahul Ilango. Connecting Perebor conjectures: Towards a search to
decision reduction for minimizing formulas. In Computational Com-
plexity Conference (CCC), 2020.

[Ila21] Rahul Ilango. The minimum formula size problem is (ETH) hard.
In Symposium on Foundations of Computer Science (FOCS), pages
427–432, 2021.

[ILO20] Rahul Ilango, Bruno Loff, and Igor C. Oliveira. NP-hardness of circuit
minimization for multi-output functions. In Computational Complex-
ity Conference (CCC), 2020.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of
k-SAT. J. Comput. Syst. Sci., 62(2):367–375, 2001.

BEATCS no 137

182

[IRS21] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any
samplable distribution suffices: New characterizations of one-way
functions by meta-complexity. Electron. Colloquium Comput. Com-
plex., page 82, 2021.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires expo-
nential circuits: Derandomizing the XOR lemma. In Symposium on
Theory of Computing (STOC), pages 220–229. ACM, 1997.

[KL18] Pravesh K. Kothari and Roi Livni. Improper learning by refuting.
In Innovations in Theoretical Computer Science Conference (ITCS),
pages 55:1–55:10, 2018.

[Ko91] Ker-I Ko. On the complexity of learning minimum time-bounded Tur-
ing machines. SIAM J. Comput., 20(5):962–986, 1991.

[Kor21] Oliver Korten. The hardest explicit construction. In Symposium on
Foundations of Computer Science (FOCS), pages 433–444, 2021.

[Kra22] Jan Krajíček. Information in propositional proofs and algorithmic
proof search. The Journal of Symbolic Logic, 2022.

[KV94] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Com-
putational Learning Theory. MIT Press, 1994.

[Lee06] Troy Lee. Kolmogorov complexity and formula lower bounds. PhD
thesis, University of Amsterdam, 2006.

[Lev84] Leonid A. Levin. Randomness conservation inequalities; information
and independence in mathematical theories. Information and Control,
61(1):15–37, 1984.

[LO87] Jeffrey C. Lagarias and Andrew M. Odlyzko. Computing π(x): An
analytic method. J. Algorithms, 8(2):173–191, 1987.

[LO21] Zhenjian Lu and Igor C. Oliveira. An efficient coding theorem via
probabilistic representations and its applications. In International
Colloquium on Automata, Languages, and Programming (ICALP),
pages 94:1–94:20, 2021.

[LOS21] Zhenjian Lu, Igor C. Oliveira, and Rahul Santhanam. Pseudodeter-
ministic algorithms and the structure of probabilistic time. In Sympo-
sium on Theory of Computing (STOC), pages 303–316, 2021.

The Bulletin of the EATCS

183

[LOZ22] Zhenjian Lu, Igor C. Oliveira, and Marius Zimand. Optimal coding
theorems in time-bounded Kolmogorov complexity. In International
Colloquium on Automata, Languages, and Programming (ICALP),
2022.

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov
complexity. In Symposium on Foundations of Computer Science
(FOCS), pages 1243–1254, 2020.

[LP21] Yanyi Liu and Rafael Pass. On the possibility of basing cryptogra-
phy on EXP,BPP. In Annual International Cryptology Conference
(CRYPTO), pages 11–40, 2021.

[LV92] Ming Li and Paul M. B. Vitányi. Average-case complexity under
the universal distribution equals worst-case complexity. Inf. Process.
Lett., 42(3):145–149, 1992.

[LV19] Ming Li and Paul M. B. Vitányi. An introduction to Kolmogorov com-
plexity and its applications. Springer, 2019.

[Oli19] Igor C. Oliveira. Randomness and intractability in Kolmogorov com-
plexity. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 32:1–32:14, 2019.

[OPS19] Igor C. Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnifica-
tion near state-of-the-art lower bounds. In Computational Complexity
Conference (CCC), pages 27:1–27:29, 2019.

[OS17a] Igor C. Oliveira and Rahul Santhanam. Conspiracies between learning
algorithms, circuit lower bounds, and pseudorandomness. In Compu-
tational Complexity Conference (CCC), pages 18:1–18:49, 2017.

[OS17b] Igor C. Oliveira and Rahul Santhanam. Pseudodeterministic construc-
tions in subexponential time. In Symposium on Theory of Computing
(STOC), pages 665–677, 2017.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Com-
put. Syst. Sci., 55(1):24–35, 1997.

[RS21] Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes par-
allel cryptography. In Computational Complexity Conference (CCC),
pages 35:1–35:58, 2021.

BEATCS no 137

184

[RSZ21] Andrei E. Romashchenko, Alexander Shen, and Marius Zimand. 27
open problems in Kolmogorov complexity. SIGACT News, 52(4):31–
54, 2021.

[San12] Rahul Santhanam. The complexity of explicit constructions. Theory
Comput. Syst., 51(3):297–312, 2012.

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In
Symposium on Theory of Computing (STOC), pages 330–335, 1983.

[SUV17] Alexander Shen, Vladimir Andreyevich Uspensky, and Nikolay
Vereshchagin. Kolmogorov Complexity and Algorithmic Randomness.
American Mathematical Society, 2017.

[TCH12] Terence Tao, Ernest Croot, III, and Harald Helfgott. Deterministic
methods to find primes. Math. Comp., 81(278):1233–1246, 2012.

[Vad17] Salil P. Vadhan. On learning vs. refutation. In Conference on Learning
Theory (COLT), 2017.

[Wat14] Thomas Watson. Time hierarchies for sampling distributions. SIAM
J. Comput., 43(5):1709–1727, 2014.

The Bulletin of the EATCS

185

186

The Bulletin of the EATCS

187

The Theory Blogs Column
by

Luca Trevisan

Bocconi University
Via Sarfatti 25, 20136 Milano, Italy

L.Trevisan@UniBocconi.it

https://lucatrevisan.github.io

In this issue, Professor Scott Aaronson, the David J. Bruton Centennial Profes-
sor at UT Austin, Director of the Quantum Information Center, and Fellow of the
ACM, will answer our questions about his blog. You won’t believe his answer to
our fifth question!

Scott writes shtetl optimized, one of the most widely read blogs on theoretical
computer science and quantum computing. In this issue, Scott tells us what have
been the inspirations and anti-inspirations for his blog, what’s up with the name of
the blog, how computer science theory blogs can influence research, and what are
some topics that he feels strongly about. He also revisits some of his older posts
for us.

Scott’s blog is at https://scottaaronson.blog//

BEATCS no 137

188

Shtetl Optimized

A Conversation with Scott Aaronson

Q. Scott, thanks for taking the time to talk about your blog to our readers.
When did you start your blog, and what motivated you to start? Also, can you tell
us the story, if there is one, behind the name?

I started the blog in Fall 2005, mostly out of boredom. At that point, friends
had been urging me to start a blog for several years (“you seem to have a lot of
opinions!”), but I’d resisted them, giving reasons like the time commitment, the
ephemeral nature of the medium, and the danger of making enemies and offending
people. Incidentally, it would later turn out that all of those reasons were 100%
valid! But on one particular night in 2005 ... well, I don’t remember exactly
what was going through my mind, but setting up a blog temporarily seemed like a
pretty risk-free experiment. Then the experiment quickly snowballed to become
an inextricable part of who I was, and the rest is history.

As for the blog’s title, with your kind indulgence I’ll simply quote what I said
when John Horgan asked me the same question in 2016:

Shtetls were Jewish villages in pre-Holocaust Eastern Europe.
They’re where all my ancestors came from—some actually from the
same place (Vitebsk) as Marc Chagall, who painted the fiddler on the
roof. I watched Fiddler many times as a kid, both the movie and the
play. And every time, there was a jolt of recognition, like: “So that’s
the world I was designed to inhabit. All the aspects of my person-
ality that mark me out as weird today, the obsessive reading and the
literal-mindedness and even the rocking back and forth—I probably
have them because back then they would’ve made me a better Talmud
scholar, or something.” So as I saw it, the defining question of my life
was whether I’d be able to leverage these traits from a world that no
longer existed, for the totally different world into which I was born.

Of course, there are pockets where the shtetl still does exist; there
are orthodox Jews. As it happens, I went to an orthodox Hebrew day
school, where I was exposed to that. But by the time I was 12, and
was reading Bertrand Russell and Richard Dawkins and Carl Sagan
and Isaac Asimov and so forth, it was obvious to me that I could
never be a believer in any conventional sense, even if I’m happy to

The Bulletin of the EATCS

189

use Einsteinian pseudo-religious language, as in “why did God make
the world quantum rather than classical?” So from then on, the thing
I yearned for was a community that would be as welcoming of in-
tellectual obsessives as a yeshiva was—but without any unquestioned
dogmas or taboos, where absolutely anything could be revised based
on evidence, and which was open to new ideas from anyone of any
ethnicity.

Q. Your posts vary very broadly in content and tone, from rather technical
expositions to commentary on social or political topics. Did you have some inspi-
ration or model for what you wanted your expository technical posts to be like?
What about the non-technical posts?

When I started Shtetl-Optimized, my immediate inspirations were the other
math, CS, and physics blogs that I regularly read back then, many of which are
still active today. I’m talking especially about the blogs of Lance Fortnow, Sean
Carroll, Peter Woit, and Dave Bacon. I was also heavily influenced by John Baez’s
“This Week’s Finds in Mathematical Physics,” which was a science blog before
that concept even existed; and by Chris Fuchs’s voluminous, chatty correspon-
dence with other physicists (which he posted on the arXiv) about the foundations
of quantum mechanics. Meanwhile, Luboš Motl’s blog “The Reference Frame”
was a sort of anti-inspiration: a cautionary lesson of what my blog could become
if I succumbed to the temptation to ridicule and insult those I disagreed with.

Beyond that, there were all the writers who I’d read and admired as a teenager
and a young adult, and who I’d broadly categorize as “defenders of the En-
lightenment”: for example, Carl Sagan, Isaac Asimov, Richard Dawkins, Steven
Pinker, Bertrand Russell, Martin Gardner, Steven Weinberg, and Rebecca Gold-
stein. These writers had (and have) varied politics, from quasi-socialist to quasi-
libertarian, and varied expertise and interests, from biology to linguistics to as-
tronomy to philosophy to math. What they shared, you might say, was a radical
vision of the unity of knowledge. Like, they’d often be at pains to explain some
scientific or philosophical idea as lucidly as possible (and they were all damn good
at that). But then a paragraph later they’d be on a soapbox, passionately arguing
for what they saw as sanity on some moral or social question. There was no
firewall between two; it was all part of the same stew.

Somehow, these writers hadn’t got the memo that the whole Enlightenment
project, of fixing our broken civilization through science and reason and clear
prose, had crashed and burned by WWII or the 60s or whatever; that it was now
passé and fit only for knowing sneers. They hadn’t heard that there were no longer
any profound truths about the nature of the world, that it was all just our tribe’s
claims to power versus the enemy tribe’s, plus some technical know-how of no

BEATCS no 137

190

broader significance. So these writers persisted in unselfconsciously thrusting
scientific and philosophical gems in front of the reader, as if to ask “but how
can you persist in unreason when there’s this?” If Sagan, Dawkins, and the rest
didn’t always draw a clear line between popularizing science and ideology, that
was because popularizing science was a central part of their ideology: they burned
with an almost-religious conviction (ironically, given their close association with
atheism) that the truth could set us free.

I’m acutely aware that I’ll never measure up to any of these writers. But their
work is the background for almost everything I’ve tried to do as a blogger.

Q. Your technical posts often get many thoughtful comments and stimulate
fairly deep discussions. Have you ever proved a result or formulated a conjecture
as a consequence of a discussion in your comment section?

Yes. Probably the best example involves a post from just two years ago,
which advertised my upcoming survey article entitled “The Busy Beaver Frontier.”
(Recall that BB(n), the nth value of the Busy Beaver function, is the maximum
number of steps other than infinity that an n-state Turing machine can make on
an initially blank tape.) Now, the wonderful thing about a topic like the Busy
Beaver function is that so little background is needed to pose new questions or
even make original contributions. So, what happened is that a bunch of Shtetl-
Optimized readers, especially Joshua Zelinsky, Bruce Smith, Nick Drozd, and
“Job” (a pseudonym), kept suggesting new variations, such as the “Lazy Beaver”
function, defined as LB(n) = the least T for which no n-state Turing machine halts
after exactly T steps. And they posed new questions: for example, are n-state
Busy Beaver machines essentially unique? are they strongly connected? And
they proved new results: for example, that BB(n + 1) ≥ BB(n) + 3 for all n. And
then I got in on the action and worked with them on some of these things, and
every day I had to revise my survey article to account for what was happening in
my comment section! I’m still hoping to write a followup paper with Smith about
the theory of the Lazy Beaver function.

Q. How else can blogs influence TCS research?
Yeah, more often my blog’s influence on my research has been less direct.

As one example, debates about quantum supremacy experiments in my comment
section played an important role in motivating the work that I subsequently did
with Sam Gunn, then an undergrad at UT Austin, on the classical hardness of
spoofing Google’s “Linear Cross-Entropy Benchmark” (LXEB).

But I’ve found that maybe the best role blogs can play in TCS research, is as
a workshop for ideas and open problems that aren’t yet ready for formal publi-
cation. I’ve repeatedly been motivated by questions that Lance Fortnow posed
on his blog: for example, whether NPBQP

⊆ BQPNP, a question that William

The Bulletin of the EATCS

191

Kretschmer, DeVon Ingram, and I recently answered relative to an oracle. My
2007 post “The Aaronson $25.00 Prize” offered, well, a $25 prize for an inter-
active protocol that would prove the results of any quantum computation to a
classical skeptic. There’s since been spectacular progress on that problem—I’ve
awarded not one but three $25.00 prizes!—although it’s hard to determine what
causal role, if any, my prize played. Likewise, my 2006 post “The Quantum PCP
Manifesto” was the first place the possibility of a quantum analogue of the PCP
Theorem was discussed in writing, and my 2008 post “Arithmetic natural proofs
theory is sought” did the same for an arithmetic version of the Razborov-Rudich
barrier. Since then, both subjects have become orders-of-magnitude deeper than
whatever trivial first ideas I had, but the latest papers on them still need to cite my
blog posts, because the blog posts were first! I’d like to imagine that the blog
posts did play a role in catalyzing these subjects, although I don’t know for sure.

Q. Maybe I am mistaken, but I feel that people in academia, and especially
in science and engineering, are increasingly reluctant to speak out about contro-
versial subjects (I know I am). In your blog you don’t shy away from weighing in
on social and political issues that you feel strongly about. I wonder what are you
thoughts about the role of public intellectuals that theoretical computer scientists
could fill, and what are public debates where you would like to see more voices
coming from our community.

This question feels ironic for me, because I don’t blog about controversial
subjects in the freewheeling way that I used to! There are two reasons for this:
one about the whole Internet, the other about me.

In 2005, the open Internet still felt like a playground, where sure, you could
get into vicious verbal fights, but then you’d make up the next day, and in any
case very few “real-life” friends or colleagues read what was said, and even fewer
remembered or cared. So as a blogger, you might as well experiment, take risks,
push the boundaries of what you were allowed to say: after all, wasn’t that how
you became worth reading?

But as I’m far from the first to point out, something changed dramatically
around 2013. Since then, the open Internet has felt more like a bullet-riddled bat-
tlefield, with the trained snipers of Twitter and Reddit and so forth waiting to take
out anybody who foolishly blunders into their sights with an unapproved opinion.
And crucially, even if you tell yourself that you’re ready to face the snipers—that
you’re armed with your courage and experience, and your loyal friends and fam-
ily, and (of course) the protections of academic tenure—there’s still the question
of time! If, like me, you feel a neurotic obligation to respond point-by-point when
people criticize or attack you, then when hundreds or thousands people do exactly
that, working through all of it can take weeks or months, as it repeatedly has for
me.

BEATCS no 137

192

The other thing that’s changed is my situation in life. When I started blog-
ging, I was an obscure postdoc at the University of Waterloo. Not many people
cared what I said. Now, though, I can’t say anything of any importance, without
creating the news that Professor Aaronson, David J. Bruton Centennial Professor
at UT Austin and Director of the Quantum Information Center and Fellow of the
ACM, said X. And my critics then ask: but won’t Aaronson’s vulnerable students
now be intimidated from saying not(X)? How does what Aaronson said reflect on
his department and university, or his fellow Enlightenment liberals, or the whole
fields of TCS or quantum information? Blogging is a lot less fun when you’ve
got all of that, so to speak, peering over your shoulder whenever you type.

All the same, I do still weigh in on controversial issues—often because the
issues really matter to me, and I’d feel complicit if I didn’t use my blog to try to
make a difference! In recent years, some of my pet issues have been:

1. the defense of rigorous science and math education, including the
increasingly-maligned tracking, acceleration, magnet programs, and stan-
dardized tests;

2. the defense of the American scientific enterprise, including support for visas
for international students, and opposition to punitive taxes on PhD students;

3. compassion rather than contempt for the social difficulties faced by those
with autism-spectrum or Aspberger’s-syndrome traits (things that aren’t ...
entirely unknown in math and TCS),

4. advocacy of a “WWII-style response” to the COVID-19 pandemic (which
could’ve included, for example, mass vaccination starting as early as Spring
2020);

5. the necessity of nuclear power in confronting the climate emergency; and

6. the defense of liberal democracy against an authoritarianism that’s now
resurgent around the world.

You might notice that, of these six, only the first three are plausibly informed by
any special experience or knowledge that I have! The others are simply things
that I deeply care about as a human being.

In any case, there are countless societal issues where lots of theoretical com-
puter scientists do have special expertise, even if I don’t. A few obvious examples
here are encryption policy, digital privacy, and fairness and bias in machine learn-
ing. Beyond that, there are all sorts of philosophical questions that the wider
intellectual world cares about—e.g., at what point (if any) should machines be

The Bulletin of the EATCS

193

considered conscious? what does Gödel’s Theorem mean for the nature of math-
ematical knowledge? is the universe a computer simulation? how does quantum
mechanics bear on free will?—where, with all due humility, I think the perspec-
tives of theoretical computer scientists like ourselves can be pretty clarifying. So
when the world hands us these opportunities for broader relevance on a platter, I
really hope my colleagues won’t shy away from them!

Q. I would like to ask you to pick one or a couple of your favorite posts, and
tell us about it/them.

There were dozens of posts that amused me or others at the time. Looking
back, though, I’m proudest of the posts that made an actual difference to some-
thing. One example would be my recent post “Win a Scott Aaronson Specula-
tion Grant!,” which helped me distribute $200,000 (which the philanthropist Jaan
Tallinn had placed in my charge) to some wonderful math and science enrichment
programs. Many of those programs wouldn’t have otherwise been able to con-
tinue, and I wouldn’t have learned about them if not for the blog. Then there
was “First They Came for the Iranians,” about the devastating effect that Trump’s
travel ban was having on my Iranian PhD student Saeed Mehraban, which became
the most-shared post in my blog’s history and got media coverage. And of course
all the posts I wrote pouring cold water on claims of quantum computers getting
dramatic speedups for NP-complete problems and the like, which felt therapeutic
to write.

Another, very different example would be my 2014 post “Why I Am Not An
Integrated Information Theorist (or, The Unconscious Expander),” where I laid
out what I saw as a fatal problem with Giulio Tononi’s popular Integrated Infor-
mation Theory (IIT) of consciousness: namely, that the theory predicts immense
amounts of consciousness in (e.g.) simple graphs made of XOR gates, which
don’t even do anything intelligent. My post surely wasn’t the first place this issue
had been mentioned, but it somehow provoked famous scientists and philosophers
like David Chalmers, Max Tegmark, and Tononi himself to respond right on my
blog, until finally this critique of IIT became impossible to ignore, and I even kept
getting invited to workshops and so forth to repeat what I’d said in the blog post!
Notably, in writing this post, I drew heavily on facts that I knew from TCS—
such as the notion of an expander graph, basic properties of the Reed-Solomon
code, and Valiant’s construction of linear-size superconcentrators—which, while
simple, were generally not known to the people who I was trying to reach.

Q. Anything else you would like to tell our readers?
Theoretical computer science, and CS more generally, is a lot younger than

math or physics or economics or biology or philosophy. Even while CS more
and more drives the world’s economy, we still have to contend with critics who

BEATCS no 137

194

wonder whether it’s a real science at all, or whether it’s just glorified software
development (with, perhaps, TCS as merely an obscure branch of discrete math,
promoted by its association with the computer revolution to undeserved impor-
tance). Occasionally I’m tempted to agree with them ... but then I reread Alan
Turing. Well, also Boole and Babbage and Lovelace and von Neumann and Emil
Post and Vannevar Bush, but Turing most of all.

Reading Turing gives me the same goosebumps that I get when I read New-
ton or Darwin or Einstein: there he is, deducing from abstract principles some-
thing absolutely fundamental about the shape of the real world, and in deducing
it, transforming the real world. Like it or not, we in TCS are the heirs of Turing,
keepers of his legacy. So whenever we’re tempted to say that our job is just to
publish more STOC/FOCS papers, shave off log factors, etc., while leaving the
wider societal questions to others, we should remember that Turing faced a sim-
ilar choice in 1939. He could’ve just kept publishing papers on computability
theory. Instead, in the mere 15 years that remained to him, Turing chose to ad-
dress himself first to the defeat of Nazi Germany’s naval encryption, and then to
the nature of consciousness and intelligence, the building and programming of
the first electronic computers, and (when he needed some variety) developmental
biology, statistics, and quantum mechanics. And I think the world is better for all
of that, and we in TCS today can honor Turing by taking a similarly broad view
of what our subject is.

The Bulletin of the EATCS

195

196

The Bulletin of the EATCS

197

The Distributed Computing Column

Seth Gilbert
National University of Singapore
seth.gilbert@comp.nus.edu.sg

In this issue of the distributed computing column, we return to the topic of
blockchains. The column provides an overview of the Red Belly Blockchain, an
innovative new blockchain developed in Australia (and named after the locally
prevalent red-bellied black snake). Red Belly Blockchain has served as a testbed
for several cutting edge approaches to designing a blockchain, including ideas
from distributed computing, game theory, and formal verification. Some examples
described in this paper include:

• Red Belly blockchain is (provably) accountable, providing a cryptograph-
ically secure “proof-of-fraud” when users act maliciously and disrupt the
system.

• The blockchain contains several scalability innovations. For example, it
takes an interesting approach to sharding (and “superblocks”), using a lead-
erless (“democratic”) approach to dynamically create new shards as needed.

• The consensus component of the Red Belly blockchain has been formally
verified with model checking tools, providing stronger guarantees of cor-
rectness.

The article also discusses new optimizations in handling smart contracts, chal-
lenges in governence, and trade-offs between mutability, accountability, and pri-
vacy. The article provides a window into how recent academic research translates
into a large-scale, real-world blockchain design. Overall, it provides interesting
insights in the challenges of integrating new ideas into blockchain design. Enjoy
this new distributed computing column!

BEATCS no 137

198

Redbelly Blockchain:
a Combination of Recent Advances*

Redbelly Network

Abstract

Redbelly Blockchain builds upon recent scientific advances in the context of distributed com-
puting, game theory and formal verification to apply blockchains to the real world. In this paper,
we present how Redbelly Blockchain combines these results to remedy vulnerabilities that affect
modern blockchains. In particular, Redbelly Blockchain offers accountability by generating a
Proof-of-Fraud, an undeniable proof of misbehavior, automatically. The architecture of Red-
belly Blockchain is decoupled into a consensus component and a language virtual machine com-
ponent, called SEVM, to achieve resilience optimality against failures and attacks. For greater
security, its consensus component does not assume pure synchrony, is formally verified with
model checking and solves the consensus problem deterministically. To run a large ecosystem
of dApps efficiently, the SEVM supports Solidity bytecode without the unnecessary redundant
validations of traditional designs. Redbelly Blockchain is dynamic as it features a built-in re-
configuration smart contract triggered by a representative governance. Finally, it is designed for
mobile devices to interact securely without downloading the blockchain.

1 Distributed Ledger Architecture
The blockchain service is provided by blockchain nodes, or machines, offering consensus execution
and storage service. Redbelly Blockchain is open in that any node has the possibility of providing the
service, however, Redbelly Blockchain also aims at not wasting node resources by offering too many
redundant services. Hence, instead of incentivising all nodes to execute the same tasks, Redbelly
Blockchain allows different nodes to offer different services at different times. To eventually provide
the service, nodes must first authenticate themselves, just like nodes must first offer a proof-of-work
in classic blockchains [27] to produce valid blocks. One can thus compare the absence of proof-
of-fraud in Redbelly Blockchain to the creation of proof-of-work, but without the carbon footprint
associated with resolving cryptopuzzles.

More precisely, the architecture of Redbelly Blockchain is decoupled in different components to
achieve resilience optimality. It is known that consensus cannot be solved in the general model, when
nodes communicate over the Internet and in the presence of arbitrary (byzantine) failures, without
n > 3 f nodes [26], where f is the number of byzantine nodes. Interestingly, however, this threshold
does not apply to provide secure data retrieval: to achieve data integrity and tamper-proofness one
simply needs n > 2 f : despite f byzantine nodes, one is guaranteed to identify the correct copy as
the only copy received from f + 1 distinct nodes. Hence, decoupling storage/SEVM nodes from
consensus nodes allows to better tune the resource provisioning necessary to achieve security.

Figure 1 presents the architecture of Redbelly Blockchain. The SEVM component is web3 com-
pliant, executes decentralised applications (dApps) and reliably stores the blockchain. The web3
compliance comes from its web3.js server that accepts valid requests to transfer assets, upload or

*Contact author: Vincent Gramoli vincent.gramoli@redbelly.network

The Bulletin of the EATCS

199

Figure 1: Redbelly Blockchain architecture and the life cycle of a transaction

execute a smart contract. Redbelly Blockchain supports smart contracts written in Solidity byte-
code to facilitate the integration of the most used dApps. The transaction manager batches these
transactions into blocks that are proposed to the consensus service. The consensus groups as many
proposed blocks as possible into a committed superblock before the SEVM validates its requests,
executes them and reliably stores the results.

The consensus component (§2) features the Democratic Byzantine Fault Tolerant (DBFT) con-
sensus algorithm [11] that solves consensus deterministically without the need to assume pure com-
munication synchrony or that there exists a known upper bound on the message delays [14]. (Instead,
we assume that this bound is unknown, a property referred to as partial synchrony.) Note that this
is appealing to cope with network attacks that could otherwise lead to double spending [28, 16]. To
avoid network bottlenecks, DBFT starts with a leaderless all-to-all reliable broadcast where each
consensus node shares its proposal with the rest of the system (§2.2). Then DBFT spawns as many
binary consensus instances as proposals to decide whether each of these proposals gets included
in the decided superblock. As the binary consensus is probably the most elaborate and sensitive
part of Redbelly Blockchain it has been formally verified with model checking (§2.1). The decided
superblock is then sent back to the SEVM for execution and storage.

Redbelly Blockchain supports a large ecosystem of dApps by offering the Scalable EVM (SEVM)
(§5). Like for the Ethereum Virtual Machine (EVM), the SEVM allows Redbelly Blockchain to run
like a state machine replication whose commands are expressed in a Turing complete programming
language. In contrast with Ethereum [36] though, Redbelly Blockchain leverages this capability by
utilizing smart contract output as an input to itself. Since the smart contract execution is deterministic
and agreed upon by all nodes, it allows Redbelly Blockchain to upgrade itself without hard-forking
(§6.1), to change its governance and mitigate the risks of bribery (§6) and for a subset of nodes to
spawn their own shard or close it on-demand at runtime (§7.2).

Last but not least, Redbelly Blockchain interfaces the real-world (§8). This is why it comes with
a lightweight secure wallet, called lightsec (§8.1) and interacts with oracles (§8.2). In particular, the
lightsec wallet differs from classic wallets in that it is both (i) lightweight as it can run in handheld
devices without having to download a blockchain history, and (ii) secure as it can retrieve correct
information, hence its name. The transaction fees are maintained low thanks to the high capacity
throughput of Redbelly Blockchain. The oracle offers the necessary identification mechanism to let
real users govern Redbelly Blockchain and inform the blockchain about the success of traditional
payments.

BEATCS no 137

200

1.1 Blockchain Abstract Representation
The distributed architecture described above implements a blockchain, a simple linked list abstrac-
tion chaining blocks, one block to another, each containing a sequence of cryptographically signed
transactions. We call it a linked list (and not a directed acyclic graph) as it does not have forks:
consensus upon a block at a given index is reached before this block gets appended. We say that a
transaction is final as soon as it is included in a block of Redbelly Blockchain.

Figure 2: Redbelly Blockchain interactions with oracles

Figure 2 depicts the blockchain abstraction as maintained in the reliable storage of a single
SEVM node. Thanks to the consensus protocol depicted in the distributed architecture (Figure 1),
among two chains of blocks maintained locally by two honest SEVM nodes, either one is guaranteed
to be the prefix of the other or the two are guaranteed to be identical. This property will be listed as a
requirement of the blockchain problem (Def. 3). As all SEVM nodes end up having the same blocks
anyway, we simply focus here on a single SEVM node, its interaction with oracles and the wallet
for simplicity. The dApps are stored in the blockchain (either because these are built-in dApps or
because some client uploaded them) and their functions can be invoked remotely by the clients. The
dApps can gather real-world information from distributed (Dist.) or centralized (Cent.) oracles as
we will discuss in §8.2.

2 Scalable and Verified Consensus
The byzantine consensus problem [26] is for a set of nodes to agree on a unique value despite arbi-
trary behaving nodes, called byzantine. This problem must be solved to design a secure blockchain
that guarantees the uniqueness of the block to be appended at its next available index [1].

Redbelly Blockchain features the Democratic Byzantine Fault Tolerance (DBFT) consensus al-
gorithm [11]. By contrast with most consensus algorithms, it is democratic in that it does not elect a
leader node that tries to impose its value to the rest of the nodes, which would otherwise limit scal-
ability as described in §2.2. In addition, this consensus algorithm is probably the first blockchain
consensus algorithm to be formally verified with model checking [4] as we explain in §2.1, which
reduces drastically the risks of human errors, that are otherwise common [33]. Finally, it does not
assume that the bound on the delay of messages is known (it only assumes partial synchrony but not
synchrony [14]) and it is resilient optimal as it tolerates f < n/3 arbitrary (or byzantine) failures.

The consensus problem is generally defined as the problem for honest (non-byzantine) nodes of
ensuring the conjunction of three properties despite the presence of byzantine nodes.

Definition 1 (Byzantine Consensus). Assuming that each honest (non-byzantine) node proposes a
value, the Byzantine Consensus (BC) problem is for each of them to decide on a value in such a way
that all the following properties are satisfied:

• BC-Termination: every honest node eventually decides a value;

• BC-Agreement: no two honest nodes decide on different values;

The Bulletin of the EATCS

201

• BC-Validity: the value decided is one of the proposed values.

To understand the importance of solving consensus to design a blockchain, consider that the
blockchain is in its initial state consisting of a genesis block, at index 0. Let an attacker, say Mallory,
issue two conflicting transactions, tx1 where Mallory transfers all her coins to Alice and tx2 where
Mallory transfers all her coins to Bob. Let us consider what can happen if the BC-Agreement
property is violated in that distinct nodes of the blockchain believe they can append distinct blocks,
one containing tx1 and the other containing tx2, at index 1 of the blockchain. This can lead to a
double spending, where the same coins are spent twice. By contrast, when consensus is reached
then all nodes agree on a unique block to be appended and it is simple for each individual node to go
through this block and executes the transactions it contains one-by-one unless a transaction conflicts
(e.g., lack sufficient funds to execute).

Algorithm 1 Binary consensus algorithm at replica pi

1: bin-propose(val): B binary consensus at pi with val ∈ {0, 1}
2: loop: B loop that starts with round r = 1
3: (bv-broadcast(est, r, val)→ cvals) B reliable bcast that is ommitted in some optimization
4: start-timer(r) B timeout increases with rounds
5: if i = r mod n then B coordinator rebroadcasts
6: wait until (cvals = {w}) B cvals stores delivered values

7: broadcast(coord, r,w)→ c B coordinator broadcasts

8: wait until (cvals , ∅ ∧ timer expired) B wait enough time

9: if c ∈ cvals then e← {c} else e← cvals B prioritize coord value
10: broadcast(aux, r, e)→ bvals B broadcast these values
11: wait until ∃s ⊆ bvals where the two following conditions hold: B wait to deliver more values until
12: • s contains contents received from at least n − t distinct nodes B sufficiently many copies are delivered
13: • ∀v ∈ s, v ∈ cvals B and every value in s is in cvals

14: if s = {v} then B if there is only one value in s

15: val← v B adopt this singleton value
16: if v = (r mod 2) and not decided yet then decide(v) B decide only once

17: else val← (r mod 2) B otherwise, adopt the current parity bit

18: if decided in round r − 2 then exit() B help others in two last rounds

19: r ← r + 1 B increment the round number

2.1 Formal Verification
As the problem of consensus is particularly difficult to solve, and human errors are frequent [33], it
is important to check mathematically the properties of a security system, a process we call formal
verification. We formally verified the binary consensus at the heart of DBFT (Alg. 1) using a model
checker [4]. This binary consensus algorithm is represented as the bin.cons.1, ..., bin.cons.k blocks
on Figure 1 because there is one instance of this binary consensus algorithm to decide whether
each proposed block should be included in the committed superblock. All honest participants pass
their input value val to the loop of Alg. 1 where they exchange values and refine their estimate
until they decide a value (line 16). Because verification of liveness properties consists of assuming
fairness and showing that a property holds in every fair execution, we relax the partial synchrony
assumption [14] of DBFT and replace it by a fairness assumption. Relaxing partial synchrony allows
to simplify the pseudocode by ignoring timers (lines 4 and 8 of Alg. 1) and the weak coordinator
steps (lines 5–7 of Alg. 1). The fairness assumption states that in any infinite sequence of iterations
of the protocol loop, there exists one iteration where, at all honest nodes, a binary value broadcast
(or bv-broadcast) instances deliver the same bit first. Note that this fairness could be violated if
byzantine nodes were controlling the network, but no solutions to the consensus problem would
exist in this case anyway [6].

BEATCS no 137

202

Algorithm Verification time

bv-broadcast 48.87 s
Naive consensus >3 days

Consensus 22.54 s

Table 1: Although none of the properties of the naive blockchain consensus could be verified within
a day of execution of the model checker, it takes about ∼4 s to verify each property on the simplified
automaton of the blockchain consensus. Overall it takes less than 70 seconds to verify both the
binary value broadcast and the blockchain consensus protocols.

To formally verify the consensus algorithm we holistically verified that the model of the pseu-
docode verifies the properties of Def. 1, expressed in linear temporal logic (LTL), for any system
size n and fault tolerance f < n/3 as detailed elsewhere [3]. To this end, we rely on the parameter-
ized model checker, ByMC [25], convert the pseudocode of the consensus algorithm into a threshold
automaton, and deployed it on a Message Passing Interface (MPI) cluster of 4 AMD Opteron 6276
16-core CPU with 64 cores at 2300 MHz and 64 GB of memory. As the naive threshold automaton
(Naive consensus) is too large to be formally verified within 3 days of execution on our MPI cluster
as indicated in Table 1, we first verified the properties of the binary value broadcast (bv-broadcast)
primitive (line 3 of Alg. 1) using ByMC before simplifying the naive threshold automaton using the
formally proven properties of the bv-broadcast primitive. Both the safety and liveness properties of
the resulting threshold automata (bv-broadcast and Consensus) could be verified in 1 minute and 11
seconds (cf. Table 1).

2.2 Bypassing the Leader Bottleneck
The name Democratic BFT consensus algorithm stems from the fact that this algorithm does not
need a leader that tries to impose its block to the rest of the system. Instead, during an execution of
DBFT, every node can propose its own block to the consensus and the decided, so called, superblock
(cf. §3.2) can include any of the proposed blocks. One advantage is that, in DBFT, there cannot
be a misbehaving leader that prevents the convergence towards agreement. In particular, there can
be as many different weak coordinators (line 5 of Alg. 1) as there are concurrent binary consensus
instances, and even a single weak coordinator cannot prevent for sure the convergence of the binary
consensus to which it participates. As opposed to the nodes of traditional blockchains that “compete”
to append their own block, the nodes of Redbelly Blockchain “collaborate” to append a combined
superblock.

Another advantage of this collaboration is the scalability induced by having every participant
exchanging their proposals in parallel over a wide area network. Consider, as an example, that we
want to append a new block (or superblock) of b bits with a blockchain system with a traditional
leader-based consensus algorithm running on n nodes that have limited bandwidth resources. In
particular, each node i is equipped with a download capacity of di and an upload capacity of ui, both
expressed in bits per unit of time. Without loss of generality, let the leader be node 1 with download
and upload capacities d1 and u1, respectively. The time τ it will take the leader to send the block to
all nodes (we consider that the leader sends to itself for simplicity as it does not alter our conclusion)
is the maximum between these two:

• The time for the leader to upload n · b bits, which is n·b
u1

units of time.

• The time to download b bits for the node that has the lowest download rate among all other
nodes, which is b

min(di:1≤i≤n) units of time.

The Bulletin of the EATCS

203

Figure 3: The time it takes for propagating a block in a leader-based consensus algorithm typically
increases with the number n of nodes whereas the time to propagate a block in a leaderless consensus
algorithm can be independent of n

Figure 3 depicts the time to propagate a block in both our simplistic leaderless and leader-based
consensus algorithms as a function of n. The time needed for the leader to propagate the block to
all nodes is τ = max

(
n·b
u1
, b

min(di:1≤i≤n)

)
and we can conclude that this time is Ω(n) units of time. As n

increases, we can see that the time it takes for the leader-based consensus algorithm to propagate the
leader block increases with the number of nodes in the system. By contrast, the time it takes if the
algorithm is leaderless to propagate a block of b bits to all the nodes is the maximum between the
time for the node with the lowest upload rate to upload b/n bits, which is b/n

min(ui:1≤i≤n) , and the time
for the node with the lowest download rate to download b bits, which is b

min(di:1≤i≤n) . Provided that
the difference in download rates among n nodes is independent of n, the maximum is thus a constant
independent of n because each node simply needs to propagate b/n bits. This explains in part why
DBFT helps Redbelly Blockchain scale [12].

3 Block Structure
As mentioned previously, the structure of the Redbelly Blockchain is a linked list, hence this can be
viewed as a “non-forkable” chain of superblocks.

3.1 A non-forkable chain

As opposed to classic blockchains, Redbelly Blockchain does not fork to mitigate the risks of double
spending. The main distinction with classic blockchains is that Redbelly Blockchain solves consen-
sus first, before appending the unique agreed upon superblock as we already explained (§1.1). This
guarantees a total order on the blocks that allows anyone to retrieve the current state of accounts by
consulting the latest block: we do not talk about “confirmation” as a transaction is either pending
or committed. This is in contrast with classic blockchains where an appended block must be suf-
ficiently confirmed (or followed by sufficiently many blocks) for the probability of its transactions
aborting to be sufficiently low.

Even during network attacks that can delay the message propagation [15], in common execu-
tions, two conflicting transactions cannot be inserted into two branches. We refer to these “common
executions”, as we will detail in §4, as executions in which an overwhelming number f ≥ n/3 of

BEATCS no 137

204

faults do not occur at the same time. In the scenario where conflicting transactions are included
in the same block, then the first of these transactions will get executed while the second will not,
as the conflict will be detected locally by the SEVM node. This tolerance to network partition can
be seen as the result of favoring consistency over availability given that not both consistency and
availability can be achieved in this case [21]. The key motivations for favoring consistency is for
Redbelly Blockchain to support secure applications: no transactions that appeared committed can
later be aborted.

In §4, we will explain how to cope with an overwhelming number of faults. In §7.2, we will
explain how we can extend Redbelly Blockchain to spawn additional chains to complement the
mainchain, however, none of these chains fork because they inherit the Redbelly Blockchain design.

3.2 Superblocks to scale throughput
Appending superblocks to the blockchain allows us to increase the performance (i.e., throughput) as
the number of nodes running the consensus grows. This optimization originally proposed in [22],
consists of resolving a different notion of consensus, called the Set Byzantine Consensus [12] as
defined below.

Definition 2 (Set Byzantine Consensus). Assuming that each honest node proposes a set of transac-
tions, the Set Byzantine Consensus (SBC) problem is for each of them to decide on a set in such a
way that the following properties are satisfied:

• SBC-Termination: every honest node eventually decides a set of transactions;

• SBC-Agreement: no two honest nodes decide on different sets of transactions;

• SBC-Validity: a decided set of transactions is a non-conflicting set of valid transactions taken
from the union of the proposed sets;

• SBC-Nontriviality: if all nodes are honest and propose a common valid non-conflicting set of
transactions, then this set is the decided set.

Thanks to this new definition, Redbelly Blockchain does not need to decide one block maximum
in each iteration of the consensus (as classic blockchains do). Instead, Redbelly Blockchain decides
a number of blocks that can grow linearly with the number of nodes in the system. This is key to
the scalability of the consensus protocol. There are two important remarks regarding this definition.
First, note that it refers to a decided set, although the transactions should be executed in the same
order at every node. This can easily be ensured by executing transactions in the order of their hash
or nonce. Second, the superblock optimization differs from batching more proposals at the leader,
as batching could exacerbate the bottleneck effect of the leader (§2.2).

4 Accountability with PoF
Redbelly Blockchain applies accountability [23], the ability to make distributed participants respon-
sible for their actions, to the partially synchronous setting [9]. To this end, it generates undeniable
proofs-of-fraud (PoFs) as indicated in §4.2. By requiring participants to deposit assets prior to par-
ticipating, we can exploit proofs-of-fraud to slash malicious players and compensate the victims, in
the unlucky case of an overwhelming majority of participants as we will explain in §4.1.

PoF can be compared to PoW or PoS to cope with Sybil attacks: a block is considered valid in
Redbelly Blockchain only if it was produced by a participant that would leave some undeniable PoF
in case it tries to attack the system. This is why a valid block is one that is produced by a user who

The Bulletin of the EATCS

205

provided the necessary information required by Redbelly Blockchain. This information is used to
identify the user uniquely, which prevents a malicious attacker from impersonating other users to
conduct a Sybil attack.

4.1 Strengthening fault tolerance
Accountability allows us to reward only the good behaviors that contribute to the system. Such
good behaviors include staking (providing liquidity to the system for a period of time), using storage
resources to keep track of the blockchain history, or exploiting network and CPU resources in order
to contribute in reaching a consensus. Redbelly Blockchain will require consensus participants to
deposit some stake before they start executing the consensus. They will gain a reward based on their
contribution to the consensus. Our reward is equally divided among the consensus participants for
their contributions but consensus participants will change over time as we will explain in §6.1. If a
consensus participant misbehaves, then it will not receive its reward and will be excluded from the
set of consensus participants, preventing it from being rewarded in the future.

Accountability is particularly effective in “uncommon” situations, where a coalition of malicious
users is of size f sufficiently large to lead honest consensus nodes to a disagreement. As consensus
is impossible in the general setting when n ≤ 3 f where n is the number of consensus nodes [26], we
know that this can happen. Fortunately, even when f ≥ n/3 and as long as f < 2n/3 and less than
n/3 nodes are inactive forever, Redbelly Blockchain can recover. When the disagreement occurs we
can upper-bound the number a of branches given the number f of malicious participants, as was
shown in [29]. A recent work has even demonstrated that not more than 2n/3 honest participants
is necessary to solve consensus when considering that some participants are rational [30]. For this
reason, we can also lower-bound a deposit that consensus nodes need to escrow in order to reimburse
any fooled users.

In particular, we require each consensus node to deposit some amount d during the time it partic-
ipates to the consensus protocol. This deposit amount depends on various parameters. In particular,
our recent result [29] expresses the ratio b of the deposit over the value G of funds that is being
stolen. Consider a colluding majority of size n/3 ≤ f < 5n/9, a probability of attack success
ρ = 0.5, deposits held for m = 10 blocks and G = $1M manipulated funds. As f < 5n/9, we have
a ≤ 3 branches, thus b = 1/500 is sufficient. As D = G/500 = 2, 000, for n = 100, each node needs
to deposit 3bG/n = $60 for Redbelly Blockchain to recover.

4.2 Proof-of-Fraud
Our solution to the accountability problem is to build undeniable proofs-of-fraud at runtime. More
specifically, our implementation enforces all nodes to sign key messages: a honest node will simply
ignore key messages that are not properly signed by their senders. These ‘key’ messages are those
that can influence the decision of other participants during the execution of any binary consensus
protocol (Alg. 1) or the reliable broadcast (§1) that precedes these binary consensus executions [29].

In particular, it was shown that the only way for honest nodes to disagree while executing DBFT
is for a coalition of malicious nodes to hack one of the broadcast primitives so as to equivocate, by
sending different messages to different honest nodes [9]. Provided that these messages are signed,
upon reception of these messages, honest nodes simply have to cross-check their received messages
to detect a misbehavior. An undeniable proof-of-fraud is thus built by a honest node using the
concatenation of two equivocating messages from the same sender. These proofs-of-fraud are rapidly
communicated to other honest nodes to stop rewarding malicious nodes.

Note that the original accountable consensus technique, called Polygraph [9], is an extension
of our consensus algorithm DBFT [11], which already offered scalable results in geo-distributed
experiments [29]. Since then, a more generic transformation has been proposed [10]. It only requires

BEATCS no 137

206

an additional round of communication involving an additive O(n2) communication complexity when
threshold signatures can be used.

5 Language Virtual Machine
In this section, we present the Scalable EVM (SEVM), an optimized way of validating transactions
and executing smart contracts.

5.1 Smart contracts

Redbelly Blockchain is compatible with a large ecosystem of DApps by offering the possibility to
execute the same bytecode supported by the Ethereum Virtual Machine (EVM) [36]. The motivation
for not developing a new DApp language is simple: the shortage in resources and the high demand
of programmers skilled in blockchain raised the cost of programming decentalized finance, which
makes it difficult to grow a new ecosystem of DApps.

5.2 Validation reduction

We built upon the EVM to develop what is called the SEVM, standing for the Scalable EVM, as
detailed in [32]. It inherits the gas mechanism of Ethereum, mitigating denial-of-service attacks,
but differs from the EVM to achieve 10,000 TPS on 100 nodes with 33 failures tolerated. With our
consensus protocol (§2), the overhead is no longer the consensus but the EVM execution when trying
to execute smart contract functions. The key aspect to reduce existing smart-contract blockchain
overheads is thus to reduce the unnecessary validation overhead common to existing blockchains
(e.g., Ethereum, Libra/Diem) where all validators validate each transaction twice (upon transaction
reception and upon block reception), hence validating globally each transaction 2n times, where
n is the number of SEVM nodes. Redbelly Blockchain simply needs to validate each transaction
n + 1/n times, which tends to halving the validation overhead as the system size grows towards
infinity, n → ∞. The security is not hampered because all nodes, upon reception of the decided
block, validate every transaction, anyway.

Go Ethereum, or geth for short, is probably the mostly deployed EVM implementation. In order
to check that a request (or transaction) is valid, all of the geth servers (i.e., miners) must validate
each transaction eagerly and lazily, hence we distinguish the two following validations:

• Eager validation: This validation occurs upon reception of a new client transaction to check
various parmeters of this transaction (gas, balance, signature, size). If the transaction is valid,
it is propagated to other servers.

• Lazy validation: This validation occurs before transactions are executed in a decided block
and simply checks the nonce and the gas. The lazy validation is thus less time consuming in
geth than the eager validation.

Note that this is an overconservative strategy because each to-be-executed transaction of geth is
validated twice by each validator/miner. In particular, there is no need for all validators to validate
all transactions twice. In Redbelly Blockchain, only a constant number of nodes execute the eager
validation, but without re-propagating the transaction to all servers. If the transaction is decided
by the consensus algorithm, anyway, all servers will execute the lazy validation before executing
the transaction. Note that not forwarding the request still ensures the best effort property of clas-
sic blockchains, namely that a transaction needs to be received by a honest node to be eventually

The Bulletin of the EATCS

207

committed. The advantage is that it reduces the number of validations per nodes from Vn
eth = 2 in

Ethereum to Vn
rbb = 1 + k

n in Redbelly Blockchain. At large scale, when n→ ∞, we thus obtain: limn→∞ Vn
rbb = limn→∞

(
1 + k

n

)
= 1,

limn→∞ Vn
eth = 2.

Hence, the number of validations per node in Redbelly Blockchain tends to become half the number
of validations per node in existing blockchains (e.g., Ethereum, Libra/Diem [18]) as the system
enlarges.

6 Governance
In this section, we explain the internals of the Redbelly Blockchain governance that decides upon
variations in the protocol, the incentives or the governance membership. The governance is handled
by the consensus nodes and the SEVM nodes. Note that each of these nodes may reside on different
machines and be administered by different entities.

6.1 Reconfiguration to mitigate bribery
The nodes that govern are called governors. They must change from time to time to reduce the risks
of bribery attacks, under the assumption of a slowly-adaptive adversary (so that it takes more time
to bribe more nodes). Just like in other blockchains, nodes are incentivized to become governors by
obtaining a reward for offering the blockchain service (e.g., execution, consensus, storage). Before
governing, a node must first express its interest in governing and satisfy a series of requirements
(personal information, resource allocation). If these requirements are met, the node becomes a
candidate.

Redbelly Blockchain features a novel smart contract based reconfiguration process to change
the governance every k blocks. The difficulty to reconfigure distributed systems is that all nodes
must agree on the new configuration, a coordination process that often requires multiple consecutive
consensus executions: one to decide to add new nodes to the system, another to discard the old
nodes. Thanks to Redbelly Blockchain each of these consensus are reached simply through a built-
in smart contract function invocation. As each execution of these invocations is deterministic and
replicated, we are guaranteed that all honest nodes will be informed of this reconfiguration. This
type of smart contracts is called “built-in”, because they are already part of Redbelly Blockchain at
the time it is started: all users of Redbelly Blockchain can thus observe the power delegated to the
governance at the time they start using Redbelly Blockchain.

Figure 4 depicts the smart contract based reconfiguration process where SEVM nodes maintain
a copy of the reconfiguration smart contract. For the sake of simplicity, it illustrates how to replace
consensus nodes, but this reconfiguration can be used to replace SEVM nodes as well as changing the
current version of the software. On the left hand side (Fig.4(a)), the client sends a request that invokes
a function of the reconfiguration smart contract. This request is validated and passed onto the current
consensus nodes (consensus1, consensus2, consensus3 and consensus4). The consensus nodes agree
to encapsulate this request in the next superblock and pass this superblock to the SEVM for storage
and execution. Upon execution (Fig.4(b)), the reconfiguration smart contract function replaces the
current consensus nodes by new ones (consensus5, consensus6, consensus7 and consensus8). Hence
the governors responsible of running the consensus have been replaced.

The software upgrade also relies on a built-in smart contract function, however, it takes, as
arguments, the current version number, the new version code (e.g., in the form of a URL and its
RSA256 hash representation) and the index idx of the chain at which it should start being used.

BEATCS no 137

208

(a) The client sends a function invocation that gets agreed
upon by the consensus nodes

(b) The function is executed on each SEVM node, hence
replacing the current consensus nodes by new ones

Figure 4: Smart contract based reconfiguration

When 2n/3 + 1 of the governors have invoked the function provided that this happens before the
chain reaches index idx, then the new version is being downloaded, its hash is checked and in case of
success, the version is being used when the chain reaches idx. (No other version besides the current
one can be used until index idx is reached.)

6.2 Elections with non-dictatorship

In order to avoid that an attacker acts as a dictator by imposing its chosen governance to the rest of
the system, we build upon results from the social choice theory. One way of selecting new governors,
is to let existing governors proportionally elect the next set of governors. Black [5] was the first to
define proportionality or that elected members represent “all shades of political opinion” of a society.

Dummett [13] introduced fully proportional representation to account for ordinal ballots, con-
taining multiple preferences: given a set of n voters aiming at electing a committee of k governors,
if there exist 0 < ` ≤ k and a group of ` · qH voters who all rank the same ` candidates at the top
of their preference orders, then these ` candidates are all elected. However, it builds upon Hare’s
quota qH, which is vulnerable to strategic voting, whereby a majority of voters can elect a minority
of seats [24]. This problem was solved with the introduction of Droop’s quota qD as the smallest
quota such that no more candidates can be elected than there are seats to fill [34].

Woodall [37] replaces Hare’s quota with Droop’s quota q = b n
k+1c and defines the Droop propor-

tionality criterion as a variant of the fully proportional representation property: if for some whole
numbers j and s satisfying 0 < j ≤ s, more than j · qD of voters put the same s candidates (not
necessarily in the same order) at the top of their preference list, then at least j of those s candidates
should be elected.

This desirable “proportionality” property can be achieved using the Single Transferable Vote
(STV) algorithm with Hare’s quota qH = n

k . In STV, candidates are added one by one to the winning
committee and removed from the ballots if they obtain a quota q of votes. STV is used to elect
the Australian senate and is known to ensure fully proportional representation. Unfortunately, this
protocol is synchronous [14] in that its quotas generally rely on the number of votes n received
within a maximum voting period. If some of these n voters are byzantine and do not respond, then
the protocol could not terminate without synchrony.

As one cannot predict the time it will take to deliver any message without synchrony, one cannot
distinguish a slow voter from a byzantine one. Considering n as the number of governors or potential

The Bulletin of the EATCS

209

voters among which up to f can be bribed or byzantine, our protocol can only wait for at most n− f
votes to progress without assuming synchrony. Waiting for n− f votes prevents us from guaranteeing
that the aforementioned quotas can be reached. We thus define a new quota called the byzantine
quota qB = b

n− f
k+1 c such that f < n/3 and reduce, to n − f , the number of needed votes to start the

election. Of course, up to f of these n− f ballots may be cast by byzantine nodes, however, Redbelly
Blockchain guarantees that no adversary controlling up to f byzantine nodes can act as a dictator in
always imposing its decision.

Based on qB, we propose a smart contract election that expects n − f votes to be cast to run a
byzantine fault tolerant version of STV that satisfies proportionality and non-dictatorship without
assuming synchrony.

7 Mutability, Auditability, Privacy

In this section, we discuss tradeoffs between auditability and privacy on the one hand, and mutability
and immutability on the other hand (§7.1). We also present the two key techniques to offer privacy.
First, Redbelly Blockchain offers the possibility to a subset of users to spawn a new shard as a
dynamic variant (§7.2) of the Eth2 topology [19]: by invoking a mainchain built-in smart contract,
some of the users can spawn a new shardchain. This allows users to perform transactions that are
not directly visible from the mainchain or from other shards and without inducing a negative impact
on performance. In addition, to enforce a stronger form of privacy, we will exploit the privatization
of fungible and non-fungible tokens (§7.3).

7.1 Mutability with a Built-in Contract

On the one hand, immutability is a particularly appealing property for maintaining a distributed
ledger. If transactions can be erased, then the data integrity is at risk. On the other hand, blockchain
can be used for storing sensitive data whose immutability is questionable. The General Data Pro-
tection Regulation (GDPR) imposed in Europe since 2018 permits personal data to be rectified,
withdrawn of permission, and erased. Similarly, the California Consumer Privacy Act (CCPA) and
the United States Fair Credit Reporting Act (FCRA) enforces the possibility to remove objection-
able data from the blockchain. Even mainstream blockchains are mutable: after the DAO hack that
affected Ethereum, the history of transactions was replaced through a hard fork. Unfortunately, this
created confusion and led to the use of two blockchains, Ethereum Classic and Ethereum. This
is why, Redbelly Blockchain guarantees immutability by preventing any adversary from tampering
with data but offers a built-in smart contract rewrite function to the governance.

node 1:

node 2:

instance 1

instance 2

(a) Rewriting in a classic blockchain creates new in-
stances

1. initially:

3. rewrite:

2. governance
controlled
erasure:

(b) Rewriting in Redbelly Blockchain does not fork

Figure 5: To avoid forks while offering mutability, Redbelly Blockchain enforces that any rework of
the history is controlled by the governance

Figure 5 compares a rewrite in a classic blockchain (Fig 5(a)) to a rewrite in Redbelly Blockchain
(Fig. 5(b)). In classic blockchains, miners may legitimately decide to run the same software version
they have been running before, whereas other users may follow the recommendation to upgrade
their software. This typically creates multiple instances sharing the same genesis block but followed

BEATCS no 137

210

by diverging transaction histories. The original instance is usually called "classic" so that the new
version retains the original name of the blockchain, which can add to the user’s confusion.

By contrast and as depicted in Figure 5(b), in Redbelly Blockchain, all users initially agree to run
a reconfigurable blockchain, as we already explained in Section 6.1. This guarantees that all users
are ready to upgrade to a new version if the governance majoritarily vote to do so. Typically, the
governors cast their vote by passing a rewrite parameter to a built-in contract, a smart contract that
was already present when the blockchain was launched, as defined in §6.1. This rewrite parameter is
a pair 〈state, start-index〉 where the state is the hash of the global state of the blockchain, also called
“state root” and the start-index is the index of the first block of the blockchain suffix to erase. If a
quorum of 2 f + 1 governors vote for the same start-index within the time it takes to create k blocks
(meaning that all their state parameters belong to at most k consecutive blocks, then the erasure of
the suffix takes place at each honest SEVM node. From then on, all blocks get appended in place of
the erased suffix.

7.2 Dynamic Sharding
Our blockchain design allows participants to operate individually in a dedicated shard or shardchain
without presenting all their transactions to the rest of the system. This benefits privacy and perfor-
mance by reducing the congestion on the default chain called the mainchain. It can also allow users
to control the sovereignty of data by allocating the machines hosting these data in a specific juris-
diction. While this sharding may look similar to the beacon chain and the shard chains of Eth2 [19],
it differs by being dynamic: one can adjust the number and size of shards at runtime as was recently
proposed [31].

Redbelly Blockchain exploits smart contract outputs to configure itself at the lower level. Be-
cause our consensus protocol is both deterministic and formally verified (§2.1), it guarantees that
all participants agree on a consistent total order on the smart contract upload, invocations and trans-
actions issued to Redbelly Blockchain. As a result, and because smart contract functions are also
deterministic, the execution of the sequences of commands at all honest participants results in the
same outcome or state.

A built-in smart contract features a spawnShard() function that allows a set of participants to
create a shard by providing the resources where to run the shard as well as depositing some assets
that will be locked on the mainchain to be used in the shard. Similarly to the reconfiguration (§6.1),
these participants will invoke the spawnShard() function with an index idx parameter and a number
k of consecutive blocks, so that the shard will be spawned only if more than a single participant
has invoked this function between the block at index idx and the block at index idx + k of Redbelly
Blockchain.

To close the shard, a closeShard() function will trigger the closing of a shard s when the
blockchain depth reaches d only if a quorum of b2n/3c + 1 participants (or governors) of shard s
have invoked this function within a certain range of indices idx to idx + k < d. To cope with non-
termination due to windows of asynchrony, after failure to close a shard, the participants can simply
retry with a longer offset k.

7.3 Stronger Forms of Privacy
Our solution will offer privacy of the transaction data (amount, asset, recipient) through the use of
Zero-Knowledge Proof or Verifiable Secret Sharing. To this end, a privacy layer on top of Smart
Redbelly that will consist of a shield smart contract, like the one used in Nightfall, will make the use
of ERC20 (fungible) and ERC721 (non–fungible) tokens private. It allows the user to (i) create token
commitments that are anonymous representations of the ECR20/721 tokens through the process of
minting, (ii) to retrieve the token associated with a token commitment through the process of burning

The Bulletin of the EATCS

211

and (iii) to transfer confidentially these commitments. This approach requires the user to create a
proof off-chain and to store some private information needed to generate the proof locally. The user
will then interact with the shield contract by sending their proof, which will then be verified. Upon
successful verification, the token commitment will be stored in the commitment Merkle trie until it
is spent, in which case it will be stored in a nullifier data structure.

8 Real World Interactions
In this section, we present the interactions between the wallet and the blockchain service and between
the blockchain service and the oracle, and we explain how security is strengthened.

Redbelly Blockchain is dedicated to allow users to provide real-world services to one another.
The key is to support the smart contracts already supported by Ethereum so as to minimise the
efforts of porting existing contracts. We foresee the deployment of smart contracts encapsulating
legal clauses. In order to tie these services to the real world, we will have to use oracles. As Red-
belly Blockchain is secure, it is important that the oracle interactions do not introduce single point
of failure vulnerabilities. To this end, Redbelly Blockchain will communicate with oracles whose
implementation is distributed (tolerating isolated failures) or accountable (offering an insurance cov-
ering potential failures).

Accountability is instrumental in compensating the error committed by a centralized source. As
an example a human error led Chainlink to report a price anomaly on their XAG/USD price feeds
requesting gold price (XAU) instead of silver price (XAG) [7]. This was exploited by traders to
generate ∼US$36,000 in profit at the expense of Synthetix stackers. Distribution is instrumental in
reducing such risks. For static information, the SEVM node requests f + 1 identical inputs from
distributed sources to tolerate f failures. For dynamic information (e.g., stock value) or localised
information (e.g., temperatures), the SEVM node extracts the median value among a group of 2 f + 1
distributed sources as we explain in §8.2.

8.1 Lightweight Secure Wallet
The lightsec wallet is both (i) lightweight in that it can run in handheld devices, and (ii) secure in
that it can retrieve correct information. This is in contrast with traditional solutions where the device
interacting with the blockchain must either trust the node it communicates with, which defeats the
purpose of the blockchain; or download the blockchain itself, a task impossible for small devices that
do not have sufficient storage space (recall that the Ethereum blockchain already exceeds 600 GB).

The lightsec wallet approach relies on the observation that to retrieve parts of the current state
(e.g., the correct balance of a blockchain account), one simply needs to fetch f + 1 identical copies
of this balance [32]. This is made possible by involving the participation of at most 2 f + 1 SEVM
nodes that maintain a local copy of the blockchain and their current state or by requesting a threshold
signature corresponding to such a quorum of nodes.

An interesting aspect of the lightsec client, is that it does not need to send its transaction to
more than a single blockchain node to achieve the same liveness guarantee as Ethereum because it
is anyway well-known that the blockchain cannot ensure that all transactions will be committed as
we briefly mentioned in §5.2. This is why the blockchain problem is often defined with the liveness
and uniformity properties [20, 8]. But since we require a blockchain to store only valid transactions,
we also require to solve the additional validity property of [12] to solve this problem.

Definition 3 (The Blockchain Problem). The blockchain problem is to ensure that a distributed set
of nodes maintain a sequence of transaction blocks such that the three following properties hold:

• Liveness: if an honest node receives a transaction, then this transaction will eventually be
reliably stored in the block sequence of all honest nodes.

BEATCS no 137

212

• Uniformity: the two chains of blocks maintained locally by two honest nodes are either iden-
tical or one is a prefix of the other.

• Validity: each block appended to the blockchain of each honest node is a set of valid transac-
tions (non-conflicting well-formed transactions that are correctly signed by its issuer).

Interestingly, the liveness property does not guarantee that a client transaction is included in the
blockchain: if a wallet sends its transaction request exclusively to byzantine nodes then byzantine
nodes may decide to ignore it. Hence, the lightsec wallet combined with Redbelly Blockchain
guarantees this liveness property: it could be the case that a wallet has to send its transactions
multiple times before it gets committed (just like in classic blockchains).

8.2 Oracles

An oracle is critical to feed major dApps with trustworthy off-chain information1. They can offer
identification or payment services by indicating whether a bank payment is successful or whether
the identity of a user has been verified.

Typically, a distributed oracle is a software running on some set of computers that gather real-
world information from multiple websites in order to relay it to the blockchain (an oracle net-
work [17] is an example of such a distribution). This information is typically used by dApps to
trigger an action based on an external event. For example, an authentication system may accept
some of the users based on its identity document. This acceptance is a piece of information from the
real-world that an oracle must input to the blockchain for the dApp to authenticate the user. Typi-
cal examples include an API provider directly inputting this information to a smart contract [2] or
offering an authentication proof to the end-user [35]. This input information can have such a large
impact on the execution of the blockchain and the transfers of high value assets that it is important
that it remains correct.

One cannot trust a single computer inputting this information, as the owner of the computer may
easily get bribed by a bidder to steal the reward by pretending that their prediction was correct. This
is why an oracle should either be accountable or distributed. One way to gather the information is
by consulting online information on some online service. However, if the only service experiences
a transient bug, then the blockchain assets are at risk. This is the reason why the distributed oracle
(Dist. Oracle) will fetch the information from distinct sources (e.g., different websites) as depicted
in Figure 2. To tolerate the failure of f online services announcing some real information, it is
sufficient to gather f + 1 identical copies of the same information: this will guarantee that this
information is correct. The worst case situation thus consists of contacting 2 f + 1 to retrieving the
correct information.

Yet, there exist scenarios where the outcome is fluctuating: For example, a stock value on the
New York Stock Exchange can change over time and no pair of sources could provide the exact same
result due to message delays. In this case, the oracle will extract the median among 2 f + 1 requests
to guarantee that no coalition of f byzantine machines can skew the outcome towards one end or the
other. Another type of Oracle could be centralised and accountable (cf. Cent. Oracle in Figure 2)
and under the control of an authority, like the SEC, that dictates how the regulation evolves over time
and whose role is to guarantee that regulation is correctly followed at any time. In this case, we may
consider the SEC information to be authoritative and render such a service accountable, removing
the need to cross-check multiple sources.

1https://www.defipulse.com/.

The Bulletin of the EATCS

213

9 Conclusion
Redbelly Blockchain is an innovative technology to interface the real world through a novel proof-
of-fraud design. It ensures accountability of its participants and aims at complying with regulation.
It builds upon recent research advances in the context of security [12], distributed computing [9],
formal verification [4] and game theory [30]. Two of its key novelties is that it is deterministic, due
to its consensus algorithm, and dynamic, due to its built-in smart contracts, that allow the governance
to reconfigure it at runtime.

References
[1] Emmanuelle Anceaume, Antonella Del Pozzo, Romaric Ludinard, Maria Potop-Butucaru, and Sara

Tucci-Piergiovanni. Blockchain abstract data type. In The 31st ACM Symposium on Parallelism in
Algorithms and Architectures, page 349–358, 2019.

[2] Burak Benligiray, Sas̆a Milić, and Heikki Vänttinen. API3: Decentralized APIs for Web 3.0. Accessed:
2022-04-28 - https://drive.google.com/file/d/1GzkLKc6DYxImgeDhoKLA4wHGlE0eGGgo/view.

[3] Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazić, Pierre Tholoniat, and Josef Widder.
Compositional verification of Byzantine consensus. Technical Report hal-03158911, HAL, June 2021.

[4] Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazić, Pierre Tholoniat, and Josef Widder.
Brief announcement: Holistic verification of blockchain consensus. In Proceedings of the 41st ACM
Symposium on Principles of Distributed Computing (PODC), 2022.

[5] Duncan Black. The Theory of Committees and Elections. Cambridge University Press, 1958.

[6] Zohir Bouzid, Achour Mostfaoui, and Michel Raynal. Minimal synchrony for Byzantine consensus. In
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, page 461–470, 2015.

[7] Chainlink. Improving and decentralizing chainlink’s feature release and net-
work upgrade process, 2020. Accessed: 2022-03-31, https://blog.chain.link/

improving-and-decentralizing-chainlinks-feature-release-and-network-upgrade-process/.

[8] Benjamin Y. Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains. In Proceedings of the
2nd ACM Conference on Advances in Financial Technologies, pages 1–11, 2020.

[9] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable Byzantine agreement. In
Proceedings of the 41st IEEE International Conference on Distributed Computing Systems (ICDCS), Jul
2021.

[10] Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic. As easy as abc:
Optimal (A)ccountable (B)yzantine (C)onsensus is easy! In Proceedings of the 36th International
Parallel and Distributed Processing Symposium (IPDPS), 2022.

[11] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: Efficient leaderless Byzantine
consensus and its applications to blockchains. In Proceedings of the 17th IEEE International Symposium
on Network Computing and Applications (NCA), 2018.

[12] Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red belly: a secure, fair and scalable open
blockchain. In Proceedings of the 42nd IEEE Symposium on Security and Privacy (S&P), May 2021.

[13] Michael Dummett. Voting Procedures. Oxford University Press, 1984.

[14] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony.
J. ACM, 35(2):288–323, April 1988.

[15] Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. Impact of man-in-the-middle attacks on
ethereum. In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS), pages 11–20, 2018.

[16] Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. The attack of the clones against proof-of-
authority. In 27th Annual Network and Distributed System Security Symposium (NDSS), 2020. Presented
at the Community Ethereum Development Conference in 2019.

BEATCS no 137

214

[17] Steve Ellis, Ari Juels, and Sergey Nazarov. Chainlink: A decentralized oracle network, 2017. Accessed:
2022-04-28 - https://research.chain.link/whitepaper-v1.pdf.

[18] Amsden et al. The libra blockchain, 2020. Accessed on 2022-04-27, https://

diem-developers-components.netlify.app/papers/the-diem-blockchain/2020-05-26.pdf.

[19] The eth2 upgrades. Accessed: 2022-03-28, https://ethereum.org/en/eth2/.

[20] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Analysis and
applications. In 34th Annu. Int. Conf. the Theory and Applications of Crypto. Techniques, pages 281–
310, 2015.

[21] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[22] Vincent Gramoli. The red belly blockchain: Bft is back but is it the same? In Workshop on Blockchain
Technology and Theory collocated with DISC, 2017. Invited Talk.

[23] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview: Practical Accountability for
Distributed Systems. SOSP’07, 2007.

[24] Jonathan Lundell & David Hill. To advance the understanding of preferential voting system - notes on
the droop quota. Voting matters, 2007.

[25] Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In Symposium on Principles of
Programming Languages (POPL), pages 719–734. ACM, 2017.

[26] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401, July 1982.

[27] Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2008. Accessed: 2022-05-03 -
https://bitcoin.org/bitcoin.pdf.

[28] Christopher Natoli and Vincent Gramoli. The balance attack or why forkable blockchains are ill-suited
for consortium. In 47th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2017.

[29] Alejandro Ranchal-Pedrosa and Vincent Gramoli. Blockchain is dead, long live blockchain! accountable
state machine replication for longlasting blockchain. Technical Report abs/2007.10541, arXiv, 2020.

[30] Alejandro Ranchal-Pedrosa and Vincent Gramoli. Trap: The bait of rational players to solve Byzan-
tine consensus. In Proceedings of the 17th ACM ASIA Conference on Computer and Communications
Security (AsiaCCS), 2022.

[31] Deepal Tennakoon and Vincent Gramoli. Dynamic blockchain sharding. In Proceedings of the 5th
International Symposium on Foundations and Applications of Blockchain (FAB), volume 101. OASIcs,
2022.

[32] Deepal Tennakoon, Yiding Hua, and Vincent Gramoli. CollaChain: A BFT collaborative middleware
for decentralized applications. Technical Report 2203.12323, arXiv, 2022.

[33] Pierre Tholoniat and Vincent Gramoli. Formally verifying blockchain Byzantine fault tolerance. In
The 6th Workshop on Formal Reasoning in Distributed Algorithms (FRIDA), 2019. Available at https:
//arxiv.org/pdf/1909.07453.pdf.

[34] Nicolaus Tideman. The single transferable vote. Journal of Economic Perspectives, 9(1):27–38, March
1995.

[35] Verite. Verifying verifiable credentials. Accessed: 2022-04-28 - https://docs.centre.io/verite/

patterns/verification-flow.

[36] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2015. Yellow paper.

[37] Douglas Woodall. Properties of preferential election rules. In Voting Matters, 1994.

The Bulletin of the EATCS

215

BEATCS no 137

216

News and Conference
Reports

The Bulletin of the EATCS

219

Report on ICALP 2021

48th EATCS International Colloquium on Automata, Languages and Programming

Anca Muscholl1

The 48th EATCS International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2021), the flagship conference and annual meeting of the Eu-
ropean Association for Theoretical Computer Science (EATCS), took place from
the 13th to the 16th of July 2021. The event was held as online, hosted by the
University of Glasgow.

The main conference was preceded by a series of workshops, which took place
on July 11–12, 2021. The following workshops were held as satellite events of
ICALP 2021:

• Flavours of Uncertainty in Verification, Planning and Optimization (FUNC-
TION),

• Verification of Session Types (VEST),

• Programming Research in Mainstream Languages (PRiML),

• Combinatorial Reconfiguration,

• Algorithmic Aspects of Temporal Graphs (AATG),

• Graph Width Parameters: from Structure to Algorithms (GWP),

• Formal Methods Education Online: Tips, Tricks & Tools.

The scientific programme of ICALP 2021 consisted of 3 unifying lectures and
3 invited lectures of the two tracks of ICALP, the presentation of 137 contributed
papers (which were selected by the Program Committees out of 462 submissions)
and award sessions with the lectures of the EATCS Award 2021 and the Presburger
Award 2021 recipients.

1LaBRI, Université Bordeaux. Email: anca.muscholl@u-bordeaux.fr.

BEATCS no 137

220

The online conference. The online conference was managed by the FATA re-
search group of the School of Computing Science, University of Glasgow, led by
Simon Gay. The organizers in Glasgow did their very best to make the online
conference a lively experience and a scientific feast for all the participants.

ICALP 2021 used the Whova conference platform. Talks were pre-recorded,
made available to registered participants two weeks before the conference, and
archived on YouTube afterwards.

Each accepted paper had a 5-minute live presentation followed by a 5-minute
live Q&A session. The live sessions were held daily (Tuesday – Friday, July 13–
16) between 12:00 and 6pm CEST. They included plenary events for the Opening
Ceremony, EATCS/ICALP Award sessions, EATCS General Assembly, and the
six invited presentations.

The organizers succeeded to offer registration at a significantly reduced price
compared to the normal cost. While typical ICALP registration costs are between
e400 and e500, this year there were two types of event participation: author
registration for e175 (e140 for students), and non-author registration for e50
(e30 for students). The author registration contributed to the fixed costs of the
conference and to the costs of the LIPIcs proceedings.

On behalf of the entire community, we warmly thank the organizers in Glas-
gow for their fantastic efforts that helped to make ICALP 2021 a great success.

Paper selection and work of the Program Committee. After 15 years running
the ICALP conference with three tracks, ICALP returned in 2020 to the original
two-track format. The ICALP 2021 program had the following two tracks:

• Track A: Algorithms, Complexity, and Games.

• Track B: Automata, Logic, Semantics, and Theory of Programming.

The PC chairs for the two tracks of ICALP 2021 were Nikhil Bansal (Track A)
and James Worrell (Track B). Their efforts were supported by 70 members of the
Program Committees (44 in track A and 26 in track B). In response to the call
for papers, a total of 462 submissions were received: 361 for Track A and 101
for Track B. Each submission was assigned to at least three Program Committee
members, aided by 761 external subreviewers.The Program Committees decided
to accept 137 papers for inclusion in the scientific program: 108 papers for Track
A and 29 for Track B. This gives the acceptance rate for the entire conference to be
29.6%. The selection was made by the Program Committees based on originality,
quality, and relevance to theoretical computer science. The quality of the submit-
ted manuscripts was very high, and unfortunately many strong papers could not

The Bulletin of the EATCS

221

2021 2020 2019 2018 2017 2016 2015 2014 2013 2012
Total 462 470 490 502 459 515 507 477 423 433
Track A 361 347 316 346 296 319 328 312 249 249
Track B 101 123 103 96 108 121 114 106 114 105
Track C — — 71 60 55 75 65 59 60 79

Table 1: Number of submitted papers at ICALP 2012–2021.

be selected. We take this opportunity of thanking all of them, the Program Com-
mittees and the subreviewers for doing an exceptional job in these particularly
challenging times.

2021 2020 2019 2018 2017 2016 2015 2014 2013 2012
Total 137 138 146 147 137 146 143 136 124 123
Track A 108 102 94 98 88 89 89 87 71 71
Track B 29 36 31 30 32 36 34 31 33 30
Track C — — 21 19 17 21 20 18 20 22

Table 2: Number of accepted papers at ICALP 2012–2021.

2021 2020 2019 2018 2017 2016 2015 2014 2013 2012
Total 29.6 29.4 29.8 29.3 29.8 28.3 28.2 28.5 29.3 28.4
Track A 29.9 29.4 29.7 28.3 29.7 27.9 27.1 27.9 28.5 28.5
Track B 28.7 29.3 30.1 31.3 29.6 29.8 29.8 29.2 28.9 28.6
Track C — — 29.6 31.7 30.9 28.0 30.8 30.5 33.3 27.8

Table 3: Acceptance rates (in %) for ICALP 2012–2021.

Statistical information about the number of papers submitted and accepted for
the last several editions of the ICALP conference, as well as acceptance rates, are
available in Tables 1–3.

Invited presentations. In addition to the contributed talks, ICALP 2021 fea-
tured three invited presentations by Christel Baier (Track B), Keren Censor-Hillel
(Track A), and David Woodruff (Track A), and three unifying talks by Andrei
Bulatov, Toniann Pitassi and Adi Shamir:

BEATCS no 137

222

• Christel Baier (Technical University of Dresden): From Verification to Causality-
Based Explications.

• Keren Censor-Hillel (Technion): Distributed Subgraph Finding: Progress
and Challenges.

• David Woodruff (Carnegie Mellon University): A Very Sketchy Talk.

• Andrei Bulatov (Simon Fraser University): Symmetries and Complexity.

• Toniann Pitassi (University of Toronto): Algebraic Proof Systems.

• Adi Shamir (Weizmann Institute of Science): Error Resilient Space Parti-
tioning.

ICALP Proceedings. As it has been the tradition since 2016, ICALP proceed-
ings were published with LIPIcs. LIPIcs – Leibniz International Proceedings in
Informatics is a series of high-quality conference proceedings across all fields in
informatics established in cooperation with Schloss Dagstuhl–Leibniz Center for
Informatics. All 137 ICALP 2021 contributed papers presented at the confer-
ence, papers accompanying the invited talks of Christel Baier, Andrei Bulatov,
Keren Censor-Hillel, and Adi Shamir, and abstracts of the invited presentation
of Toniann Pitassi and David Woodruff were published according to the prin-
ciple of Open Access in LIPIcs Proceedings volume 198, and made available
online and free of charge at https://drops.dagstuhl.de/opus/portals/
lipics/index.php?semnr=16196. The proceedings editors are Nikhil Bansal,
Emanuela Merelli and James Worrell.

ICALP and EATCS Awards. The EATCS sponsors awards for both a best pa-
per and a best student paper in each of the two tracks at ICALP, as selected by the
Program Committees. During the general assembly, the ICALP Best Paper and
Best Student Paper Awards were presented to the authors of the following papers:

Best Paper in Track A: Sayan Bhattacharya and Peter Kiss. Deterministic Round-
ing of Dynamic Fractional Matchings.

Best Paper in Track B: Antoine Amarilli, Louis Jachiet and Charles Paperman.
Dynamic Membership for Regular Languages.

Best Student Paper in Track A: Or Zamir. Breaking the 2n barrier for 5-coloring
and 6-coloring.

Best Student Paper in Track B: none.

The Bulletin of the EATCS

223

The program of ICALP 2021 included presentations of several prestigious sci-
entific awards sponsored or co-sponsored by EATCS:

• The EATCS Award 2021, the annual EATCS Distinguished Achievements
Award given to acknowledge extensive and widely recognized contribu-
tions to theoretical computer science over a life long scientific career, was
awarded to Toniann Pitassi (University of Toronto) for her fundamental and
wide-ranging contributions to computational complexity, which includes
proving long-standing open problems, introducing new fundamental mod-
els, developing novel techniques and establishing new connections between
different areas.2

• The Presburger Award 2020 for Young Scientists was awarded to Shayan
Oveis Gharan (University of Washington) for his creative, profound, and
ambitious contributions to the Traveling Salesman problem.3

• The EATCS Distinguished Dissertation Awards 2021, to promote and
recognize outstanding dissertations in theoretical computer science were
awarded to three researchers:

– Talya Eden for her dissertation Counting, Sampling and Testing Sub-
graphs in Sublinear-Time, advised by Dana Ron at Tel-Aviv Univer-
sity,

– Marie Fortin for her dissertation Expressivity of first-order logic, star-
free propositional dynamic logic and communicating automata, ad-
vised by Benedikt Bollig and Paul Gastin at ENS Paris-Saclay,

– Vera Traub for her dissertation Approximation Algorithms for Trav-
eling Salesman Problems, advised by Jens Vygen at the University of
Bonn.

• The EATCS has recognized six of its members for their outstanding contri-
butions to theoretical computer science by naming them EATCS Fellows
class of 2021:

– Luca Aceto (Reykjavik University and Gran Sasso Science Institute)
for fundamental contributions to concurrency theory, and outstanding

2The laudatio for the EATCS Award 2021 is available at https:
//eatcs.org/index.php/component/content/article/1-news/
2877-the-eatcs-award-2021-laudatio-for-toniann-toni-pitassi-

3The laudatio for the Presburger Award 2021 is available at
https://eatcs.org/index.php/component/content/article/1-news/
2886-presburger-award-2021-laudatio-for-shayan-oveis-gharan

BEATCS no 137

224

merits for the community of theoretical computer science, in particular
as an inspiring president of EATCS.

– Rajeev Alur (University of Pennsylvania) for fundamental contribu-
tions to the theory of verification, especially of timed and hybrid, con-
current and multi-agent, and hierarchical and recursive systems.

– Samir Khuller (Northwestern University) for fundamental contribu-
tions to combinatorial approximation algorithms – specifically for work
in graph algorithms and scheduling, and for mentoring and building
community.

– David Peleg (Weizmann Institute of Science) for fundamental contri-
butions to the areas of distributed graph algorithms, wireless networks,
robotics and social networks, and his longstanding support for the de-
velopment of theoretical computer science in Europe.

– Davide Sangiorgi (University of Bologna) for fundamental contribu-
tions to concurrency and the foundations of programming languages,
contributing notably to the pi-calculus and to coinduction-based proofs.

– Saket Saurabh (The Institute of Mathematical Sciences, Chennai) for
fundamental contributions to algorithms, including parameterized al-
gorithms and kernelization.

The recipients of the EATCS Award 2021 (Toniann Pitassi), and of the Pres-
burger Award 2021 (Shayan Oveis Gharan) gave online presentations in the Award
Sessions at ICALP 2021.

We congratulate all the winners and we hope their achievements will put the
highlights of research in theoretical computer science in the spotlight, and will
serve as inspirations to young researchers in the years to come.

We hope that this conference report gives you a glimpse of the rich scientific
and social programme that made the 48th ICALP an unforgettable conference. Ev-
eryone involved in the organization of ICALP 2021 deserves the warmest thanks
from the TCS community.

We wish to thank all authors who submitted extended abstracts for consider-
ation, the Program Committees for their effort, and all the referees who assisted
the Program Committees in the evaluation process. We are also grateful to the
Conference Chair Simon Gay and all the support staff of the Organizing Com-
mittee for organizing ICALP 2021. We also acknowledge support by the Scottish
Informatics and Computer Science Alliance (SICSA) for sponsoring participation
by PhD students from Scotland.

The General Assembly of the EATCS was informed about the progress of
the organization of the 49th EATCS International Colloquium on Automata, Lan-

The Bulletin of the EATCS

225

guages and Programming, ICALP 2022, that will take place in Paris, France, on
July 4–8, 2022, with Thomas Colcombet as the general chair for the conference.
The ICALP 2022 Program Committee Chairs are David Woodruff (Track A) and
Mikolaj Bojanczyk (Track B). The ICALP 2022 call for papers is available at
https://icalp2022.irif.fr/?page_id=17.

We hope that you will make plans to submit your best work to ICALP 2022
and be able to go to Paris for the conference. We look forward to seeing you there.

BEATCS no 137

226

227

Report on BCTCS 2022

The 38th British Colloquium for Theoretical Computer Science

11–13 April 2022, Swansea University

Olga Petrovska and Monika Seisenberger

The British Colloquium for Theoretical Computer Science (BCTCS) is an annual
forum in which researchers in Theoretical Computer Science can meet, present
research findings, and discuss developments in the field. It also provides a wel-
coming environment for PhD students to gain experience in presenting their work
to a broader audience, and to benefit from contact with established researchers.

BCTCS 2022 was hosted by Swansea University and held from 11th to 13th

April 2022. The event attracted 67 registered participants, and featured an inter-
esting and wide-ranging programme, including special sessions on explainable AI
and theoretical aspects of security. A total of 28 contributed talks – predominantly
by PhD students – were presented at the meeting alongside the six special session
speakers and six keynote speakers.

A special theme for the meeting was History of Theoretical Computer Sci-
ence. The four Keynote Speakers featured during the middle day of the collo-
quium were all chosen based on their lifetime achievements in developing theo-
retical computer ccience in the UK, and were invited to present personal histories
of their fields of expertise. The meeting also featured a special discussion group
on the pedagogy of theoretical computer science, led by Barnaby Martin and Eleni
Akrida. Finally, there was a special session following the AGM devoted to cel-
erating two important birthdays: John Tucker, 70, who founded BCTCS in 1985;
and Faron Moller, 60, who served as its President for 15 years (2004-2019).

BCTCS 2023 will be hosted by Glasgow University from 3rd–5th March 2023.
Researchers and PhD students wishing to contribute talks concerning any aspect
of Theoretical Computer Science are cordially invited to do so. Further details are
available from the BCTCS website at www.bctcs.ac.uk.

BEATCS no 137

228

Invited Talks

Cliff Jones (Newcastle University)
Formal Methods in the UK - A (Personal) History
I owe my real start in “formal methods” to two spells in Vienna but that was long
enough ago that I can talk about many years of developing and promoting such
approaches in the UK. I’d like to describe how difficult things were back in the
70s, how much better they are today, but also to address why it has taken so long
and the situation is still far from ideal. I won’t have time to get very technical but
will provide pointers to more technical material.

Alexander Knapp (Ausburg University)
Specifying Event/Data-based Systems
Event/data-based systems are controlled by events, their local data state may
change in reaction to events. Numerous methods and notations for specifying such
reactive systems have been designed, though with varying focus on the different
development steps and their refinement relations. We first briefly review some of
such methods, like temporal/modal logic, TLA, UML state machines, symbolic
transition systems, CSP, synchronous languages, and Event-B with their support
for parallel composition and refinement. We then present E↓-logic for covering
a broad range of abstraction levels of event/data-based systems from abstract re-
quirements to constructive specifications in a uniform foundation. E↓-logic uses
diamond and box modalities over structured events adopted from dynamic logic,
for recursive process specifications it offers (control) state variables and binders
from hybrid logic. The semantic interpretation relies on event/data transition sys-
tems; specification refinement is defined by model class inclusion. Constructive
operational specifications given by state transition graphs can be characterised by
a single E↓-sentence. Also a variety of implementation constructors is available
in E↓-logic to support, among others, event refinement and parallel composition.
Thus the whole development process can rely on E↓-logic and its semantics as a
common basis.

Mike Paterson (University of Warwick)
Algorithms and Complexity in the UK - A (Personal) History
One person’s story of how they found their way into this area during the 60’s and
70’s.

Rick Thomas (University of Leicester / University of St Andrews)
Some Interactions Between Automata Theory and Algebraic Structures in the
UK - A (Personal) History
We will survey some of the impact that automata and formal language theory has

The Bulletin of the EATCS

229

had on the theory of algebraic structures, particularly group theory, focussing on
some work done in the UK. We will also point out some results and questions in
automata theory arising from these interactions.

Francesca Toni (Imperial College London)
Argumentative Explainable AI
It is widely acknowledged that transparency of automated decision making is cru-
cial for deployability of intelligent systems, and explaining the reasons why some
outputs are computed is a way to achieve this transparency. The form that expla-
nations should take, however, is much less clear. In this talk I will explore two
classes of explanations, which I call ’lean’ and ’mechanistic’: the former focus
on the inputs contributing to decisions given in output; the latter reflect instead
the internal functioning of the automated decision making fed with the inputs and
computing those outputs. I will show how both classes of explanations can be
supported by forms of computational argumentation, and will describe forms of
argumentative XAI in some settings (e.g. for multi-attribute decision making and
machine learning).

John Tucker (Swansea University)
A (Personal) History of Logic in Computer Science
I will look at the emergence of logic as a central source of tools in computer sci-
ence through the lens of my scientific development. I will concentrate on math-
ematical logic and its impact on programming and software engineering, starting
in the 1960s.

BEATCS no 137

230

Contributed Talks

Ruba Alassaf (University of Manchester)
Uniform interpolation in modal logic
A formula φ′ is said to be a uniform Σ−interpolant of φ if, for any ψ over the
signature Σ, ψ is implied by φ′ if and only if ψ is implied by φ. Uniform interpo-
lation has been the subject of many recent research papers due to its potential use
in applications. In this talk, we introduce uniform interpolation and its variants,
and present a saturation-based inference system that computes a local uniform
interpolant for a formula and a “keep” signature.

Fahad Alhabardi (Swansea University)
Verification of bitcoin’s smart contracts in Agda using weakest preconditions
for access control
We address the verification of bitcoin smart contracts using the interactive theorem
prover Agda, focusging on two standard smart contracts that govern the distribu-
tion of bitcoins: Pay to Public Key Hash (P2PKH) and Pay to MultiSig (P2MS).
Both are written in bitcoin’s low-level language script, and provide the security
property of access control to the distribution of bitcoins. We introduce an opera-
tional semantics of the script commands used in P2PKH and P2MS, and formalise
it in the Agda proof assistant using Hoare triples. We advocate weakest precondi-
tions in the context of Hoare triples as the appropriate notion for verifying access
control. Two methodologies for obtaining human-readable weakest preconditions
are discussed in order to close the validation gap between user requirements and
formal specification of smart contracts: (1) a step-by-step approach, which works
backwards instruction by instruction through a script, sometimes stepping over
several instructions in one go; (2) symbolic execution of the code and translation
into a nested case distinction, which allows to read off weakest preconditions as
the disjunction of accepting paths. A syntax for equational reasoning with Hoare
Triples is defined in order to formalise those approaches in Agda.

Richard Allen (Swansea University)
Runtime verification for Android security
Users of computer systems face a constant threat of cyberattacks by malware de-
signed to cause harm or disruption to services, steal information, or hold the user
to ransom. Cyberattacks are becoming increasingly prevalent on mobile devices
like Android. Attacks and countermeasures become more sophisticated in an ever-
increasing arms race. A novel attack method is “collusion”, where the attack gets
hidden by distributing the steps through many malicious software actors. We in-
vestigate the use of runtime verification to detect collusion attacks on the end-
users device. We have developed a novel algorithm called RRH that is a variation

The Bulletin of the EATCS

231

of an existing algorithm by Grigore Roşu and Klaus Havelund. Our approach is
computationally efficient enough to detect collusion in realtime on the Android
device and does not require prior knowledge of malware source code. Thus, it can
detect future malware without modification to the detection system or the software
under scrutiny.

Peace Ayegba (University of Glasgow)
Resource allocation problems in wireless communications
Wireless communications is transforming every sector of the economy as it en-
ables billions of people to keep in touch with work and family via their smart
devices. However, the current technology cannot meet the demands of the fu-
ture (i.e., explosive growth in number of devices, better coverage and connection
rate). For future wireless communications, the key technology that has the poten-
tial to enhance connectivity for billions of users is referred to as Cell Free massive
Multiple-Input Multiple-Output (CF-mMIMO). One of the many challenges in
CF-mMIMO is how to efficiently manage limited resources (spectrum, energy,
and power) – the so called resource allocation problem in wireless communica-
tions. This talk will give a survey of some of the problems arising in this context,
as well as mathematical techniques that have been explored to tackle them.

Martin Barrere (Imperial College London)
Trustworthy critical infrastructure systems
Critical infrastructure systems are systems that are considered vital for the proper
functioning and development of a society. Some examples are power plants, smart
grids, and water distribution networks. These systems are often composed of di-
verse interconnected subsystems, thus creating a complex network of highly in-
terdependent software, processes, and hardware components. From a security
perspective, cyber attacks on these cyber-physical systems can have very serious
consequences such as flooding, blackouts, or even nuclear disasters. In this talk,
I will cover some of the main concepts regarding critical infrastructure systems,
their importance, and related security management challenges. Afterwards, I will
present two of the research areas that we are currently working on, namely, iden-
tification of critical cyber-physical components and cyber-physical attack graphs.
I will conclude my talk by describing a number of open problems and exciting
security challenges that require further investigation.

Arnold Beckmann (Swansea University)
Blockchain-based cyber-physical trust systems and their application
Cyber Physical Trust Systems (CPTS) are cyber physical systems enriched with
trust as an explicit, measurable, testable and verifiable system component. In this
talk we describe our research in relation to CPTS that are driven by blockchain.

BEATCS no 137

232

We explain what blockchain is. We highlight some of the security properties of
Blockchain-based CPTS and their formal proofs using the Tamarin Prover tool.
We also describe the context of this research by highlighting the application of
Blockchain-based CPTS in real world projects we are involved in.

Harry Bryant (Swansea University)
Exploring the IC3 algorithm to improve the Siemens-Swansea ladder logic ver-
ification tool
The last years have seen a radical transformation in railways. Among the new in-
frastructure, signalling software is a key technology to increase rail capacity and
automation. However, verifying the safety of this software is a challenge for the
railway industry. Siemens Mobility and Swansea University have developed an
effective automated verifier for railway interlocking programs, which our project
sets out to improve. The purpose of our research is to deal efficiently with the
false-positive problem, where verification fails although the property under dis-
cussion holds. This problem arises due to the specific algorithmic approach taken.
We are investigating if the false-positive problem can be addressed by Bradley’s
IC3 algorithm and its parallel and symbolic variations. The overall goal of our
research is to offer a solution that scales to a challenge in rail industry.

Victor Cai (Swansea University)
Counterexample visualisation in the railway domain
In railway, the placement of equipment on a track plan is safety-critical and un-
derlies many constraints (more than 300 are known in industry). For ETCS Level
2, our industrial partner has a design tool that lets engineers place equipment on
track plans. The objective of our project is to visualise constraint violations in this
tool, discovered through SMT solving. There is an approach under development
that translates data from the design tool into a directed graph, which is then en-
coded in the SMTLib2 format, and finally checked against a set of design rules
using the Z3 SMT solver. Our contribution is to take the unsatisfiable core of such
a check and visualise it on the track plan in the design tool, by reversing the two
model transformations that made the track data accessible to SMT solving. Our
work provides a new instance of the challenge to translate from the language of a
prover back into the language of the domain from which the problem originated.

Jamie Duell (Swansea University)
On explainable AI for medical diagnostics and its potential
Explainable AI (XAI) aims to provide intelligible explanations to users to sup-
port decision making. Current XAI methods, such as SHAP, LIME, and Scoped
Rules, focus on calculating feature importance in predictions. Although XAI has
attracted increasing attention, applying XAI techniques to healthcare to inform

The Bulletin of the EATCS

233

clinical decision making is still challenging. Our experimental results show that
XAI methods circumstantially generate different top features. The identified fea-
tures, including shared top important features, demonstrate clinical significance
in making diagnosis under different scenarios. Our work shows that medical diag-
nostics is a promising domain for applying XAI technologies. We aim to further
this coalition of important features and the respective impact to surrounding fea-
tures, by introducing peer-influence as a means of identifying underlying relations.

Hsuan Fu (Université Laval)
XAI in finance and economics

Abdul Ghani (Durham University)
Depth lower bounds in stabbing planes for combinatorial principles
This talk will introduce stabbing planes as a proof system, discuss its relevance,
and indicate a few methods of finding lower bounds.

James Hinns (Swansea University)
Quantifying underspecification with feature attribution algorithms
For a given dataset and machine learning (ML) task, various predictors can be
constructed with different reasoning that produce near-optimal test performance.
However, due to this variance in reasoning, some predictors can generalise whilst
some perform unexpectedly on unseen data. The existence of multiple equally
performing predictors exhibits underspecification of the ML pipeline used for
producing such predictors and presents challenges for credibility. In this talk,
we propose identifying underspecification by estimating the variance of reason-
ing within a set of near-optimal predictors produced by a pipeline. We implement
our approach by producing a set of well-performing predictors, computing their
Shapley additive explanations and then measuring various distance and correla-
tion metrics between them. We demonstrate our approach on multiple datasets
drawn from the literature, and in a COVID-19 virus transmission case study.

Sahar Jahani (London School of Economics)
Automated equilibrium analysis of 2x2x2 games
In this project, we study the Nash equilibria in three-player non-cooperative games
in which each player has two strategies. We present a program that outputs a full
description of these equilibria even for degenerate games, which has not been
done before. These are the simplest games with more than two players. The
players’ best-response functions are non-linear and a new formulation for these
is proposed. Finding Nash equilibria is divided into two main algorithms: one
to compute the partially mixed equilibria, and one compute the completely mixed
equilibria. Both algorithms are implemented in Python with a 3D representation of

BEATCS no 137

234

best-response surfaces. The program will be added to the Game Theory Explorer,
which is a web application for analyzing different types of games.

Amin Karamlou (University of Oxford)
Logical aspects of non-local games
A non-local game consists of a group of spatially separated players who are try-
ing to convince an adversary (the referee) that they know the answers to a set of
questions. Ever since the pioneering work of Bell in the 1960s this rather abstract
framework has proven to be one of our most useful tools for understanding quan-
tum advantage, that is, the ability of a quantum system to outperform a classical
one. We focus on analysing non-local games by using techniques traditionally
associated with the field of logic in computer science. I present an overview of
the questions in this area, and the progress made thus far in solving them.

Nina Klobas (Durham University)
The complexity of temporal vertex cover in small-degree graphs
Temporal graphs model graphs whose underlying topology changes over time.
Recently, the temporal vertex cover (TVC) and sliding window temporal vertex
cover (∆-TVC for time-windows of a fixed-length ∆) have been established as
natural extensions of the classic vertex cover problem on static graphs with con-
nections to areas such as surveillance in sensor networks. In this talk we initiate
a systematic study of the complexity of TVC and ∆-TVC on sparse graphs. Our
main result shows that for every ∆ ≥ 2, ∆-TVC is NP-hard even when the under-
lying topology is described by a path or a cycle. This resolves an open problem
and shows a surprising contrast between ∆-TVC and TVC for which we provide
a polynomial-time algorithm. To circumvent this hardness, we present a num-
ber of exact and approximation algorithms for temporal graphs whose underlying
topologies are given by a path, that have bounded vertex degree in every time step,
or that admit a small-sized temporal vertex cover.

Veera Raghava Reddy Kovvuri (Swansea University)
Understanding the influence of controllable factors in feature attribution algo-
rithms
Feature attribution algorithms enable their users to gain insight into the underlying
patterns of large data sets through their feature importance calculation. Existing
feature attribution algorithms treat all features in a data set homogeneously, which
may lead to misinterpretation of consequences of changing feature values. In this
work, we consider partitioning features into controllable and uncontrollable fea-
tures, and propose the Controllable fActor Feature Attribution (CAFA) approach
to compute the relative importance of controllable features. CAFA is different
from existing feature attribution algorithms in the following aspects. First, as

The Bulletin of the EATCS

235

already mentioned, we distinguish between controllable and uncontrollable fea-
tures instead of treating them homogeneously. Secondly, we compute the relative
importance of controllable features through selective perturbation and global-for-
local interpretation. We applied CAFA to two medical datasets, a lung cancer
dataset and a breast cancer dataset. The experimental results show that after using
CAFA, though the model is built over all features, the explanations of controllable
features do not interfere with the uncontrollable ones. We further studied CAFA
on the COVID-19 non-pharmaceutical control measures dataset, which was col-
lected by ourselves. This study also showed that the controllable and uncontrol-
lable features are relatively independent.

Pardeep Kumar (Swansea University)
Security in cyber physical smart environments
Cyber physical systems (CPSs) are envisioned as one of the building blocks for
the internet of things (IoT), critical infrastructures, automations, smart healthcare,
smart environments, etc. In a typical CPS network, a sensor works as an eye
and an actuator works as a leg to cater their respective applications via several
low-powered heterogenous communication technologies, protocols, and systems.
However, such CPSs and their applications are largely distributed systems and
subject to several attacks such as malicious attempts to hijack and denial of ser-
vices. This talk will discuss some of the technical challenges and a lightweight
security mechanism in cyber physical networks.

David Kutner (Durham University)
Payment scheduling in the interval debt model
Financial networks consist of banks (nodes) connected by debts (edges). We in-
troduce the interval debt model, in which debts are due at integer time intervals
on a temporal graph with lifetime T . We define valid payment schedules as ones
consistent with the obligations of the nodes in the input, and study the problem of
finding a schedule which minimizes (or maximizes) the number of nodes which
go bankrupt. We also study the problem of bailout minimization, in which the
aim is to minimize the bailout payments made by a financial authority to make
possible a schedule with no bankruptcies. We find that bankruptcy minimization
and maximization are NP-hard even on directed acyclic graphs of bounded de-
gree; that bailout minimization is NP-hard on graphs of bounded degree; and that
bankruptcy minimization remains weakly NP-hard on graphs with O(1) vertices.

Laura Larios-Jones (University of Glasgow)
Reordering edges in temporal graphs to maximise reachability
Temporal graphs consist of an underlying graph (G, E) and an assignment t of
timesteps to edges that specifies when each edge is active. This allows us to

BEATCS no 137

236

model spread through a network which is time-sensitive. We will keep the set of
timesteps the same and explore reordering them to optimise reachability. Previous
work has mainly explored minimising spread for applications such as epidemiol-
ogy. Here, we will be looking at the opposite problem of increasing movement
through a graph. In particular, our goal is to reorder the timesteps assigned to
the edges in our graph such that the minimum number of vertices reachable from
any starting vertex is maximised. We will discuss which analogous structural
and algorithmic results from the minimisation case hold in this case. Maximising
spread can be useful in situations where we would like information or resources
to be shared efficiently, such as advertising or even vaccine rollout.

Dimitrios Los (University of Cambridge)
Balanced allocations with incomplete information
In balanced allocations, we have to allocate m tasks (balls) sequentially into n
servers (bins) so as to minimise the gap, i.e. the difference of the maximum load
to the mean m/n. The simple process of allocating each ball to a random bin
achieves whp (with high probability) a Θ(

√
m/n log n) gap when m � n. A great

improvement over this process is the two-choice process, where each ball queries
the load of two randomly chosen bins and is then placed in the least loaded bin.
It achieves whp a Θ(log2 log n) gap for m ≥ n. In the first part of this talk we
give some background on balanced allocation processes. In the second part, we
investigate variants of the two-Choice process where allocations are made under
incomplete information, giving insights into this dramatic improvement of two-
choice over one-choice.

Michael McKay (University of Glasgow)
Envy-freeness in fixed size coalition formation games
In this talk we consider a variation of the three-dimensional stable roommates
problem, which can be thought of as a coalition formation game. Agents specify
preference lists over their peers, and the task is to partition the agents into sets of
size 3 based on these preferences. Instead of seeking a “stable” partition, our aim
is to construct a partition in which no agent has “envy” for another. There is a close
relation to stability. In this talk we assume that agents have additive preferences.
For three definitions of envy-freeness, we show that it is NP-hard in general to
find envy-free partitions, but we present new results relating to restrictions of each
problem in which an envy-free partition can be found in polynomial time. These
results help us explore the boundary between NP-hardness and polynomial-time
solvability in problems of coalition formation.

Steffan Mon (Swansea University)
Routing as a game

The Bulletin of the EATCS

237

The internet can be viewed as a game played on a graph, where each vertex makes
forwarding decisions based on selfish preferences over the path the data takes.
Changes in forwarding decisions by one vertex may cause others to change their
decisions, causing a ripple effect through the graph, resulting in degraded perfor-
mance. Path formation games formalise and model this scenario along with other
problems of interest. Although not every instance of path formation games has a
solution, we prove how some special cases are guaranteed to have an efficiently
computable solution. We also show how lacking a structure known as a dispute
wheel is a sufficient condition for a game to have a solution.

Yoàv Montacute (University of Cambridge)
The path of hidden pebbles
Pebble games are a type of Spoiler-Duplicator game used in finite model theory
to compare models and examine expressive powers of logical systems. Recently,
these games were shown to provide an equivalent intermediary between fragments
of different logical languages and categorical structures named comonads. This
realises a unified language that can be used to study combinatorics categorically
and to introduce alternative consolidated proofs for results with a common gen-
eral form. This talk will begin with a current overview on this research project,
originating from the seminal work of Abramsky, Dawar and Wang. We then con-
sider a new type of pebble game which utilises the idea of a hidden pebble and
yields a novel homomorphism-counting theorem via a comonad whose coalgebras
characterise pathwidth.

Kiana Samadpour Motalebi (University of Manchester)
Tableau methods for modal logic
Logics of confluence, defined by generalisations of the axiom of confluence, cover
a wide range of standard modal logics including modal logic K and single axiom
extensions with the axioms T, B, 5, BAN, alt1, G0111, G and D, which are simple
instances of a generalised pattern of axioms of confluence. Two kinds of tableau
calculi for this class of logics using respectively structural rules and propaga-
tion rules are studied. Structural rules ensure that the constructed models satisfy
the characteristic frame conditions of the logic, whereas propagation rules only
construct pre-models which are sufficient to discover unsatisfiability and can be
completed or adapted to give concrete models.

Tamio-Vesa Nakajima (Oxford University)
Linearly ordered colouring of hypergraphs
Linearly ordered colouring is a type of special hypergraph colouring. In nor-
mal hypergraph colouring, one must colour each vertex with one of K different
colours such that no hyperedge is monochromatic. In linearly ordered colouring,

BEATCS no 137

238

one must colour each edge so that it has a unique maximum colour. In this talk
we discuss several interesting results about such colourings – both tractability of
certain cases, and hardness of others. In particular, we will discuss “promise”
problems: rather than trying to find a linearly ordered colouring with K colours
for arbitrary hypergraphs, we will assume that the hypergraph admits a linearly
ordered colouring with fewer than K colours.

Hoang Nga Nguyen (Coventry University)
Towards systematic threat assessment and security testing for automotive OTA
Modern cars host numerous special-purpose computing and connectivity devices
facilitating the correct functioning of various in-vehicle systems. These devices
host complex software systems with over 100 million lines of code, requiring
regular and timely updates for functional and security improvements. Addressing
the shortcomings of the legacy update system, over-the-air (OTA) software update
systems have emerged as an efficient, cost-effective, and convenient solution for
delivering updates to automobiles remotely. While OTA offers several benefits, it
introduces new security challenges requiring immediate attention, as attackers can
abuse these update systems to undermine vehicle security and safety. This talk
will present our model-based approaches to addressing the security assessment
problem for automotive OTA systematically.

Uchenna Nnawuchi (Middlesex University)
Investigating the right to explainable AI in the context of the GDPR
The growth of Artificial Intelligence (AI) in various aspects of human society
has affected the landscape of human cognition, social order and political power.
Machine Learning (ML) algorithms are increasingly becoming responsible for
decision-making in many industry sectors owing to their efficiency in performing
tasks. However, the growing worry is that ML algorithms are fraught with opacity
and bias. Some legal scholars and data scientists have claimed that the right to
explanation exists and is a persuasively appealing approach for challenging and
providing redress to ML opacity. However, the existence or otherwise of such a
right is at the centre of global debate. This paper investigates whether there is
a legal right to explanation of ML algorithms in the context of the GDPR. The
paper analyses the argument from various scholars on both sides of the divide
with a view to ascertaining whether the right actually exists.

Alpay Ozkeskin (University of Liverpool)
Scheduling with precedence constraints for electricity cost in smart grid
We study a scheduling problem arising in demand response management in smart
grid. Consumers send in power requests with a flexible feasible time interval dur-
ing which their requests can be served. The grid controller, upon receiving power

The Bulletin of the EATCS

239

requests, schedules each request within the specified interval. The electricity cost
is measured by a convex function of the load in each time slot. The objective is to
schedule all requests with the minimum total electricity cost. Previous work has
studied a special case where the power requirement and the duration a request de-
mands are both unit-size. We extend this case by allowing jobs to have precedence
constraints. We present a polynomial time offline algorithm that gives an optimal
solution when the feasible time intervals for the jobs in order of precedence are
the same.

Filippos Pantekis (Swansea University)
Towards massively parallel SAT
Parallelisation of SAT is an area that faces many challenges, including the sharing
of information between threads causing restrictions to performance. In this work,
we present steps in massively parallelising SAT checking using new GPGPU ar-
chitectures in a manner that is both loosely coupled and fully scalable. We demon-
strate techniques for successful parallelisation of SAT in these special environ-
ments and present early results in favour of their use.

Francis Southern (Swansea University)
Singular DP-reduction
It is useful to be able to reduce one set of boolean constraints to another, which
is simpler relative to some complexity measure, in such a way that solutions can
be translated back to the original problem. One operation which achieves this
and has been utilised in both theoretical and practical work on the propositional
satisfiability problem is Davis-Putnam reduction, which eliminates a variable v
from a clause-set F by replacing the clauses containing v with their resolvents (on
v). In general, this may increase the number of clauses. However, the number of
clauses also decreases in the special case of singular DP-reduction, in which the
eliminated variable occurs in one of its polarities only once. My talk will cover
some structural properties of singular DP-reduction on minimally unsatisfiable
clause-sets.

Theofilos Triommatis (University of Liverpool)
On maximising the visibility area with a rotating field of view
Imagine we have a polygon-shaped platform P and only one static spotlight out-
side of P. Which direction should the spotlight face to light most of the platform?
More formally, we define and provide an algorithm for the problem of finding the
maximum intersection between a polygon and a rotating field of view. If we were
to guess the direction that yields the maximum intersection, we would have to go
through an infinite number of guesses. We provide an FPTAS that approximates
the rotation that yields the maximum intersection.

BEATCS no 137

240

Galen Wilkerson (Imperial College London / University of Surrey)
Spontaneous emergence of computation in network cascades
Neuronal network computation and computation by avalanche supporting net-
works are of interest to the fields of physics, computer science (computation the-
ory as well as statistical or machine learning) and neuroscience. Here we show
that computation of complex Boolean functions on inputs arise spontaneously
in threshold networks as a function of connectivity and antagonism (inhibition),
computed by logic motifs. We also obtain lower bounds on function probabilities,
and show that these results agree with those obtained by others.

Adam Wyner (Swansea University)
Explainable AI in law

Tansholpan Zhanabekova (University of Liverpool)
Deciding what is good-for-MDPs
Nondeterministic Good-for-MDP (GFM) automata are for MDP model checking
and reinforcement learning what good-for-games automata are for synthesis: a
more compact alternative to deterministic automata that displays nondetermin-
ism, but only so much that it can be resolved locally, such that a syntactic product
can be analysed. GFM has recently been introduced as a property for reinforce-
ment learning, where the simpler Büchi acceptance conditions it allows to use is
key. However, while there are classic and novel techniques to obtain automata
that are GFM, there has not been a decision procedure for checking whether or
not an automaton is GFM. We show that GFM-ness is decidable and provide an
EXPTIME decision procedure as well as a PSPACE-hardness proof.

241

Report on CPM 2022

The 33rd Annual Symposium on Combinatorial Patter Matching

Nadia Pisanti
University of Pisa, Italy

The 33rd Annual Symposium on Combinatorial Patter Matching was held in
Prague, Czech Republic, from June 27th to June 29th, 2022. Each year, CPM
gathers scientists of many areas related to word combinatorics, discrete algo-
rithms, string algorithms, that address problems such as text searching and in-
dexing, data compression, pattern discovery, and that can be applied to bioinfor-
matics, data mining, information retrieval, natural language processing, just to
mention a few. The 2022 edition of CPM was held at the Faculty of Civil Engi-
neering of the Czech Technical University in Prague, organised by Jan Holub, Jan
Trávníček, Ondřej Guth, Tomáš Pecka, and Eliška Šestáková, Dominika Draesslerová,
Štepán Plach y, Lucie Procházková, Regina Šmidová. The scientific program con-
sisted of 3 invited talks, 2 highlights talks, and 26 regular talks of accepted papers
which had been chosen by the Program Committee out of 43 submissions (coming
from authors from 20 different countries and 4 different continents) on the basis
of three reviews for each submission. The Program Committee consisted of 28
members (24 men, 4 women) from 18 different countries.
The detailed program, as well as some pictures can be found on the website
https://www.stringology.org/event/CPM2022/.
The proceedings, edited by the program committee co-chairs Hideo Bannai and
Jan Holub, have been published in volume 223 of LIPIcs. They are open access
and can be found here:
https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16232.
The invited talks covered several interesting topics and were given by:

1. Takehiro Ito (Tohoku University, Japan):
“Invitation to Combinatorial Reconfiguration”

2. Jeffrey Shallit (University of Waterloo, Canada):
“Using automata and a decision procedure to prove results in pattern match-
ing”

3. Sharma V. Thankachan (University of Central Florida, USA):
“Compact Text Indexing for Advanced Pattern Matching Problems: Parametrized,
Order-isomorphic, 2D, etc.”

The highlights talks, introduced for the first time in CPM 2019, are special
sessions dedicated to as many presentations of the highlights of recent results and

BEATCS no 137

242

developments in combinatorial pattern matching topics, that have been recently
published in other venues.
This year, CPM featured the following two highlight talks:

1. Tomasz Kociumaka ((MPI, Germany). “Small space and streaming pattern
matching with k edits”, paper presented at FOCS 2021.

2. Moses Ganardi (MPI, Germany). “Compression by Contracting Straight-
Line Programs”, paper presented at ESA 2021, and extended in J.ACM
2021.

The conference had 50 on-line and 59 in-person participants. The business meet-
ing of CPM 2022 was chaired by the Steering Commitee and took place on June
27th, at the end of the afternoon session. In the business meeting, the PC chair and
local organiser Jan Holub gave briefly an overview on the conference organisa-
tion. At the end of the meeting, Laurent Bulteau presented the conference edition
of CPM 2023 which will take place in Paris, France. The social program took
place the second day of CPM 2022 and started with a sightseeing ride through the
city center on board of one of Prague’s historical trams that used to roam Prague
streets in the first half of the 20th century. The tram ride was followed by a guided
tour through beautiful Prague’s Old Town which started with the Charles Bridge
and ended with a conference dinner at the Tiskarna Restaurant.
Thank you to the local organizers for their excellent work and all participants for
the nice and successful conference.
Looking forward to see you at CPM 2023 in Paris!

243

E u r o p e a n

A s s o c i a t i o n f o r

T h e o r e t i c a l

C omp u t e r

S c i e n c e

EA
T

C
S

E A T C S

BEATCS no 137

244

EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the EATCS Distinguished Dissertation Award, the Nerode
Prize (joint with IPEC) and best papers awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

Benefits offered by EATCS to Young Researchers also include:
- Database for Phd/MSc thesis
- Job search/announcements at Young Researchers area

The Bulletin of the EATCS

245

(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Jerusalem, Israel 1994
- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997

- Aalborg, Denmark 1998
- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013
- Copenhagen, Denmark 2014
- Kyoto, Japan 2015
- Rome, Italy 2016
- Warsaw, Poland 2017
- Prague, Czech Republic 2018
- Patras, Greece 2019
- Saarbrücken, Germany (virtual conference) 2020
- Glasgow, UK (virtual conference) 2021

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-

BEATCS no 137

246

mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Vienna), J. Hromkovič
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are D. Sannella (Edinburgh), L. Kari and P.G. Spirakis
(Patras).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Artur Czumaj,
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues are e 40 for a period of one year (two years for students / Young Researchers). Young
Researchers, after paying, have to contact secretary@eatcs.org, in order to get additional
years. A new membership starts upon registration of the payment. Memberships can always be
prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 35 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 35 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.

The Bulletin of the EATCS

247

HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, contact the Secretary Office of EATCS:

Mrs. Efi Chita,
Computer Technology Institute & Press (CTI)
1 N. Kazantzaki Str., University of Patras campus,
26504, Rio, Greece
Email: secretary@eatcs.org,

Tel: +30 2610 960333, Fax: +30 2610 960490
If you are an EATCS member and you wish to prolong your membership or renew the subscription
you have to use the Renew Subscription form. The dues can be paid via paypal and all major credit
cards are accepted.
For adittional information please contact the Secretary of EATCS:

Prof. Emanuela Merelli
via Madonna delle Carceri, 9
Computer Science Build. 1st floor
University of Camerino,
Camerino 62032, Italy
Email: secretary@eatcs.org,

Tel: +39 0737402567

