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Dear EATCS members,

First of all, let me wish you a very happy
2023. I hope that this will be a healthy
and fantastic year for all of us, full of
great research advances, exciting
conferences and workshops. I look forward
to working together with all of you in
order to continue promoting the development
of theoretical computer science.

I am especially looking forward to
attending the 50th EATCS International
Colloquium on Automata, Languages, and
Programming (ICALP 2023), the EATCS
flagship conference that will be held in
Paderborn, Germany, July 10–14, 2023
(https://icalp2023.cs.upb.de/). The PC chairs
are Uriel Feige (track A) and Kousha
Etessami (track B), and the conference
chair is Sevag Gharibian. ICALP 2023 will
feature five fantastic invited speakers:
Anna Karlin (University of Washington),
Rasmus Kyng (ETH Zürich), Rupak Majumdar
(Max Planck Institute for Software
Systems), Thomas Vidick (Caltech and
Weizmann Institute), and James Worrell
(University of Oxford). I hope that many
of you have submitted your very best work
to ICALP 2023 and I expect to see a great
scientific program, to be selected by the
PC in mid April. As usual, ICALP will be
preceded by a series of workshops, which
will take place on July 10. ICALP 2023
will be also the occasion to celebrate the
50th times we have the conference. It is
fascinating to see how this conference has
changed since its establishing in 1972, and
also how the field of theoretical computer
science has evolved during these years!
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Also, please allow me to remind you about
three EATCS affiliated conferences that
will take place later in summer and fall
this year: the 48th International
Symposium on Mathematical Foundations of
Computer Science (MFCS 2023) in Bordeaux,
France, August 2023, the 31st Annual
European Symposium on Algorithms (ESA 2023,
https://algo-conference.org/2023/esa/) in
Amsterdam, the Netherlands, September 4–6,
2023, and the 36th International Symposium
on Distributed Computing (DISC 2023,
http://www.disc-conference.org/wp/disc2023/)
in L’Aquila, Italy, October 9–13, 2023.

But there will be some more exciting theory
conferences taking place in the summer,
where I hope to see strong in-person
attendance even if the events are taking
place outside Europe. The 55th ACM
Symposium on Theory of Computing (STOC
2023, http://acm-stoc.org/stoc2023/) will be
held in Orlando, USA, June 20–23, 2023.
STOC 2023 is a part of the ACM Federated
Computing Research Conference (FCRC,
https://fcrc.acm.org/), and it will be run
jointly with some other theory conferences,
PODC 2023 and SPAA 2023. Another flagship
theory conference, the 38th Annual ACM/IEEE
Symposium on Logic in Computer Science
(LICS 2023, https://lics.siglog.org/lics23/),
will be held this year in Boston, USA, June
26–29. I expect all these conferences to
bring a large in-person attendance and to
stimulate fantastic research advances in
theory.

As usual, let me close this letter by
reminding you that you are always most
welcome to send me your comments,
criticisms and suggestions for improving
the impact of the EATCS on the Theoretical
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Computer Science community at
president@eatcs.org. We will consider all
your suggestions and criticisms carefully.

I look forward to seeing many of you
around, at ICALP in Paderborn, or during
other conferences or workshops that I hope
to attend this spring and summer and fall,
or maybe only online, and to discussing
ways of improving the impact of the EATCS
within the theoretical computer science
community.

Artur Czumaj
University of Warwick, UK

President of EATCS
president@eatcs.org

February 2023
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Dear EATCS community,

I wish you a wonderful 2023!

The new Bulletin features several
interesting researchers. Alexandra Silva
is our first interviewee this year, and you
can read more about her and her advice,
e.g., for young researchers or what to do
when stuck with a research problem, in the
interview column. The Bulletin further
includes a guest column by Boaz Barak: in
the theory blogs column he tells us about
his experience writing on the “Windows in
Theory” blog, about his sources of
inspiration, about his thoughts on
mathematics and computer science education,
and much more.

In the complexity column, Ryan Williams is
motivated by the observation that we have a
lot of information about what the proofs of
longstanding open complexity lower bounds
cannot look like and investigates the
question: what could a proof of a strong
lower bound look like? The distributed
computing column features Naama Ben-David,
winner of the 2022 Principles of
Distributed Computing Doctoral Dissertation
Award, who revisits the idea of “lock-free
locks”. The logical column revolves around
model theory and Yuri Gurevich discusses
the the umbilical cords of finite model
theory. The educational column
investigates how teaching informatics can
contribute to improving education in
general.

Last but not least, in the perspectives
column, Antoine Amarilli gives an
introduction to the Theoretical Computer
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Scientists for Future (TCS4F) initiative
which aims to make research in theoretical
computer science environmentally
sustainable.

I’d like to thank all the contributors to
this issue.
Enjoy the new Bulletin!

Stefan Schmid, Berlin
February 2023
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The Gödel Prize 2023

Call for Nominations

Deadline: March 31st, 2023

The Gödel Prize for outstanding papers in the area of theoretical computer sci-
ence is sponsored jointly by the European Association for Theoretical Computer
Science (EATCS) and the Association for Computing Machinery, Special Interest
Group on Algorithms and Computation Theory (ACM SIGACT). The award is
presented annually, with the presentation taking place alternately at the EATCS
International Colloquium on Automata, Languages, and Programming (ICALP)
and the ACM Symposium on Theory of Computing (STOC). The 31st Gödel Prize
will be awarded at the 55th ACM Symposium on Theory of Computing (STOC),
which will take place in Orlando, Florida, June 20-23, 2023.

The Prize is named in honor of Kurt Gödel in recognition of his major contri-
butions to mathematical logic and of his interest, discovered in a letter he wrote to
John von Neumann shortly before von Neumann’s death, in what has become the
famous “P versus NP” question. The Prize includes an award of USD 5,000.

Award Committee: The 2023 Award Committee consists of Nikhil Bansal
(University of Michigan), Irit Dinur (Weizmann Institute), Anca Muscholl (Uni-
versity of Bordeaux), Tim Roughgarden (Columbia University), Ronitt Rubinfeld
(Chair, Massachusetts Institute of Technology), and Luca Trevisan (Bocconi Uni-
versity).

Eligibility: The 2023 Prize rules are given below and they supersede any dif-
ferent interpretation of the generic rule to be found on websites of both SIGACT
and EATCS. Any research paper or series of papers by a single author or by a
team of authors is deemed eligible if:

- The main results were not published (in either preliminary or final form) in
a journal or conference proceedings before January 1st, 2010.

- The paper was published in a recognized refereed journal no later than De-
cember 31, 2022.
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The research work nominated for the award should be in the area of theoretical
computer science. Nominations are encouraged from the broadest spectrum of
the theoretical computer science community so as to ensure that potential award
winning papers are not overlooked. The Award Committee shall have the ultimate
authority to decide whether a particular paper is eligible for the Prize.

Nominations: Nominations for the award should be submitted by email to the
Award Committee Chair: ronitt@mit.edu. Please make sure that the Subject line
of all nominations and related messages begin with “Goedel Prize 2023.” To be
considered, nominations for the 2023 Prize must be received by March 31st, 2023.

A nomination package should include:
1. A printable copy (or copies) of the journal paper(s) being nominated, to-

gether with a complete citation (or citations) thereof.
2. A statement of the date(s) and venue(s) of the first conference or workshop

publication(s) of the nominated work(s) or a statement that no such publication
has occurred.

3. A brief summary of the technical content of the paper(s) and a brief expla-
nation of its significance.

4. A support letter or letters signed by at least two members of the scientific
community.

Additional support letters may also be received and are generally useful. The
nominated paper(s) may be in any language. However, if a nominated publication
is not in English, the nomination package must include an extended summary
written in English.

Those intending to submit a nomination should contact the Award Committee
Chair by email well in advance. The Chair will answer questions about eligibility,
encourage coordination among different nominators for the same paper(s), and
also accept informal proposals of potential nominees or tentative offers to prepare
formal nominations. The committee maintains a database of past nominations
for eligible papers, but fresh nominations for the same papers (especially if they
highlight new evidence of impact) are always welcome.

Selection Process: The Award Committee is free to use any other sources
of information in addition to the ones mentioned above. It may split the award
among multiple papers, or declare no winner at all. All matters relating to the
selection process left unspecified in this document are left to the discretion of the
Award Committee.

Recent Winners (all winners since 1993 are listed at http://www.sigact.
org/Prizes/Godel/ and http://eatcs.org/index.php/goedel-prize):

2022: Brakerski, Zvika; Vaikuntanathan, Vinod , “ Efficient Fully Homomor-
phic Encryption from (Standard) LWE”. SIAM Journal on Computing. 43 (2):
831–871 (preliminary version in Foundations of Computer Science, FOCS 2011).
Brakerski, Zvika; Gentry, Craig; Vaikuntanathan, Vinod (2012). “(Leveled) Fully
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Homomorphic Encryption without Bootstrapping”. ACM Trans. Comput. The-
ory 6(3): 13:1-13:36 (preliminary version in Innovations in Theoretical Computer
Science, ITCS 2012).

2021: Andrei Bulatov, The Complexity of the Counting Constraint Satisfac-
tion Problem. J. ACM 60(5): 34:1–34:41 (2013). Martin E. Dyer and David
Richerby: An Effective Dichotomy for the Counting Constraint Satisfaction Prob-
lem. SIAM J. Computing. 42(3): 1245–1274 (2013). Jin-Yi Cai and Xi Chen:
Complexity of Counting CSP with Complex Weights. J. ACM 64(3): 19:1–19:39
(2017).

2020: Robin A. Moser and Gábor Tardos, A constructive proof of the gen-
eral Lovász Local Lemma, Journal of the ACM (JACM), Volume Issue 2, 2010
(preliminary version in Symposium on Theory of Computing, STOC 2009)

2019: Irit Dinur, The PCP theorem by gap amplification, Journal of the ACM
(JACM), Volume 54 Issue 3, 2007 (preliminary version in Symposium on Theory
of Computing, STOC 2006)

2018: Oded Regev, On lattices, learning with errors, random linear codes,
and cryptography, Journal of the ACM (JACM), Volume 56 Issue 6, 2009 (pre-
liminary version in Symposium on Theory of Computing, STOC 2005).

2017: Cynthia Dwork, Frank McSherry, Kobbi Nissim and Adam Smith, Cal-
ibrating Noise to Sensitivity in Private Data Analysis, Journal of Privacy and Con-
fidentiality, Volume 7, Issue 3, 2016 (preliminary version in Theory of Cryptog-
raphy, TCC 2006).

2016: Stephen Brookes, A Semantics for Concurrent Separation Logic. The-
oretical Computer Science 375(1-3): 227-270 (2007). Peter W. O’Hearn, Re-
sources, Concurrency, and Local Reasoning. Theoretical Computer Science 375(1-
3): 271-307 (2007).

2015: Dan Spielman and Shang-Hua Teng, Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems, Proc. 36th
ACM Symposium on Theory of Computing, pp. 81-90, 2004; Spectral sparsi-
fication of graphs, SIAM J. Computing 40:981-1025, 2011; A local clustering
algorithm for massive graphs and its application to nearly linear time graph
partitioning, SIAM J. Computing 42:1-26, 2013; Nearly linear time algorithms
for preconditioning and solving symmetric, diagonally dominant linear systems,
SIAM J. Matrix Anal. Appl. 35:835-885, 2014.
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IPEC Nerode Prize 2023

Call for Nominations

Deadline: April 15, 2023

The EATCS-IPEC Nerode Prize for outstanding papers in the area of mul-
tivariate algorithmics, is presented annually with the presentation taking place at
IPEC (International Symposium on Parameterized and Exact Computation). IPEC
2023 is due to take place as part of ALGO 2023 on 4-8 September in Amsterdam,
the Netherlands. The Prize is named in honor of Anil Nerode in recognition of
his major contributions to mathematical logic, theory of automata, computability,
and complexity theory.

Award Committee:

The winning paper(s) will be selected by the EATCS-IPEC Nerode Prize Award
Committee. This year’s committee consists of the following people.

• Fedor Fomin, chair (University of Bergen, fedor.fomin@uib.no)

• Thore Husfeldt (IT University of Copenhagen, thore@itu.dk)

• Sang-il Oum (IBS and KAIST, sangil@ibs.re.kr)

Deadline for Nominations: 15 April, 2023. Decision: 15 June, 2023.

The Award Committee is solely responsible for the selection of the winner of
the award which may be shared by more than one paper or series of papers. The
Award Committee reserves the right to declare no winner at all.

Eligibility
Any research paper or series of research papers by a single author or by a team

of authors published in a recognized refereed journal. The research work nomi-
nated for the award should be in the area of multivariate algorithms and complex-
ity meant in a broad sense, and encompasses, but is not restricted to those areas
covered by IPEC. The Award Committee has the ultimate authority to decide on
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the eligibility of a nomination. Papers authored by a member of the Award Com-
mittee are not eligible for nomination. Note that the past restrictions that require a
certain number of years before/after the publication of the nominated papers have
been removed.

Nominations
Nominations may be made by any member of the scientific community includ-

ing the members of the Award Committee. A nomination should contain a brief
summary of the technical content of each nominated paper and a brief explanation
of its significance. Nominations are done by email to the Award Committee Chair
with copies to the members of the committee. The Subject line of the nomination
E-mail should contain the group of words "Nerode Prize Nomination".
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Obituary
Yuri Manin

Yuri Manin, one of the best mathematicians of his age, passed away on
January 7, 2023. He came up with the idea of quantum computing in his
1980 Russian-language book “Вычислимое и невычислимое” (“Computable
and Uncomputable”), published by Советское Радио (Soviet Radio) and un-
translated to English as far as I know. He was one of the two people who inde-
pendently suggested this idea. The other was Richard Feynman, the legendary
physicist, who put the idea more forcefully in “Simulating Physics with Comput-
ers,” International Journal of Theoretical Physics 21 467–487 1982.

A three-page Part 6 of the Introduction to Manin’s book is devoted to a quantum-
mechanical view on computing. Discussing “a complicated network of flawless
bio-chemical transformations” arising in genetic studies, he wrote that it is possi-
ble that “to make progress in understanding such phenomena, we need a mathe-
matical theory of quantum automata . . . One reason for that is that quantum state
space has much bigger capacity than classical state space.”

Manin’s primary field was algebraic geometry, but the name “Computable and
Uncomputable” of his book suggests that Manin was also interested in logic and
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foundations, and that is true. He even wrote a textbook “A Course in Mathe-
matical Logic,” Springer 1977. The one time I met him was at a 2014 inter-
disciplinary conference on Philosophy, Mathematics, and Linguistics in St. Peters-
burg, Russia, https://www.pdmi.ras.ru/EIMI/2014/PhML/index.html. k
In his talk, Manin traced “parallelisms between the origins of geometry, of atom-
ism, and of alphabetical writing.” We spoke briefly at the conference and corre-
sponded in the following years.

I am not a big fan of Wikipedia, but its article “Yuri Manin”, https://
en.wikipedia.org/w/index.php?oldid=1133679092, retrieved on Jan. 27
2023, is good.

Yuri Gurevich
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CTI, Computer Technology Institute & Press "Diophantus"
Patras, Greece

CWI, Centum Wiskunde & Informatica
Amsterdam, The Netherlands

MADALGO, Center for Massive Data Algorithmics
Aarhus, Denmark

Microsoft Research Cambridge
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The Interview Column
by

Chen Avin and Stefan Schmid
Ben Gurion University, Israel and TU Berlin, Germany

{chenavin,schmiste}@gmail.com



BEATCS no 139

22

Know the Person behind the Papers

Today: Alexandra Silva

Bio: Alexandra Silva is a theoretical computer scientist whose main research fo-
cuses on semantics of programming languages and modular development of algo-
rithms for computational models. A lot of her work uses the unifying perspective
o↵ered by coalgebra, a mathematical framework established in the last decades.
Alexandra is currently a Professor at Cornell University, and she was previously a
Professor at University College London. She was the recipient of an ERC Consol-
idator in 2020, the Royal Society Wolfson Award in 2019, the Needham Award in
2018, the Presburger Award in 2017, the Leverhulme prize in 2016, and an ERC
starting Grant in 2015.

EATCS: We ask all interviewees to share a photo with us. Can you please tell us
a little bit more about the photo you shared?
AS: This is a photo taken at the McGill Bellairs Research Institute in Barbados.
Every year since 2012 (and until the pandemic hit), I had the pleasure to join a
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workshop there, organized by Prakash Panangaden. That week was always one of
the most productive of my year in terms of getting new ideas and also in sparking
collaborations! I hope to go back this year, for the first time since 2019!

EATCS: Can you please tell us something about you that probably most of the
readers of your papers don’t know?
AS: I have a passion for exploring new countries and their food. And when I
come home I often try to replicate something I ate on those trips, which means I
often travel back with local ingredients in my bag! The pandemic has disrupted
the travel part, so I have instead bought myself some new cookbooks. Last year I
spent some weeks trying Indian cooking (from the book of Dishoom, a restaurant
in London I would often go to).

EATCS: Is there a paper which influenced you particularly, and which you rec-
ommend other community members to read?
AS: At one point in grad school I was stuck on trying to prove completeness
of a process algebra axiomatization and to take a break I decided to read one
of the papers on my desk (that my advisor had told me was important!). This
was Bart Jacobs’ paper A Bialgebraic Review of Deterministic Automata, Regular
Expressions and Languages. Reading that paper showed me a way to solve not
only the problem I was working on but a collection of such problems in a uniform
way. I have used the techniques I learned through that paper many times!

EATCS: Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?
AS: I am particularly fond of a recent paper (which I presented as an invited
talk at MFCS 2019) with my collaborators Ste↵en Smolka, Tobias Kappé, Nate
Foster, Justin Hsu, and Dexter Kozen. This paper appeared at POPL 2020 and
contains the foundations of Guarded Kleene Algebra with Tests, a fragment of
KAT that we have shown can be decided in almost linear time. Nate, Dexter,
and I had another paper (with Mae Milano and Laure Thompson) at POPL 2015
in which we had somewhat surprising experimental results on the equivalence
check for a special KAT used in network verification (NetKAT). At the time we
could not fully understand why the experimental results did not match the known
complexity results for deciding equivalence of KAT. Only later, we realized that
the programs we were using were only a fragment of NetKAT and this guarded
fragment had much better properties!

EATCS: When (or where) is your most productive working time (or place)?
AS: When I was in grad school, mornings were my most productive times. Now,
with meetings and lectures taking a significant portion of my days I find late after-
noons or early evenings are when I can get quiet time to do research (sometimes
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after I put my son to bed!). I have been trying to block one day a week with no
meetings and spending it in a quiet place, this has been very productive!

EATCS: What do you do when you get stuck with a research problem? How do
you deal with failures?
AS: Failures are part of the process and I always remind myself that a failure is a
learning moment: you now have more information on how to attack the problem
at hand. I like to take long walks when I am stuck on a problem and sometimes I
simply just leave it for a couple of weeks before coming back to it.

EATCS: Is there a nice anecdote from your career you like to share with our
readers?
AS: My first paper was at the Haskell workshop and I attended just before I started
graduate school. I did not know anyone there and I was very nervous, as I was
the first talk after the invited talk. The person given the invited talk had a level of
enthusiasm I had never seen and that just gave me the energy I needed to get up and
give my talk (which I was really afraid I would not be able to!). Almost 10 years
later when I switched to attending more programming languages conferences that
same speaker was there – this was Stephanie Weirich. I took this as a sign I was
in the right place!

EATCS: Do you have any advice for young researchers? In what should they
invest time, what should they avoid?
AS: Invest time in reading the classics. My first year in grad school my advisor
kept giving me papers from the early days of Computer Science and I could not
fully understand it but in hindsight I learned so much from reading those papers.
Find problems that make you happy while you are trying to solve them. I have
found that my motivation to do research is much higher when I work on problems
that make me curious to learn more about their origin, the context, the applica-
tions. So even when I am stuck I am still happy I am working on that problem
because I want to contribute to the context in which the problem arose.

EATCS: What are the most important features you look for when searching for
graduate students?
AS: I always look for people who are curious and open to new ideas. I think
it is important to understand that what you do in research is not a linear path,
during grad school and afterwards if you become an academic. The problems you
might work on change with time and the problems the community cares about also
change, so it is with an open mind that you can let your research career evolve in
a way that you remain happy with the work you do.
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EATCS: Do you see a main challenge or opportunity for theoretical computer
scientists for the near future?
AS: I think the challenges are in some sense the opportunities: there are new areas
emerging that still lack the foundations and as theoretical computer scientists it is
important we work together with practitioners to develop the right abstractions.
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Please complete the following sentences?

• Being a researcher... is never stop questioning your choices, directions,
and have an open mind to the most unexpected connections.

• My first research discovery... was in functional programming, a subject I
then abandoned during graduate school but went back to as a post-doc.

• Surrounding yourself with great collaborators ... is key to being a happy
academic.

• Theoretical computer science in 100 years from now... will continue to
be as important as it is nowadays, foundational work is key to progress,
though the range of topics will continue evolving with the field.



The Bulletin of the EATCS

27



28



The Bulletin of the EATCS

29

The Viewpoint Column
by

Stefan Schmid

TU Berlin, Germany
stefan.schmid@tu-berlin.de



BEATCS no 139

30

Should conferences still require mandatory
attendance?

A column by Theoretical Computer Scientists for Future (TCS4F)

Antoine Amarilli*
Télécom Paris

antoine.amarilli@telecom-paris.fr

Abstract

Theoretical Computer Scientists for Future (TCS4F) is an initiative aimed
at making research in theoretical computer science environmentally sustain-
able. This article presents TCS4F and gives a perspective on the current
question of mandatory attendance at academic conferences.

The issue of climate change has been on our collective mind for decades. Each
passing year improves our scientific understanding of the problem, and narrows
down our uncertainty about the need to drastically reduce worldwide greenhouse
gas emissions. As the window of opportunity is closing, and concrete action is
slow to materialize, more and more groups from seemingly unrelated areas find
themselves advocating for change.

TCS4F1 is one such initiative: it is lead by computer scientists, and aims at
making research in theoretical computer science environmentally sustainable. It
started in 2020 with a manifesto that can be signed by researchers, conferences,
and research groups. The pledge taken by signers is to follow a sustainable emis-
sions trajectory: reduce emissions by at least 50% before 2030 relative to pre-
2020 levels. The TCS4F manifesto was signed by 199 individual researchers (and
counting!), 3 research groups, the 2022 edition of the ICALP conference, and the
3 conferences CSL, STACS, and Highlights of Logic, Games, and Automata.

The contribution of theoretical computer science research to the climate crisis
is two-fold. On the one hand, we may be able to improve the situation through
our research. For instance, we can improve the efficiency of algorithms and hope

*With help from the TCS4F team: Thomas Colcombet, Thomas Schwentick, Tijn de Vos.
Thanks to Louis Jachiet for proofreading and suggestions.

1https://tcs4f.org/
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to reduce the footprint of the ICT sector — though our efforts may well have the
opposite effect because of Jevon’s paradox! On the other hand, we should also
think about the present impact of our research activities on the environment, and
try to adapt our practices to be more sustainable.

It may be unclear at first how theoretical research harms the environment — is
it about the consumption of draft paper? Whiteboard markers? In fact, while our
activities can emit greenhouse gases in many ways, the main factor in our climate
impact is probably long-haul plane trips. Indeed, our research field is structured
around international conferences. Their stated aim is to give the community a
place to meet, discuss, and exchange new ideas. Prestigious conferences are also
the most important means of recognition in our community: they are a must-have
on one’s CV when applying for research positions. For PhDs and researchers
on short-term positions, publishing there is not a choice but has become a vital
professional necessity. And, until recently, publishing at international conferences
naturally meant that you had to fly across the world and be there.

It is in this context that we launched TCS4F in early 2020. This coincidentally
followed Vardi’s “Publish and Perish” CACM column [4], which advocated for
optional attendance to conferences in the name of environmental sustainability. As
we all know, shortly afterwards, the COVID-19 epidemic moved all conferences
online almost overnight. This forced experiment gave us a taste of what could
be the closest online replacement for traditional conferences — if organized on
short notice and by necessity rather than choice. The situation left us yearning
for the golden days of in-person conferences and lively bar discussions in exotic
locations, and the question of flight-induced climate change was not very pressing
while we were stuck at home during lockdowns.

Once the COVID situation improved, many conferences adopted some kind of
hybrid format, pragmatically acknowledging the fact that travel was not possible
for everyone. These experiments revealed that it is comparatively easy to accom-
modate remote speakers, and to stream talks to a remote audience, which some
conferences already had experience with. However, integrating the in-person and
remote worlds proved challenging, especially for coffee breaks and social events.
Based on this, some conferences are now back to firm requirements for in-person
attendance, and are making explicit what used to be an implicit rule: “all talks
are in-person” at ICALP’23, online talks will be for “travel restrictions or other
exceptional situations” at ICDT’24... The intent may be to encourage participants
to travel so everyone can enjoy a better conference... or to ensure that universities
will continue to reimburse trips. Also, a fully in-person conference is of course
simpler to organize, and closer to what we are used to.

These rules arguably reveal an inconvenient truth: many conferences are now
attracting participants whose main goal is to have their paper published (at a pres-
tigious venue, and on a predictable timeline), and not necessarily to attend the
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event. Of course, the general will to travel and meet is still very much alive — as
can be seen at events without formal proceedings, such as the Highlights work-
shop series. But coupling formal publications with an in-person gathering no
longer makes sense for everyone.

We argue at TCS4F that decoupling the two is necessary, because plane travel
is unsustainable at the scale at which we practice it. Flying across the world to
a conference can amount to several tons of CO2-equivalent emissions, exceeding
sustainable targets for individual yearly footprints in 2030 [2], and there are no
plausible technological pathways for low-carbon intercontinental travel by then.
Thus, our position at TCS4F is that, if everyone is to do their part to mitigate
climate change, we must fly less — and attend less international conferences in
person.

However, I believe that mandatory travel is also a question of diversity and in-
clusion. In-person conferences are an exclusive club for frequent travelers, and
exclude people with insufficient funding to travel, people from countries who
cannot easily obtain visas, people with disabilities, and people with caretaking
obligations (which disproportionately affect women). For instance, the relative
proportion of women participants at the 2020 International Conference on Learn-
ing Representations (online) was 20%, versus 15% at ICLR’2019 (in-person) —
a 33% increase [3]. Our focus on in-person conferences thus overlooks a silent
majority of people for which online attendance is the only feasible way to partic-
ipate. Further, if prestigious conferences are in-person only, then recognition in
our community is reserved to the privileged few who can meet this obligation.

Of course, my point is not that in-person conferences should be eliminated
altogether. As we all know from the COVID era, online events are not perfect,
and in-person socializing has no known replacement. Traveling to conferences
is still important, and can be done responsibly — going there by train if pos-
sible, picking geographically closer locations, or simply going there less often.
Online and hybrid events can also play a role, as do other forms of online re-
search: online videos2, online seminars3, the Theoretical Computer Science Stack
Exchange4, etc. These new formats are especially promising when they do not
try to mimic what already exists, but instead leverage features specific to the In-
ternet: asynchronicity, low friction, low-cost, machine interpretability, long-term
archival... Overall, it is very challenging to balance the scientific value of inter-
national in-person meetings with their environmental impact. But every member
of our community should have a say in this choice, and it should be guided by
careful deliberation — not simply by reverting to the default 20th-century-style

2For instance ScienceCast: https://sciencecast.org/
3For instance https://researchseminars.org/
4https://cstheory.stackexchange.com/
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conference culture.
It is not yet clear how the conference landscape will evolve after COVID:

which conferences will settle on a new format in the long run, and which ones
will revert to the pre-COVID rule of mandatory participation barring extenuating
circumstances. We have tried to survey this at TCS4F [1]. For conferences with
optional in-person attendance, it is not clear how much organizers will encour-
age or discourage participants to travel, and how researchers will respond. These
questions should probably be debated in our community, so the system can achieve
the best compromise between scientific value, inclusivity, and environmental sus-
tainability. But, specifically for prestigious conferences with formal proceedings,
our short-term hope is that future call for papers will allow publication without
in-person attendance.

We are interested at TCS4F to hear about the views of the community on this
important issue. Should conference publication be conditioned to onsite partici-
pation? How should our conference culture change to be sustainable and inclu-
sive? We are interested to hear your views at contact@tcs4f.org.

More reading
• Laurent Feuilloley. About mandatory attendance, https://discrete-notes.g
ithub.io/mandatory-attendance.

• Moshe Vardi. The paradox of choice in computing-research conferences, Commun.
ACM, 2021, https://cacm.acm.org/magazines/2021/11/256373-the-p
aradox-of-choice-in-computing-research-conferences/fulltext.

• TCS4F blog, https://tcs4f.org/blog.

• Flying less in academia: A resource guide, http://flyinglessresourceguid
e.info/.

• ALLEA. Towards climate sustainability of the academic system in Europe and be-
yond, https://allea.org/wp-content/uploads/2022/05/ALLEA-Repor
t-Towards-Climate-Sustainability-of-the-Academic-System.pdf.
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Boaz Barak is a professor of computer science at Harvard, known for a wide

range of research interests, from the foundations of cryptography to computational

complexity and combinatorial optimization, and for groundbreaking contributions

to our field. Boaz has also thought a lot about computer science education: he is a

co-author, with Sanjeev Arora, of a textbook on computational complexity and he

has been developing a new introductory course in TCS.

In his guest column, Boaz tells us about his experience writing on the “Windows

in Theory” blog, about his excellent sources of inspiration, about his thoughts on

mathematics and computer science education, and much more.
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Windows on Theory

A Conversation with Boaz Barak

Q. Boaz, thanks for taking the time to talk about your blog to our readers.
When did you start to blog, and what motivated you to start?

In 2012, Omer Reingold started a group blog for the amazing theoretical com-
puter scientists of the Microsoft Research Silicon Valley lab, and called it “Win-
dows on Theory”. As a fellow MSR researcher, Omer invited me to join the blog
as few months later. Joining a group blog seemed to me like an attractive proposi-
tion, since I didn’t think I will have something interesting to say on a very regular
basis. I liked the idea of explaining technical topics on a blog post, the way you
might sketch them on a whiteboard to a colleague. Compared to a survey, where
you have to cross all your t’s and dot all your i’s, and get all references straight,
a blog post can be a good way to convey the heart of the matter without doing as
much work. Indeed throughout the years, I’ve been inspired by several blog posts
by you, Luca. Your blog is a great example of how to explain technical topics in
an informal manner.

Q. Thank you so much for that! You have very broad interests in theoretical
computer science, and you blog about a great variety of topics. Have there been
instances where writing posts or discussing in the comment section has clarified
ideas or lead to a conjecture or otherwise helped with your research?

I do think that my thinking on several questions, including structure vs. com-
binatorics, quantum skepticism, theory of deep learning, and more, have been
shaped by both the process of writing essays and the discussion in comments or
outside the blog that ensues. It is a di↵erent form of thinking than the typical sci-
entific paper, and often when you sit down to write, it forces you to clarify your
thoughts. This is similar to how often the best way to learn a topic is to teach it.

Q. I have followed on your blog your course on methods from theoretical
physics and your posts on the foundations of machine learning and AI, and I
know you have worked on a new approach to teach computability and complexity.
What kind of TCS do you think we should teach to CS undergraduates who are
interested in AI?

It’s interesting because I think traditionally the critique of courses in theoret-
ical CS was that we are teaching all this math, while students are going to be
software developers and they just need to know how to write a website. Now it
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turns out that we didn’t teach enough math, and to participate in the AI revolution
students need to know their gradients and Hessians. It’s also the case that Neural
networks are really just arithmetic circuits (and backpropagation has been redis-
covered several times, including by Baur and Strassen in 1982, where they used
it for circuit lower bounds). So I think the tools we teach as theoretical computer
scientists are as relevant as ever. I did try to modernize my course, focusing on
circuits, which are relevant not just for AI but also for the foundations of both
cryptography and quantum computing. I also talk much more about randomness
in computation. This means that some other materials, such as automata, need to
be reduced or cut, but I think it’s a good tradeo↵.

Q. On a related note, what do you think that a future satisfactory theory of AI
might look like?

As theoretical computer scientists, we are used to being way ahead of prac-
tice. For example, people are only starting now to implement the ideas of zero-
knowledge and probabilistically-checkable proofs that were put forward by theo-
rists in the 80s and 90s. Dwork and Naor suggested the “proof of work” protocol
used by Bitcoin in 1992. (They were also ahead of the curve in another way:
proposing to combat “junk email” before most people had access to email and the
term “spam email” was even coined.)

In deep learning we are in a di↵erent setting: practice is ahead of theory, and
people are implementing systems that they themselves don’t understand. In that
sense, these systems behave more like artifacts that are discovered (or evolved)
than like ones that are designed. This forces us to use a di↵erent form of theory,
and one that relies more heavily on experiments to figure out what are even the
right questions to ask. So, we are not in our usual mode where there are easy-to-
state but hard-to-prove conjectures, and our goal is to sit down with pen and paper
and to prove them. But for me, theoretical computer science was never about
the mode of operation but about the mission of understanding computation. So
if understanding deep learning means that I needed to re-learn how to code, and
rack up large bills for GPU computation, then so be it.

Q. Can you tell us a bit about the plans for changes in California math educa-
tion and about your involvement in that debate?

Some colleagues in California have alerted me to a proposed change to the
way K-12 math is taught there and that this change is part of a national movement.
Part of this is the typical tension that always exists between teaching mathemati-
cal topics that are foundational (and often a bit more challenging) vs. “practical
math”. This is something that I mentioned also in the discussion regarding univer-
sity teaching. In the context of high school, the new version of “practical math”
is no longer accounting but “data science”. There is also a twist in which it is



BEATCS no 139

40

claimed that somehow data science is more “equitable”, which is something I find
o↵ensive, as it tacitly assumes that people from certain groups are inherently in-
capable of accessing mathematical topics such as algebra and calculus. From my
experience in teaching, both at university settings and in Ethiopia and Jamaica,
nothing could be further from the truth

Now I am all for teaching students a course in some data literacy, including
facility with spreadsheets and understanding the various ways that people can “lie
with statistics”. It’s just not a replacement for math courses.

The truth is that, like at the university level, students need more math these
days than ever before. By far the largest growth in job opportunities has been
in quantitative fields. When data science is o↵ered as an alternative to math, as
opposed to complementing them, it basically serves as an “o↵ ramp” that shuts
students out of these fields, including, ironically, from careers in data science
itself.

Q. In general, what are you thoughts about the role of public intellectuals that
theoretical computer scientists could fill, and what are public debates where you
would like to see more voices coming from our community?

In our field, we often have the experience of being humiliated by either dis-
covering that our conjecture was wrong or being unable to prove it. I think this is
not a bad experience to have had for public intellectuals, and so I would hope that
theoretical computer scientists speak up more in the public sphere. Areas includ-
ing immigration, science funding, open access to publications, and mathematical
education are clearly central to our mission to advance science, but I think we
can talk about more topics as well. For example, I recently signed an open letter
protesting the Israeli government’s e↵orts to weaken the judicial branch and the
basic laws on human rights. Scientific progress relies on the ability to collaborate,
so free speech and human rights are topics that we should talk about as well.

Q. I would like to ask you to pick one or a couple of your favorite posts, and
tell us about it/them/

My first blog post1 was an exposition of Fully Homomorphic Encryption with
Zvika Brakerski. I like that post because we didn’t just repeat what’s in the papers
but used the flexibility of the blog format to focus on optimizing simplicity and
intuition as opposed to precision and computational e�ciency. I think people have
found it useful over the years. Another blog post2 I am proud of is my post on
“Men in Computer Science”. I mostly made obvious points in that post, but heard
from several women that they appreciated it.

1https://windowsontheory.org/2012/05/01/the-swiss-army-knife-of-cryptography/
2https://windowsontheory.org/2017/08/16/men-in-computer-science/
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This month, the Distributed Computing Column is featuring Naama Ben-
David, winner of the 2022 Principles of Distributed Computing Doctoral Dis-
sertation Award. Her work on concurrent systems both builds critical theoretical
foundations, while also addressing practical concerns of real-world systems. Un-
derlying much of her work is a focus on performance: how do we design real
concurrent systems that scale better and run faster? Within that context, Naama
Ben-David has addressed a wide variety of important questions, such as the use
of RDMA (remote direct memory access) memory, the impact of NVRAM (non-
volatile random access memories), and how to design high-performance Byzan-
tine agreement.

In this column, Naama Ben-David revisits the idea of “lock-free locks,” an
approach to concurrency that realizes many of the benefits of both lock-based
and lock-free algorithms. Lock-free locks provide the same guarantee to a pro-
grammer as a typical blocking lock, while at the same time allowing for stronger
progress guarantees, e.g., lock-freedom and wait-freedom. (This seemingly im-
possible combination is made possible by requiring that the critical section have
the property of “idempotence,” meaning that it can safely be executed more than
once.)

Naame Ben-David gives an overview of the state-of-the-art for lock-free locks,
and discusses several interesting open questions that remain. It is clear both that
the approach is quite promising, and at the same time there is much work left to
do!

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would
like to write such a column, please contact me.
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Lock-Free Locks

Naama Ben-David
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1 Locks
Modern systems make use of multiple processes to speed up tasks that can be
parallelized. However, inevitably, when multiple processes run simultaneously
in the same system and are accessing the same resources, they sometimes need
to synchronize. More specifically, on modern multicore architectures, processes
must coordinate accesses to the same shared memory to avoid overwriting each
other’s work and causing inconsistencies. This is the main challenge addressed
in the study of concurrent programs; how do we ensure safe coordination among
processes?

Perhaps the most common way to do this is through the use of locks. A lock
is a primitive that protects a prespecified section of memory, and allows only one
process to access that memory at a time. This allows processes to safely modify
that memory without worrying about potential interference from other processes.
The problem solved by locks is called mutual exclusion, first introduced by Di-
jkstra [19, 20]. In its simplest form, mutual exclusion specifies three sections of
code that a process might be in; the entry section, the critical section, and the
exit section. Intuitively, processes in the entry section are competing to acquire
the lock, a process in the critical section is holding the lock, and processes in the
exit section have just released the lock. Mutual exclusion guarantees that at any
point in time, at most one process can be in the critical section, and that if there
are processes in the entry section, eventually there will be a process in the critical
section.

Since its introduction in the 1960s, the mutual exclusion problem has unsur-
prisingly garnered a lot of attention, with a lot of research into how to design
mutual exclusion algorithms with better guarantees [36, 46], and fitting the re-
quirements of new architectures [14, 18, 26, 32, 33], as well as several surveys on
the topic [13, 45].

Use of locks in practice. Locks are used in many practical systems, including
transactional systems [50], file systems [31], databases [16], and concurrent data
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structures [8] to allow for increased parallelism without risking the safety of pro-
gram logic. When designing a system or data structure using locks, an important
decision must be made: at what granularity should the locks be used? In other
words, how much memory should a single lock protect? This decision exposes
a difficult tradeoff; it is simplest to write code when locks are coarse grained,
meaning that each lock protects a large portion of the application’s memory, since
this usually means that only one lock must be acquired per operation. However,
the more memory a single lock protects, the more likely it is that other processes
will contend on that lock, therefore causing more sequential bottlenecks. Often,
systems opt to use locks in a fine-grained manner. That is, rather than having a
single global lock that protects the entire system, many locks are defined, pro-
tecting small pieces of memory. For example, in many transactional systems, one
lock is assigned per data item [35,50,52]. This means that when executing a trans-
action on several data items at a time, the locks for all of them must be acquired
before any change is made on any of the memory.

Downside of locks. While locks provide a simple abstraction for safely syn-
chronizing concurrent processes, they suffer from a major drawback: when one
process holds the lock, it blocks all others from accessing the memory that the
lock protects. This may sound inevitable, since after all, preventing concurrent
execution on that piece of memory is the goal. However, the manner in which
it is done can in fact be quite problematic in practice, because for many different
reasons, processes in a system often operate at very different speeds. For example,
a process may be scheduled out by the system for a long period of time, during
which it does not execute any code for the program, while others continue their
execution. Another reason for stalling is caching issues, or architectural features
that place some processes further away from parts of the memory than others.
With all of these factors coming into play, bottlenecks can often form when a
slow process is holding and not releasing a lock. This is especially when there is
high contention, since then many other processes are waiting for this process to
finish, causing a lot of wasted CPU cycles.

2 Lock-Freedom
Lock-free algorithms avoid this drawback of locks; they guarantee that progress is
made in the system even if some process fails or stalls for an arbitrarily long time.
Lock-free algorithms achieve this by carefully reasoning about the semantics of a
program or data structure, and designing algorithms that can use just small atomic
primitives that are provided by the hardware, like compare-and-swap (CAS), to
synchronize processes. Lock-free data algorithms have been the topic of extensive
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study, and many efficient lock-free data structures have been designed, including
BSTs [9,11,21,43], queues [34,41,42], hash tables [40,44,48], priority queues [2,
7, 37, 49, 55], and linked-lists [28, 47]. However, lock-freedom comes at the cost
of increased programming effort; the elegant abstraction that locks provide, which
allows programmers to write sequential code and be guaranteed that it will be safe
in a concurrent setting is no longer available.1

Various research efforts have been made to ease the design and implementa-
tion of lock-free programs. One approach has been to observe that many lock-free
algorithms have a similar structure, and exploit that structure to extend and op-
timize many lock-free programs in a general way. For example, this was done
in the definition of the normalized form of lock-free data structures [51], which
was then used in several works to add useful properties to any normalized data
structure [5, 15, 51]. In a similar vein, recent works have shown how to add range
queries to a large class of lock-free search data structures [54], and how to make
a different class of lock-free tree data structures persistent in an efficient man-
ner [24]. Another approach to ease the design of lock-free algorithms has been to
present helpful primitives that can be used instead of just individual word-sized
CASes. For example, some work has introduced lock-free ways to extend CAS to
affect two words at a time [25], or several words at a time [23,27,29,38]. Similar
primitives have also been introduced with a focus on making commonly recurring
constructs in lock-free data structures simpler to implement [10, 12].

3 Lock-Free Locks: Best of Both Worlds?
So far, we discussed two approaches to synchronizing concurrent processes; locks,
which are easy to use but can cause processes to block others from making progress,
and lock-freedom, which does not block, but requires careful design and is diffi-
cult to generalize. We briefly surveyed a few efforts to make lock-free code easier
to program through the design of useful lock-free primitives.

Lock-free locks offer an abstraction that achieves the best of both worlds, and
can perhaps be seen as the most general extension of the above-mentioned trend of
presenting easy-to-use lock-free primitives. More precisely, lock-free locks give
the same interface and safety guarantee as a regular blocking lock (namely, that at
any given time, at most one process holds the lock and that process can execute a
critical section of code atomically on the protected memory), but provide a lock-
free progress guarantee. At a high level, this is achieved by having a process
holding a lock leave a descriptor of its critical section for others to see. Other

1While there are some universal constructions that can be used to generate general-purpose
lock-free data structures [1,22,30], these constructions sequentialize all accesses to the data struc-
ture, and are thus inefficient.
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processes contending on a lock then execute the critical section of the current lock
holder. Once this is done, the contending processes can safely release the lock
from the ownership of the previous process and take it for themselves.

However, this must be done carefully, since having several processes poten-
tially execute the same code simultaneously may result in that code having a dif-
ferent effect than intended, thereby breaking safety guarantees. Thus, for lock-free
locks to work, the critical section that is run must be idempotent, i.e. it must have
the same effect whether it is run just once or several times concurrently.

Origins of Lock-Free Locks. The idea of lock-free locks was first introduced
in the 1990s by Barnes [3] and independently by Turek et al [53]. Both papers
present similar ways of taking a fairly general class of code and converting it to be
idempotent, thereby allowing lock-free locks to be used for any critical sections
that fall within that class. However, the idempotent constructions presented in
these early works required inefficient mechanisms that made them impractical. In
particular, these papers achieved idempotence through a context-saving approach,
in which after every instruction in the critical section, the entire context of the
program (including program counters and registers) must be saved to allow others
to continue the execution from that point. This heavy-handed approach would not
only be slow, but would also require a special-purpose compiler to implement in
practice. Lock-free locks have therefore been written off as impractical, and not
been studied much further for about 30 years.

Renewed Interest. Recent work [6] has renewed interest in lock-free locks by
introducing a new approach that makes them much more practical. At a high level,
this new approach converts any critical section to an idempotent version of itself
through a log-based mechanism rather than a context-saving one. This mechanism
introduces a log that is shared among all helpers of a given critical section, and
ensures that they all observe the same shared memory values for each instruction
in the code by logging the first value observed by any process that ran the code.
This approach does away with inefficient context-saving, instead requiring only
one extra log access per instruction. Additionally, it allows the approach to be
implemented in a simple library, thus enabling code written for blocking locks to
be easily converted to its lock-free counterpart. In the next section, we describe
this idempotence construction in more detail.

Practical potential. Ben-David et al. implemented their idempotence construc-
tion and the resulting lock-free lock abstraction in a library, demonstrating the
potential that lock-free locks have [6]. In particular, they converted several lock-
based data structures into lock-free ones by simply applying the library, and ran
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experiments in various environments comparing the performance of lock-based
data structures to that of lock-free ones. While their experiments were much more
thorough, we show a representative plot from their paper here, in Figure 1.
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Figure 1: Throughput of singly and doubly linked lists. The ‘bl’ and ‘lf’ suffixes
represent the blocking and lock-free version of the lock algorithm of [6], respec-
tively.

The figure shows the empirical performance of various implementations of
linked-lists (both singly and doubly linked). In particular, two hand-tuned lock-
free implementations from the literature are shown (Harris’s lock-free singly linked
list [28] (harris_list), and an optimized version of Harris’s list [17] (harris_list_opt)).
Furthermore, two simple lock-based linked-list algorithms, one singly linked (lazylist)
and the other doubly linked (dlist) are implemented, and converted to be lock-
free using the lock-free lock library of [6]. Both their blocking and their lock-free
version are shown. In the plot, blocking algorithms are represented with a dot-
ted line. The plot shows the algorithms’ scalability as the number of threads in-
creases. A workload of 5% updates, split evenly between inserts and deletes, and
95% lookups is run, and keys are chosen according to a zipfian distribution with
parameter 0.75. The experiment was run on a machine with 72 physical cores,
each with two-way hyperthreading, so the number of parallel processes possible
at any one time on the machine is 144.

Unsurprisingly, none of the algorithms scale much once the physical limit of
parallelism is hit. However, it is interesting to note that the blocking algorithms’
performance drastically degrades once that limit is hit, and the system becomes
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oversubscribed (i.e., uses more processes than are available on the machine). This
nicely demonstrates the downside of blocking locks; in an oversubscribed system,
it is much more likely that a process holding a lock will be scheduled out by
the system and will stall for long periods of time. The plot clearly shows that
lock-free locks fix this problem. Importantly, in practice oversubscription may be
difficult to avoid, since most machines are used for running several independent
applications at a time, and those applications are unaware of each other’s resource
usage.

It is also clear that while the two lock-free algorithms that employ the lock-
free lock library scale similarly to their hand-designed lock-free competitors, and
much better than their blocking counterparts, they are still slower than the hand-
designed versions. This is also unsurprising. Using a general methodology almost
always implies giving up possible optimizations. However, the performance of the
library-based versions is still competitive, and shows the potential that lock-free
locks have.

The rest of this article. It is clear from the above discussion that lock-free locks
have the potential to make lock-free algorithms easy to design and implement effi-
ciently. However, there is still plenty of room to improve both their practical per-
formance and their theoretical guarantees. In the rest of this article, we overview
the current state of the art for lock-free locks; we discuss the notion of idempo-
tence in more detail and present the idempotence construction of [6], and then
discuss an algorithm that makes lock-free locks guarantee the stronger wait-free
progress in a scalable manner [4]. After presenting these algorithms, we conclude
the article with a brief discussion of the many open directions left to explore in
this space. However, before delving into what is known and unknown about lock-
free locks in more detail, we first briefly discuss realistic expectations about what
lock-free locks can offer, and what they cannot.

3.1 What Lock-Free Locks Aren’t

While we believe that the idea of lock-free locks carries a lot of potential, we must
also recognize the limitations of this approach. In particular, there are various
causes for slowdowns and bottlenecks in concurrent systems that cannot be fixed
by replacing locks with their lock-free counterparts, regardless of how efficient the
lock-free lock constructions can get. We now briefly discuss two such potential
bottlenecks, where fixing them can be crucial for the performance of a system, but
the solution will not be found by delving deeper into the lock-free lock approach.
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Buggy critical sections. In this article so far, we discussed some reasons that
processes may be slow while executing their critical section, for example, if they
get scheduled out by the operating system. However, another potential reason for
slowdowns experienced by a process holding a lock is bugs; if the critical sec-
tion code runs into an infinite loop, for example, that process may never release
the lock. The lock-free approach discussed here does not address this issue. In
fact, employing lock-free locks in this situation may make matters worse; instead
of having one process stuck trying to execute a buggy critical section, we may
have multiple processes stuck executing that same code when trying to help. To
address this source of slowdowns in lock-based system, an entirely different ap-
proach must be taken. Indeed, entire fields are dedicated to testing, debugging, and
verification of software. When applying lock-free locks more broadly in practice,
it would be good to combine their use with methods that ensure the correctness of
the critical sections being helped.

Speeding up critical sections. Note that the lock-free lock approach has several
processes redundantly (though safely) executing the same code. While this redun-
dancy might be negligible when critical sections are short, this repeated helping
can cause a lot of wasted work (CPU cycles). In some applications, the critical
section that a process may want to run can be lengthy and slow, even without
any performance bugs. Ideally, if many processes are all spending cycles trying
to execute that critical section, one may think that that combined effort could be
used to speed up the code. However, that is not what lock-free locks do. Instead,
the different helping processes are each executing the entire critical section inde-
pendently, racing to complete it in its entirety. This may in fact slow down the
critical section further, since the processes may interfere with each other’s cache
locality. To speed up the execution of a critical section with more processes, the
critical section must be carefully analyzed to find and expose its potential paral-
lelism; this direction, while it may be very beneficial in some applications, is not
explored in the study of lock-free locks.

4 Idempotence
The notion of idempotence appears in many different fields, including in linear
algebra, networking, and recently, persistent memory. In all these settings, the
meaning of idempotence is always intuitively the same; an operation is idempo-
tent if applying it multiple times has the same effect as applying it just once. For
concurrent programs, the definition of idempotence is a little bit more involved,
since it must account for not only applying an operation multiple times sequen-
tially, but also for the possibility that several concurrent processes executed the
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same operation at the same time. It is thus surprisingly non-trivial to define. Here
we briefly describe the definition of concurrent idempotence presented recently
in [4] and discuss the intuition behind it. We note that similar notions have been
used in the past – including in the early works surrounding lock-free locks [3,53],
in the definition of normalized lock-free algorithms [51], and for persistent mem-
ory constructions [5] – but were never explicitly defined as idempotence.

Definition. To capture concurrent idempotence, we must first understand what
a concurrent execution, or history, can look like. We model concurrency through
a sequence of steps, where each step is an instruction executed by some process.
Each process executes a sequence of steps that is dictated by the code it is running,
and the steps of different processes are interleaved to form a concurrent history.
When we discuss idempotence, we must refer explicitly to the code that generated
these steps, to be able to determine whether this code is idempotent. Below is the
definition of concurrent idempotence taken from [4].

A piece of code C generates a sequence of steps S C, which can depend
on the state of memory. A step s ∈ S C is said to be a step for C,
regardless of which process executes it. A run of a piece of code C
is the sequence of steps taken by a single process to execute or help
execute C. The runs for C can be interleaved. An instantiation of
a piece of code C is a subsequence of the steps for C in a history H,
possibly from many different runs, such that those steps are consistent
with a single run of C.

Definition 4.1 (Idempotence [4]). A piece of code C is idempotent if
in any valid history H, there exists a valid instantiation H′ of C that
is a (possibly empty) subsequence of all operations from runs of C in
H, such that

1. if there is a finished run of C (response on C), then the last step
of the first such finished run must be the end of H′, and

2. all steps for C in any of its runs in H that are not in H′ have no
effect on the shared memory.

Intuitively, this definition allows the possibility that many different processes
are executing runs of code C, but there is some way to combine the runs of many
different processes into a subsequence of steps that were possibly executed by
different processes, but together look as if they form a single run. That single run,
or instantiation of C is intuitively ‘the one that counts’, and all other steps taken
for C have no effect.



BEATCS no 139

52

Log-Based Construction. We now discuss the construction of [6], which takes
any piece of code C implemented from reads, writes, compare-and-swap, and
memory allocation/de-allocation instructions, and constructs a version of it which
satisfies the above notion of idempotence.

Recall that to use idempotence for safe lock-free locks, a process p must make
a descriptor available in which it specifies its critical section. The idempotence
construction presented in [6] takes advantage of the fact that there is already a de-
scriptor shared by all processes wanting to execute this critical section and adds to
its a log that is shared as well. The log’s length corresponds to the number of in-
structions in the critical section, that is, there is one entry in the log per instruction
in the critical section code. When a process (either p or another process contend-
ing on the lock) executes p’s critical section, it uses a compare-and-swap to try to
write the result of the ith instruction of its critical section execution into the ith slot
of p’s log. If the CAS fails, this means that another process has already executed
this instruction; the process adopts the result written in the log as its own result,
and proceeds from there. Intuitively, this ensures that all processes executing p’s
critical section read the same values (either directly from memory if they were
the first to do so, or from the log otherwise), and therefore, assuming the critical
sections are deterministic and processes do not rely on their private register values
when executing a critical section, also write the same values.2 Thus, overall, all
executions of p’s critical section have exactly the same effect. This construction is
quite general. It works not only for reads and writes, but also if the critical section
includes CAS instructions, and memory allocations and de-allocations.

The overhead that is introduced by this approach is easy to analyze. For each
instruction in the original critical section, an extra CAS on the log is introduced.
Note that if the lock is not highly contended and there is just one process execut-
ing this critical section at any point in time, then this overhead is minimal, since
the log is likely cached (or mostly cached) for that process. However, if there is
contention, i.e., at least two processes competing for this lock and concurrently
executing this critical section, then each log access may constitute an extra cache
miss, as cache coherence may move the log from the cache of one process to the
cache of the other. In this case, it is likely that each non-log shared-memory ac-
cess also causes a cache miss for the same reason. Thus, the log accesses approxi-
mately double the cache misses incurred by the program when there is contention.
However, we note that this may constitute far more cache misses than the original
process would have incurred were it to run its code using a traditional blocking
lock, since cache coherence would not be a major factor in that scenario. As the

2These assumptions are fairly general. The second can be guaranteed by having the initiating
process write its private register values in the descriptor along with the critical section code, so
that all helpers can use the same values.
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experimental results of Ben-David et al. show, this cost can be non-negligible, but
may still pay off if processes are likely to be stalled for other reasons [6].

5 Wait-Freedom
Regardless of how they achieve idempotence, all lock-free lock constructions we
discussed so far operate in the same manner: each lock has a descriptor pointer,
which is null when the lock is free. When a process p wants to acquire a given
lock `, it tries to swing `’s descriptor pointer from null to its own descriptor using
a CAS. If it succeeds, then p has now acquired the lock. Otherwise, this means
that some other process p′ has acquired the lock. p then helps p′ run its critical
section, which the descriptor specifies, in an idempotent manner, and then tries
again to swing `’s descriptor pointer to its own descriptor.

This simple approach guarantees lock-free progress; as long as some process
wants to acquire lock `, some process will acquire lock ` and complete its critical
section. However, there is no guarantee that any one specific process will succeed
in its own acquisition of the lock as long as others are contending on it. In partic-
ular, in the description above, when p tries again to swing the pointer to its own
descriptor, it may fail because a new process p′′ did so first. This could continue
forever, leaving p to help others continuously but never make progress for itself.

This phenomenon is by no means unique to lock-free locks. Many lock-free
algorithms exhibit similar behavior; while global progress is guaranteed for the
system, no individual process is guarantees to make progress. A stronger notion
of progress is wait-freedom. A wait-free algorithm guarantees progress for each
individual process within a finite number of its own steps. There’s another advan-
tage to wait-freedom: it allows us to easily discuss the complexity of an algorithm
in terms of the number of steps that a process must take in the worst case to exe-
cute its operation. This is much more difficult to do in algorithms that are lock-free
but not wait-free, since that number may be infinite.

This leads to a natural question: can we make lock-free locks have a wait-free
progress guarantee? If so, how many steps does a process p need to take to acquire
a lock?

First cut: a queue-based solution. One potential solution to this question would
be to employ a wait-free queue per lock; processes contending on the lock can en-
queue themselves onto the queue, and then help everyone ahead of them before
acquiring the lock for themselves. A similar approach is commonly used in the
implementation of fair solutions to the mutual exclusion problem (except that
processes wait for their turn without helping in the case of traditional blocking
locks) [32,39,46]. This solution could work quite well for lock-free locks as well.
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The number of steps each process would take to acquire the lock in this case would
be proportional to the contention it encountered (i.e., how many other processes
were ahead of it in the queue) and the number of steps it takes to help each pro-
cess, plus some overhead to enqueue itself at the beginning. If an efficient queue
is used, this solution can be quite efficient.

However, there is another consideration to take into account. As discussed in
Section 1, many practical lock-based systems employ locks at a fine granularity.
In particular, this means that processes are likely to acquire not one lock, but
several locks simultaneously before being able to execute their critical sections.
In this setting, the queue-based approach can quickly lose its good step complexity
guarantees. Consider, for example, a scenario in which each process in the system
wants to acquire at most 2 locks, and each lock has at most 2 processes contending
on it at any given time. This relatively low-contention setting should intuitively
allow each process to complete its execution quickly, within a constant number of
its own steps. However, long dependency chains can form; if a process p wants
to acquire lock `1, which has process p1 already on its queue, p must help p1

complete its critical section first. If p1 must first acquire lock `2 before it can
execute its own critical section, then process p must help it acquire `2 as well.
However, before doing so, it might need to help a process p2 acquire `2, which
may then need to acquire `3 as well. In this way, the number of processes that
p must help before executing its own critical section could blow up to include
the total number of processes in the system, despite only facing a small constant
number of contenders on its own lock.

A randomized approach. Recent work has addressed this problem and pre-
sented a randomized protocol for wait-free locks in which the expected number of
steps to acquire a set of locks does not depend on the size of the entire system [4].
In more detail, the algorithm considers tryLock attempts in which a process speci-
fies a subset of the locks in the system that it wants to simultaneously acquire, and
the critical section it wants to run if successful. A tryLock attempt may fail, in
which case the locks are not acquired, the critical section is not run, and the pro-
cess may try again in a new attempt. The algorithm guarantees that each attempt
has a fair chance to succeed; if each attempt aims to acquire at most L locks, and
each lock has at most C processes contending on it at any time, then the attempt
has a chance of at least 1/CL to succeed. Furthermore, the number of steps a
process takes per attempt is O(L2 · C2 · T ), where T is the maximum length of a
critical section.

At a high level, the algorithm works by assigning a random priority to each
contending process, and processes only help those who have a higher priority
than their own. Each tryLock attempt gets a single priority that it uses for on all
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its locks for this attempt. Each lock has a ‘competing set’ that can be thought of as
the equivalent of its queue in the queue-based approach; this set keeps track of the
processes currently contending on the lock. When starting an attempt, a process
p does the following: (1) it adds its descriptor to the competing set of each lock
in its desired lock set, but without specifying its competing priority. (2) it checks
all of the competitors on its competing set, helps the one with the highest priority
on each lock, and ‘kills’ all the others. If some competitor doesn’t have a priority,
it is skipped (not helped and not killed). That is, for any attempt in the competing
set of some lock, if its priority exists but is not the highest in this set, then p sets
its state to ‘aborted’. No aborted attempts will be helped in the future. (3) Now p
finally chooses a random priority and updates its descriptor accordingly. Process
p now repeats the second step, this time with the possibility that it will be the
winner.

The random priorities help avoid the long chains that prevented the queue-
based approach from scaling; rather than having to help a process until it succeeds
in its critical section, a process p helping a process p1 may now abort p1 if p1

does not have the top priority on its other locks. This is the key idea that helps the
randomized algorithm achieve its good step complexity bounds.

Subtleties and downsides of the algorithm. When analyzing randomized con-
current protocols, an adversary is used to model the system scheduler to capture
worst case executions. It is generally assumed that the adversary does not know
the future, so does not know the results of future coin flips or random decisions,
but can know what has happened so far in the execution. This adversary can be
quite powerful in skewing the probability that a process p will succeed. For ex-
ample, in the algorithm of [4], p goes through a first round of helping before
choosing its own priority and starting to compete to avoid effects that the adver-
sarial scheduler could have. In particular, if p were to choose its priority and com-
petes immediately, an adversary that wants to decrease p’s probability of success
can wait until it sees that p’s competitors currently have relatively high priorities,
and only let p compete at that point. This would inherently skew p’s chances of
success.

The algorithm of [4] achieves bounds that depend on the maximum number of
locks requested in each attempt, the maximum amount of contention per lock, and
the maximum length of a critical section. These bounds must be known in advance
to the algorithm, as it in fact makes use of these bounds explicitly. In particular, it
injects an artificial delay before choosing p’s priority during the execution of an
attempt, making p potentially take extra useless steps just to waste time, to ensure
that p always takes the same number of steps between the beginning of its attempt
and the point at which its priority is revealed to the adversary. This is done to
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prevent the adversary from using the number of steps p takes during its execution
to skew its probability of success. These delays are fairly unsatisfying, but are
required to achieve the guaranteed bounds.

6 Open Problems
Since their introduction in the 1990s, lock-free locks have been mostly dismissed
in the literature as impractical, and their study has only been renewed recently.
This leaves our understanding of lock-free locks in its infancy, with many open
problems, both theoretical and practical, left to be resolved. To wrap up this
article, we briefly outline some of these promising future directions.

Reducing the overhead of idempotence. Lock-free locks must inherently in-
troduce some overhead as compared to their blocking counterparts, since they
must ensure that the code that is run in their critical sections is idempotent. The
potential of lock-free locks was only understood when an idempotence construc-
tion with relatively low overhead was introduced last year [6]. However, it may
be possible to improve this overhead, thereby immediately improving the perfor-
mance and practicality of lock-free locks, as well as other applications of idem-
potence (see Section 4 for a brief discussion of such applications).

The goal of improving the overhead of idempotence constructions can be ap-
proached from several angles. The most immediate one from the discussion in
this article is to find a construction that is as general as the one presented in [6],
but more efficient. As discussed in Section 4, the construction of [6] already only
introduces constant overhead in theory, making it difficult (though maybe not im-
possible) to improve the theoretical overhead. However, there may be plenty to do
to improve its overhead in practice. In particular, this construction exhibits poor
cache locality due to coherence issues when sharing the log among concurrent pro-
cesses. It would be interesting to study whether an idempotence construction can
be found that suffers less from coherence misses. Furthermore, we note that aside
from the coherence issues, the construction of Ben-David et al. forces each new
helping process to execute the entire critical section from the beginning, poten-
tially wasting a lot of redundant work. This may be fine for short critical sections,
but can become unacceptable when critical sections are long. Another direction
for improving this construction’s overhead is to find a way to allow helpers to skip
ahead to where the most advanced process has reached in the critical section code.
This is something that is achieved by the context-saving approaches discussed in
Section 3, but at too great a cost. Is there a way to avoid having each process
re-execute the entire critical section without resorting to saving the entire context
of each process after each instruction?
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On a similar vein, another way to optimize the construction would be to reduce
its space overhead. The log used in the construction of Ben-David et al. is as long
as the number of instructions in the critical section. This may be ok overhead for
short critical sections, but may become prohibitive if critical sections are longer.
Is there a way to reduce the space overhead required for idempotence?

A different approach to improving idempotence overhead can also be taken.
Namely, rather than sticking with an idempotence construction that can be applied
to extremely general code, one can ask whether there are some types of critical
sections that are naturally more amenable to becoming idempotent with minimal
overhead. Of course, an immediate answer is yes – some critical sections may
be idempotent to begin with, therefore requiring no overhead at all. This opens
up the possibility that one could define classes of code that are in the middle; not
already idempotent as-is, but may easily become so. Understanding how general
such classes of code may be could open up the potential to employ lock-free locks
in various real-world applications almost for free. Interestingly, this direction ties
in nicely with the very active research area on lock-free primitives and ways to
make lock-freedom more easily applicable in general (see Section 2 for a brief
discussion of these works), as such studies also aim to identify general types of
code that are both useful in many applications and easy to make lock-free.

Improving theoretical guarantees of wait-free locks. We know that wait-free
locks can be achieved in a fine-grained lock system in time proportional to the
number of locks each process may acquire at once and the amount of contention
each lock may have at any given time. These bounds are quite good for many
systems, since they don’t depend on the total number of locks in the system or the
total number of processes in the system, both of which could be huge compared
to the local contention or the size of each individual operation.

However, the bounds we have leave a lot to be desired. Firstly, it’s possible
that the dependencies on L, the maximum number of locks per attempt, and C,
the maximum contention per lock, could be decreased. Currently, for a process
to successfully acquire its locks, it needs O(L3 · C3 · T ) steps in expectation, with
T being the maximum length of a critical section. Is it possible to reduce this to
only a linear dependence? Perhaps more interestingly, recall that for these bounds
to hold, L, C, and T must be known to the algorithm in advance. The algorithm
loses its complexity guarantees if these bounds are surpassed at any point. This is
somewhat unsatisfying; many systems may not know exact bounds on contention
and size of operations in advance, and may experience workloads in which there
are long periods of low contention and small operations, with intermittent busy pe-
riods where these figures are much higher. Finding an algorithm that can adapt to
the actual amount of contention and size of operations in an execution is therefore
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an important future direction.
Finally, we also note that the algorithm presented in [4] is randomized, and

therefore all bounds are given in expectation rather than in the worst case. Re-
call that the queue-based approach described in Section 5 is deterministic, but its
worst case step complexity bounds depend on the total number of processes in the
system. Is it possible to find a deterministic wait-free lock algorithm that does not
depend on the total size of the system?
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Abstract
Current education focuses on teaching facts, models, methods, and skills–

and applying them to solve different tasks. Due to computer science, most
of these tasks can be automized nowadays. As a result, future education has
to change its focus on supporting students in exploring their creativity and
on training critical thinking. In this article, we first explain how one can
support the development in this direction, and then show by some examples
that well-designed computer science textbooks can take a pioneering role in
this process.

1 Concept for Teaching in the 21st Century
The main goal of education is the holistic development of the students’ person-
alities (taking into account their individual talents) with the aim of maximally
supporting the development of their potential, thus ultimately contributing to the
development of society. To learn means to build one’s own new concepts in con-
text (abstraction and modeling), to think critically, and to be creative. Schools are
expected to prepare their graduates for future careers–and more broadly for the
future world.

However, in the 21st century, no one can reliably predict what kind of compe-
tences will be asked in professions in 20 years. All we know is that everything that
is understood to some degree will be automated. Learning to operate equipment,
apply predefined methods, or train certain skills will have less and less educational
value in the future. Digital technologies already make it possible to perform these
activities more accurately, faster, and more reliably. The only advantage humans
have over man-made technologies is critical thinking, creativity, and the associ-
ated ability to improvise and redesign. Therefore, schools in the 21st century must
focus primarily on the emotional and intellectual development of students through
activities that foster their creativity and critical thinking.
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Almost all educational systems to a high extent remain stuck in the paradigm
of educational requirements from the time of the industrial revolution of the 19th

century. In that time, the labor market needed experts who were able to apply
complex procedures (methods, algorithms) to solve various tasks. However, these
tasks are now largely automated. This also corresponds to the content of today’s
textbooks, which were written with the aim of imparting knowledge and practicing
certain skills (following operating instructions and executing algorithms). In this
sense, this is only a higher form of memorization. It is not enough for the school
to teach developed concepts, teaching must encourage and enable the students to
walk on the paths of discoveries and innovations to rediscover basic concepts,
notions, methods, and technologies.

The current state of the educational system cannot be changed in the short
term. It is necessary to set in motion an evolutionary process that, in a longer
sequence of steps, “gently” transforms the current educational model, focused on
teaching prefabricated knowledge and certain skills, into an education that devel-
ops the potential of students in dimensions that will not be replaced by automation
and technology. The motto for teaching and textbook design must be:

Do not teach the products of science (facts, theorems, methods, mod-
els, technologies) and the skillful use of them, but the processes of
their discovery and creative development.

This approach is in line with the current international trend of acquiring com-
petence. Competence is not the ability to solve routine problems according to a
learned method. Competence is the expertise with which we are able to act mean-
ingfully and originally in new situations based on our knowledge and experience.

Graduates of such training are truly innovative, with an intrinsic motivation to
discover, understand, and create. They do not believe any statement presented to
them, but they question those statements independently, examining their genesis
and rationale.

Criteria For the Creation and Evaluation of Textbooks

The classical, common criteria of technical correctness and comprehensibility re-
main the basic prerequisites for good teaching. However, these criteria are not
sufficient to achieve the above goals. The key to initiate the process of innova-
tion in teaching is to formulate criteria that will help teams of authors to develop
textbooks with the above goals in mind. First and foremost, the quality of any
textbook—and thus teaching—should be measured by the extent to which it can
support the achievement of the following goals:
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1. Decomposition of the learning content and of its discovery process into a se-
quence of small steps, so that students have a realistic chance to go through
the individual steps independently and thus to rediscover and master knowl-
edge largely on their own.

2. Detailed and easy-to-understand explanations that allow for a mostly inde-
pendent study or a study with minimal assistance. Each student, according
to individual needs, can work through the topic any number of times at any
individual pace. The examples and solutions to all tasks include not only
the results and a brief description of the approach, but also the thoughts that
clarify why the solver proceeded in the manner presented. If there are sev-
eral possible ways of solving the problem, alternative solutions should be
presented.

3. A motivating introduction to each topic to cognitively activate the class.

4. Support each student individually. An easy-to-understand approach to the
basic knowledge and to the activities that must be mastered by all, as well
as challenging topics for gifted and motivated students. The textbook must
allow the teacher to differentiate the objectives in accordance with the abil-
ities of each student.

5. The students should learn to a high degree through creative activities. The
goal is to train the students to analyze the properties, functionality, and ap-
plicability of the products of their own work–and, in this context, to moti-
vate them to improve their products.

6. Guide the students in conducting experiments and in analyzing the results
of the experiments in order to acquire new knowledge.

7. Motivate and strengthen the will to try to solve problems and to learn from
failed attempts (mistakes) that did not lead to the set goal(s).

8. Carefully cultivate precise terminology and to practice precise wording in
all forms of communication.

9. Increase the sustainability of the newly acquired knowledge by placing it in
the context of already available knowledge.

10. Promote teamwork with intensive communication while solving tasks.

11. Offer instruments enabling students to measure their progress independently.
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All of the above goals taken together should “guarantee” the sense of accom-
plishment that is the most effective teaching method. The final objective must
be the increase of self-confidence of the students, and their willingness to solve
problems and to create new products on their own.

Writing textbooks which achieve the above goals requires a high level of ex-
pertise from the writing team in several areas–more specifically:

• In-depth subject knowledge in a broader and deeper context including the
genesis of the development of the scientific discipline under consideration;

• pedagogical experience from teaching in the specific age group;

• and knowledge of subject didactics of the scientific discipline under consid-
eration.

When creating textbooks, we recommend the use of the following elements:

• Elements of cognitive activation for the introduction to the subject–e.g.,
puzzles, surprising observations, seemingly contradictory statements, or at-
tractive applications;

• examples with presentations of approaches and reflections on them;

• learning tasks with the aim of discovering new relationships (context) or
finding a way to solve a problem;

• analysis of and learning from failures;

• design of experiments, execution thereof, and analysis of results;

• project tasks to solve problems in teams and to create products with the
desired properties;

• classic exercises to consolidate what has been learned;

• historical and social remarks explaining the genesis of the studied topic in
a scientific and social context;

• questions to verify the correct use of technical terminology;

• frequent summaries of the newly acquired knowledge in the context of the
already established knowledge;

• and test items to independently test the acquired subject knowledge.
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Each textbook should be accompanied by a teacher’s guide, which should also
be accessible to the students’ parents. This methodological material should ensure
the following:

• Provide teachers the knowledge transfer related to the subject to be taught
(in a broader and deeper context);

• show teachers in detail how the lessons can be implemented, explaining
exactly the objective of each element of the textbook and how to verify the
success of the corresponding learning process;

• explain how the textbook can be used to guide students individually in the
learning process;

• provide a clear specification of objectives and instruments for measuring the
learning progress;

• give detailed solutions to the exercises including didactic comments;

• provide advice and recommendations on how to respond to unexpected orig-
inal approaches proposed by students.

2 Teaching Informatics As a Pattern For Teaching
Other Subjects

Why can teaching informatics take a crucial role in transforming education in
the direction proposed in the first section? Let us consider constructionism of
Seymour Papert [20–22], where the main idea can be expressed by the genius
sentence “Learning by getting things to work.” Starting by “Learning as building
knowledge structures” of Jean Piaget [23], and continuing by “Learning by doing”
of Aristotle [1] and Comenius [5], students construct some products (programs,
secret codes, number representations, data organization, hashing functions, algo-
rithms, etc.). But finishing the construction of their products is not the end of their
activity, but rather the beginning of their learning process. The immediate next
step is to investigate the functionality and the properties of their own products,
not only to correct them if required, but especially in order to get new ideas on
how to improve them or how to extend their functionality. This brings students on
a new starting line of their creative activity with the goal to construct something
better than they did before. This is exactly how humans live, work, and learn since
the dawn of mankind: an infinite loop of improvements and motivations, each step
enabling a deeper understanding and increased expertise. This is the only way to
properly build up competences.
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In what follows, we discuss only two concepts related to teaching program-
ming and data security. For a large number of examples of such teaching se-
quences we, refer to the textbooks [2, 3, 8, 9, 12, 13, 15, 19] for students and text-
books for teachers [4, 6, 7, 10, 11, 14, 16, 18], covering all ages from kindergarten
to high school.

Programming

Why do we program? Because we want to explain some activity to a computer
or to a robot in such a way that the technical system becomes able to execute
this activity autonomously. In these terms, a computer program is a description
of an activity in a programming language that is understandable for the machine.
Developing a program is a very creative and constructive activity that fits our main
goals because:

• One has to find a strategy of how to reach a given goal. Thus, problem
solving is the key issue. Students can first train to correctly interpret the
problem description, then to develop their own descriptions of the problem
by using concepts such as tables, graphs, equations, etc., and finally build
experience by trying to solve concrete problem instances. After developing
a solving strategy, they can test its functionality by searching for problem
instances for which their strategy does not work, or look for arguments as
to why the strategy works properly for all instances of the problem. This is
like testing a model by experiments.

• After having designed an algorithm (solving strategy), students have to de-
scribe the algorithm by a program in a programming language. A program
as a product of the students’ own work can be analyzed with the focus on its
functionality. This is one of the reasons why tasks for programming novices
deal with moving in the plane or drawing a geometric shape in order to en-
able to visually study the execution of the program. If the program does not
work properly, the children have to try to fix a logical error in the program
description or revise their strategy. If the program works properly, the stu-
dents can think about extending its functionality or about formulating more
complex goals and use the program developed as a module (building block)
for developing a new program for the more complex task.

• Advanced students can analyze their programs with respect to their compu-
tational complexity, compare the efficiency of different programs, and then
start searching for an algorithm or an implementation, respectively, that is
more efficient than those developed up to now.
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• Trying to reach the competences of a good programmer, it is not sufficient
to develop programs for different purposes. Students must be trained to
analyze programs of others, to correct them, and to modify them for some
new purposes. All of this again means a lot of testing (experimental work)
in order to understand the functionality of the program investigated.

• A program is a syntactically correct text in a programming language. A
computer can interpret and execute a program only if there is no syntactical
(grammatical) error in the program. A program is a precise and complete
description of an activity, and the program as a text has only one unique
representation. Thus, writing programs is good training in the consequent
application of the syntactic rules as well as in semantically correctly ex-
pressing what one would like to describe.

We see that the goals 1, 2, 5, 6, 7, and 10 of good teaching listed in Sec-
tion 1 are implicitly included in well-designed programming courses. In addition,
all the remaining goals can be achieved as well when the details of teaching se-
quences are designed properly. We did consider the first goal by using the histor-
ical method, i.e., following the genesis of programming languages. Students start
to learn programming by using a very small vocabulary. We teach them how to
create new words and explain their meaning to the computer. In this way, students
take part in the development of the programming language, improve its express-
ibility, and test this product of their own work by programming.

Cryptography
Cryptography as design and analysis of secret writings is about 4000 years old,
and it is the kernel of data security. Following the first goal of good teaching
we again propose to apply the historical method. The main goal is not to show
some examples of secret writings or cryptosystems and to learn to use them, but
to present students some concepts for designing and attacking secret writings in
order to encourage them to develop their own, original secret writings and to try
to break systems developed by others.

One can start to teach this topic very early (starting already in 3rd class) due to
the fact that the ancient rule of secrecy was that the description of secret writings
must be so simple that anyone can learn it by heart, i.e., the description does not
need to be saved in written form on a medium. Following [3, 6, 7, 11, 12, 15, 16]
one can see that the secret of the first secret writings based on transpositions can
be described by simple pictures, and so the students can develop secret writing
by describing them by simple pictures as well. The same is true for substitution-
based secret writing. In this case students design new secret alphabets in a funny
way and explore their fantasy.
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The study of the properties (quality) of the designed cryptosystems is then
done by attacking them. First, students can learn to break the cryptosystem Cae-
sar by analyzing the letter frequencies in given cyphertexts, and later they can
learn to break any monoalphabetic cryptosystem by the analysis of the distribu-
tion of letter frequencies. Trying to make their own cryptosystems secure against
the letter frequency analysis, students can reinvent the cryptosystem Vigenère.
For designing small steps in this direction, one can again follow the historical de-
velopment, in which the first step was to increase the key (shift in the alphabet) of
Ceasar by 1 after ciphering each single letter. Vigenère is nothing else than jump-
ing in the tabula recta following a special pattern. Another simple step towards
Vigenère is to use different Ceasar keys for letters at even and odd positions in a
given plaintext. One can again let students design their own polyalphabetic cryp-
tosystems before approaching Vigenère. Breaking Vigenère can also be done in a
sequence of small steps [3] and can be the invitation for moving from context-free
cryptosystems to context-sensitive (block-based) ones.

Here is again a lot of freedom to design plenty of own cryptosystems that
cannot be broken by the analysis of Vigenère. We stop at this point, because the
description how to make modern cryptography understandable for high-school
students requires much more space than we have available here. For a concise
introduction of public-key cryptography in high schools, we recommend the paper
by Keller et al. [17]. But the key point here is that we can teach secret writings
in such a way that the students can develop a large part of crucial concepts by
themselves, or one can present the development of other ideas understandable in
small portions. Another reason why cryptography is very attractive to a class is
that on the beginning of each new special topic one can cognitively activate the
class by funny, challenging puzzles.

3 Conclusion

We presented two key computer science topics to show that they are predestined
to be mastered by reaching the set educational goals and offer patterns of how to
teach for other disciplines. It is important to note that all parts of informatics can
be taught this way. What are the main activities of computer scientists?

• Developing object representations and codes with required properties (short,
secret, self-verifying, efficient to handle, etc.);

• designing efficient algorithms for different purposes (solving problems, trans-
lating codes and languages, etc.);
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• and controlling technology by programming and designing IT systems that
offer numerous services.

In all these cases we can get expertise exactly in the way proposed. One
designs and develops a product that can be analyzed with respect to the properties,
functionality, and suitability in different applications under different conditions.
The historical method can be applied to make all the knowledge available in small
steps based on activities of the learners.
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Abstract

A lower bound, showing that a function f cannot be computed by some
class C of algorithms, necessarily shows that for every algorithm A in C,
there must exist a “bad” input x such that f (x) , A(x). We consider the
computational complexity of generating such bad inputs for a given f and
class C, and we study how the complexity of this task relates to existing (and
major open problems in) lower bounds.

1 Introduction
Out of decades of thought on how to prove complexity lower bounds (and fail-
ing), one maxim repeatedly emerges: strong complexity lower bounds are hard
for us to prove. There are many formal “barriers” known to proving complex-
ity lower bounds, such as the relativization barrier [BGS75], Razborov-Rudich
natural proofs [RR97], algebrization [AW09, IKK09] (see also [AB18, AB19]),
and locality [Yao89, CHO+20]. For instance, relativization tells us that we cannot
rely on any generic “black-box” arguments for proving strong complexity lower
bounds, but many fundamental proof techniques in complexity theory are generic
in exactly this sense. The algebrization barrier generalizes the relativization barrier,
showing that the non-relativizing methods behind theorems like IP = PSPACE,
querying polynomials that represent computations, are not sufficient in themselves
to prove (for example) P , NP, P , PSPACE, EXP , ZPP, NEXP , BPP,
EXPNP , BPP, et cetera. I’ve often summarized the state of affairs as: not only can
we not prove lower bounds, but we can prove that we cannot prove lower bounds.

*Partially supported by NSF CCF-2127597. Part of this work was completed while the author
was visiting the Simons Institute for the Theory of Computing, participating in the Meta-Complexity
program.



The Bulletin of the EATCS

79

So, we have apparently a lot of information about what the proofs of longstand-
ing open complexity lower bounds cannot look like, in that we know a variety of
limitations on how such proofs must proceed. The starting point of this article is to
ask the question:

Q1: What could a proof of a strong lower bound look like?

Intuitively, complexity barriers tell us what techniques we should try to avoid, if
we wish to separate complexity classes. Can we identify obligations that strong
lower bounds must obey, properties that such lower bound proofs (of even “easier”
separations, like EXPNP , BPP, separating exponential time with an NP oracle
from randomized polynomial time) must possess? Rather than studying what is
not sufficient for lower bounds, could we get a handle what is necessary?

Please keep in mind that we are not starting from a blank slate: it is not that
there are no lower bounds whatsoever. When one reads introductions like this, one
might get the impression that there are essentially no complexity lower bounds
in the literature. This is not really true. There are many areas within complexity
theory, for which researchers have managed to establish hosts of interesting and
strong limitations and no-go theorems. One of the most successful of these areas
is communication complexity [KN97, RY20] which has aided complexity lower
bounds in VLSI circuit design, streaming algorithms, and Turing machines, to take
three examples. Nevertheless, it is felt that there is a gap (or maybe even a chasm)
between what kinds of lower bounds can currently be proved, and what we’d like
to prove. Perhaps a better question then, is:

Q2: What properties are missing from the lower bounds that we know
how to prove, which we will have to include in a proof of (say) NEXP ,
BPP?

What are the missing ingredients in our lower bound toolkit? In this article, I
will highlight one type of answer, from a recent paper co-authored with Lijie Chen,
Ce Jin, and Rahul Santhanam [CJSW21]. I will discuss an interesting way in which
efficient algorithms will have to be central to resolving major complexity lower
bound questions. Let me be clear that I do not claim to have fully answered the
above question Q2, in any sense. If I have brought your attention to the question,
and if I have gotten you to think about it on your own for ten minutes, I will
consider my job successful. (Even if you think my answer to the question is
terrible.)

2 Lower-Bounding as Finding Bad Inputs
To get a handle on question Q2, we start by looking very carefully at what it means
to prove a lower bound against a class of algorithms.
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Let f : {0, 1}? → {0, 1} be a decision problem, and let A be a class of algo-
rithms. In particular, we stipulate that each A ∈ A has a finite-length description,
and each A takes in arbitrary-length Boolean inputs, outputting a single bit. An
algorithm A is said to compute f if for all but finitely many inputs x, A(x) = f (x).
(We permit “all but finitely many”, because if there were only finitely many inputs
on which A and f differ, then this finite set could be “hard-coded” directly, into
another larger but still finite algorithm that computes f everywhere.)

Therefore, a lower bound that “ f is not inA” is a claim of the form:

(∀A ∈ A)(∃∞n)(∃xn ∈ {0, 1}n)[A(xn) , f (xn)].

That is, for every candidate algorithm A for computing f , someone has to “respond”
with a bad input xn on which A does not compute f correctly. In fact, in the
given setup, we should construct infinitely many bad xn inputs (if there were only
finitely-many bad inputs, they could be hard-coded into the algorithm).

Now fix a function f , and fix an algorithm A from a classA. We ask:

Q3: What is the complexity of constructing a bad input xn of length n?

Suppose you are provided 1n, the string of n ones. We are asking: how difficult
is it for you to construct an input xn ∈ {0, 1}n such that f (xn) , A(xn)? (You can
output whatever n-bit string you want, if n is not the length of some bad input; in
principle, there may be only infinitely many bad n.)

2.1 Two Types of Lower Bounds
Roughly speaking, the literature on complexity lower bounds gives two types of
answers to question Q3. That is, the known proofs of lower bounds yield two
different types of answers to Q3:

1. “Random” or non-constructive ways of choosing bad inputs. In general,
such lower bound proofs rely on counting/information-theoretic arguments.
For example, many proofs of time-space lower bounds for explicit problems
in P (e.g., [Hen65, Maa84, BC82, Bea91, BJS01, Ajt02, BSSV03, MW19])
work by choosing a random xn from some distribution of n-bit inputs, and
arguing that the randomness in the string can confound the algorithm A into
making a mistake.

For a simple example of such a lower bound, one can prove that no de-
terministic finite automaton (DFA) computes the language of palindromes
{xxR | x ∈ {0, 1}?}, by arguing that we could “compress” an arbitrary string
x by storing the state qx of the DFA in which the last bit of x is read, and
the length |x|, which takes only O(log |x|) bits. Then, if the DFA recognizes
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palindromes, there should be a unique path of length |x| from qx to a final
state, and the string xR must be encoded along the path. Thus we could
encode every x with a description of length only O(log |x|). However, a
random string x requires a description of length at least |x| − 1 with nonzero
probability, so we have a contradiction.1 This argument generalizes to show
that any DFA that recognizes all palindromes of length n requires at least
2Ω(n) states. At any rate, the argument shows that a random x is a bad input
with decent probability.

2. “Efficient” ways of choosing bad inputs. Many proofs of lower bounds
based on diagonalization arguments provide an efficient method for generat-
ing the bad input.

For example, the standard proof by diagonalization that the Halting Problem
is undecidable can be modified to have this property. In particular, given
the code of a Turing machine that claims to solve the Halting Problem, one
can efficiently produce a “bad” input on which the Turing machine fails
to correctly decide the Halting Problem.2 Similarly, the old-school proof
of the Time Hierarchy Theorem, where one constructs a hard function by
simulating different time-bounded Turing machines on different inputs (and
flipping the answer), also has this property.

The idea of focusing on constructing bad inputs, when reasoning about im-
possibility results in computing, is in fact quite old. For instance, the celebrated
Myhill-Nerode theorem [Ner58] says that a set of strings S is not regular if and
only if there exists an infinite distinguishing set for S : an infinite set of “bad”
strings that effectively forces every prospective DFA to need infinitely many states.

Mulmuley [Mul10] has suggested that to make progress on separating P and
NP, one must search for algorithms which can efficiently find counterexamples
for any algorithms claiming to solve the conjectured hard language. This view has
been dominant in the GCT approach towards the VNP vs. VP problem [Mul07,
Mul12, IK20]. One can think of our present article as confirming Mulmuley’s
intuition in a broader sense than what was known before.

1This is the first theorem one learns on Kolmogorov complexity. See Chapter 6.4 of
Sipser [Sip06].

2For completeness, we sketch the proof. Given the code of some Turing machine H, let DH be
code for the “diagonal” machine which on an input x, flips the answer of H(〈x, x〉). Then H cannot
terminate with a correct output on the input 〈DH ,DH〉.
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3 Starting Point: The Work of Gutfreund, Shaltiel,
and Ta Shma

The starting point of our work was thinking about a beautiful paper of Gutfrend,
Shaltiel, and Ta Shma [GST07]. They showed:

If P , NP, then bad inputs for every claimed poly-time algorithm for
SAT can be constructed in poly-time.

In particular, the following theorem can be derived from their arguments.

Theorem 3.1 (Follows from [GST07]). Assume P , NP. For every nk-time
decision algorithm A, there is an algorithm RA such that, for infinitely many n,
RA(1n) outputs a formula F′n of length n such that F′n is satisfiable if and only if
A(F′n) outputs “UNSAT”. Furthermore, RA(1n) runs in nO(k2) time.

That is, RA runs in polynomial time, and prints formulas on which A fails to
determine SAT correctly. We say that the algorithm RA is a refuter, since its job is
to refute the claim that A solves the SAT problem by producing bad inputs for A.

As their theorem is very important to our work, we will carefully outline a
proof of the theorem.

3.1 Refuter for Algorithms Trying to Print SAT Assignments

Let’s start by assuming P , NP, and derive a refuter for any nk-time algorithm
A that attempts to print a SAT assignment to its input formula, whenever a SAT
assignment exists. That is, our algorithm A first attempts to print a SAT assignment
to its input formula, and A determines “UNSAT” if the printed assignment fails to
satisfy, otherwise A determines “SAT”.

Under this setup, since it’s forced to print a SAT assignment, the algorithm A
will always correctly output “UNSAT” when it’s given an unsatisfiable formula.
Therefore, under this setup, every bad input for A must be a satisfiable formula
on which A determines “UNSAT”. (Furthermore, since we assume P , NP, there
must be infinitely many such formulas.)

This refuter is a bit easier to describe, yet it already captures the key idea: if
an algorithm A claims to solve SAT, then exploit its claimed ability to find its own
counter-examples.

We define the refuter as follows.
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RA(1n): Use the Cook-Levin reduction to construct a 3CNF formula Fn that
is satisfiable if and only if the following holds:

(∃G : |G| = n)(∃a)[G(a) = 1 ∧ A(G) outputs “UNSAT”].

Run A on Fn. If A prints a satisfying assignment (G′, a′) to Fn, then output G′.
If A outputs “UNSAT” instead, then output Fn.

In more detail, since A is a poly-time algorithm, the property

(∃G : |G| = n)(∃a)[G(a) = 1 ∧ A(G) outputs “UNSAT”]

can be checked in NP. Therefore, applying the Cook-Levin reduction, there
is a 3CNF formula Fn such that Fn(G, a) is true if and only if G(a) = 1 ∧
A(G) outputs “UNSAT”. Since A runs in time nk, the formula Fn output by the
Cook-Levin reduction has size at most nO(k).

What does RA do? The refuter RA is asking A to print its own counterexamples!
That is, if A outputs a valid SAT assignment (G′, a′) on Fn, then G′ is a formula of
length n that is a “bad input” for A, by definition of Fn. Now we have two cases.

Case 1: If A outputs a valid SAT assignment G′ for Fn for infinitely many n,
the proof is complete: for infinitely many n, RA(1n) outputs a formula Fn of length
n such that Fn is satisfiable if and only if A(Fn) outputs “UNSAT”.

Case 2: The alternative is that for all but finitely many n, A outputs “UNSAT”
on Fn. In this case, RA(1n) outputs Fn on all but finitely many n. But since P , NP,
the formula Fn is actually satisfiable for infinitely many n. Therefore, for infinitely
many n, RA(1n) still outputs a formula that is satisfiable, yet A reports “UNSAT”.3

3.2 Refuter for Algorithms Trying to Decide SAT
Gutfreund, Shaltiel, and Ta Shma actually give a refuter for every poly-time
algorithm that attempts to decide SAT as well. This refuter works by exploiting the
well-known search-to-decision reduction for SAT. In particular, given an algorithm
A that only decides SAT, we can produce an algorithm B that can print SAT
assignments (when they exist) making only polynomially many calls to A, by
plugging in values of variables into the formula and calling A to check if the
reduced formula is still satisfiable. Now, the refuter has the following form, for
i = 1, 2, 3:

3A minor detail: in this case, RA is (infinitely often) outputting a formula of length L = nO(k)

on the string 1n, so it does not meet our original specification, where we want to output a string of
length n on 1n. However, a modified algorithm R′A which on the input string 1L, determines n and
runs RA(1n), does meet the specification.
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Ri
A(1n) : Use the Cook-Levin reduction to construct a 3CNF formula Fn

that is satisfiable if and only if the following holds:

(∃G : |G| = n)(∃a)[G(a) = 1 ∧ A(G) outputs “UNSAT”].

Use search-to-decision on A to search for a SAT assignment to Fn. (Call A on
Fn; if it reports “UNSAT” then abort. Try setting a variable x to 0, in Fn. If
A reports “SAT” then continue with another variable. If A reports “UNSAT”
then flip the value of x to 1. If A still reports “UNSAT” then abort. If A reports
“SAT” then continue with another variable.)
There are three possible outcomes:

1. A(Fn) = “UNSAT”. In this case, output Fn.

2. A finds a SAT assignment (G′, a′). In this case, output G′.

3. In the search-to-decision reduction, A reaches a subformula F′′n such
that A(F′′n ) = “SAT”, but when a variable x of F′′n is set 0 (yielding
F′′n [x = 0]), or set 1 (yielding F′′n [x = 1]), A reports “UNSAT” in both
cases and we abort.
Then, A must be wrong on at least one of the three. In this case, R1

A(1n)
reports F′′n , R2

A(1n) reports F′′n [x = 0], and R3
A(1n) reports F′′n [x = 1].4

Similarly to the previous refuter against algorithms printing SAT assignments,
there are a few cases to check.

Case 1: If A outputs a valid SAT assignment on Fn for infinitely many n, we
are done.

Case 2: If A reports “UNSAT” on Fn for all but finitely many n, we are done
(same analysis as the refuter from the previous subsection).

Case 3: In the remaining case, A only outputs a SAT assignment on Fn for
finitely many n, yet A reports “SAT” on Fn for infinitely many n. Thus there are
infinitely many n such that A reports the wrong answer on at least one of

F′′n , F′′n [x = 0], F′′n [x = 1].

Since R1
A always reports F′′n , R2

A always reports F′′n [x = 0], and R3
A always reports

F′′n [x = 1], there must be an i ∈ {1, 2, 3} such that for infinitely many n, Ri(1n)
outputs a formula on which A is incorrect!

This concludes the proof of Theorem 3.1.
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A Universal Refuter. In fact, for separations like that of SAT against nk-time
algorithms that print SAT assignments, one can construct a single nO(k2)-time refuter
R which works against all nk-time algorithms A, infinitely often. The idea is to
simply perform “Levin search” [Lev73]: we consider a “meta-algorithm” A′ which
on a formula F of length n, runs each of the first log(n) algorithms with nk-time
alarm clocks, and if any of the first log(n) algorithms outputs a SAT assignment
to F, then A′ outputs it. Now, the refuter RA′ for A′ is a refuter for all nk-time
algorithms.

3.3 An Aside: Finding Hard Instances for Practical SAT Solvers
Although the above theorem is rather complexity-theoretic in nature, we believe
that the ideas could be useful in finding “hard instances” for practical SAT solvers.
Let t and m, n be positive integer parameters. For any given solver S , in principle
one can build a SAT instance FS ,n,t which is satisfiable if and only if there exists
a 3CNF G with m clauses and n variables such that G is satisfiable, yet S does
not conclude that G is satisfiable within t decisions/backtracks/seconds (whatever
notion of time is easiest to encode). If S can solve FS ,n,t (indeed, if any solver can
solve FS ,n,t) then the solution will produce a hard instance. If no solver can solve
FS ,n,t, then the formula FS ,n,t is itself a good candidate for a hard instance. One can
imagine holding a “tournament” between a host of practical SAT solvers, feeding
various formulas FS ′,n,t into various solvers S ′′, to produce many interesting hard
instances.

4 Constructive Separations
Theorem 3.1 of the previous section showed that it’s possible to efficiently produce
“hard inputs” for claimed SAT solvers, assuming P , NP. To generalize this notion,
we propose the following definition, letting f be a decision problem andA be a
class of algorithms.

Definition 4.1. We say there is a P-constructive separation of f < A if for all
algorithms A ∈ A, there is a polynomial-time algorithm RA such that, for infinitely
many n, A(RA(1n)) , f (RA(1n)).

Thus, a P-constructive separation means that for every “weak” algorithm, we
can concoct a polynomial-time algorithm that produces bad inputs for the weak
algorithm. Theorem 3.1 can then be expressed as:

If P , NP, then there’s a P-constructive separation of SAT < P.5

5Here, we are conflating the class of polynomial-time algorithms with the class of decision
problems solvable in polynomial time. My apologies if this bothers you.
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So, we know that proving P , NP will also require us to be able to efficiently
construct hard SAT instances for polynomial-time algorithms. A natural question
arises:

Which complexity lower bound problems require constructive separa-
tions, and which do not?

Our question is an algorithmic one about the nature of a lower bound. What
algorithms are implied by complexity lower bounds? In our paper [CJSW21],
we try to make a case that constructive separations are a key to proving major
separations between complexity classes. We prove that:

1. Essentially all major separation problems regarding polynomial time will
require constructive separations.

2. Making many known lower bounds constructive requires resolving other
major lower bound problems.

That is, we believe that the property of constructivity (the ability to efficiently
refute weak algorithms) lies in the “gap” between lower bounds we know how to
prove, and major lower bounds that we’d like to prove. Constructivity is a property
we want of lower bounds; it is in a sense the opposite of a barrier.

In the next two subsections, we explain our results in more detail.

4.1 Major Complexity Class Separations Will Require Con-
structive Separations

One of our main theorems is that for many choices of complexity classes C andD,
a separation C , D implies a constructive separation of f < C for some function
f ∈ D.

Theorem 4.2 (Informal, see [CJSW21] for details). For all classesC ∈ {P,ZPP,BPP}
and all classesD ∈ {NP,Σ2P,PP,PSPACE,EXP,NEXP,EXPNP

}, if C , D, then
there is a C-constructive separation of f < D, for a “natural” function f ∈ D.

The above theorem is informal, in that (a) we have not defined “natural” (but
the properties needed hold of most D-complete problems), and (b) we have not
defined what it means to be ZPP-constructive or BPP-constructive (but it is a
natural randomized notion of constructive separation; see the paper for details).

The above Theorem 4.2 generalizes Theorem 3.1 to hold for many different
classes C and D. A couple of these other cases were known prior to our pa-
per [GST07,DFG13], but most were not. See our paper [CJSW21] for more details.
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Theorem 4.2 says that, if we manage to prove a good separation against (random-
ized) polynomial time, then we are also going to get a constructive separation (in
which we can efficiently produce bad inputs). So, we might as well think about
constructive methods for proving lower bounds!

In Section 5, we will give one particular example of such a result, proving
that if P , PSPACE, then there is a P-constructive separation that true quantified
Boolean formulas (TQBF) is not in P.

4.2 Making Known Lower Bounds Constructive Implies Strong
Circuit Lower Bounds

In the second part of the paper [CJSW21], we show how constructive separations
for several different well-known lower bounds (based on information-theoretic
arguments) would turn out to imply breakthrough lower bounds. That is, “construc-
tivizing” any one of many known lower bounds would have actually have rather
significant lower bound consequences. The three regimes we consider are:

• (randomized) streaming lower bounds,

• query complexity lower bounds, and

• superlinear-time one-tape Turing machine lower bounds.

Streaming lower bounds and query complexity lower bounds are generally con-
sidered to be well-understood, and certain superlinear-time lower bounds against
one-tape Turing machines have been known for decades [Hen65, Maa84]. Surpris-
ingly, we show in [CJSW21] that making these separations constructive would
imply breakthrough separations such as EXPNP , BPP, or even P , NP (if the
algorithm producing bad inputs is restricted enough). Here, we briefly outline our
results in more detail.

Constructivizing Streaming Lower Bounds Implies Breakthroughs. In the
streaming algorithm setting, an algorithm (storing little space) must pass through
all bits of the input stream exactly once, and output a good answer when the
stream ends. A host of problems are well-known to be unconditionally hard for
randomized streaming algorithms that use a small amount of working space, and
these lower bounds typically follow from communication complexity lower bounds.
For a canonical example, in the Set-Disjointness (DISJ) communication problem,
Alice is given an n-bit string x, Bob is given an n-bit string y, and the goal is
to determine whether or not the inner product 〈x, y〉 =

∑n
i=1 xiyi is nonzero, with

minimal communication. We can think of DISJ as a function that takes (x, y) and
outputs a Boolean value, in the natural way. The randomized communication
complexity lower bounds for DISJ [KS92, Raz92, BJKS04] directly imply that
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no n1−ε-space randomized streaming algorithm can correctly decide the simple
language

LDISJ = {xy ∈ {0, 1}? × {0, 1}? | |x| = |y|,DISJ(x, y) = 1}.

Therefore, every (randomized) streaming algorithm using only no(1) workspace
must fail to correctly decide LDISJ on some inputs. We show that efficient refuters
against streaming algorithms attempting to solve any NP problem (not just LDISJ)
would imply a breakthrough separation against general randomized algorithms.

Theorem 4.3 (Informal). For every language L ∈ NP, a PNP-constructive separa-
tion of L from uniform randomized streaming algorithms using O(log n)ω(1) space
implies EXPNP , BPP.

Essentially every lower bound proved against streaming algorithms in the
literature holds for some problem whose decision version is in NP. Theorem 4.3
shows if any such lower bound can be made constructive, even if it takes PNP to
produce the bad inputs, then EXPNP , BPP follows, a longstanding (embarassing)
open problem in complexity theory. And if we could replace “PNP-constructive”
with “P-constructive”, we would prove that EXP , BPP. The upshot is that
the counterexample inputs printed by any such refuter algorithm must encode a
function that is actually hard for general randomized algorithms.

Constructivizing Lower Bounds for One-Tape Turing Machines Implies
Breakthroughs. It has been known at least since Maass [Maa84] that nondetermin-
istic one-tape Turing machines require Ω(n2) time to decide even simple problems
such as PALINDROMES. However, the lower bounds (and others like it) are proved
by non-constructive counting arguments. (One can also use Ω(n) lower bounds on
the nondeterministic communication complexity of the EQUALITY function, to
prove such lower bounds.) Similarly to the previous setting, we show that if there
is a PNP refuter that can produce bad inputs for a given one-tape (nondeterministic)
Turing machine, then ENP (2O(n) time with an NP oracle) requires exponential-size
circuit complexity. This in turn would imply BPP ⊆ PNP, a breakthrough simula-
tion of randomized polynomial time. The theorem we prove is very general, and
applies to many more problems than just PALINDROMES:

Theorem 4.4. For every language L computable by a nondeterministic n1+o(1)-
time RAM, a PNP-constructive separation of L from nondeterministic O(n1.1)-time
one-tape Turing machines implies ENP 1 SIZE[2δn] for some constant δ > 0.

Let us demonstrate how Theorem 4.4 works, with the specific example of
PALINDROMES. Our approach can be readily generalized to a proof of Theo-
rem 4.4.
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Proof of Theorem 4.4. (Sketch) Let ε > 0 be arbitrarily small. Our goal is to
construct a nondeterministic one-tape Turing machine M that takes N1+cε time for
a universal constant c ≥ 1, such that M has the following properties:

• For every n, M accepts every palindrome xxR ∈ {0, 1}2N of length 2N = 2n+1

such that x, construed as the length-2n truth table of a function from n bits to
1 bit, has circuit complexity at most 2εn.

• M rejects every string y ∈ {0, 1}2N that is not a palindrome and has circuit
complexity at most 2εn, when construed as a function from n + 1 bits to 1 bit.

• M rejects every string of odd length (for simplicity, we only consider even-
length palindromes, of the form xxR).

That is, M correctly decides PALINDROMES on all strings of circuit complexity
at most 2εn. This Turing machine M exists unconditionally: its correctness does
not rely on any assumptions, and we will describe how to construct M later.

Given that such an M exists, for sufficiently small ε > 0, M runs in time o(N2).
Therefore it must fail to correctly solve PALINDROMES on infinitely many inputs.
Consider any PNP algorithm R that, on the input 1N , prints an input zN ∈ {0, 1}N on
which M fails to decide PALINDROMES, for infinitely many N.

The properties of M imply that the string zN does not have circuit complexity
at most 2εn. Therefore, there is a PNP procedure R that, on infinitely many 1N ,
prints the truth table of a function with circuit complexity greater than 2εn. We can
produce a function f ∈ ENP with circuit complexity greater than 2εn, as follows.

f (x) := Let n = |x|. Run R(12n
), producing a string z2n of length 2n.

Let y1, . . . , y2n be the list of all n-bit strings in lex order.
Output the i-th bit of z2n , where x = yi.

Observe that the truth table of f , on inputs of length n, is precisely the string
z2n . Therefore, f requires circuit complexity greater than 2εn, for infinitely many n.

Now we turn to the construction of the desired nondeterministic Turing machine
M; here, we just sketch how it works. First, M rejects its input z immediately if
|z| is odd; this can be easily checked in linear time in a standard way. Note that
M can also compute |z| directly in N · poly(log N) time, by “dragging along” an
O(log n)-bit counter on its single tape as it streams through the bits of z, using a
larger alphabet to store the content of the counter. Next, given that |z| = 2N = 2n+1,
M nondeterministically guesses a circuit C of size at most Nε, using O(Nε log N)
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bits of nondeterminism. The intention is that z = xxR and C is a circuit such that
C(i) outputs the i-th bit of x. The machine M can check this as follows. First, by
“dragging along” the description of C as it reads the bits of x, M can verify that
C(i) outputs the i-th bit of x. Evaluating C on an input takes no more than O(Ncε)
time per bit of x for a fixed constant c ≥ 1, which is in total O(N1+cε) time over all
bits of x. Finally, M can verify that z is a palindrome by using C to check that the
first bit of z matches the last bit, the second bit of z matches the next-to-last bit,
and so on, using evaluations of C to check the first half of z. All this takes no more
than O(N1+cε) time, and M accepts if and only if all bit checks pass.

It is easy to see that if z has circuits of size at most Nε, and z is a palindrome,
then the computation path of M that guesses a small circuit correctly will indeed
accept z. However, if z is not a palindrome, then no computation path of M will
accept z. �

Constructivizing Certain Query Lower Bounds Implies Breakthroughs.
Even obtaining efficient refuters for query lower bounds on the “coin problem” [BV10]
would imply strong lower bounds. We define the problem Promise-MAJORITYn,ε

for a parameter ε < 1/2, as follows:

Promise-MAJORITYn,ε: Given an input x ∈ {0, 1}n, letting p =
1
n

∑n
i=1 xi, distinguish between the cases p < 1/2 − ε or p > 1/2 + ε.

It is well-known that every randomized query algorithm needs Θ(1/ε2) queries to
solve Promise-MAJORITYn,ε with constant success probability (uniform random
sampling is the best one can do). That is, any randomized query algorithm making
o(1/ε2) must make mistakes on some inputs, with high probability. We can show
that constructing efficient-enough refuters for this simple sampling lower bound
would imply P , NP. Please see the paper [CJSW21] for details.

Theorem 4.5 (Informal). A “uniform AC0” constructive separation of the problem
Promise-MAJORITYn,ε from all randomized query algorithms that make only
o(1/ε2) queries and run in poly(1/ε) time, implies P , NP.

Finally, we also show that constructive separations for the Minimum Circuit
Size Problem (MCSP) against AC0 circuits would also imply unexpected break-
through lower bounds. (Informally, the Minimum Circuit Size Problem (MCSP) is
the problem of determining the circuit complexity of a given 2n-bit truth table.) As
above, it is known that MCSP does not have small AC0 circuits [ABK+02], and
the question is whether there is a constructive separation. We refer the reader to
the paper [CJSW21] for details.
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5 Proving Polynomial-Time Lower Bounds for TQBF
Requires Constructivity

To give one example of how Theorem 3.1 can be extended beyond P , NP
to other major open problems about polynomial time, I will demonstrate here
how P , PSPACE implies a P-constructive separation of TQBF < P. That is,
assuming P , PSPACE, given any poly-time algorithm A that attempts to decide
the PSPACE-complete problem TQBF (true quantified Boolean formulas), we can
efficiently find QBFs on which A fails. Notice, since we are now talking about a
lower bound on a PSPACE-complete problem, there is no way we can definitively
check all answers to the algorithm A in polynomial time: unless NP = PSPACE,
we cannot even give short proofs that a QBF is true or false. Nevertheless, we can
still locate bad inputs for A. I have chosen the particular example of refuters for
P , PSPACE with TQBF, because one can apply similar ideas as in the refuter
for P , NP with SAT. In the paper [CJSW21], we use more sophisticated ideas to
obtain refuters for many more complexity class separation problems.

In particular, assume P , PSPACE, and let A be an nk-time that attempts
to decide TQBF by outputting “true” or “false” on every encoding of a Boolean
formula. For a quantified Boolean formula (QBF) F, let “F′′ denote its encoding
in binary. Say that A is inconsistent on F if:

• Either F = (∀x)G(x) for a QBF G with one free variable, and
A(“F′′) , A(“G(0)′′) ∧ A(“G(1)′′),

• or F = (∃x)G(x) for a QBF G with one free variable, and
A(“F′′) , A(“G(0)′′) ∨ A(“G(1)′′).

Of course, (∀x)G(x) is true if and only if G(0) and G(1) are true, and (∃x)G(x) is
true if and only if G(0) or G(1) is true. Thus, A is inconsistent when it fails to
satisfy this basic property of quantifier semantics, and A must be incorrect on at
least one of three QBFs.

We can define a refuter against A, as follows. Let i ∈ {1, 2, 3}.

Ri
A(1n): Construct a formula Fn encoding the property

(∃ QBF “G′′, |G| = n)[A is inconsistent on G].

If A(Fn) outputs “false”, then output Fn.
Otherwise, A(Fn) outputs “true”. As in Theorem 3.1, use search-to-decision to
try to construct a QBF G on which A is inconsistent.
If the search-to-decision fails (we reach a formula that A declared “true” but its
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two subformulas are declared “false”), then as in Theorem 3.1, we have a set
of three QBFs such that A is incorrect on at least one of them; Ri will output
the ith such formula.
If the search-to-decision succeeds, then A is inconsistent on G, and we obtain
three QBFs (G and two other “subformulas”) such that A is incorrect on at least
one of them; Ri will output the ith such formula.

Analogously as in Theorem 3.1, we can argue that there is always some i ∈
{1, 2, 3} such that for infinitely many n, Ri

A(1n) outputs a QBF on which A is
incorrect.

6 Conclusion
We hope this article has encouraged the reader to think more about how algorithmic
methods are actually necessary for proving strong complexity lower bounds.

Our work leaves open several interesting directions. For example, it is not
entirely clear how to extend our results to separations with complexity classes
within P. For example, let L be a decision problem which is complete for P
under logspace reductions. If L is not decidable in LOGSPACE, does a “logspace-
constructive” separation of L < LOGSPACE follow? What about constructive
separations for non-uniform complexity classes, such as P/ poly? Should we
expect a constructive separation of SAT < P/ poly, and if so, what properties
should the algorithms/circuits have?

Finally, in this invited article, I have not provided an overview of all relevant
prior work. Such an overview can be found in our paper [CJSW21].
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The umbilical cord of finite model theory

Yuri Gurevich
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Abstract

Model theory was born and developed as a part of mathematical logic. It has
various application domains but is not beholden to any of them. A priori, the research
area known as finite model theory would be just a part of model theory but didn’t turn
out that way. There is one application domain — relational database management —
that finite model theory had been beholden to during a substantial early period when
databases provided the motivation and were the main application target for finite model
theory.

Arguably, finite model theory was motivated even more by complexity theory. But
the subject of this paper is how relational database theory influenced finite model the-
ory.

This is NOT a scholarly history of the subject with proper credits to all participants.
My original intent was to cover just the developments that I witnessed or participated
in. The need to make the story coherent forced me to cover some additional develop-
ments.

1 Prelude

Q1: How come finite model theory is computer science while model theory is mathematics?

A2: Let me think. Model theory is a part of mathematical logic which was born and devel-
oped as a part of foundations of mathematics. Finite model theory (FMT) was developed
much later. It did not exist as a separate research area before the 1970s. FMT was devel-
oped primarily by computer scientists. It was — and is — much influenced by complexity
theory which is viewed traditionally as theoretical computer science (though mathemati-
cians often view it as mathematics). Also, during a substantial early period FMT was much
influenced by (relational) database theory (DBT), bona fide computer science. I doubt that
FMT would have become a recognizable research area without that DBT link. In that sense,
the DBT link is the umbilical cord of FMT.

Q: Tell me about that influence of DBT on FMT.

A: I’ll try my best. But let me make two reservations. I am not a DBT expert and, more
importantly, I am a wrong person to render a scholarly history of the subject complete with
proper credits to all participants. It takes a special talent to give a scholarly account of a
research field; I don’t have such talent. I will tell you primarily about the developments
that I witnessed or participated in.

1Quisani is my former student.
2The author
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Q: One last question before you start your story. I presume that logicians studied finite
models before the 1970s?

A: Yes, they did. Let me start with that logic prehistory of FMT.

2 Prehistory

Finite structures were relevant to humanity long before the notion of structure was intro-
duced, in fact before the notion of theorem was introduced. Consider for example the fact
that a finite set can be counted in any order, always giving the same result. The special
cases of this fact — for 2-element sets, 3-element sets, etc. — must have been known
very early. The Greeks probably knew the general fact before the notion of theorem was
introduced.

While model theory was studied (e.g. by Skolem and Löwenheim) in the beginning of
the 20th century, finite model theory arguably became a separate research area in the 1970s,
and the term “finite model theory” was coined only toward the end of the century.

As the rest of this section shows, finite model theory was studied and used before it
became a separate research area.

2.1 Boris A. Trakhtenbrot

In the paper [45] Boris Trakhtenbrot proved that finite satisfiability is not decidable. There
is no algorithm that, given a first-order sentence ϕ, decides whether ϕ has a finite model.

It follows that finite validity is not recursively enumerable, that is the set of finitely valid
(valid on all finite models) first-order sentences is not recursively enumerable. Indeed, let
S be the set of finitely valid sentences and S 1 the complement of S . Sentences in S 1 have
finite counterexamples. It follows that S 1 is recursively enumerable. If S were recursively
enumerable as well, then the following (not very feasible) algorithm would decide, given a
sentence ϕ, whether it is in S or in S 1. Keep enumerating a list of S sentences and a list of
S 1 sentences until ϕ occurs in one of the lists.

The failure of recursive enumerability is important. It means that there is no reasonable
deductive system for finite validity. This contrasts with the situation for general valid-
ity (validity in arbitrary, not necessarily finite, structures) where there is such a deductive
system.

In the paper [46] published in 1953, Trakhtenbrot strengthened his result. The set of
finitely satisfiable sentences and the subset of unsatisfiable sentences are recursively insep-
arable: There is no recursive set that contains one of the two sets and is disjoint from the
other.

Since FMT is typically considered as a part of theoretical computer science, it may be
fitting to note that Trakhtenbrot was also a pioneer of computer science and had many good
students (Figure 1 shows him with a few of them). See also [2] in this connection.
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Figure 1: Boris Trakhtenbrot with some of his former students in 1992. Left to right: Vladimir Sazonov,
Janis Barzdins, Rusins Freivalds, Alexandre Dikovsky, Boris Trakhtenbrot, Mars Valiev, Miroslav Kratko,
and Valery Nepomnyaschy.

I first met Trakhtenbrot in the mid-1960s in the Novosibirsk Academgorodok [50]
where he was running a lively seminar on the nascent computer science. In spite of the
difference in age, we became friends. I used to come to the Akademgorodok from time to
time to give a talk at the Algebra & Logic seminar run by academician Anatoly Maltsev.
On the same occasions, I would attend Trakhtenbrot’s seminar and talk to Trakhentbrot. I
remember how he introduced time and space complexity (by means of so-called “signaliz-
ing functions”) independently of his Western colleagues. I could have become a computer
scientist much earlier than I did. But, at the time, I was moving from algebra to logic and
it was logic that fascinated me.

2.2 Dana Scott, Patrick Suppes, and William W. Tait

(a) Dana S. Scott (b) William W. Tait (c) Patrick C. Suppes

It is easy to see that a purely universal sentence, that is a sentence of the form

ϕ � @x1@x2 . . . @xnΦpx1, x2, . . . , xnq

where Φ is quantifier-free, is preserved by submodels: If A |ù ϕ and B is a submodel of A
then B |ù ϕ. According to the Łoś-Tarski theorem [10, Theorem 5.2.4], there is a converse:
Any sentence that is preserved by substructures is equivalent to a universal sentence.
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In the 1958 paper [41], Dana Scott and Patrick Suppes conjectured that the Łoś-Tarski
theorem remains valid when only finite structures are taken into account. In the 1959
paper [42], William W. Tait disproved their conjecture. In retrospect, his counterexample
is rather simple. Essentially it is a first-order sentence expressing that a linear order with
a first element has also a last element. Every finite model has the property, and so the
property is preserved by submodels of finite models. But an infinite model may violate the
property in spite of being a submodel of one that has the property; the smallest example is
the linear order ω of natural numbers as a submodel of ω� 1.

But there was more in the Scott-Suppes article than the conjecture mentioned above.
We will return to their paper later in this section.

2.3 Yuri Glebsky and his students

In the 1966 International Congress of Mathematicians in Moscow, Yuri Glebsky announced
an unexpected zero-one law for first-order logic [23].

Consider a finite set V of relation sym-
bols and restrict attention to models of
vocabulary V with the universe of the
form t1, 2, . . . , nu. For each first-order
sentence ϕ in vocabulary V , let Bpnq
be the total number of n-element mod-
els and Apnq the number of such mod-
els satisfying ϕ. The zero-one law
states that, for every V and ϕ as above,
limnÑ8 Apnq

L
Bpnq exists and is equal to

either 0 or 1.

Figure 3: Yuri V. Glebsky

In 1969, Glebsky and three of his students — Dmitry I. Kogan, Mark I. Liogonky, and
Vladimir A. Talanov — published a proof of the zero-one law [24]. In 1972, the paper
was duly translated to English but wasn’t noticed in the West. By chance, I knew paper
[24]. This wasn’t because I was so scholarly; that has never been my forte. But, in 1970, I
served as an official opponent at the public defense of the PhD thesis of Liogonky. In the
thesis, Liogonky proved that the 0-1 law remains valid if the structures are counted up to
isomorphism

In 1972, Ron Fagin announced the 0-1 law, which he had discovered independently in
the meantime [15]. He gave an elegant proof of the law in his thesis [16] and published it in
[21]. A number of years later, I met Fagin and told him about Glebsky. Fagin was surprised,
but he found the English translation of the 1969 paper, and the matter was settled.

In 1977 Glebsky drowned in the Volga trying to save his son. His students admired him,
and his untimely death devastated them [39].

2.4 Other relevant results

Q: To what extent is the collection of relevant “prehistoric” results above exhaustive?
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A: It is definitely not exhaustive. There are many pre-1970 results that are relevant to some
degree. For example, the recursive inseparability result of Trakhtenbrot provoked more
subtle recursive inseparability results in algebra and logic. In the book [8], an appropriate
reduction theory is presented, and it is proven that, for many natural classes K of first-order
sentences, the set of finitely satisfiable K sentences and the set of unsatisfiable K sentences
are recursively inseparable.

Also there is at least one very relevant result that is missing above. Commenting on a
draft of this paper, Erich Grädel reminded me of the Büchi-Elgot-Trakhtenbrot Theorem
[5, 11, 47], which he views as the first descriptive complexity result. The theorem states
that a set of strings in any finite alphabet is accepted by a finite-state automaton if and only
if it is definable in monadic second-order logic (MSO). It is certainly the first descriptive
complexity result that I know.

3 Database theory

Edgar Frank “Ted” Codd wouldn’t get into a model theory hall of fame. His famous theo-
rem, known simply as Codd’s Theorem [52], is good model theory, but it wasn’t real news
to logicians as we explain below. Yet he is a hero of our story. He invented the relational
model for database management, which facilitated the birth of finite model theory as a
separate research area.

Figure 4: Edgar F. Codd

It may be hard for a theorist with no practical experience to appreciate Codd’s contribu-
tion. Codd observed that databases can be adequately represented by (first-order) structures
[13, 14]. But structures had originally been designed to represent data, or knowledge.

Q: Designed by whom?

A: By architects of what is now called model theory, starting from Löwenheim and
Skolem, including Gödel and Tarski, especially Tarski; see [43] for example.

Q: Mathematical logic was developed within the framework of foundations of mathe-
matics. Only mathematical data might have been of interest to logicians.

A: I don’t know what you mean by mathematical data. Logicians certainly did not
restrict attention to numerical data. Any data whatsoever may be involved in a mathe-
matical problem and thus become “mathematical data” of interest to logicians.
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Besides, logicians have been interested in problems beyond foundations of mathe-
matics. The Scott-Suppes paper mentioned in §2.2 is on the foundations of theories of
measurements. The authors foresaw relational databases:

“From an abstract standpoint, a set of empirical data consists of a collection of rela-
tions between specified objects . . . we treat sets of empirical data as being (finitary)
relational systems” [41, §1]. �

In article [14], Codd defined a variable-free relational algebra and a relational calcu-
lus. The latter is a form of first-order logic, with propositional connectives and quantifiers,
which is convenient for his purposes. He also proved a theorem, Codd’s Theorem, estab-
lishing that relational algebra has essentially the expressive power of first-order logic.

Q: Why essentially and not literally?

A: Database queries should be safe in the appropriate technical sense [1, §5.3]. For ex-
ample, no query should express the complement of a finite subset of an infinite domain.
Codd’s Theorem establishes that relational algebra has the expressive power of the safe
fragment of first-order logic.

But Codd’s Theorem wasn’t real news for logicians either. An algebraic form of first-
order logic, using so-called cylindric algebras, had been developed earlier by Tarski and
his collaborators [12, 44, 32].

Q: If logicians knew all that, then what made Codd’s work important?

A: In one word, engineering. There is a huge difference between treating sets of em-
pirical data as relational systems and practical database management. Codd’s approach
was practical, and the result was a model of database management superior to all com-
petitors. He received the Turing Award in 1981.

Q: What are the benefits of the relational database management?

A: One is simplicity; all information is represented by data values in addition to a
few relation symbols. Another important benefit is clear and unambiguous semantics.
Yet another important benefit is that the relational approach admits high level query
languages.

Q: If we stick to theory, rather than practice, was there anything new in Codd’s ap-
proach?

A: Yes, there was. Normally, in logic and in mathematics in general, structures are
static. You study a particular structure, e.g. the field of real numbers, or a class of
structures, e.g. commutative groups. But databases evolve and in that sense they are
dynamic. For example, consider the salary database for some organization. New em-
ployees are hired, some employees leave the organization, some get raises, etc. To
incorporate evolution, the language of databases should allow us to update databases in
various ways.

Q: Did you know Codd?

A: No; I wish I did. Codd wrote his PhD thesis at the University of Michigan, but that
was in the 1960s, long before I arrived there. But I heard plenty about Ted Codd from
his advisor John Holland. John told me that Codd compromised his health trying to
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promote the relational approach at IBM. His fight at IBM is described in many places,
even in the Wikipedia article [51].

4 The beginning

Q: After all these preliminaries are you ready to discuss FMT per se? If yes, start with the
beginning.

A: I am ready to discuss FMT but starting with the beginning is a challenge. Until 1982,
when I joined the University of Michigan and officially became a computer scientist, I was
a mathematician and very different things were on my mind, primarily model theory. So,
preparing for this discussion, I exchanged letters with experts. In particular, I posed two
questions to Ron Fagin:

1. What do you count as the beginning of FMT? Is it your thesis?

2. Who coined the term “finite model theory”? And when?

“Although Trakhtenbrot’s Theorem was the first important result,” replied Ron on Nov. 9
2022, “[I] do feel that my Ph.D. thesis launched FMT as a field. Since I am biased, I called
Moshe [Vardi] (whom I am cc-ing). He says he completely agrees that Trakhtenbrot had
the first major result and that my thesis started FMT as a field.”

A couple of days later, Moshe sketched for me his view of the early history.

“In the 1970s, there are three independent lines of work:

a. 1970: Codd’s paper — start of relational DBT.

b. 1973: Fagin’s dissertation — ‘Contributions to the model theory of finite struc-
tures’, where he proved Σ1

1 � NP, the 0-1 Law, and that reachability is not defin-
able in [existential] MSO.

c. 1980: Immerman’s dissertation — ‘First order expressibility as a new complexity
measure.’

The work in the early 1980s built on these three legs, even though it was not explicitly
FMT. For example, the 1982 papers by Immerman and by Vardi built on these legs, but
did not emphasize the finiteness feature. Your papers in the 1980s raised the issue of
finiteness and helped FMT become a well-defined field.” — Moshe Vardi Dec. 17
2022

Q: Does this sound reasonable to you?

A: Totally. Ron’s thesis [16] was truly pioneering; the results are published in five pa-
pers: [17, 18, 19, 20, 21]. I have already mentioned his elegant proof of the 0-1 law [21].
Another major result is that connectivity of undirected graphs is not expressible in existen-
tial monadic second-order logic [18]; since disconnectedness is expressible in the logic, the
collection of expressible properties is not closed under complementation. The result known
as Fagin’s Theorem asserts that the expressive power of existential second-order logic on
finite structures is exactly that of the NP complexity class [17]. I mentioned above that
Büchi-Elgot-Trakhtenbrot Theorem was the first descriptive complexity result. But Fagin’s
Theorem started descriptive complexity theory in earnest. It wasn’t about finite automata
but about one of the most important complexity classes, NP.
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As far as relational database theory is concerned, the timing of Ron’s thesis was perfect.
Codd’s 1970 and 1972 papers [13] and [14] respectively laid foundations for the relational
model of database management, which provided motivation and application for the nascent
finite model theory. In a different letter, of Dec. 17 2022, Ron wrote to me: “[W]hen I
transferred from IBM Watson to IBM San Jose in 1975, Ted Codd became my mentor,
which led me to write papers explicitly on relational data base theory.”

In the 1970s and early 1980s there was much DBT work of relevance to FMT. I know
several experts in DBT who are also experts in FMT — Serge Abiteboul, Phokion Kolaitis,
Victor Vianu, and Moshe Vardi; they can tell you all about that. The book [1] is a good
DBT textbook for logically inclined. One DBT article of influence on FMT that will play
a role later in our story is the article [9] by Ashok Chandra and David Harel.

In 1980 Neil Immerman defended his PhD thesis [33]; the results were published in
[34, 35]. I asked Neil what led him to FMT.

“I was inspired by Fagin’s characterization of NP and his proof that connectivity is not
in monadic SOE [existential monadic second-order logic],” replied Neil, “I felt that
lower bounds on full arity SO was going to be too hard, but I thought that first-order
lower bounds would be more tractable. This was what inspired me to work in my thesis
area developing what I called "First-Order Expressibility". Later Hartmanis [Neil’s
advisor] suggested, "Descriptive Complexity" as a more appealing name.” — Neil
Immerman Dec. 20 2022

In STOC 1982, Immerman and Vardi presented their versions of what became known
as the Immerman-Vardi Theorem; they showed that, on ordered structures, the least fixed
point extension of first order logic captures polynomial time, widely viewed as the most
important complexity class [36, 48]. Immerman went on to become a champion, maybe
I should say the champion, of descriptive complexity theory, as both a contributor and an
evangelist; see his book [37] on the subject.

Q: What about your contributions that Vardi mentioned?

A: I’ll speak more about that in the next section. Here let me mention the very first result:
Under a natural interpretation over finite domains, a function is primitive recursive if and
only if it is logspace computable, and it is general recursive if and only if it is polynomial
time computable [27].

Q: Did Fagin reply to your second question?

A: Yes. He wrote: “I don’t know (and neither does Moshe) who coined the term ‘finite
model theory’. Moshe says he will look into that.” Moshe wrote to us the same day and
surprised me. “The first paper that I found that used FMT in its title is [30]. Ron followed
up with [22]. So it seems that Yuri deserves the credit for coining the term3.”

Q: Did you coin the term?

A: Not consciously. Contrary to Moshe and Ron, I did not belong to the database commu-
nity. I came from model theory, and the term “finite model theory” suggests itself to model
theorists working with finite models. And it is possible of course that the term was used
earlier though not in the titles of papers.

3I took the liberty of replacing URLs with references to the bibliography



BEATCS no 139

106

5 The importance of being finite

Q: How did you arrive to relational databases?

A: At FOCS 1982, Moshe Vardi presented “On decomposition of relational databases”
where he made essential use of Beth’s Definability Theorem [49]. I worried that the theo-
rem may not survive the restriction to finite structures and I asked him whether his databases
may be infinite. He said yes.

Q: Infinite databases! This is crazy.

A: And a little expensive.

Q: Right.

A: I thought that first-order logic may not be the best fit for databases.

Q: What gave you this idea?

A: My prior experience with ordered abelian groups (OAGs). In my PhD thesis [25], I
proved the decidability of the first-order theory of OAGs, solving a problem of Tarski.
But the OAG algebra is rarely first-order. So I extended the decidability to the monadic
second-order theory of OAGs where the set variables range over convex subgroups [26].
The expanded OAG theory essentially subsumed the OAG literature of the time while the
decidability proof became simpler. Obviously first-order logic wasn’t the best fit for OAGs.

Returning home after the FOCS conference, I constructed counterexamples for some
famous classical logic theorems, including Beth’s Definability, in the finite case, that is the
case where only finite structures are taken into account [28]. In the process, I discovered
that William Tait had given the counterexample for the Łoś-Tarski theorem described in
§2.2.

Q: Was there a classical theorem that you expected to fail in the finite case but couldn’t
find a counterexample?

A: Yes, Lyndon’s theorem [38]. It states that a first-order sentence ϕpPq is monotone in
P if and only if it is equivalent to a sentence ψpPq where P has only positive occurrences.
Eventually Miki Ajtai and I proved that it fails in the finite case [4].

Q: Why did Codd strive to achieve the expressivity of first-order logic.

A: That was rather natural, I guess. First-order logic is relatively expressive. A great many
relational queries are expressible in first-order logic. Besides, first-order logic is the logic
of standard logic textbooks. What else was there? Propositional logic is way too weak
while second-order logic is way too expressive.

Q: But first-order logic was developed in the framework of foundations of mathematics, I
understand, where infinite structures are indispensable.

A: This is true. Also, in the foundational framework, it is important that first-order logic
admits an adequate deductive system, where a sentence is provable if and only it is valid. In
fact, first-order logic was introduced as a deductive system. It was obvious that all provable
sentences are valid. Gödel’s completeness theorem established that all valid sentences are
provable. As we saw in §2.1, finite validity is not recursively enumerable. Thus there is no
logic calculus where a sentence is provable if and only it is valid on all finite structures.

Q: In reality, had first-order expressibility proved insufficient?
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A: Yes. There is no first-order query (or even existential monadic second-order query) that,
given an arbitrary relation R returns the transitive closure of R [18], and transitive closure
is needed in database management [53].

Q: If first-order expressivity isn’t sufficient, what can you do? Maybe you can carve out an
appropriate fragment of second-order logic.

A: Yes, but it is more convenient to think in different terms, like transitive closure or least
fixed point operators [3].

Q: But what guides you?

A: Ah, this is the key point. The answer is computational complexity.

Q: What’s the connection exactly?

A: This is a long story. Let me refer you to the paper [28].

6 Metafinite structures

Q: You said that you didn’t coin the term “finite model theory” consciously. Have you ever
consciously coined a term?

A: Sure, more than once. One of those terms is relevant to our current conversation: metafi-
nite.

Q: Hmm, you can’t be half pregnant or for that matter half infinite. You don’t claim that
databases are metafinite, I presume, as you claimed a minute ago that they are finite.

A: I do claim that databases are metafinite. Let me explain. A database contains only
finitely many records (tuples in relations) at any given moment. In that sense it is perfectly
finite. It is also dynamic as we saw in §3. But implicitly databases often involve static
infinite structures.

Q: We considered a salary database in §3. Does it involve an infinite structure?

A: Yes, a query to a salary database may return a number, say the average salary, that does
not appear in the database. Where does this new number come from? From the infinite
structure of rational numbers.

Q: That involvement of an infinite structure, what is it mathematically?

A: A good question. Erich Grädel and I worked on it [31]. In our formalization, a metafinite
structure consists of

1. a primary part, which is a finite structure,

2. a secondary part, which is a (usually infinite) structure, e.g. the arithmetic of real
numbers, and

3. “weight” functions from the primary part to the secondary.

Q: I guess I see how the salary database looks as a metafinite structure. The primary part
is the set of employees, the secondary part is rational arithmetic, and the unique weight
function assigns employees their salaries. But how do you compute the average salary?
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A: In this example, the secondary part would be an extended rational arithmetic, where the
arithmetical operations are applied to finite multisets. In particular, one can obtain the total
salary of all employees and the number of employees.

Q: How is this related to finite model theory?

A: Quantification is allowed over the primary part only.

We investigated the theory of metafinite structures, with Erich doing most of the math-
ematical work. We found out that many results of finite model theory survive, sometimes
in more than one form, in metafinite model theory.

Q: Do you view metafinite model theory as a separate research area?

A: No. In my view, it belongs to the research area known as finite model theory.

7 Genericity

Q: I presume that tailoring logics to complexity, at least to polynomial time complexity,
has been achieved.

A: Not really. A complication arose. The traditional model of computation used to define
complexity classes is the Turing machine model. Inputs for Turing machines are strings.
Your algorithm may work with graphs or other structures, but you have to encode your
input structure as a string to produce input for a Turing machine. We need a more general
computation model that works directly with structures, and replacing your input structure
with an isomorphic one should not affect the computation.

Q: This looks to me like a generalization that only mathematicians can come with. What
on earth has it to do with query languages?

A: In database theory parlance, query languages should be generic which means that they
should abstract from the physical layer of databases. In this connection, let us call more
general computation models that work directly with structures generic; also let us call
polynomial time defined according to a generic computation model generic.

Q: What does it mean to abstract from the physical layer?

A: For simplicity, consider a database that holds just one relation. That relation is a set
of tuples. There is no order on the set. Accordingly, a query asking for the first tuple is
meaningless. On the other hand, in a memory of a computer hosting the database the tuples
are stored in some order.

Q: Fine, take advantage of that order and increase the expressivity of your query language.
Specifically, the first-tuple query will return a particular tuple.

A: But the order is accidental. It varies from one database host to another. The first-tuple
query may return different tuples on different hosts.

In [9], Chandra and Harel raised an important question. Fix some standard encoding
of structures by binary strings and call a Turing machine M generic if the set of structures
S such that M accepts the standard string encoding of S is closed under isomorphisms.
Chandra and Harel asked whether the set of generic Turing machines is recursive. If the
answer is positive, then the good Turing machines constitute a generic computation model.
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In [29], I conjectured that the answer to the Chandra-Harel question is negative and
that no reasonable (satisfying some minimal conditions) logic captures generic polynomial
time on structures. The question remains open.

Actually, the situation is a bit strange. In [6, 7] a logic is defined — it is called BGS
(after the authors) — such that every BGS definable property of structures is generic poly-
nomial time computable and we don’t know any generic polynomial time property that is
not BGS definable.

Q: Do you believe that BGS captures generic polynomial time?

A: No, most probably it does not. In [40], Ben Rossman came close to exhibiting a set
of structures that is computable in generic polynomial time but is not BGS definable. He
constructed a generic polynomial time computable function that (a) given a finite vector
space, constructs its dual and (b) is not BGS definable.

8 Postlude

Q: Have you now covered all DBT/FMT developments that you witnessed or participated
in?

A: No. One issue is logic programming languages, specifically Prolog and Datalog. That
issue is involved and richly deserves a separate conversation.

Q: Did finite model theory cut the umbilical cord to database management?

A: Yes. “DBT was a huge motivator for FMT,” wrote Moshe Vardi to me on Nov. 24 2022,
“but then FMT moved from PODS [the Symposium on Principles of Database Systems, the
premier international conference on the theoretical aspects of database systems] to LICS
[ACM/IEEE Symposium on Logic in Computer Science], which is a conference about
mathematical foundations.”

Q: Is finite model theory still a separate research area?

A: Research areas are social groups to an extent. My impression is that finite model theory
becomes less of a separate research area in spite of strong internal social/communal con-
nections. But I am not the right person to answer this question as I had moved on to other
research areas quite a while ago.
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Report on ICALP 2022

49th EATCS International Colloquium on Automata, Languages and Programming

Anca Muscholl1

The 49th EATCS International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2022), the flagship conference and annual meeting of the Eu-
ropean Association for Theoretical Computer Science (EATCS), took place in
Paris, on July 4-8, 2022. The event was held in hybrid format, and it was hosted
by the Research Institute on the Foundations of Computer Science (IRIF) at the
Université Paris Cité.

The main conference was preceded by a series of workshops on July 4, 2022.
The following workshops were held as satellite events of ICALP 2022:

• Parameterized Approximation Algorithms Workshop (PAAW),

• Combinatorial Reconfiguration,

• Recent Advances on Total Search Problems,

• LearnAut: 4th edition of the Learning and Automata workshop,

• Algorithmic Aspects of Temporal Graphs V (AATG),

• Trends in Arithmetic Theories,

• Structure Meets Power,

• Straight-Line Programs, Word Equations and their Interplay,

• Graph Width Parameters: from Structure to Algorithms (GWP).

The scientific programme of ICALP 2022 consisted of 3 unifying lectures and
3 invited lectures of the two tracks of ICALP, the presentation of 127 contributed
papers (which were selected by the Program Committees out of 433 submissions)
and award sessions with the lectures of the Gödel Prize 2022, the EATCS Award
2022, and the Presburger Award 2022 recipients.

1LaBRI, Université Bordeaux. Email: anca.muscholl@u-bordeaux.fr.
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Organisation of ICALP 2022, Environment Sustainability, and EATCS’50
special event. ICALP 2022 had two special features: it aimed toward a more
sustainable model of conference, and it presented an exhibition for the 50 years of
ICALP and the EATCS.

Towards environmental sustainability several steps were taken:

ICALP 2022 signed the TCS4F manifesto (http://www.tcs4f.org), a TCS ini-
tiative pledging for a reduction of the carbon footprint of our research practices.

The conference ran in full hybrid mode. The call for papers explicitly allowed re-
mote participation for authors who would have to take the plane to reach Paris.
The hybrid conference used the hopin conference platform and the why.vision
company took care of the local technical support. The regular talks were 25 min-
utes long including questions, both for onsite and online speakers. The distant
talks (less than one fourth) were presented live, and were smoothly alternating
with onsite speakers during the sessions. The virtual platform streamed all the
talks, and a replay of all presentations was accessible for several weeks to all par-
ticipants. Interaction with other participants and speakers was possible through a
chat.

An extended stay support scheme was organised. It advertised eight participating
research laboratories accessible by train from Paris, that were offering to fund col-
laborations between their members and conference attendees, under the condition
that no plane would be taken between the conference and the collaboration.

A colocated conference “Highlights of Logic, Games and Automata 2022” (on
Track B topics) was scheduled the week before ICALP in Paris.

An environmental chair, Hugo Férée, was appointed, with as goal to evaluate the
carbon footprint of the conference. The conference emitted 205 tons of CO2-
equivalent (CO2-e): 172 for ICALP itself, and 30 more for workshop-only partic-
ipants. Some 33 extra tons would have been emitted if all ICALP speakers would
have come to Paris. 6 other tons would have been produced if the Highlights
participants did go back home between the two events.

2022 was the 50 year anniversary of both the EATCS and its flagship con-
ference ICALP. A special exhibition was conceived and displayed at IRIF, first
during the cocktail, and then for the rest of the conference. The scientific advi-
sory board was chaired by Sylvain Schmitz (IRIF), and consisted of Luca Aceto,
Susanne Albers, Giorgio Ausiello, Gilles Dowek, Phokion G. Kolaitis, and Mike
Paterson. Extra contributors were solicited: Simon Apers, Alex Bredariol Grilo,
Ioannis Chatzigiannakis, Geoffroy Couteau, Pierluigi Crescenzi, Irène Guessar-
ian, Hugo Herbelin, Ce Jin, Jean-Jacques Levy, Kurt Melhorn, Subhasree Patro,
Sylvain Périfel, and Jean-Éric Pin. Sandrine Cadet and Sylvain Schmitz were
coordinators of the exhibition.
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The registration costs were 540e for regular participants (390e for students)
attending onsite, and 340e for virtual participants (40e for students). An extra fee
of 100e was charged for paper authors for covering the LIPIcs proceedings, and
organising the event. The workshop day unique price was 50e. This choice was
taken for mitigating uncertainties concerning remote participation, and running
the hybrid mode.

The organisers and the attendees committed to the ICALP code of conduct,
and two SafeToC counsellors, Sophie Laplante and Daniela Petrisan, were ap-
pointed.

On behalf of the entire community, we warmly thank the organizers in Paris
for their fantastic efforts that helped to make ICALP 2022 and the 50th anniversary
of EATCS a great success.

Paper selection and work of the Program Committee. After 15 years running
the ICALP conference with three tracks, ICALP returned in 2020 to the original
two-track format. The ICALP 2022 program had the following two tracks:

• Track A: Algorithms, Complexity, and Games.

• Track B: Automata, Logic, Semantics, and Theory of Programming.

The PC chairs for the two tracks of ICALP 2022 were David Woodruff (Track A)
and Mikołaj Bojańczyk (Track B). Their efforts were supported by 71 members
of the Program Committees (43 in track A and 28 in track B). In response to the
call for papers, a total of 433 submissions were received: 350 for Track A and
83 for Track B. Each submission was assigned to at least three Program Com-
mittee members, aided by more than 600 external subreviewers. The Program
Committees decided to accept 127 papers for inclusion in the scientific program:
103 papers for Track A and 24 for Track B. This gives the acceptance rate for the
entire conference to be 29.3%. The selection was made by the Program Commit-
tees based on originality, quality, and relevance to theoretical computer science.
The quality of the submitted manuscripts was very high, and unfortunately many
strong papers could not be selected. We take this opportunity of thanking both the
Program Committees and the subreviewers for doing an exceptional selection job.

Statistical information about the number of papers submitted and accepted for
the last several editions of the ICALP conference, as well as acceptance rates, are
available in Tables 1–3.

Invited presentations. In addition to the contributed talks, ICALP 2022 fea-
tured three invited presentations by Leslie Ann Goldberg (Track A), Stéphan
Thomassé (Track B), and Santosh Vempala (Track A), and three unifying talks
by Albert Atserias, Constantin Daskalakis and Madhu Sudan:
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2022 2021 2020 2019 2018 2017 2016 2015 2014 2013
Total 433 462 470 490 502 459 515 507 477 423
Track A 350 361 347 316 346 296 319 328 312 249
Track B 83 101 123 103 96 108 121 114 106 114
Track C — — — 71 60 55 75 65 59 60

Table 1: Number of submitted papers at ICALP 2013–2022.

2022 2021 2020 2019 2018 2017 2016 2015 2014 2013
Total 127 137 138 146 147 137 146 143 136 124
Track A 103 108 102 94 98 88 89 89 87 71
Track B 24 29 36 31 30 32 36 34 31 33
Track C — — — 21 19 17 21 20 18 20

Table 2: Number of accepted papers at ICALP 2013–2022.

• Albert Atserias (Universitat Politècnica de Catalunya): Towards a Theory
of Algorithmic Proof Complexity

• Constantin Daskalakis (MIT): Equilibrium Computation, Deep Learning,
and Multi-Agent Reinforcement Learning

• Leslie Ann Goldberg (Oxford): Some New (And Old) Results on Contention
Resolution

• Santosh S. Vempala (Georgia Tech.): The Manifold Joys of Sampling

• Madhu Sudan (Harvard): Streaming and Sketching Complexity of CSPs: A
Survey

• Stéphan Thomassé (ENS Lyon): A Brief Tour in Twin-Width

ICALP Proceedings. As it has been the tradition since 2016, ICALP proceed-
ings were published with LIPIcs. LIPIcs – Leibniz International Proceedings in
Informatics is a series of high-quality conference proceedings across all fields in
informatics established in cooperation with Schloss Dagstuhl–Leibniz Center for
Informatics. All 127 ICALP 2022 contributed papers presented at the conference,
papers or abstracts accompanying the invited talks of Albert Atserias, Constantin
Daskalakis, Leslie Ann Goldberg, Madhu Sudan, Stéphan Thomassé, Santosh
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2022 2021 2020 2019 2018 2017 2016 2015 2014 2013
Total 29.3 29.6 29.4 29.8 29.3 29.8 28.3 28.2 28.5 29.3
Track A 29.4 29.9 29.4 29.7 28.3 29.7 27.9 27.1 27.9 28.5
Track B 28.9 28.7 29.3 30.1 31.3 29.6 29.8 29.8 29.2 28.9
Track C — — — 29.6 31.7 30.9 28.0 30.8 30.5 33.3

Table 3: Acceptance rates (in %) for ICALP 2013–2022.

Vempala were published according to the principle of Open Access in LIPIcs Pro-
ceedings volume 229, and made available online and free of charge at https://
drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16238. The
proceedings editors are Mikołaj Bojańczyk, Emanuela Merelli and David P. Woodruff.

ICALP and EATCS Awards. The EATCS sponsors awards for both a best pa-
per and a best student paper in each of the two tracks at ICALP, as selected by the
Program Committees. During the general assembly, the ICALP Best Paper and
Best Student Paper Awards were presented to the authors of the following papers:

Best Paper in Track A: Ian Newman and Nithin Varma. Strongly Sublinear Al-
gorithms for Testing Pattern Freeness.

Best Paper in Track B: Jakub Gajarsky, Michał Pilipczuk, Wojciech Przybyszewski
and Szymon Toruńczyk. Twin-width and types.

Best Student Papers in Track A: Joakim Blikstad. Sublinear-round Parallel Ma-
troid Intersection, and Jakub Tětek. Approximate Triangle Counting via
Sampling and Fast Matrix Multiplication.

Best Student Paper in Track B: Gaëtan Douéneau-Tabot. Hiding pebbles when
the output alphabet is unary.

The program of ICALP 2022 included presentations of several prestigious sci-
entific awards sponsored or co-sponsored by EATCS:

• The Gödel Prize 2022 was awarded to the following papers

– Zvika Brakerski, Vinod Vaikuntanathan: Efficient Fully Homomor-
phic Encryption from (Standard) LWE. FOCS 2011: 97-106. SIAM
Journal of Computing 43(2): 831-871 (2014), and
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– Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan: (Leveled)
fully homomorphic encryption without bootstrapping. ITCS 2012:
309-325. ACM Transactions on Computation Theory 6(3): 13:1-13:36
(2014)

The above papers made transformative contributions to cryptography by
constructing efficient fully homomorphic encryption (FHE) schemes.2

• The EATCS Award 2022, the annual EATCS Distinguished Achievements
Award given to acknowledge extensive and widely recognized contribu-
tions to theoretical computer science over a life long scientific career, was
awarded to Patrick Cousot (New York University) for introducing and de-
veloping, together with his late wife Radhia Cousot, the framework of ab-
stract interpretation for program analysis.3

• The Presburger Award 2022 for Young Scientists was awarded to Dor
Minzer (MIT) for for his deep technical contributions towards resolving
the 2-to-2 Games Conjecture.4

• The EATCS Distinguished Dissertation Awards 2022, to promote and
recognize outstanding dissertations in theoretical computer science were
awarded to three researchers:

– Alexandros Hollender for his dissertation Structural Results for To-
tal Search Complexity Classes with Applications to Game Theory and
Optimisation, advised by Paul W. Goldberg at the University of Ox-
ford,

– Jason Li for his dissertation Preconditioning and Locality in Algo-
rithm Design, advised by Anupam Gupta and Bernhard Haeupler at
the Carnegie Mellon University,

– Jan van den Brand for his dissertation Dynamic Matrix Algorithms
and Applications in Convex and Combinatorial Optimization, advised
by Danupon Nanongkai at the KTH Royal Institute of Technology.

2The laudatio for the Gödel Prize 2022 is available at https://eatcs.org/index.php/
component/content/article/1-news/2917-2022-05-21-19-57-34.

3The laudatio for the EATCS Award 2022 is available at https:
//eatcs.org/index.php/component/content/article/1-news/
2918-the-eatcs-award-2022-laudatio-for-patrick-cousot.

4The laudatio for the Presburger Award 2022 is available at
https://eatcs.org/index.php/component/content/article/1-news/
2914-presburger-award-2022-laudatio-for-dor-minzer.
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• The EATCS has recognized two of its members for their outstanding con-
tributions to theoretical computer science by naming them EATCS Fellows
class of 2022:

– Samson Abramsky (University College London) for fundamental con-
tributions to logic in computer science, including domain theory in
logical form, game semantics, and category-theoretic foundations of
quantum computing.

– Orna Kupferman (Hebrew University) for fundamental contributions
to automata- and game-theoretic techniques aiming at the formal ver-
ification and reactive synthesis of computing systems.

The recipients of the Gödel Prize 2022 (Zvika Brakerski, Craig Gentry and
Vinod Vaikuntanathan), of the EATCS Award 2022 (Patrick Cousot), and of the
Presburger Award 2022 (Dor Minzer) gave presentations in the Award Sessions at
ICALP 2022.

We congratulate all the winners and we hope their achievements will put the
highlights of research in theoretical computer science in the spotlight, and will
serve as inspirations to young researchers in the years to come.

We hope that this conference report gives you a glimpse of the rich scientific
and social programme that made the 49th ICALP an unforgettable conference. Ev-
eryone involved in the organization of ICALP 2022 deserves the warmest thanks
from the TCS community.

We wish to thank all authors who submitted extended abstracts for consider-
ation, the Program Committees for their effort, and all the referees who assisted
the Program Committees in the evaluation process. We are also grateful to the
Conference Chair Thomas Colcombet and all the support staff of the Organizing
Committee for organizing ICALP 2022. We also acknowledge support by FSMP,
Université Paris cité, CNRS, Inria, IRIF and nomadic labs.

The General Assembly of the EATCS was informed about the progress of
the organization of the 50th EATCS International Colloquium on Automata, Lan-
guages and Programming, ICALP 2023, that will take place in Paderborn, Ger-
many, on July 10–14, 2023, with Sevag Gharibian as the general chair of the
conference. The ICALP 2023 Program Committee Chairs are Uriel Feige (Track
A) and Kousha Etessami (Track B). The ICALP 2022 call for papers is available
at https://icalp2023.cs.upb.de/call-for-papers/.

We hope that you will make plans to submit your best work to ICALP 2023
and be able to go to Paderborn for the conference. We look forward to seeing you
there.
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EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the EATCS Distinguished Dissertation Award, the Nerode
Prize (joint with IPEC) and best papers awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

Benefits offered by EATCS to Young Researchers also include:
- Database for Phd/MSc thesis
- Job search/announcements at Young Researchers area
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(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Jerusalem, Israel 1994
- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997

- Aalborg, Denmark 1998
- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013
- Copenhagen, Denmark 2014
- Kyoto, Japan 2015
- Rome, Italy 2016
- Warsaw, Poland 2017
- Prague, Czech Republic 2018
- Patras, Greece 2019
- Saarbrücken, Germany (virtual conference) 2020
- Glasgow, UK (virtual conference) 2021

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.

Contributions to any of the above areas are solicited, in electronic form only according to for-
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mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Vienna), J. Hromkovič
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are D. Sannella (Edinburgh), L. Kari and P.G. Spirakis
(Patras).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Artur Czumaj,
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues are e 40 for a period of one year (two years for students / Young Researchers ). Young
Researchers, after paying, have to contact secretary@eatcs.org, in order to get additional
years. A new membership starts upon registration of the payment. Memberships can always be
prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 35 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 35 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.
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HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, contact the Secretary Office of EATCS:

Mrs. Efi Chita,
Computer Technology Institute & Press (CTI)
1 N. Kazantzaki Str., University of Patras campus,
26504, Rio, Greece
Email: secretary@eatcs.org,

Tel: +30 2610 960333, Fax: +30 2610 960490
If you are an EATCS member and you wish to prolong your membership or renew the subscription
you have to use the Renew Subscription form. The dues can be paid via paypal and all major credit
cards are accepted.
For adittional information please contact the Secretary of EATCS:

Dmitry Chistikov
Computer Science
University of Warwick
Coventry
CV4 7AL
United Kingdom
Email: secretary@eatcs.org,


