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Dear EATCS members,

As usual, the June issue of the Bulletin
will be available just before ICALP, the
flagship conference of the EATCS and an
important meeting of the theoretical
computer science community world-wide. The
50th EATCS International Colloquium on
Automata, Languages, and Programming (ICALP
2023), will be held in Paderborn, July
10–14, 2023 (https://icalp2023.cs.upb.de/).
I am looking forward to the conference run
again in a fully in-person mode. The
conference chair Sevag Gharibian, supported
by his colleagues in Paderborn, promises us
an exciting scientific event. I look
forward to the conference and to
celebrating the 50th ICALP with you and I
hope to see many of you joining us in these
celebrations during the ICALP 2023
conference in Paderborn!

In the scientific part of the ICALP
program, the Programme Committee chairs
Uriel Feige (track A) and Kousha Etessami
(track B) and their PCs have done fantastic
job selecting an impressive collection of
papers, 103 accepted papers in track A and
29 in track B out of almost 450 submissions
(∼350 for track A and 97 for track B). The
acceptance rate was about 29.5 percent.
The programme of ICALP 2023 will highlight
research across many areas within
theoretical computer science. I invite you
to attend and/or watch the talks even
outside your own research field.

The best paper awards at ICALP 2023 will go
to the following three papers:

• Track A: Tsun-Ming Cheung, Hamed
Hatami, Pooya Hatami, and Kaave
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Hosseini, “Online learning and
disambiguations of partial concept
classes;”

• Track A: Miguel Bosch Calvo, Fabrizio
Grandoni, and Afrouz Jabal Ameli, “A
4/3 approximation for
2-vertex-connectivity;”

• Track B: Marvin Künnemann, Filip
Mazowiecki, Lia Schütze, Henry
Sinclair-Banks, and Karol Węgrzycki,
“Coverability in VASS revisited:
Improving Rackoff’s bound to obtain
conditional optimality.”

The best student paper award (for a paper
that is solely authored by a student) will
go to the following two papers:

• Track A: Manuel Cáceres. “Minimum
chain cover in almost linear time;”

• Track B: Ruiwen Dong. “The Identity
Problem in Z ≀ Z is decidable.”

Congratulations to the authors of the
award-receiving papers!

In addition to regular research talks,
ICALP 2023 will feature five invited talks
delivered by

• Anna Karlin (University of Washington,
USA),

• Rasmus Kyng (ETH Zurich, Switzerland),

• Rupak Majumdar (Max Planck Institute
for Software Systems, Germany)

• Thomas Vidick (California Institute of
Technology, USA, and Weizmann Institute
of Science, Israel), and
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• James Worrell (University of Oxford,
UK).

Further two special keynote presentations
will be given to celebrate and commemorate
the 50th ICALP:

• Thomas Henzinger (Institute of Science
and Technology Austria, Austria) and

• Kurt Mehlhorn (Max-Planck-Institut für
Informatik, Germany).

These activities will be complemented by a
Colloquium in honor of Friedhelm Meyer auf
der Heide taking place at the end of ICALP.

Apart from the invited and contributed
talks, ICALP 2023 will feature special
presentations of the receipts of the EATCS
Award 2023, the EATCS Presburger Award, and
of the Alonzo Church Award:

• The EATCS annually honors a respected
scientist from our community with the
EATCS Distinguished Achievements Award,
to acknowledge extensive and widely
recognized contributions to theoretical
computer science over a life long
scientific career
(http://eatcs.org/index.php/eatcs-award).
The recipient of the EATCS Award 2023
is Amos Fiat (Tel Aviv University), for
fundamental work within many areas of
theoretical computer science and in
particular for work in cryptography,
on-line algorithms, and algorithmic
game theory.

• The EATCS Presburger Award is awarded
by the EATCS to a young scientist for
outstanding contributions in
theoretical computer science,
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documented by a published paper or a
series of published papers
(https://eatcs.org/index.php/presburger).
The recipients of the Presburger Award
2023 are jointly Aaron Bernstein and
Thatchaphol Saranurak.

• The Alonzo Church Award for Outstanding
Contributions to Logic and Computation
is a major prize in cooperation of the
EATCS with ACM Special Interest Group
on Logic and Computation and the
European Association for Computer
Science Logic
(https://eatcs.org/index.php/church-award).
The recipients of the 2023 Alonzo
Church Award are jointly Lars Birkedal,
Aleš Bizjak, Derek Dreyer,
Jacques-Henri Jourdan, Ralf Jung,
Robbert Krebbers, Filip Sieczkowski,
Kasper Svendsen, David Swasey, and
Aaron Turon, for the design and
implementation of Iris, a higher-order
concurrent separation logic framework.

Moreover, during the conference, we will
honor the recipients of the 2022 EATCS
Distinguished Dissertation Award and the
new group of EATCS Fellows.

The EATCS established the EATCS
Distinguished Dissertation Award to promote
and recognize outstanding dissertations in
the field of Theoretical Computer Science
(https://eatcs.org/index.php/dissertation-award).
The three recipients of the 2022 EATCS
Distinguished Dissertation Award for the
PhD dissertation in the field of
Theoretical Computer Science that have been
successfully defended in 2022 are

• Kuikui Liu, University of Washington
(advisor: Shayan Oveis Gharan),
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• Alex Lombardi, MIT (advisor: Vinod
Vaikuntanathan), and

• Lijie Chen, MIT (advisor: Ryan
Williams).

The EATCS Fellows Program is established by
the EATCS to recognize outstanding EATCS
Members for their scientific achievements
in the field of Theoretical Computer
Science. The new group of EATCS Fellows
(class 2023) consists of

• Michael A. Bender (Stony Brook
University, USA),

• Leslie Ann Goldberg (University of
Oxford, UK), and

• Claire Mathieu (CNRS, France).

In addition to the standard conference
program, ICALP 2023 will also have ten
satellite workshops co-located with the
main conference, taking place on Monday
before the main event:

• Combinatorial Reconfiguration

• Graph Width Parameters: from Structure
to Algorithms (GWP 2023)

• Algorithmic Aspects of Temporal
Graphs VI

• Adjoint Homomorphism Counting Workshop
(ad hoc)

• Congestion Games

• Workshop On Reachability, Recurrences,
and Loops ’23 (WORReLL’23)

• Workshop on Recent Trends in Online
Algorithms
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• Quantum Computing with Qiskit, and why
Classical Algorithms still matter!

• Algebraic Complexity Theory

• Computer Science for CONTINUOUS Data

As usual, a more detailed report on the
ICALP 2023 conference will be published in
the October 2023 issue of the Bulletin.

In the recent months we have seen
announcements of numerous further awards
given to the members of theoretical
computer science. While more details about
many of these awards can be found on the
pages of this Bulletin and elsewhere, let
me list some highlights here.

The Gödel Prize for outstanding papers
theoretical computer science is sponsored
jointly by the EATCS and the ACM SIGACT
(https://eatcs.org/index.php/goedel-prize).
The 2023 Gödel Prize, to be presented at
STOC 2023, has been awarded to the
following two papers:

• Samuel Fiorini, Serge Massar, Sebastian
Pokutta, Hans Raj Tiwary, and Ronald de
Wolf. “Exponential lower bounds for
polytopes in combinatorial
optimization,” STOC 2012: 95–106, and
Journal of the ACM, 62(2), 17:1–17:23
(2015);

• Thomas Rothvoss. “The matching
polytope has exponential extension
complexity,” STOC 2014: 263–272, and
Journal of the ACM, 64(6), 1–19 (2017).

The Edsger W. Dijkstra Prize in Distributed
Computing is awarded for outstanding papers
on the principles of distributed computing
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(https://eatcs.org/index.php/dijkstra-prize),
and is sponsored jointly by the EATCS
Symposium on Distributed Computing (DISC)
and the ACM Symposium on Principles of
Distributed Computing (PODC).
The 2023 Dijkstra Prize has been awarded
for introducing Information-Theoretic
Secure Multiparty Computations and showing
how to achieve maximal resilience to
malicious adversaries while providing
unconditional security to the following
papers:

• Michael Ben-Or, Shafi Goldwasser, and
Avi Wigderson, “Completeness theorem
for non-cryptographic fault-tolerant
distributed computation,” STOC 1988:
1–10;

• David Chaum, Claude Crépeau, and Ivan
Damgård, “Multiparty unconditionally
secure protocols,” STOC 1988, 11–19;

• Tal Rabin and Michael Ben-Or,
“Verifiable secret sharing and
multiparty protocols with honest
majority,” STOC 1989, 73–85.

EATCS also sponsors the Best ETAPS Paper
Award 2023 for the best theory paper at
ETAPS, which this year was awarded to the
following paper:

• Pascal Baumann, Flavio D’Alessandro,
Moses Ganardi, Oscar Ibarra, Ian
McQuillan, Lia Schütze, and Georg
Zetzsche, “Unboundedness problems for
machines with reversal-bounded
counters.”

Congratulations to the award winners and
new EATCS Fellows!
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On behalf of the EATCS, I also heartily
thank the members of the awards,
dissertation and fellow committees for
their work in the selection of this stellar
set of award recipients and fellows. It
will be a great honor to celebrate the work
of these colleagues during ICALP 2023.
(More details about the EATCS Award 2023,
the EATCS Presburger Award 2023, 2023
Alonzo Church Award, the 2022 EATCS
Distinguished Dissertation Award, the EATCS
Fellows, and the Gödel Prize 2023 are
presented on the later pages of this issue
of the Bulletin.)

Also, please allow me to remind you about
three other EATCS affiliated conferences
that will be taking place later this year.

• MFCS 2023: the 48th International
Symposium on Mathematical Foundations
of Computer Science, will be held in
Bordeaux, France, August 28–September
1, 2023 (https://mfcs2023.labri.fr/).

• ESA 2023: the 31st Annual European
Symposium on Algorithms, will be held
in Amsterdam, The Netherlands,
September 4–6, 2023
(https://algo-conference.org/2023/esa/).

• DISC 2023: the 36th International
Symposium on Distributed Computing,
will be held in L’Aquila, Italy,
October 9–13, 2023
(http://www.disc-conference.org/wp/disc2023/).

As usual, let me close this letter by
reminding you that you are always most
welcome to send me your comments,
criticisms and suggestions for improving
the impact of the EATCS on the Theoretical
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Computer Science community at
president@eatcs.org. We will consider all
your suggestions and criticisms carefully.

I look forward to seeing many of you at
ICALP 2023 and to discussing ways of
improving the impact of the EATCS within
the theoretical computer science community
at the general assembly.

Artur Czumaj
University of Warwick, UK

President of EATCS
president@eatcs.org

June 2023
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Dear EATCS community,

the Summer issue of the EATCS Bulletin is
out! And I thank all editors and
contributors, and in particular Efi Chita
from the EATCS Secretary Office, for all
their help in making this a very
interesting and special issue!

I invite you to read the interview with
Shweta Agrawal, our “person behind the
papers” of this issue, who shares her
career experiences and advice, and also
tells us about her move back from the USA
to India, realizing her childhood dream.
In the algorithms column, Stefan Walzer
reviews and compiles interesting lessons
from studying the power of choices in
hashing-based data structures. In
particular, he explores the space
efficiency of data structures, if the
additional power afforded by more than 2
choices is outweighed by the additional
costs, and whether it may be beneficial to
try less power. In the complexity column,
Michal Koucky, raises the question whether
the time has come to let the automata and
grammars courses go and replace the content
by other theoretical foundations of
computer science; he also discusses hurdles
which one might enounter when trying to
modify the course.

In the logics column, Kenichi Morita
surveys how computing is effectively
performed in a reversible world: physical
reversibility is one of the fundamental
laws of nature, so can computing machines
be realized utilizing a reversible law as
well and how? In the distributed computing
column, Michel Raynal revisits the concepts
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of mutual exclusion and consensus and
argues that consensus is to logical objects
what mutual exclusion is to physical
objects. In the formal languages theory
column, Joel D. Day, Vijay Ganesh, and
Florin Manea present an overview of recent
results on how formal languages and their
properties can be expressed via theories
over strings. In the educations column,
Valentina Dagiene reports on the Bebras
challenge and how it inspires informatics
education.

The Bulletin further includes a report of
the scientific colloquium in honor of
former EATCS President Burkhard Monien on
the occasion of his 80th birthday, as well
as conference reports and updates from
EATCS Japan chapter.

Enjoy the new Bulletin!

Stefan Schmid, Berlin
June 2023
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The EATCS Award 2023
Amos Fiat

The EATCS Award 2023 is awarded to

Amos Fiat

The 2023 EATCS Award is given Amos Fiat for his fundamental work within
many areas of theoretical computer science and in particular for work in cryptog-
raphy, on-line algorithms, and algorithmic game theory.

In cryptography, the Fiat-Shamir heuristic for protocol design has had enor-
mous influence. It is basic, simple and elegant. In particular, it gives a way to
transform any interactive identification scheme into a non-interactive signature
scheme.

A world of massive communication with ever changing group membership
calls for novel solutions. Fiat and Naor created the notion of broadcast encryption
and proposed an implementation which comes with both theoretical guarantees
and excellent practical performance.

Among other influential contributions in cryptography are the Feige–Fiat–Shamir
identification scheme and his work with Chaum and Naor on electronic money.

In the area of on-line algorithm Fiat has many excellent contributions includ-
ing foundational work on competitive paging algorithms and the k-server problem.

His most recent research in algorithmic game theory led to several fundamen-
tal results in algorithmic mechanic design, auctions and pricing, and the study of
market equilibria.

The EATCS Award Committee 2023

• Johan Håstad (chair)

• Thomas Henzinger
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• Valerie King

The award will be presented at ICALP 2023, in Paderborn.
The EATCS annually honors a respected scientist from our community with

this prestigious EATCS Distinguished Achievements Award, to acknowledge ex-
tensive and widely recognized contributions to theoretical computer science over
a life long scientific career (see http://eatcs.org/index.php/eatcs-award for more
information, including the list of previous recipients)

The following is the list of the previous recipients of the EATCS Awards:

2022 Patrick Cousot 2010 Kurt Mehlhorn
2021 Toniann (Toni) Pitassi 2009 Gérard Huet
2020 Mihalis Yannakakis 2008 Leslie G. Valiant
2019 Thomas Henzinger 2007 Dana S. Scott
2018 Noam Nisan 2006 Mike Paterson
2017 Éva Tardos 2005 Robin Milner
2016 Dexter Kozen 2004 Arto Salomaa
2015 Christos Papadimitriou 2003 Grzegorz Rozenberg
2014 Gordon Plotkin 2002 Maurice Nivat
2013 Martin Dyer 2001 Corrado Böhm
2012 Moshe Y. Vardi 2000 Richard Karp
2011 Boris (Boaz) Trakhtenbrot
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The Presburger Award 2023
Laudatio

The 2023 Presburger Committee has unanimously selected

Aaron Bernstein
and

Thatchaphol Saranurak

The 2023 Presburger Award Committee has chosen Aaron Bernstein and
Thatchaphol Saranurak as joint recipients of the 2023 EATCS Presburger Award
for Young Scientists. These two remarkable individuals have emerged as leaders
in the field of fast graph algorithms, focusing their research on core problems
such as shortest paths, connectivity, and matching. These problems have long
been central to computer science, driving advancements in education, research,
and real-world applications.

Aaron Bernstein has spearheaded a new wave of major breakthroughs in fast
graph algorithms, with numerous achievements authored by him or inspired by
his original ideas. Several techniques that by now are part of the toolbox for
the design of graph algorithms are largely due to Aaron. These include edge-
degree constrained subgraphs and hopsets for undirected graphs, and low diameter
decompositions for directed graphs. These techniques, as used by Aaron and
others, have made a profound impact on fundamental graph problems such as
shortest paths and maximum matching, in multiple settings, including sequential,
dynamic, distributed, online, parallel, sublinear, and streaming. A notable recent
example of his groundbreaking work is a near linear time algorithm for the single
source shortest path problem in directed graphs, allowing for edges of negative
weights.

Thatchaphol Saranurak has made remarkable strides in the design of effi-
cient graph algorithms, often solving long standing open problems. In his work,
Thatchaphol developed techniques that are of general interest and of high impact.
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A notable such technique is expander decomposition. Thatchapol introduced and
applied it successfully in new settings such as dynamic graph algorithms and di-
rected graphs. Moreover, Thatchaphol designed new efficient constructions of
expander decompositions, in sequential settings as well as in distributed ones.
Thatchaphol’s many results span a wide range of graph problems, including nearly
best possible algorithms for classical problems such as vertex connectivity and all
pairs max flow, and groundbreaking work on dynamic algorithms for problems
such as spanning forests and matching.

The Presburger Committee 2023

• Mikołaj Bojańczyk (chair)

• Uriel Feige

• Tal Malkin
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EATCS Distinguished Dissertation
Award for 2022

EATCS is proud to announce that, after examining the nominations received
from our research community, the EATCS Distinguished Dissertation Award Com-
mittee 2022, consisting of Susanne Albers, Nikhil Bansal (chair), Elvira Mayor-
domo, Jaroslav Nešetřil, Damian Niwiński, Vladimiro Sassone, Alexandra Silva
and David Woodruff, has selected the following three theses as recipients of the
EATCS Distinguished Dissertation Award for 2022:

Kuikui Liu: "Spectral Independence: A New Tool to Analyze Markov Chains"
(University of Washington; supervisor: Shayan Oveis Gharan).

Alex Lombardi: "Provable Instantiations of Correlation Intractability and the Fiat-
Shamir Heuristic" (Electrical Engineering and Computer Science (EECS) at MIT;
supervisor: Vinod Vaikuntanathan)

Lijie Chen: "Better Hardness via Algorithms, and New Forms of Hardness versus
Randomness" (MIT Department of Electrical Engineering and Computer Science;
supervisor: Ryan Williams)

The award certificate will be presented to in the award ceremony of ICALP
2023, to take place in Paderborn, Germany, in July 10-14, 2023.
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The EATCS Distinguished Dissertation Award Committee 2022 consisted of

• Susanne Albers

• Nikhil Bansal (chair)

• Elvira Mayordomo

• Jaroslav Nesetril

• Damian Niwiński

• Vladimiro Sassone

• Alexandra Silva

• David Woodruff

The EATCS Distinguished Dissertation Award has been established to pro-
mote and recognize outstanding dissertations in the field of Theoretical Computer
Science. Any PhD dissertation in the field of Theoretical Computer Science suc-
cessfully defended in 2022 has been eligible. The dissertations were evaluated on
the basis of originality and potential impact on their respective fields and on The-
oretical Computer Science. Each of the selected dissertations will receive a prize
of 1000 Euro. The award receiving dissertations will be published on the EATCS
web site, where all the EATCS Distinguished Dissertations will be collected.

The list of the previous recipients of the EATCS Distinguished Dissertation
Award is available at https://eatcs.org/index.php/dissertation-award.
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EATCS-Fellows 2023

The EATCS has recognized three of its members for their outstanding contri-
butions to theoretical computer science by naming them as recipients of an EATCS
fellowship.

The EATCS Fellows for 2023 are:

Michael A. Bender, for fundamental contributions in bringing theoretical com-
puter science techniques to practical problems and systems.

Leslie Ann Goldberg, for fundamental contributions to many areas of theo-
retical computer science, primarily focusing on randomized algorithms and their
limitations .

Claire Mathieu, for fundamental contributions to solving theoretical and applied
problems in approximation algorithms, online algorithms, and auction theory.

The aforementioned members of the EATCS were selected by the EATCS
Fellow Selection Committee, after examining the nominations received from our
research community.

The EATCS Fellow Selection Committee consisted of

• Christel Baier

• Mikołaj Bojanczyk

• Mariangiola Dezani

• Josep Diaz

• Giuseppe F. Italiano (chair)

The EATCS Fellows Program was established by the association in 2014 to
recognize outstanding EATCS members for their scientific achievements in the
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field of Theoretical Computer Science. The Fellow status is conferred by the
EATCS Fellows-Selection Committee upon a person having a track record of in-
tellectual and organizational leadership within the EATCS community. Fellows
are expected to be “model citizens” of the TCS community, helping to develop
the standing of TCS beyond the frontiers of the community.

The EATCS is very proud to have the above-mentioned members of the asso-
ciation among its fellows.

The list of EATCS Fellows is available at http://www.eatcs.org/index.php/eatcs-
fellows.
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2023 Alonzo Church Award for
Outstanding Contributions to Logic

and Computation

The awardee papers are:

• Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,
Lars Birkedal, Derek Dreyer: “Iris: Monoids and Invariants as an Orthogo-
nal Basis for Concurrent Reasoning”. POPL 2015.

• Ralf Jung, Robbert Krebbers, Lars Birkedal, Derek Dreyer: “Higher-order
ghost state”. ICFP 2016.

• Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek
Dreyer, Lars Birkedal: “The Essence of Higher-Order Concurrent Separa-
tion Logic”. ESOP 2017.

• Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, Derek Dreyer: “Iris from the ground up: A modular foundation
for higher-order concurrent separation logic”. J. Funct. Program. 28 (2018).

for the design and implementation of Iris, a higher-order concurrent separation
logic framework.

The award was established in 2015 by SIGLOG, EATCS, EACSL and the Kurt
Gödel society.

The 2023 Alonzo Church Award Committee:

• Thomas Colcombet,

• Mariangiola Dezani,

• Marcelo Fiore,

• Radha Jagadeesan and

• Igor Walukiewicz.

The list of the previous recipients of the Alonzo Church Award for Outstand-
ing Contributions to Logic and Computation is available at https://www.eatcs.
org/index.php/church-award.
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2023 Gödel Prize

The 2023 Gödel Prize is awarded to the following papers

• Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary and
Ronald de Wolf: Exponential Lower Bounds for Polytopes in Combinato-
rial Optimization. STOC 2012: 95-106. J. ACM, 62(2), 17:1-17:23 (2015)

• Thomas Rothvoss: The matching polytope has exponential extension com-
plexity. STOC 2014: 263-272. J. ACM, 64(6),1-19 (2017)

Linear Programming and polyhedral methods form the backbone of combi-
natorial optimization. Associating a polytope to a discrete optimization problem,
and characterizing its structure, has long furnished important insights in combina-
torics and algorithm design.

A basic question is whether the polytopes for classical problems such as travel-
ing salesman and matching admit a small description. Resolving a long-standing
question, Fiorini, Massar, Pokutta, Tiwary and de Wolf made ingenious use of
techniques from communication complexity (following a framework pioneered
by Yannakakis) to show that any extended formulation for the TSP polytope has
exponential size.

Building on these techniques, Rothvoss showed that even for the perfect match-
ing problem, which is polynomially time solvable, any extended formulation of its
polytope must have exponential size. This shows that Edmonds’s characterization
of the matching polytope from the 1960s is essentially optimal.

Award Committee:

• Nikhil Bansal (University of Michigan)

• Irit Dinur (Weizmann Institute)

• Anca Muscholl (University of Bordeaux)

• Tim Roughgarden (Columbia University)

• Ronitt Rubinfeld, Chair (Massachusetts Institute of Technology)

• Luca Trevisan (Bocconi University)

The list of the previous recipients of the Gödel Prize is available at https:
//eatcs.org/index.php/goedel-prize.
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IPEC Nerode Prize 2023

The EATCS-IPEC Nerode Award Committee consisting of Fedor V. Fomin
(chair), Thore Husfeldt, and Sang-il Oum, has selected the following paper as the
recipient of the EATCS-IPEC Nerode Prize 2023:

"Solving Connectivity Problems Parameterized by Treewidth in Single Ex-
ponential Time" by Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal
Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. ACM Trans.
Algorithms 18(2): 17:1-17:31 (2022). Conference version: FOCS 2011. Ap-

praisal
The paper solved a major open problem in parameterized complexity, with

numerous consequences and bounds improved. It deals with so-called graph con-
nectivity problems, where the goal is to find in a given graph a structure that, in
addition to other constraints, is connected. This is a broad class of fundamental
problems, including Steiner Tree, Hamiltonian Cycle, Connected Vertex Cover,
and Feedback Vertex Set. The paper focuses on these problems parameterized by
the width of the given tree decomposition of the input graph.

The paper introduces a new generic technique called cut-and-count. The tech-
nique brings drastic improvements in the running times of many state-of-the-art
dynamic programming algorithms on graphs of bounded treewidth. By now, cut-
and-count has become one of the classic techniques in parameterized complexity.
The main insight of the Nerode Award paper–dynamic programming does not
need to track all the partial solutions—paved the road to many other important
results in graph algorithms. For this reason, the Nerode Prize 2023 Committee
unanimously decided that this breakthrough paper by Cygan, Nederlof, Pilipczuk,
Pilipczuk, van Rooij, and Wojtaszczyk deserves to win the Nerode prize.
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Know the Person behind the Papers

Today: Shweta Agrawal

Bio: Shweta Agrawal is an associate professor at the Computer Science and En-
gineering department, at the Indian Institute of Technology, Madras. She earned
her PhD at the University of Texas at Austin, and did her postdoctoral work at
the University of California, Los Angeles. Her area of research is cryptography
and broadly theoretical CS, with a focus on post quantum cryptography. She has
received several awards and honours such as the national Swarnajayanti award,
the ACM India award for Outstanding Contributions to Computing by a Woman,
a best paper award at Eurocrypt, best reviewer awards for Asiacrypt and CCS,
invited speaker and program co-chair at the flagship conference Asiacrypt.

EATCS: We ask all interviewees to share a photo with us. Can you please tell us
a little bit more about the photo you shared?
SA: This picture is with my pet Tara, during one of our morning walks. This is
a daily event so the picture is not special in the sense of being rare. But it shows
how ordinary can be so fun!

EATCS: Can you please tell us something about you that probably most of the
readers of your papers don’t know?
SA: I love all kinds of art – music, painting, poetry, literature, sculpture, ceramics
and anything else. I pursued painting (oil on canvas) quite seriously for several
years and had the beginnings of a career there (via some initial exhibitions of my
work) before I ended up dedicating most of my time to academia. I think I love
math because I see it also as a kind of art. I see beautiful connections between
cryptography and abstract expressionism – both are playing with the boundaries
between structure and randomness, form and formlessness! I also love to hike,
and find myself in the Himalayas every summer.

EATCS: Is there a paper which influenced you particularly, and which you rec-
ommend other community members to read?
SA: When I was in graduate school, the first paper on fully homomorphic encryp-
tion by Craig Gentry [2] came out. This paper had a very significant impact on me.
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It was such a beautiful, simple to state problem, and the solution was so creative.
A series of subsequent works (also very cool) improved this significantly, but the
first paper was always special to me. It was so surprising – it broadened for me
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the landscape of what is possible. I have always loved the apparent paradoxes in
cryptography and this paper was a wonderful example.

EATCS: Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?
SA: I think the paper on obfuscation from Eurocrypt 2019 [1] is my paper that I
like the most. I loved the problem – the balancing between algebraic structure and
computational hardness was so delicate and beautiful! In this paper, I made new
conjectures about hard lattice problems and this was a very mixed experience. On
one hand, I love exploring such questions, on the other, it also gave me many
anxious days and sleepless nights. I sat on this paper for a whole year before
finally posting it online – I was so nervous about the conjectures. I used to joke
that I love it on odd dates and hate it on even. Finally, a casual conversation with
a colleague (Daniele Micciancio) is what helped me make it public – he remarked
something to the effect that if my conjectures survive (algorithmic attacks), it’s
great, if they are broken, then I’ll still be in good company. He was referring
to the fact that several conjectures made by eminent researchers in the space of
obfuscation had been broken. I decided it was worth putting out there for people
to look at.

EATCS: When (or where) is your most productive working time (or place)?
SA: Early hours of the morning are the best for me. Place does not matter too
much – after Covid, I’ve become relatively robust to this aspect and can work
from anywhere. That said, quiet walks in green places where I am not actively
thinking about any problem, but just letting “the cooking pot” simmer in my head,
are the most productive. For me, most good ideas come when the mind is relaxed,
typically when not working actively. I am fortunate to live in a very beautiful area
with gorgeous, seemingly timeless banyan trees all around. While summer is very
hot where I live, there is also a wonderful, stark beauty to it. The bright yellow
of the sun filtering through the thick green foliage of the banyans is magical. I
suspect that every good idea that I have ever had was somehow born here.

EATCS: What do you do when you get stuck with a research problem? How do
you deal with failures?
SA: I try to have clarity on why the techniques I am trying are not sufficient for
the problem I am working on. By identifying a fundamental roadblock which is
not allowing me to proceed, I feel that I have understood the root cause of the
issue and this helps me to get closure. At a philosophical level, I try to not be too
obsessed with the outcome of the effort – at a deeper level, one is in this field for
the beauty of it, and grasping too much at particular desired results ruins that. So
stepping back and focusing energy on something else (inside or outside science)
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helps. Having dealt with a large number of failures over the years also helps – one
is able to internalize that life really does go on and there are many other questions
to study.

EATCS: Is there a nice anecdote from your career you would like to share with
our readers?
SA: Perhaps the most significant thing I can share is from the time when I started
the process of moving back to India after my postdoc, which (together with my
PhD) was in the US. I had always wanted to contribute to science in India – my
growing up years in India had been in an environment of enormous struggle and
strife, set in a canvas of equally enormous kindness and generosity. In this en-
vironment, I had somehow managed to get the best of opportunities that any girl
could have, anywhere in the world. It was my deepest desire growing up, to some-
how give back to where I came from, in whatever small way I could.

While I had always been certain I wanted to do this, I had a bad case of cold
feet as the time started approaching. During my PhD and postdoc, I had worked
in groups that were among the best in the world, and had always been surrounded
by super smart, highly trained and extremely motivated people. The momentum
of the group had always been a big factor in my own progress, and I was very
nervous about whether I could do any meaningful research without such a support
structure – back then there was almost no one working in my area in India. To add
to it, people that I held in very high regard made comments about how this move
was essentially professional suicide, and this shook my already shaky confidence
even further.

Yet, I made the move and things worked out. Being without the support of
the group structure forced me to become more independent and get clarity on my
own research agenda. I believe my work has become more authentically my own
and hence deeper, and it has been very satisfying to be able to live my childhood
dream. Looking back, I’m glad I did not give in to the worries and fears of that
time!

EATCS: Do you have any advice for young researchers? In what should they
invest time, what should they avoid?
SA: I think the main “advice” I have (this makes me feel old!) is to be unapolo-
getic about being yourself and to work on questions that you love. Invest time in
taking courses, learning new things, attending talks and asking lots of questions.
When trekking up a mountain, one enjoys the beautiful views along the way. Re-
search is the same – the tedium of the climbing should not get in the way of the
enjoyment. If one dedicates one’s effort to something unshakeable, like beauty
or service or anything broader than oneself, then it is easier to keep going when
frustrations and failures come (as they inevitably will).
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One should avoid comparing oneself with others, or falling into negative self
talk and such other habit patterns. We feel best and do best by being ourselves,
not anyone else – no single colour is the most important in a painting. I remember
thinking for one painting (by Cezanne, I believe), how a single streak of a partic-
ular green (viridian), which was not present anywhere else in that painting, was
foundational to its beauty. One must ruthlessly negate the desire to be like anyone
else.

EATCS: What are the most important features you look for when searching for
graduate students?
SA: I try to separate ability and “spark” from training. Often students come in who
haven’t had the opportunity to get very rigorous training yet – this is something
that can be fixed, given time. What is more innate is their ability, enthusiasm,
motivation and earnestness. I’ve been very lucky in the students I have had so far.
I also think that as an advisor, one can play a big role in shaping innate qualities
and helping to develop weaker aspects. So I try to keep a very open mind.

EATCS: Do you see a main challenge or opportunity for theoretical computer
scientists for the near future?
SA: Science is constantly evolving and each era brings wonderful new questions.
Being a cryptographer, one area I am very excited about is quantum algorithms
and their effect on cryptography. We understand so little about computational
hardness in cryptography even in the classical regime and asking questions about
hardness in the realm of quantum is really intriguing. I am excited to see what
quantum algorithms can do to solve problems that we consider difficult classically.

EATCS: Can you recommend some source of information that you enjoy (e.g., a
specific blog, podcast, youtube channel, book, show, ...)?
SA: I enjoy reading, particularly Indian philosophy, history and popular science.
A favourite in the popular science category is “The fabric of the cosmos” by Brian
Greene. I love poetry deeply – a favourite here is Seamus Heaney’s “Clearances”.
Another book I recently enjoyed a lot was “Consolations” by David Whyte. A
great source of inspiration for me is painting – I am blown away by the works
of Jackson Pollock, M.F Hussain, Hans Hoffman and Picasso. The pinnacle of
brilliance and beauty for me are the verses of some of the old Indian philosophy
texts like “Katha Upanishad” and “Yoga Vashishta”.
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Please complete the following sentences?

• Being a researcher is a great job – so much freedom and space!

• My first research discovery gave me the confidence that I could do this.

• Having good intentions is key to being a happy academic.

• Theoretical computer science in 100 years from now will be just as rich
and beautiful!

References
[1] S. Agrawal. Indistinguishability obfuscation without multilinear maps: New tech-

niques for bootstrapping and instantiation. In Eurocrypt, 2019.

[2] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–
178, 2009.
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Making Reversible ComputingMachines in a
Reversible Cellular Space
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Hiroshima University, Higashi-Hiroshima 739-8527, Japan

Currently Professor Emeritus of Hiroshima University

km@hiroshima-u.ac.jp

Abstract

Reversible computing is a study that investigates the problem of how
computing is effectively performed in a reversible world. Since physical
reversibility is one of the fundamental microscopic laws of nature, it is im-
portant to clarify how computing machines are realized utilizing a reversible
law directly. In this survey/tutorial paper, we investigate this problem using
a reversible cellular automaton as a reversible environment, and search for a
new way of constructing reversible Turing machines (RTMs), a model of a
reversible computer, in it. That is to find a good pathway from a reversible
microscopic law to reversible computers. When doing so, it is convenient
to assume several conceptual levels on the pathway, by which the problem
is decomposed into subproblems. In the middle level on the pathway we
use a reversible logic element with 1-bit memory (RLEM), rather than a re-
versible logic gate, as a logical primitive. By these methods, we see that
RTMs can be implemented systematically even in a space that obeys a very
simple reversible microscopic law.

1 Introduction
A reversible computing machine is a system having a “backward deterministic”
property. That is to say, every computational state of the machine has at most
one predecessor state. Though its definition is thus simple, it has a close relation
to the physical reversibility, one of the fundamental microscopic laws in physics
[1, 8]. Therefore, it is important to know how reversible machines are realized by
utilizing reversible microscopic phenomena.

So far many kinds of reversible computing models have been proposed and
studied. One method of showing that a reversible computing model has a suffi-
cient computing power is to simulate an irreversible version of the model by a
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reversible one, i.e., “reversifying” [4] the irreversible system. By this method,
computational/logical universality of various reversible models have been shown.
Reversifying techniques have been applied, for example, to Turing machines [1],
logic elements and circuits [3, 26], two-counter machines [12], two-way finite au-
tomata [7], two-way multihead finite automata [14], cellular automata [25], and
so on. Once universality of a reversible computing model is established by this
method, universality of another reversible model can be shown by simulating the
former by the latter. For example, it has been shown that a universal reversible
logic gate and its circuits are simulated by a simple reversible 2D cellular automa-
ton [11], and that a reversible Turing machine can be simulated by a reversible
1D cellular automaton [19]. In this way, it turned out that, in many computing
models, computing powers do not decrease even if the reversibility constraint is
added.

Besides the study of individual reversible computing machines, it is also im-
portant to investigate how these machines can be efficiently realized in a space that
obeys a simple reversible law. In other words, it is to investigate the problems of
how simple reversible primitive operations can be that support universal compu-
tation, and how reversible macroscopic systems can be realized from a reversible
microscopic law. When we try to implement reversible machines in such a simple
environment, it is convenient to consider several implementation levels ranging
from a microscopic level to a macroscopic one as shown in Fig. 1. By this, the
problem is decomposed into several simpler subproblems. In the bottom level, i.e.,
Level 1, there is a simple microscopic reversible law of evolution, which corre-
sponds to a microscopic physical law. In Level 2, various phenomena that emerge
from the reversible microscopic law can be observed. In Level 3, we implement
suitable reversible logic elements using the observed phenomena. In Level 4, com-
bining the reversible logic elements, functional modules for reversible computers
are composed. In the top level, i.e., Level 5, a reversible computing machine is
systematically constructed by assembling the reversible functional modules.

Whether we can successfully find a pathway from a reversible microscopic law
to reversible computers firstly depends on the choice of the reversible microscopic
law in Level 1. In this paper, we use a reversible cellular automaton for it as
a thought experiment. It is a reversible elementary square partitioned cellular
automaton (ESPCA) with a hexadecimal identification number “01caef”’ [17],
which is denoted by P0 for short in this paper. It is described by only six local
transition rules, and thus very simple. Though the reversible cellular automaton
used here is an artificial model, and its physical realizability in the nano-scale
level is not known at present, they will give new vistas in reversible computing. In
particular, we shall see that even from very simple local rules, useful phenomena
that can be used for composing reversible machines are found in Level 2.

It also depends on the choice of reversible logic elements in Level 3. Here, we
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Figure 1: A pathway from a reversible microscopic law to reversible computers

use a reversible logic element with 1-bit memory (RLEM) rather than a reversible
logic gate. We shall see that RLEMs can be implemented using a small number
of phenomena found in Level 2. In addition, construction of reversible computing
machines in the upper levels is greatly simplified.

In Levels 4 and 5, a reversible Turing machine (RTM), an abstract model of a
reversible computer, is constructed. To do so, in Level 4, functional modules are
composed out of RLEMs. Then, in Level 5, RTMs are systematically constructed
by assembling the modules.

The contents of the following sections are as follows. In Sect. 2 reversible
Turing machines are defined, and computational universality results of their re-
stricted subclasses are surveyed. In Sect. 3 reversible logic elements with memory
(RLEM) are given, and a construction method of RTMs using a particular RLEM
called a rotary element (RE) is explained. In Sect. 4 a very simple 2D cellular
automaton called an elementary square partitioned cellular automaton (ESPCA)
is introduced, and useful phenomena in the particular reversible ESPCA P0 are
explored. Using them, an RE is implemented in P0, and then RTMs are realized
as configurations of P0. Sect. 5 gives concluding remarks.
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2 Reversible Turing Machine (RTM)

A reversible Turing machine (RTM) is a standard model in the theory of reversible
computing. Lecerf [9] first investigated RTMs, and showed unsolvability of the
halting problems and some related problems. Bennett [1] studied them from the
viewpoint of thermodynamics of computing, and showed that any irreversible TM
can be converted into an equivalent RTM.

2.1 Definitions and examples

A one-tape Turing machine (TM) consists of a finite control, a read-write head,
and a two-way infinite tape divided into squares in which symbols are written.
Formal definition of a TM is as follows.

Definition 2.1. A one-tape Turing machine (TM) is defined by

T = (Q, S , q0, F, s0, δ),

where Q is a non-empty finite set of states, S is a non-empty finite set of tape
symbols, q0 is an initial state (q0 ∈ Q), F is a set of final states (F ⊆ Q), and s0 is
a special blank symbol (s0 ∈ S ). Here, δ is a move relation, which is a subset of
(Q × S × S × {L,N,R} × Q). The symbols “L", “N", and “R" are shift directions
of the head, which stand for “left-shift", “no-shift", and “right-shift", respectively.
Each element of δ is a quintuple of the form [p, s, s′, d, q], which is called a rule of
T . It means if T reads the symbol s in the state p, then write s′, shift the head to the
direction d, and go to the state q. We assume each state q f ∈ F is a halting state,
i.e., there is no quintuple of the form [q f , s, s′, d, q] in δ. In this paper, we assume
T is deterministic. Hence, for any pair of distinct quintuples [p1, s1, t1, d1, q1] and
[p2, s2, t2, d2, q2] in δ, the relation (p1 = p2) ⇒ (s1 , s2) holds.

Reversibility of a TM is defined as below.

Definition 2.2. Let T = (Q, S , q0, F, s0, δ) be a TM. We call T a reversible TM
(RTM), if the following holds for any pair of distinct quintuples [p1, s1, t1, d1, q1]
and [p2, s2, t2, d2, q2] in δ.

(q1 = q2) ⇒ (d1 = d2 ∧ t1 , t2)

It means that for any pair of distinct rules, if the next states are the same, then the
shift directions are the same, and the written symbols are different. The above is
called the reversibility condition for TMs.
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Note that, in [1], RTMs are defined in a quadruple form, where read-write rules
and head-shift rules are separated. This formulation is useful when composing an
“inverse” RTM that undoes the computation performed by a given RTM. However,
here, we employ the quintuple formulation, since the number of rules for defining
an RTM in the quintuple form is about a half of that for defining an RTM in the
quadruple form. See Sect. 5.1.3 of [15] for a conversion method between these
two forms.

An instantaneous description (ID) of a TM is an expression to describe its
computational configuration.

Definition 2.3. Let T = (Q, S , q0, F, s0, δ) be a one-tape TM. We assume Q∩ S =

∅. An instantaneous description (ID) of T is a string of the form αqβ where
q ∈ Q and α, β ∈ S ∗. Let λ denote the empty string. The ID αqβ describes
the computational configuration of T such that the content of the tape is αβ (the
remaining part of the tape contains only blank symbols), and T is reading the
leftmost symbol of β (if β , λ) or s0 (if β = λ) in the state q. An ID αqβ is called
a standard form ID if α ∈ (S − {s0})S ∗ ∪ {λ}, and β ∈ S ∗(S − {s0}) ∪ {λ}. Namely,
a standard form ID is obtained from a general ID by removing superfluous blank
symbols from the left and the right ends. An ID αq0β is called an initial ID. An
ID αqβ is called a final ID if q ∈ F.

The transition relation among standard form IDs of T is denoted by |−−T . Let
αqβ and α′q′β′ be two standard form IDs. If α′q′β′ is obtained from αqβ by
applying a rule in δ of T , then we write αqβ |−−T α′q′β′, and say that T goes
to the computational configuration α′q′β′ from αqβ in one step. For example, if
[q, s, s′,R, q′] ∈ δ, α ∈ (S − {s0})S ∗, and β ∈ S ∗(S − {s0}), then αqsβ |−−T αs′q′β.
Though the relation |−−T is conceptually straightforward one, its formal definition
is slightly complex, since only standard form IDs are considered, and thus we have
to deal with many cases. Hence, its definition is omitted here (see Sect. 5.1.1.3 of
[15] for its precise definition).

The reflexive and transitive closure of |−−T is denoted by |−−T
∗ . The transitive

closure is denoted by |−−T
+ . The relation of n-step transition is denoted by |−−T

n .
Let γ be a standard form ID of T . We say γ is a halting ID, if there is no ID
γ′ such that γ |−−T γ′. Let αi, βi ∈ S ∗, and pi ∈ Q (n ∈ N, i = 0, 1, . . . , n).
We say α0 p0β0 |−−T α1 p1β1 |−−T · · · |−−T αn pnβn (or α0 p0β0 |−−T

∗ αn pnβn) is a
complete computing process of T starting from α0 p0β0, if α0 p0β0 is an initial ID
(i.e., p0 = q0), and αn pnβn is a halting ID.

We give two examples of RTMs. In the following sections, they are con-
structed using reversible logic element with memory (RLEM), and then imple-
mented in a simple reversible cellular automaton.
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Example 2.1. An RTM Tparity defined below is a very simple example.

Tparity = (Qparity, {0, 1}, q0, {qa}, 0, δparity)

Here, Qparity = {q0, q1, q2, qa, qr}, and δparity are given below.

δparity = { [q0, 0, 1,R, q1], [q1, 0, 1, L, qa], [q1, 1, 0,R, q2],
[q2, 0, 1, L, qr], [q2, 1, 0,R, q1] }

It is easy to see that Tparity is reversible. Consider the pair of rules [q0, 0, 1,R, q1]
and [q2, 1, 0,R, q1]. The next states in these rules are the same (i.e., q1). We can
see the shift directions in them are the same (i.e., R), and the written symbols
are different (i.e., 1 and 0). Thus the pair satisfies the reversibility condition in
Definition 2.2. No other pair of distinct rules have the same next state. Therefore
Tparity is reversible. Complete computing processes starting from the IDs q0011
and q00111 are as follows.

q0011 |−−Tparity
1q111 |−−Tparity

10q21 |−−Tparity
100q1 |−−Tparity

10qa01
q00111 |−−Tparity

1q1111 |−−Tparity
10q211 |−−Tparity

100q11 |−−Tparity
1000q2 |−−Tparity

100qr01

For a given string 01n, the RTM Tparity tests whether n is even or not. If it is even,
Tparity halts in the final (accepting) state qa. Otherwise it halts in qr. All the read
symbols are complemented.

Example 2.2. An RTM Tpower is defined by

Tpower = (Qpower, {0, 1}, q0, {qa}, 0, δpower).

Here, Qpower = {q0, q1, . . . , q7, qa, qr}, and δpower are given below.

δpower = { [q0, 0, 0,R, q1], [q1, 0, 0,R, q2], [q2, 0, 0, L, q6], [q2, 1, 0,R, q3],
[q3, 0, 1, L, q4], [q3, 1, 1,R, q3], [q4, 0, 0, L, q7], [q4, 1, 0, L, q5],
[q5, 0, 1,R, q2], [q5, 1, 1, L, q5], [q6, 0, 0, L, qr], [q6, 1, 1,R, q1],
[q7, 0, 0, L, qa], [q7, 1, 1, L, qr] }

It is again easy to see that Tpower satisfies the reversibility condition. Complete
computing processes starting from q0001111 and q000111111 are as follows.

q0001111 |−−Tpower

31 110 qa1001

q000111111 |−−Tpower

43 111 qr 01011

For a given string 001n, the RTM Tpower tests whether n is a power of 2. If it is
so, Tpower halts in the final state qa. Otherwise it halts in qr. It uses a straightfor-
ward algorithm that repeatedly divides the unary number n by 2, and checks the
remainder at each division. But, note that, Tpower is carefully designed so that it
satisfies the reversibility condition.
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2.2 Computational universality of RTMs
Bennett [1] showed that any one-tape irreversible TM can be converted into an
equivalent three-tape RTM. Hence, the class of three-tape RTMs is computation-
ally universal.

Theorem 2.1. For any (irreversible) one-tape TM, we can construct a reversible
three-tape RTM that simulates the former and leaves no garbage information on
its tape.

Assume some class of RTMs is known to be computationally universal. If any
RTM in this class is simulated by an RTM in another class of RTMs, then the latter
class of RTMs is also computationally universal. In this way, computational uni-
versality of various subclasses of RTMs can be shown. In particular, it is possible
to show the following.

(1) For any RTM with k two-way infinite tapes, we can construct an RTM with
k one-way infinite (i.e., rightward infinite) tapes that simulates the former
(k = 1, 2, . . .).

(2) For any RTM with k rightward infinite tapes, we can construct an RTM with
only one rightward infinite tape that simulates the former (k = 2, 3, . . .).

(3) For any k-symbol RTM with one rightward infinite tape, we can construct a
two-symbol RTM with one rightward infinite tape that simulates the former
(k = 3, 4, . . .).

In the case of irreversible TMs, it is relatively easy to show the results corre-
sponding to the above (see, e.g., [6] for (1), [5] for (2), and [24] for (3)). However,
in the case of RTMs, the simulating TMs should be carefully constructed so that
they satisfy the reversibility condition. In addition, the notion of simulation should
also be defined properly. These details are found in Sect. 5.3 of [15].

By above, we obtain the following.

Theorem 2.2. The class of two-symbol RTMs with a rightward infinite tape is
computationally universal.

In the following sections, only two-symbol RTMs with a rightward infinite
tape are constructed by reversible logic elements, and then implemented in a sim-
ple reversible cellular automaton.

It has been shown that a one-tape many-state RTM can be simulated by a one-
tape three-state RTM having many symbols (see Sect. 5.3.5 of [15]). Therefore
we have the following.
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Theorem 2.3. The class of three-state RTMs with a rightward infinite tape is
computationally universal.

In the case of irreversible TMs, it is known that a many-state TM can be sim-
ulated by a two-state TM [24]. Hence the class of two-state TMs is universal.
However, it is unknown whether the class of two-state RTMs is universal.

A universal Turing machine (UTM) is one that can simulate any TM. Let
UTM(m,n) denote an m-state n-symbol UTM. It is known that various kinds of
UTMs with very small m and n exist. For example, Rogozhin [23] gave UTM(4,6),
and Neary and Woods [22] gave UTM(6,4), which simulate 2-tag systems and bi-
tag systems, respectively. These UTMs have the smallest value of m × n among
the ones so far found.

It is, of course, possible to have a universal reversible Turing machine (URTM)
by reversifying a UTM using the method of Bennett (Theorem 2.1) and then con-
verting it into a one-tape RTM. However, if we do so, m and n become very large.
In the case of URTM(m,n) with m states and n symbols, a method of simulating
cyclic tag systems [2] was used to have ones with small m and n (Sect. 7.3 of
[15]). Among them, URTM(10,8) has the smallest value of m × n.

3 Reversible Logic Element with Memory (RLEM)
A reversible logic element with memory (RLEM) [13] is a kind of a reversible
finite automaton having output symbols as well as input symbols, which is also
called a reversible sequential machine of Mealy type. In the following, we use
RLEMs rather than reversible logic gates for composing RTMs.

Definition 3.1. A sequential machine (SM) M is defined by M = (Q,Σ,Γ, δ),
where Q is a finite set of states, Σ and Γ are finite sets of input and output symbols,
and δ : Q × Σ → Q × Γ is a move function (see Fig. 2 (a)). If δ is injective, it is
called a reversible sequential machine (RSM).

To use an SM as a logic element, we interpret it as the one with decoded
input/output ports (Fig. 2 (b)), i.e., for each input symbol, there is a unique input
port to which a signal (or a particle) is given. It is also the case for the output
symbols. Therefore, signals should not be given to two or more input ports at the
same time.

An RLEM is an RSM that satisfies |Σ| = |Γ|. When connecting many RLEMs
to form an RLEM-circuit, each output port of an RLEM can be connected to at
most one input port of another (or may be the same) RLEM. Furthermore, two or
more output ports should not be connected to one input port. Therefore, neither
branching (i.e., fan-out of an output) nor merging of signal lines is permitted. See
Sect. 3.5.1 of [15] for the precise definition of an RLEM-circuit.
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Among RLEMs, two-state RLEMs are particularly important, since they are
simple yet powerful (see Sect. 3.4). In the following, we use a specific RLEM, a
rotary element (RE), to compose RTMs. This is because the operation of RE is
intuitively easy to understand, and RTMs can be constructed by it very simply.
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Figure 2: (a) A sequential machine with δ(p, ai) = (q, s j), and (b) an interpreta-
tion of it as a module having decoded input ports and output ports

3.1 Rotary element (RE), a typical RLEM
A rotary element (RE) [13] is a two-state RLEM that has four input ports and four
output ports, and is depicted as in Fig. 3. Intuitively, an RE has a rotatable bar
inside, and an incoming signal is controlled by the bar. It takes either of the two
states, state V or state H, depending on the direction of the bar. If the direction of
a coming signal is parallel to the bar, the signal goes straight ahead, and the state
does not change (Fig. 4 (a)). If the direction of a coming signal is orthogonal to
the bar, the signal turns right, and the state changes (Fig. 4 (b)).
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3.2 Constructing reversible sequential machines using REs
We can construct any RSM using only REs. To do so, we introduce a circuit
module called an RE-column. RSMs are composed of it systematically.

3.2.1 RE-column, a module for building RSMs

An RE-column of degree n is shown in Fig. 5, which has n + 1 REs. We assume,
in a resting state, it is in the state (a) or (b) of Fig. 5, where all the REs except the
bottom are in the state V. It has 2n input ports a1, . . . , an, b1, . . . , bn, and 2n output
ports s1, . . . , sn, t1, . . . , tn. If a signal is given to one of the input ports, the module
will take a state other than those of (a) and (b). However, as we shall see, the
module will become again the state (a) or (b) when the signal goes out from it.
Therefore, an RE-column behaves as if it is a two-state RSM. That is to say, the
states (a) and (b) are macroscopic states 0 and 1 of the RE-column.
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Figure 5: RE-column of degree n. (a) State 0, and (b) state 1

Table 1: The move function of an RE-column of degree n. Here, i ∈ {1, . . . , n}

Input
Present state ai bi

0 0 si 1 si

1 0 ti 1 ti

The move function of the RE-column as a two-state RSM is shown in Table 1.
In the following, we examine how the circuit works for the four cases of state-
input pairs: (0, ai), (1, ai), (0, bi), and (1, bi), where i ∈ {1, . . . , n}.
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First, consider the case where the state is 0 (Fig. 5 (a)) and a signal is given
to ai. By the signal from ai, the i-th RE changes its state from V to H. Then the
signal moves downward through the (n − i + 1) REs. At the bottom of the column
the signal makes a U-turn, and goes upward through the (n − i + 1) REs. At the
i-th RE, the signal turns right and changes the RE’s state from H to V. Finally the
signal goes out from the port si. In this case the RE-column keeps the state 0.

Second, consider the case where the state is 1 (Fig. 5 (b)) and a signal is given
to ai. As in the first case, the signal sets the i-th RE to the state H, and then moves
downward. At the bottom RE, the signal makes a right-turn, and changes the state
of the RE to V. The signal goes upward along the left vertical line, and reaches the
north input of the top RE. It moves downward through the (i − 1) REs, and makes
a right-turn at the i-th RE, restoring the RE’s state to V. Finally the signal goes out
from the port ti. In this case the RE-column changes the state from 1 to 0.

Third, consider the case where the state is 0 and a signal is given to bi. The
signal sets the i-th RE to the state H, and moves upward through the (i − 1) REs.
Then the signal goes downward along the right vertical line, and reaches the east
input of the bottom RE. It changes the state of the bottom RE to H, and moves
upward through the (n − i) REs. The signal makes a right-turn at the i-th RE, and
restores its state to V. Finally the signal goes out from the port si. In this case the
RE-column changes the state from 0 to 1.

Fourth, consider the case where the state is 1 and a signal is given to bi. As
in the third case, the signal sets the i-th RE to the state H, and reaches the east
input of the bottom RE. The signal goes out from the west output of the bottom
RE without changing its state. It moves upward along the left vertical line, and
reaches the north input of the top RE. It makes a right-turn at the i-th RE, restoring
the RE’s state to V. Finally the signal goes out from the port ti. In this case the
RE-column keeps the state 1.

3.2.2 Composing RSMs using RE-columns

We can systematically compose any RSM out of RE-columns. The composing
method is explained by the following example of an RSM M0.

M0 = ({q1, q2, q3}, {c1, c2, c3}, {d1, d2, d3}, δ0)

The move function δ0 is given in Table 2.
Fig. 6 shows the circuit that simulates M0. It consists of three RE-columns of

degree 3. The j-th RE-column corresponds to the j-th state q j of M0. The i-th row
except the bottom row corresponds to the input symbol ci and the output symbol
di. If the state of M0 is q j, then the state of the j-th RE-column is set to 1, while
the other RE-columns are set to 0. Fig. 6 shows that M0 is in the state q3.
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For example, assume an input signal is given to the port c2. Since the first
two RE-columns are in the state 0, the signal goes rightward through these RE-
columns without changing their states. At the third RE-column, the signal changes
the RE-column’s state from 1 to 0, and then comes out from the west output port
of the second RE, which is labeled by q3c2. This port is connected to the east input
port of the third RE of the second RE-column labeled by q2d3. By this, the state
of the second RE-column changes from 0 to 1. The signal appears from the east
output port of the third RE in the second RE-column. Since the third RE-column
is now in the state 0, the signal finally goes out from the port d3. By above, the
operation δ0(q3, c2) = (q2, d3) is simulated. Other cases are similar to this case.

Table 2: The move function δ0 of an RSM M0

Input
Present state c1 c2 c3

q1 q2 d2 q3 d1 q1 d2

q2 q3 d2 q2 d1 q1 d3

q3 q3 d3 q2 d3 q1 d1
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Figure 6: An RSM M0 composed only of RE [15]

Generally, for any given RSM M = ({q1, . . . , qn}, {c1, . . . , cl}, {d1, . . . , dm}, δ),
we can construct a circuit composed of RE-columns that simulates M in the fol-
lowing way. First prepare n RE-columns of degree r = max{l,m}, and connect
the si output of the j-th RE-column to the ai input of the ( j + 1)-st RE-column
(i ∈ {1, . . . , r}, j ∈ {1, . . . , n − 1}). Also connect ci to ai of the first RE-column
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(i ∈ {1, . . . , l}), and si of the n-th RE-column to di (i ∈ {1, . . . ,m}). For all qh, q j,
ci, and dk, if δ(qh, ci) = (q j, dk), then connect the west output of the RE at (i, h) to
the east input of the RE at (k, j). By this, M is correctly simulated.

3.3 Constructing reversible Turing machines using REs

Using only REs, we can compose any two-symbol RTM with a rightward infinite
tape. A composing method was first given in [13]. Then it was revised in [15],
and it is further revised here. An RTM is constructed by assembling two kinds of
functional modules. They are a tape cell module and a state module. Note that the
tape cell module uses an RE-column as a submodule.

3.3.1 Tape cell module

A tape cell module is a circuit shown in Fig. 7. It simulates one tape square of an
RTM. Connecting infinite number of copies of it, a tape unit is obtained as shown
in the right part of Fig. 12.
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Figure 7: Tape cell module for two-symbol RTMs. The state (a) shows that the
head is not on this cell, and (b) shows that the head is on this cell
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The tape cell keeps the information whether the head of the RTM is on this
cell or not in its left part, which is an RE-column of degree 8 (Fig. 5). If the RE-
column is in the state 0 (i.e., its bottom RE is in the state V), then the head is not
here (Fig. 7 (a)). If it is in the state 1 (i.e., its bottom RE is in the state H), then
the head is here (Fig. 7 (b)).

A tape symbol s ∈ {0, 1} is stored in the RE indicated by s in Fig. 7, where
0 and 1 are represented by the states V and H, respectively. The right part of the
tape cell is, in fact, a one-bit memory (Fig. 8) having the move function given in
Table 3. It has two input ports w0 and w1, and two output ports r0 and r1. Assume
the present state is s (∈ {0, 1}). If a signal is given to wt (t ∈ {0, 1}), then the new
symbol t is written in it, and the old symbol s is read-out from the output port rs.
Thus, a write operation always accompanies a read operation.

s
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w0
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w1
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r0

✛r1

✛

s
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w0
❄

w1

✛
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(a) (b)

Figure 8: One-bit memory for a tape cell module. (a) State 0, and (b) state 1

Table 3: The move function of the one-bit memory given in Fig. 8

Input
Present state w0 w1

0 0 r0 1 r0

1 0 r1 1 r1

The tape cell module has ten input ports corresponding to ten kinds of input
symbols listed in Table 4. They are interpreted as instructions to the tape unit or
response signals to the finite control of an RTM. For each input symbol, there is
a corresponding output symbol, which is indicated by the symbol with ′, and thus
the tape cell has ten input ports and ten output ports. Making an infinite number of
copies of it, and connecting them to form a rightward infinite array, we can obtain
a tape unit for the RTM. To the left of the tape unit a finite control of an RTM will
be connected. We assume there is only one tape cell whose RE-column is in the
state 1 in the initial setting, and thus there is only one head. Giving a signal to the
tape unit, read/write and head-shift operations are performed.
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Table 4: Ten kinds of symbols for the tape cell module and their meanings [15]

Symbol Instruction/Response Meaning

W0 Write 0 Instruction of writing the tape symbol 0 at the head position.

By this instruction, read operation is also performed

W1 Write 1 Instruction of writing the tape symbol 1 at the head position.

By this instruction, read operation is also performed

R0 Read 0 Response signal telling the read symbol at the head is 0

R1 Read 1 Response signal telling the read symbol at the head is 1

SL Shift-left Instruction of shift-left operation

SLI Shift-left immediate Instruction of placing the head on this cell by shifting left

SLc Shift-left completed Response (completion) signal of shift-left operation

SR Shift-right Instruction of shift-right operation

SRI Shift-right immediate Instruction of placing the head on this cell by shifting right

SRc Shift-right completed Response (completion) signal of shift-right operation

First, consider the case where the head is not on this tape cell (Fig. 7 (a)).
Since its RE-column is in the state 0, a signal from the input port W0, W1, R0,
R1, SL, SR, SLc, or SRc simply goes to the output port W0′, W1′, R0′, R1′, SL′,
SR′, SLc′, or SRc′, respectively, without changing its state (see Table 1). It means
that these signals skip tape cells having no head. Note that processing of a signal
SLI or SRI in this case is discussed later.

Second, consider the case where the head is on this cell (Fig. 7 (b)). The first
subcase is that an input signal Wt (t ∈ {0, 1}) is given, which is for writing the
tape symbol t in this tape cell. We assume the one-bit memory in its right part is
in the state s. The signal changes the state of the RE-column to 0, and appears on
the line wt in Fig. 7 (see Table 1). Then the state of the one-bit memory changes
to t, and the signal appears on the line rs (see Table 3). This signal restores the
RE-column to the state 1, and finally goes out from the port Rs′. Hence, the
writing operation also performs a reading operation to keep reversibility of the
tape cell. The signal Rs′ moves leftward through tape cells having no head, and
finally reaches the finite control of the RTM. Note that if an RTM needs to read a
tape symbol, it is performed by sending a signal to the input port W0 of the tape
unit. By this, the tape unit gives a response signal at the output port Rs′, and the
tape symbol at the head position is cleared to 0. Thus, this is a destructive readout.

The second subcase is that a signal is given to the input port SL of the tape cell
with a tape head, which will shift the tape head to the left. This signal changes the
RE-column to the state 0, and goes out from the port SLI′ (Table 1). This signal is
sent to the left-neighboring tape cell. If the latter tape cell receives an input signal
SLI, then it sets the state of the RE-column to 1, and sends an output signal SLc′

to the left. By such a process, shift-left operation is performed correctly.
The third subcase is that a signal is given to the input port SR of the tape cell
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with a tape head, which will shift the tape head to the right. The ports SR, SRI,
and SRc are similar to the ports SL, SLI, and SLc, except that an output signal
SRI′ is sent to the right-neighboring tape cell.

By above, we can see that read/write and head-shift operations are correctly
performed by a tape unit.

3.3.2 State module

Before introducing a state module we first explain a subroutine call mechanism.
A subroutine is a black box having at least one calling (i.e., input) port, and at
least one return (i.e., output) port (Fig. 9) that satisfies the following: If a calling
signal is given to one of the calling ports, a return signal eventually comes out
from one of the return ports. No signal should be given to a calling port before
a return signal for the previous calling signal comes out. Here, to make a simple
subroutine-call mechanism using REs, we restrict both the numbers of calling
ports and return ports to be at most two. If there are two calling ports, say c0 and
c1, we can give two kinds of information 0 and 1, regarded as an input argument, to
the subroutine. Likewise, if there are two return ports r0 and r1, we can obtain two
kinds of information 0 and 1, regarded as an output value, from the subroutine.

A tape unit acts as three subroutines by suitably specifying calling and return
ports. The first one is the subroutine having the calling ports W0 and W1, and the
return ports R0′ and R1′. The second has the calling port SL, and the return port
SLc′. The third has the calling port SR, and the return port SRc′.

Black box
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✲c
0

✛r
1

✛r
0

Figure 9: Subroutine. Here, it has two input ports c0 and c1 for calling it from a
main routine, and two output ports r0 and r1 for returning to the main routine
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A subroutine caller is a mechanism for calling one subroutine from many
points of a main routine. Fig. 10 is a caller for a subroutine having calling ports
c0 and c1, and return ports r0 and r1. In this figure, cs

i (i ∈ {1, . . . , n}, s ∈ {0, 1}) is
the i-th calling port for the main routine with the input s, and rt

i (i ∈ {1, . . . , n}, t ∈
{0, 1}) is the i-th return port for the main routine with the output t.

Initially, all the REs in Fig. 10 are set to the state H. If a signal is given to the
port cs

i (i ∈ {1, . . . , n}, s ∈ {0, 1}), then the state of the i-th RE changes to V, and
the signal goes out from the port cs. If the signal returns via the port rt (t ∈ {0, 1}),
then the state of the i-th RE is restored to H, and then the signal goes out from the
port rt

i . In this way, n points of the main routine can share the same subroutine.
Note that if a subroutine has only one calling port or only one return port, then
unnecessary lines in the caller are removed.

A state module simulates one state, say qi, of an RTM. It is shown in Fig. 11.
It is composed of three submodules, which are write-and-merge, head-shift, and
read-and-branch submodules. This figure shows the case where qi is a right-shift
state. The case for a left-shift state is similar. Because of the reversibility condi-
tion (Definition 2.2), shift direction is uniquely determined by the state. Note that
a state module for an initial state consists only of a read-and-branch submodule,
and that for a halting state consists of write-and-merge and head-shift submodules.

If the number of states of an RTM is m, then prepare m state modules, and
connect them in a row to make a finite control of the RTM. At the left end of the
array, SLc′, SRc′, R1′ and R0′ are connected to SL, SR, W1 and W0, respectively.
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Write-and-merge submodules and read-and-branch submodules in the m state
modules form a subroutine caller that share the subroutine having the calling ports
W0 and W1, and the return ports R0′ and R1′ in the tape unit. By this, read/write
operations on the tape unit can be performed in each state. Head-shift submodules
of the right-shift states also form a subroutine caller that share the subroutine
having the calling port SR, and the return port SRc′ in the tape unit. Likewise,
head-shift submodules of the left-shift states form a subroutine caller that share
the subroutine having the calling port SL, and the return port SLc′.

Let T = (Q, {0, 1}, q0, F, 0, δ) be a two-symbol RTM. First consider how the
write-and-merge submodule works. Assume [p, s, 0, d, qi], [p′, s′, 1, d, qi] ∈ δ.
Note that it also works well for the case only one of these two quintuples exists.
We further assume that the write-and-merge operation is done just after a read-
and-branch operation that performs a destructive readout. Thus, the tape symbol
at the head position is now 0. If the submodule receives a signal from the input
port 0qi (1qi, respectively), then it sends a calling signal to the subroutine from
the port W0′ (W1′) to perform a writing operation. Since the old symbol at the
head position is 0, the submodule receives a signal from the return port R0 in both
cases of writing 0 and 1. By this, two different signal paths of writing 0 and 1 are
reversibly merged into one, and the signal is sent to the head-shift submodule.

The head-shift submodule works as follows. If it receives a signal from the
write-and-merge submodule, it sends a signal to the calling port SL′ or SR′, by
which shifting is performed in the tape unit. It receives a signal from the return
port SLc or SRc. Then, the signal is sent to the read-and-branch submodule.

If the read-and-merge submodule receives a signal from the head-shift sub-
module, it sends a signal to the calling port W0′ of the tape unit. Then the tape
unit sends back a response signal via the return port R0 or R1 depending on the
read symbol. The submodule finally gives a signal to the port qi0 or qi1. By above,
read-and-branch operation is performed.

State transitions of the RTM is realized by connecting state modules in the
following way. If there is a quintuple [qi, s, t, d, q j] ∈ δ, then the output port qis of
the state module for qi is connected to the input port tq j of the state module for q j.

3.3.3 Composing RTMs

Assembling tape cells and state modules, and connecting them as explained above,
we can systematically compose a circuit made of REs that simulates any given
two-symbol RTM. The circuit for the RTM Tparity in Example 2.1 is shown in
Fig. 12. If we give a signal to the port “Start”, then it is sent to the state module
for the initial state. By this, Tparity begins to compute. If Tparity halts, then the
signal from the state module corresponding to the accepting or rejecting state is
sent to the port “Accept” or “Reject” showing that the computation is completed.
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3.4 Universality of RLEMs
There are infinitely many RLEMs even if we consider only two-state RLEMs.
We use a special graphical representation for two-state RLEMs. Fig. 13 shows
the representation of RLEM 3-10, where “3” means that it has three input/output
symbols, and “10” is its serial number in the class of 3-symbol RLEMs. Two
boxes in Fig. 13 indicate its two states. The dotted and solid lines give the input-
output relation in each state. If an input signal goes through a dotted line, the state
does not change (Fig. 14 (a)). If it goes through a solid line, the state changes
(Fig. 14 (b)). Note that RE can be also represented by such a figure, but we
employ Fig. 3 for ease in understanding.
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Figure 13: Two states of RLEM 3-10.

t

�
�
�

✲
✲
✲

✲
✲
✲

•
State 0

⇒
t +1

�
�
�

✲
✲
✲

✲
✲
✲

•
State 0

t

❍❍❍✲
✲
✲

✲
✲
✲

•
State 1

⇒
t +1

�
�
�

✲
✲
✲

✲
✲
✲

•
State 0

(a) (b)

Figure 14: Operations of RLEM 3-10. (a) The case where the state does not
change, and (b) the case where the state changes

Among RLEMs there are universal RLEMs in the following sense.

Definition 3.2. An RLEM R is called universal if any RSM can be realized by a
circuit composed only of R.

As we have already seen in Sect. 3.2.2, RE is universal. We can observe that
RLEM 3-10 is also universal, since RE can be composed of RLEM 3-10 as in
Fig. 15 [20]. This figure shows the state H of an RE. By complementing the states
of the bottom four RLEMs, we have the state V of an RE. In Fig. 15, it is easy to
see that if a signal is given to the port e (w, respectively), then it goes out from the
port w′ (e′) in two steps without changing the state of the circuit. This is a parallel
case (Fig. 4 (a)). On the other hand, if a signal is given to the port n, then the
circuit evolves as shown in Fig. 16. The signal finally goes out from the port w′,
and the states of the bottom four RLEMs are complemented. This is an orthogonal
case (Fig. 4 (b)). In such a way, RE is correctly simulated.
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Figure 16: Process of simulating RE by RLEM 3-10 when the state of RE changes
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Furthermore, we can compose RLEM 3-10 out of RLEMs 2-3 and 2-4 (Fig. 17).
The circuit that simulates RLEM 3-10 is shown in Fig. 18 [10]. Hence, the set
{RLEM 2-3, RLEM 2-4} is universal, though each of RLEM 2-3 and RLEM 2-
4 has been proved to be non-universal [21]. This result is useful for realizing a
universal RLEM such as RE in a reversible environment having a very simple
microscopic law of evolution (see Sect. 4.5).
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Figure 18: RLEM 3-10 is simulated by a circuit made of RLEMs 2-3 and 2-4
[10]

It is known that every non-degenerate two-state RLEM having three or more
I/O symbols is universal. It was proved by showing the fact that, for any one of
these RLEMs, there are circuits composed only of it that simulate RLEMs 2-3 and
2-4 [20]. Note that, here, a degenerate RLEM means that it is either equivalent to
an RLEM with fewer I/O symbols, or equivalent to connecting wires (see [15] for
its precise definition). Hence, we consider only nondegenerate RLEMs. Fig. 19
summarizes the results.
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Figure 19: Universality/non-universality of two-state RLEMs [15]

4 Simple Reversible Cellular Automaton
As a reversible environment, we use a reversible cellular automaton having very
simple local transition rules, which can be seen as a microscopic law of evolution.

4.1 Elementary square partitioned CA (ESPCA)
A 4-neighbor square partitioned cellular automaton (SPCA) is a two-dimensional
CA whose square cell is divided into four parts as in Fig. 20 (a). The next state of
a cell is determined depending on the present states of the four adjacent parts of
the neighboring cells (not depending on whole the states of the four neighboring
cells) as shown in Fig. 20 (b). Note that the next state of a cell does not depend
on the previous state of the cell itself.

Definition 4.1. A 4-neighbor square partitioned cellular automaton (SPCA) is
defined by

P = (Z2, (T,R, B, L), ((0,−1), (−1, 0), (0, 1), (1, 0)), f ).

Here, Z2 is the set of all points with integer coordinates where cells are placed.
The items T , R, B and L are non-empty finite sets of states of the top, right, bottom
and left parts of a cell. The set of states of a cell is thus Q = T × R × B × L. The
quadruple ((0,−1), (−1, 0), (0, 1), (1, 0)) is a neighborhood. The item f : Q → Q
is a local (transition) function.
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Figure 20: (a) Cellular space of a 4-neighbor square partitioned cellular automa-
ton (SPCA), and (b) its local transition rule f (t, r, b, l) = (t′, r′, b′, l′)

If f (t, r, b, l) = (t′, r′, b′, l′) holds for (t, r, b, l), (t′, r′, b′, l′) ∈ Q, this relation is
called a local transition rule of P. It is also indicated as in Fig. 20 (b). The local
function f is thus defined by a set of local transition rules.

Definition 4.2. Let P = (Z2, (T,R, B, L), ((0,−1), (−1, 0), (0, 1), (1, 0)), f ) be an
SPCA. A configuration of P is a function α : Z2 → Q. The set of all configurations
of P is denoted by Conf(P), i.e., Conf(P) = {α |α : Z2 → Q}. Let prT : Q → T
be the projection function that satisfies prT (t, r, b, l) = t for all (t, r, b, l) ∈ Q. The
projection functions prR : Q → R, prB : Q → B and prL : Q → L are defined
similarly. The global function F : Conf(P) → Conf(P) of P is defined as the one
that satisfies the following.

∀α ∈ Conf(P),∀(x, y) ∈ Z2 :
F(α)(x, y) = f (prT (α(x, y − 1)), prR(α(x − 1, y)), prB(α(x, y + 1)),

prL(α(x + 1, y)))

Definition 4.3. An SPCA P is called reversible if its global function is injective.

As for the notions related to reversibility, see Sect. 10.3 of [15] for the details.
The next Lemma shows that injectivity of the global function of a PCA is equiva-
lent to that of the local function [15, 19]. By this, we can easily obtain a reversible
CA, since it is sufficient to design a PCA whose local function is injective.

Lemma 4.1. Let P be an SPCA. Its global function F is injective if and only if its
local function f is injective.

Here, we define the simplest subclass of SPCAs such that its local function
is rotation-symmetric, and each of four parts has only two states. It is called
an elementary SPCA (ESPCA) as in the case of a one-dimensional elementary
cellular automaton (ECA) [28]. We first define the notion of rotation-symmetry.
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Definition 4.4. Let P = (Z2, (T,R, B, L), ((0,−1), (−1, 0), (0, 1), (1, 0)), f ) be an
SPCA. The SPCA P is called rotation-symmetric (or isotropic) if the following
conditions (1) and (2) hold.

(1) T = R = B = L

(2) ∀ (t, r, b, l), (t′, r′, b′, l′) ∈ T × R × B × L :
f (t, r, b, l) = (t′, r′, b′, l′)⇒ f (r, b, l, t) = (r′, b′, l′, t′)

Definition 4.5. Let P = (Z2, (T,R, B, L), ((0,−1), (−1, 0), (0, 1), (1, 0)), f ) be an
SPCA. We say P is an elementary triangular partitioned cellular automaton (ES-
PCA), if T = R = B = L = {0, 1}, and it is rotation-symmetric.

Since an ESPCA is rotation-symmetric, its local function f : {0, 1}4 → {0, 1}4

is defined by only six local transition rules, which are described by the following
six values.

f (0, 0, 0, 0), f (0, 0, 1, 0), f (0, 0, 1, 1), f (1, 0, 1, 0), f (0, 1, 1, 1), f (1, 1, 1, 1)

Here, f (0, 0, 1, 0), f (0, 0, 1, 1), f (0, 1, 1, 1) ∈ {0, 1}4. However, f (1, 0, 1, 0) ∈
{(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)} and f (0, 0, 0, 0), f (1, 1, 1, 1) ∈
{(0, 0, 0, 0), (1, 1, 1, 1)}, since it is rotation-symmetric. Hence, there are 163 × 4 ×
22 = 65, 536 ESPCAs in total.

Reading the 4-bit values of f (0, 0, 0, 0), f (0, 0, 1, 0), f (0, 0, 1, 1), f (1, 0, 1, 0),
f (0, 1, 1, 1), f (1, 1, 1, 1) as six binary numbers, we can express an ESPCA by a
6-digit hexadecimal identification number uvwxyz. For example, if f (0, 0, 1, 0) =

(t, r, b, l), then v = 23t + 22r + 21b + 20l. An ESPCA with the identification number
uvwxyz is denoted by ESPCA uvwxyz.

4.2 A particular ESPCA P0

Here, we consider a particular reversible ESPCA with the identification number
01caef. Hereafter, it is denoted by P0 for short. It is first studied in [17]. Fig. 21
shows a pictorial representation of the six local transition rules of ESPCA 01caef.
Though its local function is simple, its behavior is complex. Therefore, it is gen-
erally difficult to follow evolution processes of P0 using only paper and pencil. To
see its evolution processes, we created an emulator of P0 on the general purpose
CA simulator Golly [27]. The emulator files and pattern files for P0 are available
in [16].

It is easy to see that the local function of P0 is injective. Therefore it is a
reversible ESPCA. An ESPCA is called conservative if the number of particles
(i.e., state 1) is conserved in each local transition rule. It is an analog of various
conservation laws in physics. We can see that ESPCA P0 is conservative.
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Figure 21: Local function defined by the six local transition rules of a particular
reversible and conservative ESPCA 01caef, which is denoted by P0 hereafter

4.3 Useful patterns in ESPCA P0

A pattern is a finite segment of a configuration (see Sect. 10.2.1 of [15] for its
precise definition). A periodic pattern is one such that the same pattern appears at
the same position after some time steps. The periodic pattern given in Fig. 22 is
called a blinker. It is of period 2. Though there are many kinds of periodic patterns
in P0, a blinker is particularly useful among them as we shall see in Sect. 4.4

t = 0

••

t = 1

•
•

t = 2

••

Figure 22: Blinker in P0 [17]. It is of period 2

A space-moving pattern is one such that the same pattern appears at a differ-
ent position after some time steps. In P0 there are many kinds of space-moving
patterns of various periods [17]. In fact, if we start from a random-like pattern,
then we often observe that space-moving patterns appear.

The pattern having the shortest period among the space-moving patterns so
far found is called a glider (Fig. 23). It travels one cell diagonally in 12 steps. It
will be used as a signal when constructing reversible Turing machines, since it has
interesting and desirable properties as described in Sect. 4.4.

The pattern shown in Fig. 24 is called a block. It is a stable pattern, which
is a periodic pattern of period 1, and thus does not change its pattern if no other
pattern touches it. In the following, it will be used only for writing comments
and indicating a border of a logic element in the cellular space. Hence, it has no
functional role for composing reversible Turing machines.
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Figure 23: Glider in P0 [17]. It is of period 12

t = 0
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Figure 24: Block in P0 [17]. It is a stable pattern

4.4 Three useful phenomena in ESPCA P0

We make three experiments of interacting a glider with a blinker. However, each
of these experiment needs a large number of steps. In particular the third experi-
ment takes more than 2000 steps. Therefore, it is not possible to show correctness
of the results in this paper. They are verified by computer simulation [16].

The first experiment is shown in Fig. 25. Colliding a glider with a blinker in
this manner, a right-turn of a glider is realized.

The second experiment is in Fig. 26. By this, a glider makes a U-turn. It is
used to test if a blinker exists or not at a specified position. It is also used to
reversibly merge two signal paths into one (it is explained in Sect. 4.5).

The third experiment is in Fig. 27. By this, the position of the blinker is shifted
by 6 cells, and the glider makes a right-turn. Using this phenomenon, a kind of
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memory device is realized, where the memory states are kept by the positions of
the blinker. At the same time, it can test if a blinker exists at a specified position,
and can merge two signal paths into one.
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Figure 25: Right-turn of a glider in P0 [17]
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Figure 26: U-turn of a glider in P0 [17]
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Figure 27: Shifting a blinker by a glider in P0 [17]
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4.5 Composing RLEMs in ESPCA P0

Using three useful phenomena given in Sect. 4.4, we implement RLEMs in P0.
Since it is difficult to make RE directly, we first compose RLEMs 2-3 and 2-4.
Using them, we make RLEM 3-10, and then RE. In [17], RLEM 4-31 is imple-
mented in P0, whose pattern size is smaller than that of RE. However, here, we
use RE, since its operation is easier to understand. Note that the essential parts of
RLEMs constructed here consist only of blinkers, since blocks are used to write
comments and to indicate borders of the RLEMs.
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Figure 28: RLEM 2-3 implemented in P0
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The pattern shown in Fig. 28 simulates RLEM 2-3. There are many blinkers
in this pattern. One is used as a position marker for keeping the memory state 0 or
1, while others are used for turning a signal. Two small circles near the center of
the pattern show possible positions of the position marker. If the marker is at the
left (right, respectively) position, we regard that the RLEM is in the state 0 (1).

First, consider the case where the state is 0 and an input signal is given to the
port a as in this figure. The signal makes a U-turn at the U-turn gadget U1 since the
state is 0. Then it goes to the gadget U2, and again makes a U-turn passing through
Q. Note that U2 is used to reversibly merge the path with that of the second case.
Finally the signal goes out from the port x.

Second, consider the case where the state is 0 and an input signal is given to
the port b. At P the signal shifts the position marker to the right, and makes a
right-turn. Thus, the state changes to 1. Then, the signal goes out from the output
port x via the point Q. This signal path is merged with that of the first case at Q.

Third, consider the case where the state is 1 and an input signal is given to the
port a. In this case, the signal goes out from the output port y via S and R without
interacting the position marker.

Fourth, consider the case where the state is 1 and an input signal is given to
the port b. The signal goes straight ahead at the point P. Then, it shifts the position
marker to the left and makes a right-turn at R. Thus, the state changes to 0. Finally
it goes out from y. This signal path is merged with that of the third case at R.

Note that, in an RLEM, an incoming signal interacts with the state of the
RLEM, not with other signals. Therefore, there is no need of synchronizing two
or more signals as in the case of logic gates. Therefore, it greatly simplifies im-
plementation of RLEMs and connecting them in P0

RLEM 2-4

The pattern shown in Fig. 29 simulates RLEM 2-4. As in the case of RLEM 2-3,
one blinker near the center of the pattern is used as a position marker for keeping
the memory state 0 or 1. If the marker is in the right (left, respectively) small
circle, we regard that the RLEM is in the state 0 (1).

First, consider the case where the state is 0 and an input signal is given to the
port a. The signal makes a U-turn at U2. Then it goes to U1, and again makes a
U-turn passing through T. Finally the signal goes out from the port x.

Second, consider the case where the state is 1 and an input signal is given to
the port b. At R the signal goes straight ahead. Then it passes through the points
S and T. Finally it goes out from the port x. This signal path is merged with that
of the first case at T.

Third, consider the case where the state is 1 and an input signal is given to the
port a. The signal goes straight ahead at Q. Then, at P it shifts the position marker
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Figure 29: RLEM 2-4 implemented in P0

to the right, and makes a right-turn. By this, the state changes to 0. Finally it goes
out from the port y.

Fourth, consider the case where the state is 0 and an input signal is given to
the port b. At R the signal shifts the position marker to the left, and makes a right-
turn. By this, state changes to 1. Then, it passes through P, and finally goes out
from y. In this case, the signal path is merged with that of the third case at P.

It should be noted that the move function of RLEM 2-4 is the inverse of that
of RLEM 2-3. The move function of RLEM 2-3 is as follows.

(0, a) 7→ (0, x), (0, b) 7→ (1, x), (1, a) 7→ (1, y), (1, b) 7→ (0, y)
Its inverse is as follows, and is isomorphic to that of RLEM 2-4.

(0, x) 7→ (0, a), (1, x) 7→ (0, b), (1, y) 7→ (1, a), (0, y) 7→ (1, b)
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In [18], it is shown that in a reversible triangular partitioned CA (ETPCA), a
pattern for the “inverse functional module” can be easily obtained from the orig-
inal pattern by a simple transformation. This is due to the time-symmetry [18]
of reversible ETPCAs. A similar property also holds for reversible ESPCAs (but
its details are omitted here). By this, the pattern in Fig. 29 is obtained by putting
blinkers at the mirror image positions of blinkers of the pattern of in Fig. 28.

RLEM 3-10

Combining the patterns for RLEMs 2-3 and 2-4 to form the circuit shown in
Fig. 18, we can easily obtain a pattern that simulates RLEM 3-10 as in Fig. 30.
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Figure 30: RLEM 3-10 implemented in P0 composed of RLEMs 2-3 and 2-4



BEATCS no 140

74

RE

Placing eight copies of the pattern of RLEM 3-10 (Fig. 30) and connecting them
to form the circuit shown in Fig. 15, we can obtain a pattern for RE. However,
since it is very large (2,000 × 2,000), its figure is omitted here (the pattern can be
seen using the file 08_RE_by_3-10.rle in [16] on Golly).

4.6 Making RTMs in ESPCA P0

Putting copies of the patterns of RE in P0 at the positions of REs in Fig. 12, and
connecting them appropriately, we have a configuration of P0 that simulates the
RTM Tparity of Fig. 12. Any RTM can be implemented in P0 in this manner.

Fig. 31 shows the configuration for the RTM Tpower in Example 2.2 simulated
on Golly [16]. It takes more than one billion (1,137,250,105) steps to have an
answer for the unary input n = 4. Therefore, when simulating the computing
process of Tpower on Golly, its speeding-up mode should be used.

Figure 31: RTM Tpower implemented in ESPCA P0 simulated on Golly [16]. Each
small square is a pattern that simulates RE
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5 Concluding Remarks
We saw that even from a very simple reversible microscopic law, reversible com-
puting machines like RTMs can be realized by a construction method shown in
Fig. 1. Here we used a particular reversible ESPCA P0 as a reversible environ-
ment. However, there are many possibilities of other simple reversible CAs, or
other frameworks of reversible environments. For example, in [18], a reversible
elementary triangular partitioned cellular automaton (ETPCA) is used to construct
RTMs. An important fact observed in this paper is that only a few useful reversible
phenomena (shown in Sect. 4.4) are sufficient to compose reversible computing
machines. We expect such a fact also holds in various reversible environments.
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Abstract

In this article I give my thoughts on the role of automata and formal
languages in our computer science curriculum.

1 Introduction
This article is a reflection of my thoughts on the content of the course on automata
and formal languages at Charles university in Prague. Similar courses are a
mandatory part of computer science curricula at many other universities around
the globe. Four years ago I was asked by our math department to redesign their
graduate level course Automata and computational complexity. As the name
suggests traditionally that course contains a large portion of automata and formal
language theory. After discussions with the head of the math department I realized
that they do not necessarily care for any particular topic what they care for is that
the course covers theoretical foundations of computer science. So I redesigned
their course to match my view of foundations of computer science.

As you might expect from the title of this article the role of automata diminished
substantially in the new course. I will come back to that new course later. However,
this prompted me to take a fresh look at our own computer science course Automata
and grammars. I believe the time has come to let the automata go and replace the
content of the course by what it perhaps always meant to be: theoretical foundations
of computer science.

Next I will briefly review the origins of the current course and I will try to put
it into historical context of development of computer science over past 90 years.
Then I will propose what should be covered in a modern course on theoretical
foundations of computer science, and I will go over some hurdles which one might
encounter when trying to modify the course.



The Bulletin of the EATCS

81

1.1 Automata and grammars
Our course on automata and formal languages was designed more than 40 years
ago and it is largely based on the classical book by Hopcroft and Ullman [8], and its
Czech cousin by Chytil [2]. Over the years the course underwent various updates
and modifications as the allotted time for the course varied. Today the course
mostly follows Sipser’s book [10] or the current version of Hopcroft-Ullman [6].
However, the core focus of the course remains the same: automata, grammars and
languages recognized by those models.

The course used to be accompanied by a course on recursion theory and later
also by a course on computational complexity. The two latter courses moved to
graduate level courses during the past 20 years and were substantially overhauled.1

The course Automata and grammars remains mostly unchanged with its focus
on automata, grammars and classification of problems according to the Chomsky
hierarchy.

My view is that the course was originally designed to reflect then-current
knowledge of theoretical foundations of computer science and complexity theory.
Let us briefly review the historical context of its origins and development in theory
of computing over the years.

1.2 Brief history of modern theory of computing
Here, I am going to present my personal take on history of theoretical computer
science. It might not be perfectly accurate but it should be approximately correct.
With few exceptions I will ignore the names of many great computer scientists
who contributed to this development so I will focus only on the main ideas. A
thorough historical account of development of computability is given in the book
by Soare [11]. Development of complexity theory is covered in the article by
Fortnow and Homer [4].

The development of modern computer science was instigated by logicians.
Their program from the turn of the 20th century summarized by Hilbert asked
whether mathematical truth can be established by mechanical means. Those ques-
tions led to development of models for mechanical procedures: In 1931-34, Gödel
proposed definition of recursive functions and Church proposed his λ-calculus,
then in 1936 Turing defined what we call Turing machines [12]. All those models
were quickly established to be equivalent. Arguably, a Turing machine is the right
model to capture computation, and it allowed for the development of theory of
computation as we know it today. Considerations about what problems are algorith-
mically solvable lead to development of computability theory (recursion theory).

1In line with European-wide changes to university systems, after the year 2000 our originally
five year program was divided into a three year bachelor program and a two year master program.
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The recursion theory is concerned with what can be computed by an algorithm and
what cannot be computed by an algorithm. A prototypical uncomputable problem
is the Halting problem.

Soon after development of the concept of computability many people realized
that not all algorithmically solvable problems are born equal: Some problems are
harder to solve than others, they are more complex, their computation might require
more steps to complete. This aspect was famously referred to by Gödel in Gödel’s
lost letter.

A simple tool to gauge the complexity of a computational problem is provided
by a finite automaton. Finite automata were proposed in 1940’s. Motivated by
parsing human languages and programming languages, over the next three decades
finite automata flourished into a rich theory for formal language classification:
from finite automata, to automata with multiple heads, marking automata, push-
down automata, etc. This development is captured till large extent by the book of
Hopcroft and Ullman [8].

One of the central concepts in this area, the Chomsky hierarchy, was formulated
in the late 50’s [1, 3]. Chomsky hierarchy provides a tool to classify computational
problems into easy to solve: regular languages, moderate: context-free languages,
harder: context-sensitive and hardest: recursively-enumerable. This is a crude
classification of their computational complexity.

This is the development which is covered by the typical courses on automata
and formal languages.

The 1960’s saw the origins of a different approach to classification of problems
into easy and hard to solve: Hartmanis and Stearns [7] defined space and time
complexity, and proved basic hierarchy theorems. This was in the context of
nascent computational complexity theory. This theory took a central stage with the
introduction of NP-completeness in the 1970’s. During that decade, the notions of
efficient algorithms, complexity measures and complexity classes took a firm hold
in theoretical computer science. In its generality those concepts are the focus of
structural complexity theory. For concrete algorithmic problems this is the focus
of algorithm and data structure design.

The new point of view stimulated rapid development of new algorithmic tech-
niques and data structures. The complexity approach also laid foundations for
modern cryptography. The introduction of public key cryptography in the 1970’s in
connection with complexity theory led to modern day theoretical cryptography. The
1980’s saw development of circuit complexity (studied in the Soviet Union already
in 60’s and 70’s) The late 1980’s and early 90’s gave us interactive proof-systems,
zero-knowledge proofs and the PCP Theorem. This stimulated the development of
non-approximability and approximation algorithms in the 1990’s and after 2000.

The class P (polynomial time) was established as the equivalent of efficient
computation already in the 1970’s. Despite many of its desirable properties (e.g.



The Bulletin of the EATCS

83

closeness under poly-time reductions) not everyone was happy with that definition.
The late 1990’s saw first incursions into sub-linear time algorithms which morfed
into the area of property-testing. Concurrently, massive amounts of data that
needed to be processed led to the notion of streaming algorithms which blossomed
in the first two decades of the 21st century. Streaming algorithms are on some
level similar to finite automata: they perform one pass over the data and they allow
limited but non-constant memory. However, they go hand in hand with relaxing
the requirement for correctness as they allow the answer to be only approximately
correct and typically they are randomized.

Late in the first decade of the 21st century new area emerged: fine-grained
complexity. The fine-grained complexity pushes the realm of efficiently computable
closer to usual algorithm design. It establishes very efficient reductions between
various concrete problems of interest. It also links the difficulty of algorithm design
for NP-complete problems such as Satisfiability with the difficulty of improving
algorithms for ordinary problems in P such as All-Pairs Shortest Paths.

All those areas including automata theory are active to this day although their
focus has shifted in new directions, and the mainstream of theoretical computer
science has changed since the 1970’s. The main take-away message from the past
90 years of development of theory of computation is the quest to capture what is and
what is not efficiently solvable. The notion of efficiency is not static. It progressed
from being computable (recursion theory), to being in P (complexity theory), to
being linear or quadratic (streaming algorithms and fine-grained complexity).

Arguably the course on automata and formal languages should reflect the
progress of our understanding.

2 Foundations of computer science - new syllabus
Here I will present my take on what a redesigned course should focus on. On a
high level the focus should stay the same as before, the course should introduce the
following ideas: There are problems that can be solved by a computer, and there
are problems that cannot be solved by a computer (computability). Some problems
that can be solved by a computer are easier to solve than others (complexity). Those
two points should be the primary focus. Here is the syllabus of my Automata and
computational complexity course I designed for the math department [9]:

1. Computational models: computer, RAM, Turing machine, Boolean circuit.

2. Undecidable problems, Halting problem, reductions.

3. Time complexity, class P.
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4. Class NP, NP-hardness, NP-completeness, Cook-Levin Theorem.

5. Space complexity, class PSpace, PSpace-complete problem QBF, Polynomial
Hierarchy.

6. Class Log, s-t-Connectivity, Savitch’s Theorem.

7. Finite automata, regular languages.

8. Hierarchy Theorems, fine-grained complexity.

To start, any argument about computability or complexity needs a rigorous
definition of an algorithm, so we need models of computation: Turing machines,
RAM, their equivalence. Once we prove that the Halting Problem is uncomputable
it is useful to extend the result to other problems via reductions. Then time
complexity should come in the picture together with the class P representing
efficiently computable problems. Afterwards we can move to the class NP defined
as a class of problems for which we can efficiently verify solutions but we may
not know how to find their solutions efficiently. NP-hardness via polynomial
time reductions is a natural next step. This sets the stage for NP-completeness of
Satisfiability (SAT) and the Cook-Levin Theorem.

Space is another resource which one cares about so we should move on to
space complexity: the class PSpace with the complete problem Quantified Boolean
Formulas (QBF) as a natural generalization of SAT. By restricting the number
of quantifier alternations in QBF formulas we get the Σk-SAT, and the levels of
the Polynomial Hierarchy as the classes of problems reducible to the Σk-SAT by
polynomial time reductions.

PSpace contains the whole Polynomial Hierarchy and especially NP, so it
contains problems that we do not know how to solve efficiently. So we should
turn our focus to small space algorithms, the class Log of problems solvable in
logarithmic space. Arguing about problems in Log requires log-space reductions
which can be composed. A complete problem for Log is the s-t-Connectivity on
undirected graphs (without giving Reingold’s algorithm). One can venture into the
non-deterministic log-space (NLog) as the class of problems log-space reducible to
s-t-Connectivity on directed graphs. Once there it makes sense to show Savitch’s
Theorem that s-t-Connectivity can be solved in space O(log2 n).

At this point we can go even further with restricting space: we get the class
of problems solvable in constant space. Constant space on Turing machines is
equivalent to no-space as we can push the content of the tapes into the state of the
Turing machine. Problems decidable by a Turing machine with no-space can be
decided by a no-space Turing machine which moves its input head only in one
direction: finite automaton. Now we reached the well known class of regular
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languages and our journey downwards stops here. We can show that the language
0n1n is not regular (without using the Pumping Lemma.)

Since we defined all the complexity classes we can compare them to each other
by means of Time Hierarchy and Space Hierarchy Theorems. An excursion into
fine-grained complexity is a natural next step: a connection between the hardness
of improving algorithms for NP-complete problems and problems in P is one of the
most enlightening discoveries of the past few decades. My favorite is the reduction
from SAT to the Orthogonal Vector Problem. It is easy and it gets the point across.

Optionally, one can throw in Boolean circuits as the model of non-uniform
algorithms. This is a model which many students are already familiar with. They
know Boolean circuits because they model real hardware, and because of the
special case: neural networks.

Nondeterminism. One can completely avoid talking about non-deterministic
computation per-se. Personally I am not sure whether we should teach all students
about the abstract construct which is the non-deterministic computation. If I need
to present this concept to my students in my graduate level classes I like to start
with randomized computation which is more natural and realistic. Students are
usually familiar with randomized computation because they know some random-
ized algorithms for particular problems. For beginners I prefer the presentation of
NP purely using the efficient verification paradigm (see e.g. the textbook by [5]).
Other non-deterministic classes (Polynomial Hierarchy, NLog) can be presented as
the classes of problems efficiently reducible to their respective complete problems.

Comparison with Automata and formal languages. Arguably, the high-level
structure of current courses on automata and formal languages is the same as
that of the proposed syllabus. The traditional course focuses on recognition of
languages by various models of computation with limits on their computational
resources. With respect to the new syllabus the only difference is the choice of
restrictions on those resources, the choice of the models, and going top-down
instead of bottom-up.

The focus on the current computational complexity will align the course with
other course such as on algorithm and data structure design. Those courses re-
volve around design of efficient algorithms and data structures with respect to
time and space complexity where we are concerned with the asymptotic behaviour
of the two measures. This is at odds with the Chomsky hierarchy, the classifi-
cation of problems according to what type of automata recognizes them (finite
automata/push-down automata/Turing machines).
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3 Adopting a new syllabus
One of the technical hurdles to adopting a new syllabus is the availability of an
appropriate textbook. The best current textbook to cover the new syllabus could
still be the book by Sipser [10] if one skips Chapters 1 and 2. However, the book
in its current form is not ideal as there are many topics and exercises in the later
chapters that are concerned with a bit artificial problems on automata from earlier
chapters.

Another hurdle is the momentum of the education system. For better or worse,
university environment is a rather conservative place with respect to modification
of its curricula. There are competing interests of various parties, and different
courses are intertwined. Some of the concepts covered by the classical automata
and formal languages courses are relied upon in particular branches of computer
science.

Natural language processing historically relied upon grammars although most
of the current system rely on deep-neural networks. Similarly, theory of pro-
gramming languages relies on grammars although compilers and interpreters for
many current languages do not use them for parsing directly. The notion of finite
automaton is useful for software engineering to model systems which can be in re-
stricted number of distinct states. The same is true for description of cryptographic
primitives and network protocols. This has an impact on the area of software and
system verification. Niche applications of regular expressions are in some text
editors for searching and in system programming for rule specification. However,
none of those latter applications relies on the ability of finite automata to recognize
precisely regular languages which is the primary focus of the classical courses on
automata and formal languages.

So there are many areas which rely to some degree on the notions covered
by the course but perhaps they do not care so much about the closure of regular
languages under concatenation, union, intersection, etc. So they could perhaps be
satisfied with much more modest coverage of the topics.
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me from pursuing recursion theory for my doctoral studies and suggested to focus
my attention elsewhere. I know I wasn’t the only one receiving that advice from
him. I leave the reader with a question: How well do we serve our students if we
teach them a theory that they cannot develop substantially further?
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What if we tried Less Power?
Lessons from studying the power of choices

in hashing-based data structures

Stefan Walzer

Abstract

The celebrated power of two choices paradigm underlies cuckoo hash
tables as follows: If you have n balls and m = (2 + ε)n bins and throw each
ball into a bin at random, then likely some bin will receive Ω( log n

log log n ) balls.
If, however, you can choose between two random bins for each ball, you can
likely arrange for a private bin for each ball.

In the first part of this column, we review some related space-efficient
data structures on a high level. We’ll find that the additional power afforded
by more than 2 choices is often outweighed by the additional costs they
bring. In the second part, we present a data structure where choices play a
role at coarser than per-ball granularity. In some sense, we rely on the power
of 1 + ε choices per ball.

This column is a “best-of” of my dissertation and related work reviewed from a fresh perspective.
I’ve tried to make it a pleasant read conveying intuition while being unencumbered by technical
details. So allow me to be your guide through the garden of my interests, present and past. Our
winding path will circle a recent construction called Bumped Ribbon Retrieval [24], with which
our tour will conclude.

Part 1: Data Structures using the Power of Two Choices
The classical demonstration of the power of two choices goes as follows [5, 55].
Assume you have n balls, m = Θ(n) bins and you distribute the balls independently
and uniformly at random into the bins.

1 2 3 4 5 6

most loaded bin
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Then the most loaded bin will contain Θ( log n
log log n ) balls with high probability (whp)1.

In contrast, assume you generate two options for each of the balls and place the
balls sequentially, putting each ball into the bin with the least load among its two
options (breaking ties arbitrarily).

1 2 3 4 5 6

✓✗

Now the maximum load is only Θ(log log n) whp, which is exponentially less!
The described setting is known as online load balancing. Bins might correspond
to servers and balls to jobs that have to be assigned to servers on creation. What
if we generate further options for each ball? For d ≥ 2 choices per ball, the
maximum load becomes ln ln n

ln d + Θ(1) whp, i.e. d only affects a constant factor. In
other words, there is a massive difference between one and two choices and just
a small difference between 2 and d ≥ 3 choices. Hence the name power of two
choices.

Since its discovery, the power of two choices paradigm has been influential in
data structure design, which is the focus of this paper.

1.1 The Dictionary Problem & Cuckoo Hashing
Now consider offline load balancing where we generate the two random bins for
all balls in advance and think carefully about all choices at the same time.

n = 18

m = 20
Which option should each ball take to avoid collisions?

It is helpful to use a different visualisation where each bin is a vertex and each ball
an edge connecting the two bins it may be placed into:

(1)

If we ignore the possibility of duplicate edges, then we get a graph with m vertices
and n uniformly random edges.This is known as an Erdős-Renyi random graph.

1Defined as probability 1 − o(1).
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In their ancient and seminal paper “on the evolution of random graphs” [28] Erdős
and Renyi show that if the edge density satisfies n

m < 1
2 − ε then whp all connected

components of the graph are small trees (#edges = #vertices − 1) or pseudotrees
(#edges = #vertices). For n

m > 1
2 +ε, on the other hand, there is whp a “giant com-

ponent” (comprising Θ(n) vertices) that has more edges than vertices. Redrawing
our example we find:

trees pseudotree not a pseudotree

The task of placing all balls without collision corresponds to the task of assigning
a direction to each of the edges in the graph such that every vertex has indegree
at most 1. For tree and pseudotree components this is easy: For trees, we pick
an arbitrary root vertex and direct each edge away from the root. For a pseu-
dotree, which contains a single cycle, we direct the cycle in some consistent way
(say “clockwise”) and every other edge away from the cycle. For the remaining
component(s) there is no solution by the pigeon hole principle.

?

The important observation here is: If we have n balls and m = (2 + ε)n bins (for
constant ε > 0) then only trees and pseudotrees arise whp and we can place all
balls without a single collision.

Classic Cuckoo Hash Table. This observation gives us a cuckoo hash table
[58], a simple data structure that stores n elements, which we call keys2, using
one3 array of m memory cells and two hash functions that assign two uniformly
random4 cells to each key.

Say we wish to store the set { ,4, , }.5 We consider the keys’ hashes and find
a collision-free placement that puts each key into one of its two assigned cells.
(If no placement exists, we restart the construction with fresh hash functions.) To

2In general elements could be key-value pairs, but values play no role in the following.
3Most implementations use two arrays for reasons that need not concern us here.
4See Digression 1.
5We’ll use comically undersized examples throughout this text that hopefully still get the point

across. Practically relevant instances would typically have thousands or millions of keys.
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Digression 1: Simple Uniform Hashing Assumption (SUHA).
We assume that hash functions assign hash values to the keys independently.
This simple uniform hashing assumption is unrealistic as Ω̃(n) bits of entropy
would be needed for independence while popular practical hash functions like
MurmurHash [1] or xxhash [12] use seeds of only Õ(1) bits.
There are many standard ways of addressing this missmatch. We can try to work
with weaker notions like k-independence, where any set of k keys have inde-
pendent hash values but any k + 1 hash values may be correlated [69]. A good
overview on how this can help is given in [63] and highly practical 2-independent
families are described in [64]. A cryptographer might instead offer some insight
into how pseudorandomness can be indistinguishable from randomness. [3]
A well-subscribed lazy approach, that we also adopt here, is to simply use the
SUHA as a modelling assumption and point to its excellent track record of
capturing how popular hash functions behave in practice.

answer a query – say we wish to know if 4 is in the set – we evaluate the hash
functions on 4 and search both cells for the requested key.

△

△

△

situation during construction situation during query

(2)

Query times are O(1) in the worst-case (not just in
expectation). A down-side is that the load factor
is c = n

m < 1
2 , meaning twice as much memory is

required compared to naively storing keys consecu-
tively. That’s less than ideal. But what if we tried
more power? Il
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1.1.1 Higher Power: Generalisations of Cuckoo Hashing

A natural generalisation is to assign more cells to each key [30]. For k > 2 cells
the graph with m vertices and n edges from (1) becomes a hypergraph with m
vertices and n hyperedges of size k. This would make for a messy picture so we
stick with bipartite illustrations like in (2).

△

△
(3)
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Digression 2: Sharp Load Thresholds.
Consider the probability p that all n keys can be placed into a table of size m
when each key is assigned k = 3 cells at random. In the picture on the left,
we plot (experimental approximations of) p = pm(c) for varying load factor
c = n

m ∈ [0, 1] and fixed table size m = 104.

c
0 0.2 0.4 0.6 0.8 1

pm(c)

0.2

0.4

0.6

0.8

1
m = 104

m = 105

m = 106

m→ ∞

c
0.905 0.91 0.915 0.92 0.925 0.93

pm(c)

0.2

0.4

0.6

0.8

1

As expected, p decreases as c increases. What is not obvious is that the transition
from pm(c) ≈ 1 to pm(c) ≈ 0 happens within a tiny interval. On the right, we
zoom in and also plot the function for m = 105 and m = 106. This shows that the
transition becomes steeper for larger m and starts to resemble a step function.
In fact, there is a sharp load threshold c∗3 ≈ 0.9179 such that for c < c∗3 we have
limm→∞ pm(c) = 1 and for c > c∗3 we have limm→∞ pm(c) = 0.

Using k > 2 allows for the assumption n
m < 1

2 − ε on the load factor to be relaxed.
For k = 3 for instance, we find an increased load threshold of c∗3 ≈ 0.92 up to
which all keys can be placed whp. See Digression 2 for some background on the
phenomenon of thresholds.

Load thresholds c∗k are known for any k. They can be characterised implicitly
as solutions to certain equations, but for our purposes, tabulated values will do. We
include c∗1 = 0 to emphasise that avoiding collisions with just one hash function
requires m = Ω(n2) due to the birthday paradox, which gives a load factor of
n
n2 → 0.

k 1 2 3 4 5 6 7

c∗k 0 0.5 0.91794 0.97677 0.99244 0.99738 0.99906

Values as determined in [58, 17, 35, 32].

∗The values are of order ck = 1 − e−Θ(k) (this can be derived form [32]) so we can 
achieve load factors arbitrarily close to 1 by choosing k large enough. However,
any practitioner will be quick to point out that a query operation that has to check
k random memory locations is likely to incur k cache misses, so increasing k is
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not particularly enticing.
The far more popular generalisation sticks with k = 2 hash functions, but each

hash value identifies a bucket of ` memory cells [8, 29, 31]. Each key may then
be placed into any cell in any one of its two buckets.

△ △⋄

△△ ⋄
ℓ = 3

Thresholds c∗2,` for the load factor achievable this way are also known:

` 1 2 3 4 5 6

c∗2,` 0.5 0.89701 0.95915 0.98037 0.98955 0.99407

Values as determined in [58, 8, 29, 17, 31].

Unsurprisingly, both avenues for generalisation can be combined such that a key 
can be placed within any of k buckets of size ` each. The corresponding thresholds 
ck
∗
,` are all known [31, 49, 46].

Which generalisation is better? Should we use more hash functions or big-
ger buckets? On the one hand, if you consider the number of memory cells a 
query touches in the worst case, then using more hash functions seems superior 
to using bigger buckets. For instance, with 3 hash functions we get a threshold of
c∗3 ≈ 0.918 and have to scan three memory cells per query. When using 2 hash 
functions and buckets of size 2 we get a lower threshold of c∗2,2 ≈ 0.897 and have 
to scan four memory cells per query. It turns out the four correlated cells in the 
two buckets do not constitute as powerful a choice as three independent locations.

On the other hand, the reduced number of hash function evaluations and 
cache misses strongly favours using larger buckets rather than additional hash 
functions, even if the number of memory cells associated with a key has to be 
higher to achieve the same load factor.

From what I have seen, practitioners aiming for high load factors seem to be 
pretty happy with either k = 2 or a middle ground using k = 3 hash functions and
some bucket size ` ∈ {3, . . . , 8}, see e.g. [50, 71]. A related compromise assigns 
to each key k cells within the same memory page and 1 additional cell in a backup
page [18] (see also [62]). It turns out most keys can then be stored on their primary 
page.
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The message so far can be summarised as follows: Cuckoo hash tables are
powered by the first two independent choices. Adding the third choice can help
but competes for attention with other measures for increasing the load factor. Two
choices is all you really need.

1.1.2 Power Dynamics: Cuckoo Table Construction and Insertion

The thresholds mentioned so far only relate to whether or not a rule-conforming
placement of all keys in the hash table exists. But how can such a placement be
found and maintained? For simplicity, we focus on cuckoo hashing with k hash
functions and buckets of size ` = 1.

Table construction. Constructing a cuckoo hash table is about finding a match-
ing in a bipartite graph such as (3). Out of the box, the maximum matching algo-
rithm by Hopcroft and Carp [41] has a worst case running time of O(n3/2), but a
specialised algorithm with expected running time O(n) for k ≥ 2 is known [44].

A conceptually interesting greedy algorithm is peeling. It identifies cells in
the table that are an option for only one (remaining) key. In the following
illustration on the left, at first only can be placed in this way into cell 5, then
and can be placed, and, finally, 4 ends up with three cells to itself and can be
placed in any one of them.

△ △ △ △

△
The peeling process

To better assess the utility of peeling, consider the load thresholds c4k up to which
peeling manages to place all keys in a cuckoo hash table with k hash functions:

k 3 4 5 6 7

c4k 0.81847 0.77228 0.70178 0.63708 0.58178

Values as determined in [56]. Variants in [14, 60, 43] and [51, Chapter 18].

There are two things to notice here. Less relevant is that the value for k = 2 
is missing. To see why, recall the graph with m vertices and n edges from (1). 
Peeling can handle trees but gets stuck if there is at least one cycle. Unfortu-
nately, the probability for a cycle to exist is bounded away from zero as soon
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as n
m is bounded away from 0. So for peeling to work whp we need k ≥ 3.

More relevant is that c∗k < c4k , meaning there are load
factors where a placement exists whp but peeling
fails to find one whp. Even worse, the gap c∗k−c4k be-
tween the thresholds increases with k, even converg-
ing to 1 for k → ∞. This disqualifies peeling as a
general-purpose construction algorithm for cuckoo
hash tables. However, peeling will make a comeback
in more specific settings (stay tuned!).

△

A placement exists, but
peeling is stuck immediately.

Insertions. A construction algorithm suffices for a static key set, but for a dy-
namic data structure, we need to maintain a placement as keys are inserted and
deleted over time. A deletion is trivial: Simply locate the key, by checking all as-
sociated cells, and remove it from there. An insertion on the other hand amounts
to modifying an existing matching to incorporate a new key. This suggests that
we look for an augmenting path.

⋄ △

⋄ △

⋄ △

⋄ △
In the picture, is the newly added key and moves into the cell previously used
by , which moves into the cell previously used by , which moves into an empty

m
∗

cell.
There are two well-known strategies for finding such an augmenting path, both

proposed in [30]. Breadth first s earch ( BFS) i nsertion c omputes t he shortest 
augmenting path in the natural BFS way. Random walk (RW) insertion goes 
ahead and places the unplaced key into one of its cells at random and evicts the 
key that was there before (if any). The evicted key is then also placed randomly 
and so on until an evicted key is placed into an empty cell. Strategies more clever 
than this have also been considered, some of which store some auxiliary data 
in the cells [45]. How good are these algorithms? It seems that, up to constant
factors between them, they are equally excellent in practice in the sense that their
running time does not depend on n, i.e. is O(1).

Conjecture 1 (Echoing sentiments from [34, 68, 45, 36, 30]). Consider a cuckoo

n
hash
< c

table 
ε
with

for
k ≥
some

2 
ε
hash
> 0.

functions,
Assume

b
the
uck

k
ets

eys
of

are
size `

inserted
≥ 1, and a

sequentially
load factor

usingk,` − 
BFS insertion or RW insertion. Conditioned on the high probability event that a
placement of all keys exists, the expected time to perform each insertion is O( f (ε)) 
for some function f that does not depend on n.
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I know of no proof, neither for RW nor for BFS and for no pair of k and `,
except for the classical case of k = 2 and ` = 1, where there is no choice regarding
which key to evict from a given bucket (there is just one) and no choice regarding
where to relocate an evicted key to (there is just one alternative). Partial proofs
exist for the case with ` = 1 for

• BFS, for k > 8 and under a stronger restriction on the load factor [30],

• RW, for large k and under a stronger restriction on the load factor [34],

• RW, for load factors below the peeling threshold c4k [68],

• RW, but only guaranteeing running times of O(polylog n) [36, 33].

More progress towards proving the conjecture would be exciting. Maybe tech-
niques from statistical physics, which have been a powerful tool for determining
thresholds in the static case [49, 47, 46] can help with the dynamic case as well.

1.1.3 Creatively Wielding the Power

The number k of hash functions and the size ` of buckets are not the only degrees
of freedom in the design space. Here is a short list of further variants that were
considered and the reasons why.

Double Hashing [53] Unaligned Blocks [48] Spatial Coupling [67]

4 10 16

a +b +b

ℓ ℓ εm

(4)

Double Hashing. Mitzenmacher and Thaler [53] proposed that the buckets b1, . . . , bk

assigned to a key are not chosen independently. Instead, only b1 and an off-
set d are chosen at random, and b2, . . . , bn are defined as bi := b1 + (i−1) ·d,
modulo the number of buckets. This reduces the amount of entropy in a
key’s hash values from k log m to 2 log m with no apparent downsides. In
particular the thresholds c∗k,` remain the same [47, 52].

Unaligned Blocks. Lehman and Panigrahy proposed to use buckets that do not
form a partition of the set of cells. Rather, any contiguous sequence of `
cells can occur as a bucket, regardless of the offset. This scheme yields
higher thresholds than c∗k,` without affecting the access pattern of queries
[48, 65].
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Spatial Coupling. Walzer proposed that the k buckets assigned to a key are cho-
sen within the same interval of εm buckets for some ε > 0. Assuming ε is
small enough and the load factor is less than c∗k,`, not only does a placement
exist whp, but peeling works whp. [67]

I cannot help but wonder which other surprising effects can be achieved by further
creative cuckoo hashing variants.

1.2 The Retrieval Problem & Random Matrices
In the retrieval problem6 we are given a set S and a function f : S → {0, 1}r for
some r ∈ N. Let us assume r = 1. The task is to construct a data structure that
returns f (x) when queried for x ∈ S . What is unusual is that a query for some
y < S may return an arbitrary result. In an instructive example due to Pagh and
Dietzfelbinger [19], S is a set of names and f tells us if a name x ∈ S is female
( f (x) = 1) or male ( f (x) = 0).

f = {mary 7→ 1,
paul 7→ 0,
lizzy 7→ 1,
john 7→ 0, . . . }

Dconstruct

banana
john
mary

0
1

1 // unspecified
query

// datastructure

When f reflects typical English names, the data structure should return 0 for
john ∈ domain( f ) and 1 for mary ∈ domain( f ). When queried for banana <
domain( f ) both 0 and 1 are allowed, we don’t care.

The trivial solution for this problem stores the set of pairs

f = {(john, 0), (mary, 1), (lizzy, 1), (paul, 0), . . . }

using a dictionary. This requires storing at least n = |S | strings. However, we 
will soon see that the most space-efficient solutions require little more than n bits.
Note that n bits are necessary if we make no further assumptions on the input.7

y
As

of
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m
warm-up,

(n) 
here
cells 
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that
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can
compact
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needs
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.
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We use
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S with a
= O

random cell h(x) [m] and set a cell to 
{
0 or 1

⊥}
whenever a consistent

v 
∈

alue exists and in case of 
∈

conflicts:⊥
6The first m ention o f t he p roblem u nder t he n ame “ retrieval” t hat I  c ould fi nd is  in  [1 6] in 

2006. Bloomier filters [10] in 2004 are a  clear spiritual predecessor and related to approximate 
membership. More background is given in [19].

7If there are regularities such as the majority of names in domain( f ) being male or most female 
names ending in a vowel, then compression maybe possible, see [42, 6, 38].



BEATCS no 140

100

john paul mary lisa rob dave

0 0 0 1 ⊥ 0 0
conflict!does not matter

The keys involved in a conflict make up a constant fraction of all keys in expec-
tation. For these, we can build a fallback data structure recursively. Some readers
may have fun working out that we get constant expected access time and a total
space consumption of roughly e/2 array cells per key for m = n/2.8 This amounts
to e ≈ 2.72 bits per key when using the naive encoding {0 7→ 00, 1 7→ 11,⊥ 7→
01}.An improved version of this idea is known as filtered retrieval [57].

1.2.1 The Power to be Independent: Retrieval via Random Linear Systems

To get closer to succint retrieval we consider strange cousins of cuckoo hash
tables, cf. [7, 39]. While not employing the power of two choices in the traditional
sense, their setup and analysis are closely related. Hash functions assign to each
key several cells in an array of size m ≥ n that is populated with bits in such a
way that taking the xor of all bits associated with x ∈ S yields f (x).

john mary paul lisa

0
1

1
2

0
3

1
4

0
5

1
6

1
7 (5)

A query for johnwould, for instance, compute f (john) = 0⊕1⊕1 = 0, where ⊕ de-
notes xor. To construct the data structure we had to choose values z1, z2, . . . , z7 ∈
{0, 1} to put into the array to simultaneously satisfy the equations

z1 ⊕ z2 ⊕ z4 = 0
z2 ⊕ z4 ⊕ z6 = 1
z1 ⊕ z6 ⊕ z7 = 0
z4 ⊕ z6 ⊕ z7 = 1

(john)
(mary)
(paul)
(lisa)

Since ⊕ is addition in the two element field F2 = {0, 1} these equations are linear
equations over F2. So fasten your seatbelt for a bit of linear algebra, but don’t

8Hint: Assume that n/2 names are male and n/2 names are female (you can later check that
this is the worst case). Then use that for a fixed name x, the number of names of the opposite
gender that share the hash value of x has distribution Bin( n

2 ,
1
m ), which converges to the Poisson

distribution Po( n
2m ) = Po(1) that satisfies Pr[Po(1) > 0] = 1 − 1/e.
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worry, it’s not so bad. We can write the above equations in matrix form as



1 1 0 1 0 0 0
0 1 0 1 0 1 0
1 0 0 0 0 1 1
0 0 0 1 0 1 1


·



z1

z2

z3

z4

z5

z6

z7



=



0
1
0
1



(john)
(mary)
(paul)
(lisa)

When does such a system have a solution ~z ∈ {0, 1}m? Well, the columns of the
n × m matrix A should better span all of {0, 1}n, so that the right hand side vector
( f (x))x∈S ∈ {0, 1}n can surely be attained as a linear combination of these columns.
In other words, the column rank of A should be n. Since column rank and row rank
are the same thing, the n rows of A have to be linearly independent.

What are our goals here? Remember that n is part of the input and we are
free to choose two things: The number m of columns and the way in which keys
are associated with row vectors via hash functions. Ideally we want that m is
small so that z ∈ {0, 1}m is cheap to store and we want row vectors to have small
Hamming weight so queries are cheap to evaluate. Both of these goals are
intuitively in tension with the independence requirement.

An encouraging fact is that even square matrices (i.e. m = n) where every
entry is chosen by a biased coin with probability p =

log n
n (i.e. rows have ex-

pected Hamming weight log n) are regular with constant probability [13]. This is,
however, not the most natural setup for our purposes.

1.2.2 New Data Structure, Same Thresholds:
How Cuckoo Hashing Connects to Retrieval

A more natural setup already depicted in (5) associates k random cells with every
key, which produces a matrix with k ones per row in random positions.

There is a threshold ck for the ratio c = n
m such that A has rank n whp when

c < ck − ε and A has rank less than n whp when c > ck + ε. Remarkably,
it coincides with the threshold for cuckoo hashing with k hash functions, i.e.
ck = c∗k. Only the direction ck ≤ c∗k is easy to show here. If A has rank n, then
some selection of n columns induces a regular submatrix A′ (highlighted below).



1 1 0 1 0 0 0
0 1 0 1 0 1 0
1 0 0 0 0 1 1
0 0 0 1 0 1 1
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The determinant of A′ is a non-zero number in F2, hence det(A′) = 1. By the
Leibniz formula for determinants we have 1 = det(A′) =

∑
π∈S n

∏
i∈[n] a′i,π(i) where

(a′i, j)i, j∈[n] are the entries of A′ and S n is the symmetric group with n elements. At
least one π ∈ S n must yield a non-zero contribution to det(A′), and all entries a′i,π(i)
for i ∈ [n] must then be 1. These entries are shown in bold in the matrix above
and correspond to an injective placement of all keys in a cuckoo hashing setting.
Bluntly:

c < ck ⇔ “retrieval works whp”⇒ “cuckoo hashing works whp”⇔ c < c∗k

hence ck ≤ c∗k. The converse statement ck ≥ c∗k requires a lot more work to prove
[26, 59, 17, 11].

1.2.3 Longer Blocks and Bitparallel Queries

To get thresholds closer to 1 there are similar options as in cuckoo hashing.
Increasing k works but requires queries to combine data from more independent
cells, resulting in more cache misses. Meh. We can also adopt the idea of using
buckets of size `. Naively connecting each key to each cell in two blocks of size `
does not work however. We merely obtain copies of identical columns that do not
contribute to the matrix rank, as shown below on the left (from now on we use a
dot “·” to indicate implicit zeroes that do not explicitly occur in any representation
and we omit the right hand side of equations). Instead we should associate each
key with a random non-empty subset of cells of each of its blocks as shown on
the right.



· · · 111 · · · 111 · · ·
111 · · · · · · · · · 111
· · · 111 · · · · · · 111
111 · · · 111 · · · · · ·
· · · 111 111 · · · · · ·
111 · · · · · · 111 · · ·


bad idea: each key (row) is associ-
ated with all cells within two blocks
of size ` = 3.



· · · 010 · · · 110 · · ·
100 · · · · · · · · · 110
· · · 111 · · · · · · 010
010 · · · 110 · · · · · ·
· · · 111 001 · · · · · ·
101 · · · · · · 001 · · ·


okay idea: each key (row) is asso-
ciated with some cells within two
blocks of size ` = 3.

(6)

Precise thresholds are not known and not identical to the cuckoo hashing thresh-
olds c∗2,`. What we do know is that for suitable ` = Θ(log n) and m = n + Θ(log n) 
we obtain a matrix with rank n whp [20]. This yields a succinct retrieval data
structure with an almost optimal space requirement of n +O(log n) bits. Now con-
sider a query. Given the solution vector z ∈ {0, 1}m and the row vector associated 
with a key x ∈ S we have to compute their scalar product to obtain f (x).



The Bulletin of the EATCS

103

solution vector zT : ( 111 110 010 101 111 )
query(jane)

hashing−−−−−→ row vector for jane: ( · · · 011 · · · · · · 101 )
010 101

popcount = 3
1 (mod 2)

bitwise and

An element-wise product of two vectors in F`2 is a bitwise and and the sum of the
entries of a vector in F`2 is a population count modulo 2. On a word RAM with
word size w = Ω(`), we can perform all we need for a query in O(1) steps.

With constant time queries and almost optimal space, this seems like an ideal
data structure until you realise that there is no fast way to construct it.

1.2.4 To Gauss or not to Gauss: Constructing Retrieval Data Structures

A problem with all this is that computing the solution vector z ∈ {0, 1}m requires
solving a system of linear equations. Spending O(n3) time on Gaussian elimina-
tion seems prohibitively expensive. Let us consider some alternatives.

Linear Time Solvers using Peeling. We can use a setup where peeling works
whp, traditionally with k = 3 cells per key and a load factor below c43 ≈ 0.82
[7, 56]. Peeling means we look for a variable only appearing in one equation. We
postpone initialising this variable to the end and ignore the equation until then.
The remaining system may again have a variable appearing in only one of the
remaining equations and so on. A different way of saying that a linear system
is peelable is that its matrix can be transformed into echelon form by row and
column permutations alone, with no need for row additions.

1 2 3 4 5 6 7
1
2
3
4
5



1 1 1 · · · ·
· · 1 · · 1 1
1 · · · 1 1 ·
1 1 · · · · 1
· 1 · 1 1 · ·


→

4 2 3 1 5 6 7
5
2
3
4
1



1 1 · · 1 · ·
· · 1 · · 1 1
· · · 1 1 1 ·
· 1 · 1 · · 1
· 1 1 1 · · ·


→

4 5 3 1 2 6 7
5
3
2
4
1



1 1 · · 1 · ·
· 1 · 1 · 1 ·
· · 1 · · 1 1
· · · 1 1 · 1
· · 1 1 1 · ·


→

4 5 6 7 2 3 1
5
3
2
4
1



1 1 · · 1 · ·
· 1 1 · · · 1
· · 1 1 · 1 ·
· · · 1 1 · 1
· · · · 1 1 1



The row and column of the highlighted 1 is swapped to the front to create an echelon form.

After finding the peeling order of equations and variables in linear time, we can 
find a solution with back substitution in linear time. The setup with peeling thresh-
olds close to 1 from Section 1.1.3 reconciles this approach with close to optimal 
space efficiency both in theory [67] and in practice [40].

Quadratic Time Solver using Wiedemann’s Algorithm. If F is a finite field,
A ∈ Fn×n a regular matrix with ψ non-zero entries and b ∈ Fn then a solution z to A·
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z = b can be computed in O(nψ) field operations using Wiedemann’s algorithm
[70]. For sparse matrices with ψ = O(n) this gives a quadratic time solver that
can be generalised to non-square matrices A. Exploiting this for retrieval has been
tried [4, 66], but it did not perform convincingly in experiments.

Bringing out the Big Gauss Rifles. A line of papers starting with Genuzio et al
[37] cooked up ideas that made biting the bullet of performing Gaussian elimina-
tion seem like an almost appetising prospect.

The most important realisation is that we can partition the input set into
many shards of expected size C using a hash function and construct a data struc-
ture for each of these shards. This reduces the running time from O(n3) to O( n

C ·
C3) = O(nC2). The price is an additional level of indirection during queries and
a few bits of metadata for each of the n

C shards.9 This can be combined with
bit-level parallelism, a structured Gaussian elimination that tries to keep the
matrix as sparse as possible for as long as possible, and the method of four Rus-
sians [2], which eliminates entries from O(log n) columns at the same time. This
yields fairly efficient solvers that are trivial to parallelise.

Part 2: The Power of less than two Choices

2.1 Ribbon: Choice is overrated
After a talk on the retrieval data structure using two blocks per matrix row (see
(6) on the right) a listener asked a question.
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Seth Pettie to my coauthor
Martin Dietzfelbinger at
Dagstuhl-Seminar 19051.

Supposedly he had this in mind:



· · · · · · 1 1 1 1 · · ·
· · · · 0 0 1 1 · · · · ·
1 0 1 1 · · · · · · · · ·
· · · · · · 1 0 1 1 · · ·
· · · · 1 0 0 1 · · · · ·
· · · · · · · · · 1 0 0 1
· · · · · 0 1 0 1 · · · ·
· · · · · · 1 1 0 0 · · ·
· · 1 1 0 0 · · · · · · ·
· · · · · 1 0 1 1 · · · ·



(7)

In the suggested scheme there is a block size w and each key is associated with a
starting position i ∈ [m − w + 1] and a coefficient vector c ∈ {0, 1}w that together

9In theory, a construction with two levels of indirection and shards of size C =
√

log n can lead
to a succinct data structure with linear construction time [61]. However, astronomical input sizes 
are required for the asymptotic behaviour to kick in.
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lead to a row in A with zeroes everywhere except for one randomly placed block
of w random bits.

This blasphemous single-block-per-key suggestion throws the power of choices
paradigm completely out the window. Could this work?10 More precisely, for
which values of m, n and w is such a matrix likely to have independent rows?

Simplification: Bounded Linear Probing. First, let us sort the rows by start-
ing position. Second, let us simplify the problem by ignoring the patterns of zeroes
and ones and just consider the placement problem where we wish to select one
position within the block of each row without selecting the same column twice.
Our question is now simply: In a linear probing hash table where each key hashes
to a starting position, can all keys be placed within w − 1 cells of their starting
positions?



1 0 1 1 · · · · · · · · ·
· · 1 1 0 0 · · · · · · ·
· · · · 1 0 0 1 · · · · ·
· · · · 0 0 1 1 · · · · ·
· · · · · 1 0 1 1 · · · ·
· · · · · 0 1 0 1 · · · ·
· · · · · · 1 0 1 1 · · ·
· · · · · · 1 1 0 0 · · ·
· · · · · · 1 1 1 1 · · ·
· · · · · · · · · 1 0 0 1





• ◦ ◦ ◦ · · · · · · · · ·
· • ◦ ◦ ◦ · · · · · · · ·
· · · · • ◦ ◦ ◦ · · · · ·
· · · · ◦ • ◦ ◦ · · · · ·
· · · · · ◦ • ◦ ◦ · · · ·
· · · · · ◦ ◦ • ◦ · · · ·
· · · · · · ◦ ◦ • ◦ · · ·
· · · · · · ◦ ◦ ◦ • · · ·· · · · · · ◦ ◦ ◦ ◦ · · ·
· · · · · · · · · ◦ • ◦ ◦



. . . . . .a b

rows sorted by
starting position

simplified task: select one
position in the block of each
row using distinct columns

bounded linear probing

A greedy algorithm suffices to decide this question: Go through the keys in as-
cending order of starting position and place each key as far left as possible. The
filled dots above indicate where the keys are placed. If we fail to place a key this
way, as we do in the example, then this is witnessed by a range of N positions
such that at least N + 1 keys have their block completely contained within the
range (shaded grey with N = 6).

Connection to queuing theory. There is an equivalent way to describe the
greedy placement algorithm just discussed (cf. [21]). We maintain a FIFO queue
Q of keys and go through the table cells from left to right. When handling cell i we
add the keys with starting position i to the back of Q and then place the first key in
Q (if any) into position i and remove it from Q. This procedure places every key
within its block if and only if the size of Q never exceeds w.11 We therefore anal-
yse the size qi of Q after step i. If xi is the number of keys with starting position i

10Spoiler alert: Yes, and it kicked off an entire line of papers for us [21, 25, 24].
11Can you see why?
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then

qi = max(0, qi−1 + xi − 1) for i ≥ 1, and q0 = 0. (8)

Each xi has Binomial distribution Bin(n, 1
m−w+1 ) because each of the n keys has

an independent chance of 1
m−w+1 to have i as its starting position. Since we know∑

i xi = n, there is a slight but annoying negative correlation between the xi. A
common approximation in such a situation replaces the family (xi)i∈[m−w+1] of
Binomial random variables with an independent family (x′i)i∈[m−w+1] of Poisson
distributed random variables with the same expectation E[x′i] = α := n

m−w+1 . See
Digression 3 for an explanation.

Digression 3: Poissonisation and random coupling (see also [54, Chapter 5.4]).

n
m−w+1 =: α

xi ∼ Bin(n, 1
m−w+1 )

x′i ∼ Po(α)

m − w + 10
0

H := smallest height
with n points at
or below this line

random variable!deterministic!

The picture shows a strip of width m − w + 1 that is open to the top and contains
points randomly with a rate of 1 point per unit of area (known as a Poisson point
process). Within the strip we consider m − w + 1 disjoint sub-strips of height α
as shown. The number of points x′i within the i-th strip has distribution Po(α).
Let now H be the smallest vertical position such that exactly n points fall at or
below H. Note that H is a random variable. Because each of the points below
H is within any of the vertical strips with the same probability, the number xi of
points below H in the i-th strip has distribution Bin(n, 1

n−w+1 ).
Technically, we have constructed a coupling between the two families
(xi)i∈[m−w+1] and (x′i)i∈[m−w+1] of random variables, i.e. we have embedded them
in the same probability space. The outcomes of (xi)i∈[m−w+1] and (x′i)i∈[m−w+1] are
now tightly linked. If H ≥ α then we have xi ≥ x′i for all i and if H ≤ α then we
have xi ≤ x′i for all i, and both happen with probability roughly 1/2. By chang-
ing α very slightly we can ensure that one of the two cases occurs whp. Relying
on some monotonicity property of our surrounding problem such as “additional
keys can only reduce the probability that all keys can be placed” allows us to
transfer a result that holds for the Poisson model to the Binomial setting.

With this change, the values q0, q1, q2, . . . from (8) are the states of a so-called 
M/D/1 queue, which is a Markov chain that can be illustrated like this:
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︸                          ︷︷                          ︸
Markovian arrivals, i.e.
people arrive randomly

with a rate of α

︸                                 ︷︷                                 ︸
state of the process:

number q of people waiting

︸                   ︷︷                   ︸
Deterministic

server handling 1
person per time unit

︸      ︷︷      ︸
served
people
leave

If α < 1, then the customers arrive, on average, slower than they can be served
and there is a stable distribution for the number q∗ of waiting customers in the
long run. Queuing theory literature promises an average queue length of E[q∗] =

O(1/(1 − α)) [15] and the tail bound Pr[q∗ ≥ w] = e−Θ(w/(1−α)) [27, Prop 3.4].
This means we have to pick w = Ω(log(n)/(1 − α)) to ensure that the size of Q
never exceeds w within O(n) steps whp, which means all keys are validly placed
in bounded linear probing.

So is this any good? We have essentially reinvented a linear probing hash table
with the twist that the maximum probe length is guaranteed to not exceed w =

O(log(n)/(1 − α)) when the load factor is n
m ≈ n

m−w+1 = α. This is strongly related
to Robin Hood hashing [9] and not too exciting at first.

The arguments just given can be strengthened to show that the matrix from
(7) with block length w has independent rows whp.12 Moreover, a correspond-
ing linear system can be solved with O(n/(1 − α)) row operations in expectation
using Gaussian elimination because after sorting the rows by starting position
the matrix is already close to being in echelon form (as already seen above).
The number of row operations per column is linked to the average length of Q.
Assuming we can handle O(log n) bits at a time using bit parallelism, the scalar
product to be carried out by a query takes O(1/(1 − α)) operations. A query is
very cache efficient because it reads w contiguous bits from memory.

Overall we get a retrieval data structure with a load factor close to 1 that needs
to access one contiguous sequence of bits from memory per query, with no bullet
biting concerning expensive linear system solvers. My coauthor Martin and I were
quite pleased with this solution [21], which has since been dubbed ribbon retrieval
[24], because it improved upon the state of the art in 2019. Then we got an email
from a database engineer who made it even better. [22]

12The corresponding variant of the M/D/1 queue involves customers that randomly pay attention 
only half the time when they are in the queue. At every step, the left-most customer that pays 
attention is served, if any. When the queue is long, the speed at which customers are served is
hardly affected. The additional time a customer spends in the queue is O(log(n)) whp.
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2.2 Bumped Ribbon: The Power of 1 + ε Choices
The following ideas were intended for retrieval, but here I continue in the simpler
hash table setting, where they also apply.

More than one, less than two. Let’s take a step back. Consider a cuckoo
hashing setting where each key is associated with k random starting positions
s1, . . . , sk ∈ [m−w+1] and may be placed in cells with an index in

⋃
i∈[k]{si, . . . , si+

w − 1}, i.e. within one of k randomly placed blocks of size w.

w = 4 w = 4

k = 2

For k = 1 we obtain the ribbon scheme discussed in Section 2.1 and for k ≥ 2 a
scheme by Lehman and Panigrahy briefly mentioned in Section 1.1.3. Let us now
ask: What is the smallest w = w(k) such that all keys can be placed whp when
the load factor is, say, α = 0.99? We find:

k 1 2 3 4 5 6 7 . . .

w(k) Θ(log n) 3 2 2 1 1 1 . . .

The point is: There is a qualitative difference between having just one choice
of a block (if you even want to call it “choice”) and the power of two or more
choices. Could there be an interesting middle ground between 1 and 2?
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How I imagine Peter Dillinger came up with
a great idea.

Could there be a power of k = 1.5 choices? What would this even mean? Well, a 
key could have 2 choices with probability 50% and only 1 choice with probability 
50%. One might argue that this is 1.5 choices per key on average. I would nitpick 
and say that choices tend to aggregate multiplicatively (selecting among 2 choices 
and then among 3 choices gives 6 choices overall) so taking the geometric mean
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and speaking of
√

2 ≈ 1.41 choices per key is more natural.13 Either way, the
problem is that placing the ≈ 50% of keys that end up with 1 choice (and ignoring
the others) still requires w = Ω(log n) with no improvement over k = 1.

But here is a different kind of compromise. We partition the key set into groups
of expected size b and offer c choices for handling a group of keys as a whole.
This (arguably) corresponds to k = c1/b independent choices per key. Such a k
might well be strictly between 1 and 2. Dillinger et al. [24] dubbed a concrete
setup of this kind bumped ribbon.

Bumped Ribbon. Like before, each key is associated with one block of w con-
secutive positions. Keys are partitioned into groups with consecutive starting po-
sitions. For each group, there are two choices. The keys are either stored normally
or the entire group is bumped, meaning the keys are moved to a recursively con-
structed fallback data structure.14

To get some intuition, consider the following matrix-like visualisations were rows
correspond to the keys sorted by starting position and columns to array cells. Grey
shading in position (i, j) indicates that the ith key may go into array slot j (imagine
we have zoomed out so the border of the grey area looks like a continuous curve).
We’d like for the matrix diagonal to run through the shaded region because then
the ith key can go into the ith slot so (i) every key would be placed and (ii) every slot
would be put to use. We can ensure (i) and mostly ensure (ii) with two measures.
We start with a slightly overloaded data structure (a load factor α > 1) and then
bump groups of keys in strategic positions.

13This is the right view when considering the average amount of information that has to be
recorded per key to encode the choices. This information in bits is the log2 of the number of 
choices.

14To bring this more in line with the previous setting, we can consider the fallback data structure 
to be a special segment in the primary data structure rather than separate and ensure that that 
bumped keys are not bumped again by the fallback data structure. In [23] such a variant is called 
Bu1RR, but introducing it here would be a distraction from our main point.
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array cells

key
s −→

an overloaded data structure where
not all keys could be placed

after bumping some keys, the
remaining keys perfectly fill all cells

Details on the exact proposal are given in Digression 4. For any ε > 0, bumped
ribbon has 1 +ε choices per key in the mean (for each group of O(1/ε) keys, there
are 3 choices: bump none, some, or all keys from the group). The block size is
w = Ω(log(1/ε)/

√
ε). The memory overhead (the fraction of wasted space taking

into account unused cells, metadata and fallback data structures) is of order O(ε).
In this sense, we are using a power of 1 + ε choices! Framed in terms of the
previous table:

k 1 1 + ε 2 3 4 5 6 7 . . .

w(k) Θ(log n) O
( log(1/ε)
√
ε

)
3 2 2 1 1 1 . . .

While we have not evaluated the performance of bumped ribbon as a static
dictionary, the corresponding static retrieval data structure has significantly im-
proved upon the state of the art by marrying three useful properties: First, courtesy

Digression 4: Some details on bumped ribbon.
We are actually bumping keys by starting position, meaning a key is bumped
if and only if its starting position is marked as bumped. The starting positions
are partitioned into groups of size O(w2/ log w). For each group, we store 2 bits
of metadata that indicate which positions are bumped: (i) none, (ii) the first 3

8 w
positions, or (iii) all positions, where (iii) is a rarely used emergency option. The
initial load factor (before bumping) is set to be α = 1 + Θ( log w

w ). The metadata
can be set such that:

1. Each non-bumped key is placed within w cells of its starting position.

2. Only a w−Ω(1) fraction of the cells remains empty.

3. The overall memory overhead is dominated by the metadata and thus
O( log w

w2 ) bits per key.



The Bulletin of the EATCS

111

of 1 + ε choices, the block size w need not grow with n. Second, there is a good
chance of answering a query with a single memory access since most keys are
not bumped. Third, we get close to linear time construction since the relevant
linear system is already close to echelon form.

TL;DR Conclusion
Our journey began with a discussion of cuckoo hash tables that have worst-case
access times of O(1) and a load factor of α = 1

2 − ε. We considered various
approaches for increasing the load factor and argued that increasing the number
of independent choices that every key has is not the most attractive option due to
the increased number of cache misses incurred by each query. While two choices
per key is qualitatively different from a single choice (i.e. “no choice”), the step
to more than two choices is comparatively underwhelming. What’s more, when
considering static retrieval data structures closely related to cuckoo hash tables
we find that the flexibility afforded by multiple choices can come at the price of
expensive construction algorithms.

Wondering if “two” is really the least amount of choice one can have per key
motivates bumped ribbon. When used as a hash table it is much like linear prob-
ing, except that the maximum probe length is guaranteed to never exceed a con-
stant w. Keys can be marked as “bumped”, meaning they are placed in a fallback
data structure, if their part of the hash table is too crowded. Superficially, there are
two choices per key: bumped or not bumped. However, there is more rigidity in
two important ways: First, only few keys are bumped so the entropy in any key’s
choice is much less than one bit. Second, bumping decisions are correlated with
large groups of keys being bumped as a whole.

In a sense we have harnessed the power of 1 + ε choices per key. The quali-
tative power of choices is present, namely the ability to defuse certain worst-case
constellations, but the price that flexibility brings is significantly attenuated.
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Formal Languages via Theories over Strings:
An Overview of Some Recent Results

Joel D. Day * Vijay Ganesh † Florin Manea ‡

Abstract

In this note, we overview a series of results that were obtained in [16, 15].
In these papers, we have investigated the properties of formal languages ex-
pressible in terms of formulas over quantifier-free theories of word equa-
tions, arithmetic over length constraints, and language membership predi-
cates for the classes of regular, visibly pushdown, and deterministic context-
free languages. As such, we have considered 20 distinct theories and decid-
ability questions for problems such as emptiness and universality for formal
languages over them. In this note, we first present the relative expressive
power of the approached theories. Secondly, we discuss the decidability
status of several important decision problems, some of them with practical
applications in the area of string solving, such as the emptiness and the uni-
versality problem. To this end, it is worth noting that the emptiness problem
for some theory is equivalent to the satisfiability problem over the corre-
sponding theory. Finally, we discuss the problem of deciding whether a
language expressible in one theory is also expressible in another one, and
show several undecidability results; these investigations are particularly rel-
evant in the context of normal forms for string constraints, and, as such, they
are relevant to both the practical and theoretical side of string solving.

The current note is heavily based on the contents of [16, 15], and the
readers are encouraged to check these references for complete details.

1 Introduction
Logical theories based on strings (or words) over a finite alphabet have been an
important topic of study for decades, as described, for instance, in the two fun-
damental handbooks in the area of combinatorics on words [33, 32] as well as
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in the volumes 1 and 3 of the handbook of formal languages [39, 40]. Connec-
tions to arithmetic (see, e.g.,Q̃uine [38]) and fundamental questions about free
(semi)groups underpinned interest in logics involving concatenation and equality.
Combining these two topics leads to word equations: expressions α = β where α
and β are terms obtained by concatenating variables and concrete words over a fi-
nite alphabet. For example, if x and y are variables, and our alphabet is Σ = {a, b},
then xaby = ybax is a word equation. Its solutions are variable-substitutions uni-
fying the two sides: x→ bb, y→ b would be one such a solution for the previous
example; other solutions are x→ bn+1, y→ bn, for n ≥ 0.

The existential theory of a finitely generated free semigroup consists of for-
mulas made up of Boolean combinations of word equations. In fact, the problem
of deciding whether such a formula is true is equivalent to determining satisfia-
bility of word equations, since any such formula can be transformed into a single
word equation without disrupting satisfiability (see [33, 27]). While it was origi-
nally hoped that the problem of deciding if a word equation has a solution could
facilitate an undecidability proof for Hilbert’s famous Tenth problem, by provid-
ing an intermediate step connecting Diophantine equations to the computations of
Turing Machines, Makanin showed in 1977 that satisfiability of word equations
is algorithmically decidable [35], putting an end to these hopes, but also open-
ing a new line of research. Since then, several improvements to the algorithm
proposed by Makanin have been proposed. From a complexity point of view,
Plandowski [37] showed that this satisfiability problem can be solved in PSPACE,
which has been refined to nondeterministic linear space by Jeż via the Recom-
pression technique [25]. On the other hand, Schulz [41] showed that the problem
remains decidable even when the variables are constrained by regular languages,
limiting the possible substitutions (see Chapter 12 of [33]). On the other hand, if
length constraints (requiring that some pairs of variables are substituted for words
of the same length) are permitted, then the (un)decidability of the problem is a
long-standing open problem.

Word equations, and logics involving strings more generally, have remained a
topic of interest within the Theoretical Computer Science community, in partic-
ular in the areas of Combinatorics on Words and Formal Languages, where they
play a fundamental role. More recently, word equations became interesting to the
Formal Methods community as well. This interest can be attributed to increasing
popularity and influence of software tools called string-solvers, which seek to al-
gorithmically solve constraint problems involving strings [6, 22]. In this setting,
a string constraint formalizes a property of an unknown string (or string variable),
and the string solvers try to determine whether strings (over a potentially infinite
domain) exist which satisfy logical combinations of string constraints of various
types. Word equations, regular language membership, and comparisons between
lengths are all among the most prominent building blocks of string constraints
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(as described in [6]), and when combined are sufficient to model several others
(see, for instance, some examples in [16]). Various other string constraints are
discussed in, e.g., [14]. String-solvers are also useful in other areas like Database
Theory, particularly for evaluating path queries in graph databases [7] and in con-
nection with Document Spanners [19, 18]. Recently, to overcome some difficulties
related to solving string constraints over infinite domains, a finite-model version
of the theory of concatenation was considered [20].

Many string-solvers are now available [26, 8, 11, 36, 28, 1, 43, 9, 2] (see
also [6, 22] for an overview). However, the underlying task of determining the sat-
isfiability of string constraints remains a challenging problem and a barrier to more
effective implementations. Motivated in part by the applications in string-solving,
and by the desire to make progress on seemingly very difficult open theoretical
problems, some results already exist addressing the computability, complexity,
and expressibility of combinations of string constraints. [34, 21, 29, 31, 30] iden-
tify restrictions on word equations which result in a decidable satisfiability prob-
lem even when length constraints are present. Several further ways of augmenting
word equations (i.e., additional predicates or constraints on the variables), are
shown to be undecidable in [13, 14, 12, 23].

Nevertheless, despite results such as those mentioned above, little is known
about the true expressive power of word equations and of string logics involving
word equations in conjunction with other common types of string constraints. A
greater understanding in this regard would be of great help in settling open prob-
lems (such as for whether satisfiability for word equations with length constraints
is decidable), and also with devising string solving strategies: often simply finding
a solution to one constraint is not enough and the set of solutions must be consid-
ered more generally to account for other constraints which might be present, or
to determine that no solution exists. Moreover, a common tactic is to rewrite
constraints into some normal form before solving and understanding when and
how this can be done also requires knowledge of the relative expressive power of
subsets of constraints.

Our work [16] filled some gaps in the understanding of the properties and
expressivity of some of the most important combinations of string constraints by
considering languages expressible in the sense of [27]. In this regard, our results
can be seen as extending [27] to a more general (and more practical) setting, where
word equations are combined with language membership constraints and length
constraints.

The framework: In [16], a landscape of string-based logics was considered,
incorporating various types of atoms inspired by and strongly related to promi-
nent varieties of string-constraints. In particular, we considered logics with dif-
ferent combinations of the following four types of predicates: equality between
strings, concatenations of strings, membership of formal languages, and linear
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arithmetic over string-lengths. In total, this covered 20 distinct families of log-
ical theories (each family containing a different theory for each possible under-
lying alphabet Σ). We will overview them in detail in Section 3. Based on [27]
(and partly on [10], where relation-definability by logics over strings was studied
in a database-theory centred framework), we have analysed these logics from a
formal language perspective by looking at the set of values a variable may take
while preserving satisfiability of a formula. Specifically, given a formula f from a
quantifier-free logical theory T, we say that the language expressed by a variable
x occurring in f is the set of concrete values w such that substituting x for w in f
yields a satisfiable formula. In the general case, we can think of the property that
the formula f defines via the variable x. However, since we deal with logics in
which x is substituted for finite strings, we get a formal language.

In our approach, we were interested both in the expressive power of the log-
ical theories with respect to what languages they can express, and in their com-
putational properties with respect to canonical decision problems within formal
languages such as emptiness, universality, equivalence and inclusion.

Getting more into details, the 4 types of fundamental predicates we allowed
in these logics cover many of the most prominent types of string constraints, as
listed in [6]. While predicates related to equality between strings, concatenations
of strings, and linear arithmetic over string-lengths do not need more explana-
tions, given the motivation presented above, a discussion is in order with respect
to our choice of language membership predicates. In this case, they are consid-
ered for the classes of regular, deterministic context-free, or as an intermediary
between the two, visibly pushdown languages. While there are many classes of
languages we might have chosen to consider between regular and deterministic
context-free, there are several advantages to choosing the visibly pushdown lan-
guages in particular. Firstly, they exhibit an attractive balance of being compu-
tationally reasonable (they have many of the desirable closure and algorithmic
properties of the regular languages) while simultaneously being powerful enough
to provide a reasonable model in many verification and software analysis appli-
cations, in line with our motivations from string-solving. Moreover, since they
directly generalise the regular languages, but with sufficient memory capabilities
to model certain types of length comparisons, the combination of word equations
and visibly pushdown language constraints generalises the combination of word
equations with both length and regular constraints. The latter is of particular inter-
est in the context of string-solving, but is also a case for which the decidability of
satisfiability remains open and is likely to be difficult to resolve. In [16], we have
shown that the satisfiability for the former is undecidable and thus that already
a very limited extension to regular and length constraints is enough to reach this
negative result.

The results: Firstly, a comparison of the relative expressive power of the dif-



BEATCS no 140

124

ferent theories was obtained. On the one hand, we managed to group certain fam-
ilies together, where they express the same class of languages. We have shown
that adding linear arithmetic over string-lengths to a theory allowing only lan-
guage membership predicates for a class of languages with good language theo-
retic properties does not alter its expressive power. Thus, the theories in which
only regular language (or visibly pushdown language) membership predicates are
allowed and the theories in which length comparison is added to those member-
ship predicates are equivalent. While in the case of theories based on regular
language membership predicates we can also add concatenation without changing
the expressive power, we have shown that adding this operation to theories based
on visibly pushdown language membership predicates strictly increases their ex-
pressive power, and they can express all recursively enumerable languages. More-
over, we also discuss several separation results between the classes of language
expressed by various theories. One of the ways this can be achieved (see [16] for
a detailed discussion) is by non-trivially extending pumping-lemma style tools for
word equations from [27] to our more general settings, as well as by developing a
novel technique for showing inexpressibility by word equations with both regular
and length constraints. The overall hierarchy of classes of languages expressible
in our theories is depicted in Figure 2.

While these results seem already interesting from a language-theoretic point
of view, they are also relevant for the emptiness problem for classes of languages
expressed by our theories, which is equivalent to the satisfiability problem for for-
mulas over those theories. As such, our results allowed us to non-trivially extend
the state-of-the-art related to the satisfiability of string constraints. In particular,
we settled the previously mentioned interesting case in which word equations are
combined with visibly pushdown language membership constraints. When com-
bined with existing results, our results establish a relatively complete description
of when the emptiness problem is (un)decidable (see upper part of Figure 2). The
cases left open are the combinations of word equations with length constraints
with or without regular constraints, which remain long-standing open problems.

Further, we have considered the universality problem and a related variant,
namely the subset universality problem in which we want to test whether a lan-
guage is exactly S ∗ for a subset S of the underlying alphabet. Again, our results
filled in gaps in the knowledge and allowed us to paint a comprehensive picture
of the decidability status of these problems for our theories (see the right part of
Figure 2). Since the universal language is expressible in all our theories, in com-
bination with results from Section 4 and from the literature, we have obtained a
complete picture for the equivalence and inclusion problems. However, a substan-
tial further benefit (and a large part of our motivation for studying this problem)
is that it allows us to use Greibach’s theorem in numerous instances (as stated in
Theorem 8) to establish further undecidability results (e.g., Theorems 10 and 9).
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In particular, Theorem 10 is part of a larger line of thought, developed in Sec-
tion 6, in which we have considered the question of when it is (un)decidable if
a language expressed in one theory can be expressed in another. Such problems
are particularly interesting in the context of practical string solving because they
essentially ask whether a property defined by one kind of string constraint can
be algorithmically converted to another. Often, it is the combinations of different
kinds of string constraints which lead to high complexities in solving, so being
able to rewrite constraints in different forms can be a powerful pre-processing
technique. We also identify some interesting cases where Greibach’s theorem is
not applicable, and thus where other approaches are needed (e.g., Theorem 11).
The potential implications our results might have in practice are discussed in [16].

The structure of the presentation: Our aim in [16, 15] was to obtain a more
complete understanding of the computational properties and expressivity of lan-
guages expressed by various combinations of commonly occurring types of string
constraints. Naturally, we were able to account for several cases by recalling, or
extending existing results from literature, so at the beginning of each section, we
give a single theorem that summarizes existing results and discuss their conse-
quences. This allowed us to subsequently focus on the most interesting remaining
cases, many of which we were able to resolve by drawing on a range of techniques
rooted in formal languages, automata theory, combinatorics on words and com-
putability theory. The results reported in [16, 15] were a substantial improvement
of the state of understanding of the theories considered, particularly with respect
to their expressive power. In those cases, we were unable to resolve, we have
identified several interesting new open problems, which we list here as well.

The proofs of the results overviewed in this paper are given in [16, 15].

2 Preliminaries
Let N = {1, 2, 3, . . .} and N0 = {0} ∪ N. Let Z denote the set of integers. Let
Σ = {a1, a2, . . . , an} be an alphabet. We denote by Σ∗ the set of all words over
Σ including the empty word, which we denote ε. In other words, Σ∗ is the free
monoid generated by Σ under the operation of concatenation. For words u, v ∈ Σ∗

we denote their concatenation either by u · v or simply as uv. Given a set of
variables X = {x1, x2, . . .} and an alphabet Σ, a word equation is a pair (α, β) ∈
(X ∪ Σ)∗ × (X ∪ Σ)∗, usually written as α = β. A solution to a word equation is a
substitution of the variables for words in Σ∗ such that both sides of the equation
become identical. Formally, we model solutions as morphisms. That is, we say
a substitution is a (homo)morphism h : (X ∪ Σ)∗ → Σ∗ satisfying h(a) = a for
all a ∈ Σ, and a solution to a word equation α = β is a substitution h such that
h(α) = h(β).
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We refer to [24] for standard definitions and well-known results from formal
language theory regarding, for example, recursively enumerable languages (RE),
regular languages (REGLang), context free languages (CFLang), deterministic
context-free languages (DCFLang), finite and pushdown automata, etc.

In addition, we refer to [3, 4, 5] for background on visibly pushdown automata
and visibly pushdown languages (VPLang) but also give here the main definitions.
More precisely, a pushdown alphabet Σ̃ is a triple (Σc,Σi,Σr) of pairwise-disjoint
alphabets known as the call, internal and return alphabets respectively. A visibly
pushdown automaton (VPA) is a pushdown automaton for which the stack opera-
tions (i.e. whether a push, pop or neither is performed) are determined by the input
symbol which is read. In particular, any transition for which the input symbol a
belongs to the call alphabet Σc, must push a symbol to the stack while any transi-
tion for which a ∈ Σr must pop a symbol from the stack unless the stack is empty
and any transition for which a ∈ Σi must leave the stack unchanged. Acceptance
of a word is determined by the state the automaton is in after reading the whole
word. The stack does not need to be empty for a word to be accepted. A Σ̃-visibly
pushdown language is the set of words accepted by a visibly pushdown automaton
with pushdown alphabet Σ̃. A language L is a visibly pushdown language (and is
part of the class VPLang) if there exists a pushdown alphabet Σ̃ such that L is a
Σ̃-visibly pushdown language. The class VPLang is a strict superset of the class
of regular languages and a strict subset of the class of deterministic context-free
languages, which retains many of the nice decidability and closure properties of
regular languages. In particular, it is shown in [3] that VPLang is closed under
union, intersection and complement and moreover that the emptiness, universal-
ity, inclusion and equivalence probelms are all decidable for VPLang.

By a theory, we mean a set T = { f1, f2, . . .} of formulas adhering to given syn-
tax and to which we associate a particular semantics. The theories we consider
(introduced in Section 3) consist of quantifier-free formulas. The typical com-
putational questions one might consider with respect to a given theory T are the
following:

• Satisfiability: given formula f ∈ T, does there exist an assignment of the
variables in f such that f becomes true under the associated semantics? and

• Validity: given formula f ∈ T, is f true under all assignments of the vari-
ables occurring in f ?

The questions we overview here have a slightly different flavour: given for-
mula f ∈ T and variable x occurring in f , we are interested in properties of the set
of all values w for which there is an assignment mapping x to w which makes the
formula true. Thus, we consider the set of concrete values w for which f remains
satisfiable once the variable x has been replaced by w. Since we shall focus on
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theories in which variables represent words, we refer to the set of all such values
w as the language expressed by the variable x in the formula f . In this respect,
we extend the notion of languages expressible by word equations [27] to arbitrary
string-based logical theories. We say a language L is expressed by a formula if
it contains a variable x such that L is the language expressed by x in f . We say
that L is expressible in a theory T if there exists a formula f ∈ T and variable x
occurring in f such that L is expressed by x in f .

We shall discuss typical decision problems such as emptiness and universality
for languages expressed by formulas in a given theory T. In this context, the
input is a formula f ∈ T and a variable x occurring in f . So, e.g, in the case of
emptiness, we might be given a formula x = aba ∧ x · y = ababba along with
the variable y, and we must decide whether the language Ly expressed by y in that
formula is the empty set or not. In this case, Ly = {bba} , ∅ so the answer is no.
Clearly, for any formula f and variable x, the emptiness problem for the language
expressed by x in f is equivalent to the satisfiability problem for f . Thus, we
consider a set of problems which directly generalise the satisfiability problem.

For theories containing word equations, we use and extend notions and results
from [27] to reason about (in)expressibility of languages, such as the notion of a
synchronising F-factorisation. The technical details about such factorisations can
be found in [27], as well as in [16].

3 Logical Theories Over Strings Constraints
In this section, we present a variety of logical theories encompassing the most
common kinds of string constraints (as overviewed in [6]). Consider three sets
of terms, defined as follows. Let X = {x1, x2, . . .} be an infinite set of string
variables. Let Σ be a finite alphabet. Let T Σ

str = X ∪ Σ∗ be the set of basic string
terms. Let T Σ

str,con = (X ∪ Σ)∗ be the set of extended string terms. Note that
T Σ

str,con is the closure of T Σ
str under the concatenation (·) operation. Let T Σ

arith =

{k0 + k1|s1| + k2|s2| + . . . + kn|sn| | n ∈ N0, ki ∈ Z, and si ∈ T
Σ
str} be the set of

length terms. We interpret |s| as the length of the string term s, so T Σ
arith is the set

of linear combinations of lengths of string terms. Note that since we can express
the length of a concatenation of string terms as a linear combination of lengths of
basic string terms, it is not a restriction the fact that si ∈ T

Σ
str rather than T Σ

str,con
(this allows us to consider theories containing length terms both with and without
concatenation). We construct three types of atoms from terms as follows:

(A1) Language membership constraints of the form s ∈ L where s ∈ T Σ
str(,con) and

L ⊆ Σ∗ is a formal language,

(A2) Length constraints of the form `1 = `2 where `1, `2 ∈ T
Σ
arith,
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(A3) Word equations (string-equality constraints) of the form s1 = s2 where
s1, s2 ∈ T

Σ
str,con.

Formulas in our theories are constructed in general as follows:

(F1) Any atom is a well-formed formula,

(F2) If f1, f2 are well-formed formulas then ¬ f1 is a well-formed formula and
f1 ⊕ f2 is a well-formed formula for each ⊕ ∈ {∧,∨, =⇒ , ⇐⇒ }.

Note that all formulas are quantifier-free. The semantics associated with these
formulas are defined in the natural way: given a substitution for the variables
x1, x2, . . . for words in Σ∗, each string term evaluates to a word in Σ∗ (possibly
as the result of concatenating several smaller words in the case of extended string
terms). Each length term is a linear combination of lengths of strings and evaluates
to an integer. Atoms of type A1 evaluate to “true” if the string term s evaluates to
a word in the language L and false otherwise. Atoms of type A2 evaluate to true if
the two length terms `1, `2 evaluate to the same integer and false otherwise. Atoms
of type A3 evaluate to true if the string terms s1 and s2 evaluate to the same word
and false otherwise. Finally, Boolean combinations of the form F2 are evaluated
in the canonical way.

The most general logical theory we consider includes all of the above and
we consider language membership constraints s ∈ L where L is a deterministic
context-free language, given, for instance, as a deterministic push-down automa-
ton or a context-free grammar. However, we are not just interested in this theory
alone, rather we want to consider various sub-theories in order to compare their
expressive power and computability-related properties.

We have two ways of restricting expressive power. The first is to restrict the
types of terms/atoms we allow, while the second is to restrict the kind of languages
we allow in the language membership constraints (atoms of type A1). For the lat-
ter, we focus on three main possibilities: regular languages, visibly push-down
languages, and deterministic context-free languages. For technical completeness,
we can assume that all language constraints are given as automata (NFA, Visibly-
PDA, or Deterministic-PDA respectively), however, since we do not focus on pre-
cise complexity-related issues, equivalent language descriptors such as grammars
could equally be used. In particular, we might use simpler descriptors where con-
venient to do so and where it is obvious that an equivalent automaton could be
constructed.

We consider all combinations of atom-types A1, A2 and A3, and in each case
define versions in which only basic string terms fromT Σ

str are allowed and versions
in which concatenations of string terms (i.e. terms from T Σ

str,con) are allowed. Note
that whenever we allow word equations (so, atoms of type A3), we might as well
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Theory Name A1-Atoms (s ∈ L) A2 A3 Example
REG s basic, L ∈ REGLang × × x1 ∈ a∗b∗ ∨ x1 ∈ {c}∗

VPL s basic, L ∈ VPLang × × x1 ∈ {anbn | n ∈ N}
DCF s basic, L ∈ DCFLang × × x1 ∈ {anb2n | n ∈ N}

REG + CON s extended, L ∈ REGLang × × x1abx2 ∈ (ab)∗ ∧ x2 ∈ b∗

VPL + CON s extended, L ∈ VPLang × × x1abx2 ∈ {anbn | n ∈ N}
DCF + CON s extended, L ∈ DCFLang × × x1cx2 ∈ {ucv | u, v ∈ {a, b}∗, |u| = |v|}
REG + LEN s basic, L ∈ REGLang X × x1 ∈ a∗ ∧ x2 ∈ b∗ ∧ |x1| = |x2|

VPL + LEN s basic, L ∈ VPLang X × x1 ∈ {anbn | n ∈ N} ∧ |x1| = 8
DCF + LEN s basic, L ∈ DCFLang X × x1∈{anb2n | n ∈ N}∨|x1|=3|x2|

REG+LEN+CON s extended, L ∈ REGLang X × x1x2∈a∗b∗∧ x2 ∈ b∗∧ |x1|= |x2|

VPL+LEN+CON s extended, L ∈ VPLang X × x1x2 ∈ {anbn | n ∈ N}∧|x1|= |x2|

DCF+LEN+CON s extended, L ∈ DCFLang X × x1x2 ∈ {anb2n | n ∈ N}∧|x2|=2|x1|

WE × × X x1abx2 = x2bax1

WE + REG s basic, L ∈ REGLang × X x1abx2 = x2bax1 ∧ x1 ∈ a∗

WE + VPL s basic, L ∈ VPLang × X x1 = x2x3∧x1 ∈ {anbn | n ∈ N}
WE + DCF s basic, L ∈ DCFLang × X x1 = x2x3∧x2 ∈ {anb2n | n∈N} ∧ x3∈c∗

WE + LEN × X X x1abx2 = x2bax1 ∧ |x1| = 2|x2|

WE+REG+LEN s basic, L ∈ REGLang X X x1x2 = x3 ∧ x1 ∈ a∗b∗ ∧ |x2| = |x3|

WE+VPL+LEN s basic, L ∈ VPLang X X x1x2 = x3∧x3∈{anbn | n∈N}∧|x1|= |x3|

WE+DCF+LEN s basic, L ∈ DCFLang X X x1x2 = x3∧x3∈{anb2n |n∈N}∧|x2|= |x3|

Figure 1: A list of all the theory-families addressed in the current work, along
side descriptions of the allowed atom-types and an example of a formula belong-
ing to that theory family, in the case that the underlying alphabet Σ = {a, b, c}.
Language membership constraints are given in shorthand for readability. In the
case of visibly pushdown languages, {anbn | n ∈ N} is a typical example under an
alphabet-partition Σ = (Σc,Σi,Σr) satisfying a ∈ Σc and b ∈ Σr. For each theory-
family, permitted atom-types are indicated by a X in the case of A2 and A3, and,
for A1-atoms, the class of languages and which kind of string terms are allowed
are written explicitly. Atom-types which are not permitted are indicated with ×.

allow concatenations of string terms. If we allow concatenations in word equation
terms, then we can model concatenation in all string terms anyway and if we were
to restrict equality between string terms to basic string terms only, then we could
easily eliminate all string equalities by direct substitution.

Moreover, we are not going to consider explicitly the case that only length
constraints (atoms of type A2) are allowed, since this reduces to the existential
fragment of Presburger arithmetic and is therefore not really a string-based logic.
With these exclusions, we are left with a total of 20 theories to consider; see
Figure 1. In fact, since the theories themselves depend on the underlying alphabet
Σ, we have 20 families of theories. As such, it is convenient to introduce a naming
convention for these (families of) theories.

If atoms of type A1 are allowed, we add either REG, VPL, or DCF to the name
of the theory-family depending on the class of languages permitted: REGLang,
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VPLang, or DCFLang, respectively. If atoms of type A2 are allowed, we add
the abbreviation LEN, separated if necessary by a "+". Likewise, if atoms of
type A3 are allowed, we add the abbreviation WE. Finally, if atoms of type A3
are not allowed, but extended string terms are (so we have concatenation but not
equality between string terms), then we add the abbreviation CON. Note that
CON is superseded by WE due to reasons explained above. For example, the
most general theory which allows all three atom types (with deterministic context-
free languages for atoms of type A1) is denoted by WE + DCF + LEN. Similarly,
REG + LEN + CON describes the theory in which atoms of type A1 (where L is a
regular language and s is an extended string term) and A2 are allowed.

For theories allowing VPLang membership constraints (i.e. belonging to fam-
ilies of the form VPL + . . .), we assume a fixed partition of the alphabet Σ into
the call, return and internal alphabets Σc,Σr,Σi. We conclude this section with the
following remark.

Remark 1. Since REGLang (respectively, VPLang) is closed under union, inter-
section and complement, the set of languages expressible in REG (respectively,
VPL) is exactly REGLang (respectively, VPLang). However, the same is not true
for DCF and DCFLang, since that class is not closed, for instance, under inter-
section. For DCF the expressible languages are exactly the Boolean closure of
the deterministic context-free languages. Moreover, it can be inferred from well-
known results on word equations (see, e.g., [27, 33]) that the languages expressed
by WE are exactly those expressible by a single word equation in the sense of [27].

4 Separation and Grouping of Theories

We are interested primarily in whether we can decide properties of a language
expressed by a given formula and variable. Therefore, the first thing we consider
is the relative expressive power of the various theories defined in the previous
section. In particular, we want to understand how the classes of languages which
may be expressed by a formula/variable from a given theory relate to each other.
To make these comparisons formally, we define the following relation(s) on two
logical theories T1,T2 whose formulas contain string variables.

Definition 1. Let T1,T2 be theories whose formulas contain string-variables. We
say that T1 � T2 if, for every formula f ∈ T1 and every (string) variable x
occurring in f , there exists a formula f ′ ∈ T2 and variable x′ in f ′ such that the
languages expressed by x in f and x′ in f ′ are identical. Moreover, we say that
T1 ∼ T2 if both T1 � T2 and T2 � T1 hold. We write T1 ≺ T2 if T1 � T2 and
T1 / T2.
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Figure 2: Visual representations of all 20 families of string-based logical the-
ories considered. Theory-families are depicted in solid square boxes containing
their names (see Section 3). Dashed square-boxes around multiple theory-families
show equivalence with respect to the class of expressible languages (so equiva-
lence under ∼). The arrows between theory-families and their transitive closure
represent inclusion with respect to the class of expressible languages. Solid arrows
indicate that the inclusion is known to be strict, while dashed arrows indicate that
we do not know whether the inclusion is strict or not. The most expressive group
of theories (i.e. those equivalent to VPL + CON) are able to express RE. The up-
per figure indicates for which (families of) theories the emptiness and finiteness
problems are decidable or undecidable. The lower figure depictes (families) of
theories for which the universality (= Σ∗) and subset-universality (= S ∗) problems
are decidable/undecidable. Equivalence and inclusion (where the two languages
might come from different theories) are decidable if and only if both theories fall
into cases where universality (= Σ∗) decidable.
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Hence, T1 � T2 if the class of languages expressible in T1 is a subset of the
class of languages expressible inT2, andT1 ∼ T2 if the two classes are equal. Note
that the relation ∼ is an equivalence relation that is a weaker notion of equivalence
than being isomorphic. That is, two theories need not be isomorphic to satisfy the
equivalence ∼.

We extend Definition 1 for the families of theories defined in Section 3 as fol-
lows. Recall that each family contains all the theories consisting of a particular
set of formulas, but whose underlying alphabet Σ may vary.

Definition 2. Let F1,F2 be families of theories as defined in Section 3. We say
that F1 � F2 if, for every theory T1 ∈ F1, there is a theory T2 ∈ F2 such that
T1 � T2. The relations ∼ and ≺ are then defined analogously,

Before moving on, let us make some remarks. It will often be the case that
there exist formulas such that the language expressed by a variable x occurring in
both formulas is the same, but the sets of satisfying assignments, when considered
as a whole, are not identical (see Remark 2 below). This has an important impli-
cation for what conclusions we can and cannot draw from a statement of the form,
e.g., T1 ∼ T2. For example, while we will later show that REG ∼ REG + LEN,
this does not imply that WE + REG + LEN ∼ WE + REG. Indeed we shall also
show explicitly that the latter does not hold.

Remark 2. Consider the LEN formula |x| = 2|y| where x, y are string variables.
Then the language expressed by x is the set of all even-length words over the un-
derlying alphabet Σ, and the language expressed by y is simply Σ∗. Both of these
languages are regular, and can be expressed in REG. However, if we were to
consider, for example, a WE + LEN formula x = yyy ∧ |x| = 2|y|, then we cannot
replace the condition |x| = 2|y| with constraints based on the aforementioned reg-
ular languages. The problem with doing so would be that it allows us to decouple
the sets of values for x and y satisfying the length constraint (so we get an x, y,
x′, y′ such that |x| = |y′| and |x′| = |y| and x = yyy holds, but where x′ might be
different from x and y′ might be different from y.

In [27] the authors consider expressibility of languages (and relations) by word
equations and show that a language is expressible by WE if and only if it is
expressible by a single word equation. The authors of [27] also show that, for
Σ ⊇ {a, b, c}, the regular language {a, b}∗ is not expressible by a single word equa-
tion, and thus not in WE. The same holds for the language {anbn | n ∈ N0}. Since
these languages are clearly expressible in WE + REG and WE + LEN respectively,
we may immediately conclude the following.

Theorem 1 ([27]). The following hold: WE ≺ WE + REG and WE ≺ WE + LEN.
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On the one hand, all languages expressed in our theories are clearly recursively
enumerable. On the other hand, in our first main result, we show that, in fact, all
recursively enumerable languages can be expressed with only concatenation and
VPL-membership.

Theorem 2. The class of languages expressible in the familiy VPL + CON is ex-
actly RE.

Consequently, the class of languages expressible in each of VPL + CON + LEN,
WE + VPL, WE + VPL + LEN, DCF + CON, DCF + CON + LEN, WE + DCF, and
WE + DCF + LEN is the class of recursively enumerable languages RE. Thus, all
these theories are equivalent under ∼. Clearly, we immediately get that the satis-
fiability problem for all these theories is undecidable. In fact, by Rice’s Theorem,
any non-trivial property is undecidable for languages expressible in these theories.
As mentioned before, the case of WE + VPL is particularly interesting in the con-
text of string solving and word equations. Since visibly pushdown languages are
seemingly very close to regular languages, with many of the same positive closure
and algorithmic properties, it is perhaps surprising to see that while satisfiability
for WE + REG is decidable, satisfiability for WE + VPL is undecidable. More-
over, WE + VPL is a very natural extension of WE + LEN + REG. Since the satis-
fiability problem(s) for WE + LEN + REG and WE + LEN are both long standing
open problems of significant interest both to the word equations and string-solving
communities, the negative result for WE + VPL is both relevant and ominous.

In this context, it is now natural to ask whether we can separate the classes
of languages expressible by WE + LEN + REG and WE + VPL, respectively. The
existence of examples of recursively enumerable languages which are not express-
ible in the former is a necessary condition for having a decidable satisfiability
problem, and if we wish to settle this open problem we must also settle the exis-
tence of such examples.

The next result does exactly this. In [16] we have established, with some in-
volved argumentation, a sufficient criterion for languages to not be expressible in
WE + LEN + REG and have used it to identify a concrete example of such lan-
guage which is clearly recursively enumerable. To achieve this, we have first used
techniques from [27], which were developed to show that certain languages are in-
expressible by word equations only. We have first adapted these techniques in the
presence of length constraints (so, to obtain languages which are not expressible in
WE + LEN). With some care, we have also extended them for regular constraints
(so to obtain languages which are not expressible in WE + REG). However, such
techniques are altogether unsuitable for direct application in the presence of both
length and regular constraints (so for WE + LEN + REG) and a novel approach
was required. This new technique, as well as examples not expressible in the
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aforementioned theories, are described in details in [16]. The result we obtain is
the following.

Theorem 3. There exist recursively enumerable languages which are not express-
ible in WE + LEN + REG and WE + LEN + REG ≺ WE + VPL. Moreover, we
have WE + LEN ≺ WE + REG + LEN and WE + REG ≺ WE + REG + LEN,
while the classes of languages expressible in WE + LEN and WE + REG are in-
comparable.

With this result, the relations between the classes of languages expressed by
the theories involving word equations is completely clarified; see the left side of
Figure 2. Next, we turn our attention to the remaining theories which do not ex-
tend the expressive power of word equations. Since we have already seen that con-
catenation together with visibly pushdown (or deterministic context-free) mem-
bership constraints is enough to model recursively enumerable languages, and
therefore word equations, the remaining theories consist of language membership
without concatenation (but possibly with length constraints) and all combinations
consisting of regular language membership constraints without word equations
(so including either concatenation, length constraints, both, or neither).

In the following lemma, we state another important result. For this, let C be
a class of formal languages which contains REGLang, is contained in CFLang,
and is effectively closed under intersection and complement. We assume that
the languages of C are specified by an accepting or generating mechanism which
allows the construction of a context-free grammar generating that language. Let
Ct be the theory defined as in Section 2 which allows only language membership
predicates (of type A1) for the class of languages C. Let Ct + LEN be the theory
which also allows length constraints. In this framework, the following holds (see
the proof in [15]).

Lemma 1. Ct + LEN ∼ Ct.

As VPLang is a class which fulfills the properties of the class C from the above
lemma, and is strictly included in RE, we immediately get the first claim of the
following theorem. The second claim can also be shown with some additional
effort (again, see [15]).

Theorem 4. (1) VPL ∼ VPL + LEN ≺ VPL + CON.
(2) REG ∼ REG + LEN ∼ REG + LEN + CON.

Recall that the languages expressible in REG (as well as the languages ex-
pressible in REG + LEN and REG + CON + LEN) and VPL (and VPL + LEN) are
exactly the classes REGLang and, respectively, VPLang, and for each formula
in one of these theories we can effectively construct a corresponding automaton
accepting the language expressed by a given variable. See Remark 3 below.
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Remark 3. In fact, for a formula f in the theory VPL + LEN (which includes
the theories REG, REG + LEN + CON, and VPL) we can effectively construct a
formula g′ which is a disjunction of conjunctions gσ involving at most one mem-
bership predicate x ∈ Lx per variable, where each language Lx is in VPLang. We
can remove from g′ the conjunctions gσ which contain at least one membership
predicate x ∈ Lx with Lx = ∅. Now, it is easy to see that for the language expressed
by x is exactly the union of the languages Lx for all membership predicates x ∈ Lx

occurring in g′. Therefore, this language is in the class VPLang, and we can effec-
tively compute an automaton accepting it. Therefore, we can easily conclude that
for two given formulae f and φ from VPL + LEN and a variable x occurring in f
and a variable φ occurring in φ, we can decide whether the language expressed
by x is the same as (respectively, included in) the language expressed by y.

Let us now turn our attention to the theory DCF. The result of Lemma 1 does
not apply in this case, as the class of languages DCFLang is not closed under
intersection. In fact, for Lemma 1 to work, it would be enough to have that if L is
a finite intersection of languages from the class C then the set S = {|w| | w ∈ L}
is semi-linear. However, this still does not hold for DCFLang. See Example 1
below.

Example 1. Let U1 = {anb2n | n ≥ 1} and L1 = U+
1 . Let U2 = {bnan | n ≥ 1}

and L2 = aU+
2 b+. It is clear that L1 and L2 are in DCF. Let L = L1 ∩ L2. It

is not hard to observe that L = {ab2a2b4a4b8 · · · a2k
b2k+1

| k ≥ 1}. Further, let
S = {|w| | w ∈ L}. We have that S = {2k+2 + 2k+1 − 3 | k ≥ 1}. Clearly, S is not a
semi-linear set (and it is not a deterministic context-free language either).

In [15] we show an additional lemma.

Lemma 2. L = {wcw | w ∈ {a, b}∗} is expressible in WE + REG and not in DCF.

By Theorem 2 and the existence RE-languages which are not expressible in
DCF (see [45], as well as Lemma 2 or Example 1), we may infer the following
relations: DCF � DCF + LEN � DCF + CON and DCF ≺ DCF + CON.

This also shows that at least one of the relations DCF � DCF + LEN and
DCF + LEN � DCF + CON is strict. In fact, we can observe (see [15]) that the lan-
guage L = {wcw | w ∈ {a, b}∗}, which is expressible in DCF + CON and not DCF,
is not expressible by a restricted set of formulas in DCF + LEN. Accordingly, this
indicates that the separation might occur between DCF + LEN and DCF + CON.
We leave the following problem as open.

Open Problem 1. Investigate whether the relations DCF � DCF + LEN and
DCF + LEN � DCF + CON are strict or not (and note that DCF ≺ DCF + CON).
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As said before, REG + LEN + CON and VPL + LEN express exactly the classes
of regular languages and VPL languages, respectively. Since the regular languages
are a strict subset of the VPL languages, which in turn are a strict subset of the
deterministic context-free languages, we may conclude the following strict inclu-
sions in terms of expressibility: REG + LEN + CON ≺ VPL + LEN ≺ DCF.

Finally, note that there are languages expressible in WE (such as {xx | x ∈ Σ∗})
which are not regular nor visibly pushdown, and thus not expressible in REG or
VPL or theories with equivalent expressibility. So, REG ≺ WE + REG holds.
Moreover, we have already seen examples of regular languages which are not
expressible in WE or WE + LEN.

Based on the previous results, we can now also discuss the emptiness problem,
and the closely related finiteness problem. This is particularly interesting since
emptiness for a language expressed by a formula f and variable x corresponds
exactly to the satisfiability problem for f . Based on existing literature [3, 24, 41,
33], it is not hard to show that emptiness and finiteness are decidable for VPL and
WE + REG but undecidable for DCF.

On the other hand, two cases where it seems particularly difficult to settle
the decidability status of the satisfiability and, therefore, emptiness problems are
WE + LEN and WE + REG + LEN. Emptiness for the former in particular is
equivalent to the satisfiability problem for word equations with length constraints
which is a long-standing and important open problem in the field. Similarly,
the latter is prominent in the context of string-solving and as such satisfiabil-
ity/emptiness also presents an important open problem which is likely to be closely
related to that of WE + LEN. Consequently, WE + VPL presents a particularly in-
teresting case as a “reasonable” generalisation of WE + REG + LEN and, in the
absence of answers regarding this theory, it makes sense to consider the same
problems for theories with slightly more or slightly less expressive power. If
we extend the expressive power as far as WE + DCF, then undecidability is in-
herited directly from DCF. However, satisfiability and emptiness remain decid-
able for VPL. Moreover, visibly pushdown languages share many of the desir-
able computational properties of regular languages, and, as discussed, we can
view WE + VPL as a slighter generalisation of WE + REG + LEN. Neverthe-
less, due to our result from Theorem 2 of the previous section, we know that
VPL + CON expresses already RE, so emptiness and finiteness are undecidable
for VPL + CON, and consequently for WE + VPL and other families F of theories
satisfying VPL + CON � F. The left part of Figure 2 summarizes the understand-
ing of the emptiness and finiteness problems, as resulting from our results.
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5 Universality, Greibach’s Theorem, and Express-
ibility Problems

Universality is an important problem for a number of reasons. Firstly, undecidabil-
ity of universality implies undecidability of equivalence and inclusion for any the-
ory in which the universal language Σ∗ is expressible (which is true in any string-
based theory containing at least one tautology). Secondly, an undecidable univer-
sality problem is the foundation for Greibach’s theorem, which is helpful for prov-
ing that many other problems are undecidable. For instance, we shall make use
of Greibach’s theorem to show several problems concerning expressibility of lan-
guages in different theories are undecidable. We recall Greibach’s theorem below.

Theorem 5 ([24]). Let C be a class of formal languages over an alphabet Σ ∪ {#}
such that each language in C has some associated finite description. Suppose
P ( C with P , ∅ and suppose that all the following hold:

1. C and P both contain all regular languages over Σ ∪ {#},

2. P is closed under quotient by a single letter,

3. Given (descriptions of) L1, L2 ∈ C descriptions of L1 ∪ L2, L1R and RL1 can
be computed for any regular language R ∈ C,

4. It is undecidable whether, given L ∈ C, L = Σ∗.

Then the problem of determining, for a language L ∈ C, whether L ∈ P is unde-
cidable.

Note that in order to apply Greibach’s theorem, we need a variant of the uni-
versality problem to be undecidable which refers to a sub-alphabet, rather than the
whole alphabet.

Definition 3. Let T be a theory defined in Section 3 with underlying alphabet Σ

and such that |Σ| ≥ 3. The subset-universality problem is: given a formula f ∈ T ,
variable x occurring in f and S ⊂ Σ with |S | > 1, is the language expressed by x
in f equal to S ∗?

We recall the following results:

Theorem 6 ([21, 17, 3, 24]). Universality is undecidable for WE and DCF, and
decidable for VPL. Subset-universality is decidable for VPL but not DCF.
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To discuss the equivalence and inclusion problems, it makes sense to consider
them in a general setting where the two languages may be taken from different
theories. We therefore consider equivalence and inclusion problems for pairs of
theories (T1,T2). Combining the known results above with the constructive equiv-
alences pointed out in Remark 3, we easily get that equivalence and inclusion for
(T1,T2) are undecidable whenever at least one of T1,T2 contains WE or DCF, but
they are decidable for all other pairs of theories. In a similar way, one can show
that cofiniteness is undecidable for WE.

We may, clearly, propagate undecidability of universality and related problems
upwards through families of theories containing WE (or DCF) as a syntactic sub-
set, or apply Rice’s theorem to get such results for all theories expressing RE. In
[15], we also show the following.

Theorem 7. Subset-universality is decidable for WE + LEN and undecidable for
WE + REG. In particular, for S large enough, for any theory T from WE + REG
with underlying alphabet Σ ⊃ S , the problem of whether a language expressed in
T is exactly S ∗ is undecidable.

Theorem 7 allows us to apply Greibach’s Theorem to many theories defined
in Section 3.

Theorem 8. Let F be a family of theories defined in Section 3 which contains
WE + REG. For large enough alphabets Σ, if C is the class of languages ex-
pressible by the theory T ∈ F with underlying alphabet Σ, then the conditions of
Greibach’s theorem are satisfied by C.

In the following, we give an example application of Theorem 8 with respect
to the pumping lemma for regular languages (see, e.g., [24]). Aside from defin-
ing an interesting superclass of the regular languages itself, there are many rea-
sons to be interested in notions of pumping. For example, when considering
(in)expressibility questions (even beyond the regular languages), as well as part
of a strategy for producing satisfiability results in the context of length constraints
or other restrictions. We use the pumping lemma for regular languages because it
is well-known, but the ideas are easily adapted to other useful notions of pumping
and closure properties more generally. We recall first this lemma.

Lemma 3 ([24]). Let L be a regular language. Then there exists a constant c such
that for every w ∈ L with |w| > c, there exist x, y, z such that (i) |xy| < c, and (ii)
w = xyz, and (iii) xynz ∈ L for all n ∈ N0.

Now, Theorem 8 can be applied in this context (see [15]).

Theorem 9. It is undecidable whether a language expressed by a formula in a
theory from WE + REG satisfies the pumping lemma for regular languages.
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Theorem 7 also tells us that we cannot use Greibach’s theorem as stated to
show that properties of languages expressible in WE + LEN are undecidable. We
leave as an open problem whether an equivalent of Greibach’s theorem can be
adapted to this context:

Open Problem 2. Is there an equivalent of Theorem 5 for the classes of languages
expressible in WE + LEN or WE?

6 Expressivity Problems
Further, we consider decision problems related to expressivity. These problems
have the general form: given a language L expressed by a formula in a theory T1

and given a second theory T2, can we decide whether or not L can be expressed
by a formula in T2?

We begin by noting that since it is decidable whether or not a deterministic
context-free language is regular (see [42, 44]), the same holds true for visibly
pushdown languages, and hence whether a language expressed in VPL can be ex-
pressed in REG. Therefore, it is clearly decidable whether a language expressed in
VPL is expressible in REG. The same holds for theories from families equivalent
to VPL and REG under the relation ∼.

Naturally, since we have already seen that VPL + CON is capable of express-
ing all RE-languages, it is undecidable whether a language expressed in a theory
from VPL + CON is expressible in a theory from any of the families which have
strictly less expressive power.

The separation results from Section 4 and Theorem 8 together mean we can
get the following negative results as a consequence of Greibach’s theorem. They
have a particularly relevant interpretation in the context of string solving in prac-
tice. Specifically, it is often the case that string-solvers will perform some pre-
processing of string constraints in order to put them in some sort of normal form
which will make them easier to solve. One natural thing to want to do in this pro-
cess is to reduce the number of combinations of sub-constraints of differing types
by converting constraints of one type to another. This is useful particularly in cases
where the combinations are difficult to deal with together in general. Word equa-
tions, regular constraints and length constraints are one such combination (recall
from Section 4 that satisfiability for the corresponding theory including all three
types of constraint is an open problem, but if length constraints are removed then
satisfiability becomes decidable). Unfortunately, the following theorem reveals
that we cannot, in general, decide whether length constraints can be eliminated by
rewriting them using only regular membership constraints and word equations.
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Theorem 10. It is undecidable whether a language expressed in WE + REG + LEN
can be expressed in WE + REG.

The same undecidability result holds if, instead of removing length constraints
by rewriting them as regular membership constraints and word equations, we want
to remove word equations constraints by rewriting them as regular language mem-
bership constraints (possibly also with length constraints which, in the absence of
word equations, do not increase the expressive power due to Theorem 4). While
this result can also be obtained via Greibach’s theorem, we can, in fact, state a
stronger version for which we need a novel approach, detailed in [15]. In particu-
lar, we can show that it is already undecidable whether a language expressible by
word equations (without additional constraints) is a regular language (i.e., can be
expressed in REG).

Theorem 11. It is undecidable whether a language expressed in WE is regular.
In other words, it is undecidable whether a language expressed by a formula from
WE is regular.

Just as interesting as the result reported in Theorem 11 is the converse prob-
lem, which remains open.

Open Problem 3. Is it decidable whether a regular language is expressible by
word equations?

Although a trivial consequence of Theorem 11, it is somehow surprising that
it remains undecidable if a word equation combined with regular constraints ex-
presses a regular language. Clearly, every regular language is trivially expressible
in WE + REG.

Finally, we note the remaining cases which correspond to removing regular
language membership constraints in the presence of word equations, and remov-
ing length constraints in the presence of word equations but without regular con-
straints. Thus, we leave the following questions open:

Open Problem 4. Is it decidable whether a language expressed in WE + REG
(respectively, in WE + REG + LEN) can be expressed in WE (respectively, in
WE + LEN)? Is it decidable whether a language expressed in WE + LEN can
be expressed in WE?

7 Conclusions
Logics based on strings or words are an important topic in fields such as combi-
natorics on words and formal methods. Motivated primarily by tasks arising in
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the automated analysis of software, string-solving, a collection of infinite-domain
constraint satisfaction problems whose primary underlying objects are strings, is
an area of increasing importance. However, despite considerable improvement
in our understanding of this topic, there remains a wealth of open problems and
many theoretical topics, particularly involving word equations, are still wide open
for new developments.

In [16, 15], which are overviewed in this note, we have studied a variety of
string-based logics inspired by typical types of constraints occurring in string-
solving applications, such as word equations, length equality constraints and lan-
guage membership constraints. By considering the formal languages obtained by
looking at the set of values a single variable in these logics might take as part of
a satisfying assignment for a given formula, we were able to obtain several novel
results regarding the relative expressive power of these theories resulting in the
hierarchy depicted in Figure 2. Within this broader picture, we have been able to
also add new results regarding the computability of canonical decision problems
for formal languages such as emptiness, finiteness, universality, equivalence and
inclusion (see also Figure 2). Together with existing results, this has allowed us
to portray a relatively complete picture of when these problems are and are not
decidable within our framework.

Our results on decision problems - in particular (a variant of) the universality
problem - created also a framework allogin us to apply Greibach’s theorem to
obtain further undecidability results. We made use of this tool alongside results
overviewed in Section 4 to prove that in various cases, it is undecidable whether
or not a language expressed by one theory can also be expressed in another.

On the other hand, we have also highlighted several interesting new open prob-
lems in the cases where we are not able to settle the decidability status of certain
problems. We expect that studying these problems will lead to valuable new in-
sights and techniques for the theory of word equations, as well as in the theory of
formal languages and string-solving, more generally.
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This month, in the Distributed Computing Column, Michel Raynal revisits
two classical problems: mutual exclusion and consensus. Both of these problems
are central to distributed computing. Many date the birth of distributed comput-
ing, as a field, to Dijkstra’s first paper on mutual exclusion in 1965, and it remains
an area of active research today (see, e.g., new breakthroughs on recoverable mu-
tual exclusion this year). Similarly, ever since the consensus problem was first
formally defined in a 1980 paper by Pease, Shostak, and Lamport, it has been
recognized as lying at the heart of distributed computing. Recent innovation in
blockchains (which rely on consensus to order blocks) only reinforces the con-
tinued relevance of consenus today. Yet research on these two central problems
has followed somewhat different paths, focusing on different models and different
aspects of concurrency and fault-tolerance. In this short note, Michel Raynal pro-
vides a historical overview of their development, and argues that they are really
“two sides of the same coin.”

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would
like to write such a column, please contact me.
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Abstract

This short note shows that consensus is to logical objects what mutual
exclusion (mutex) is to physical objects. Namely, both allow processes to
cooperate in a consistent way through objects operations of which must be
executed sequentially (i.e., objects defined by a sequential specification).

Keywords: Agreement, Asynchrony, Concurrency, Consensus, Liveness,
Logical (immaterial) object, Mutual exclusion, Physical object, Safety, Se-
quential specification, Total order.

1 Concurrent Computing
While a sequential process describes the behavior of a given state machine [42],
concurrent computing is about the study of asynchronous sequential processes that
execute concurrently (i.e., possibly at the same time) but not independently from
each other1. Asynchronous means that each process proceeds to its own speed,
which can vary with time and remains always unknown to the other processes.
The code executed by the processes can be specific or not to each process.

Considering a set of sequential processes, the concept of concurrent processes
(multi-process program) captures the fact that the individual behavior of each se-
quential process must be controlled so that the global behavior of the set of pro-
cesses remains consistent (which can be captured by predicates and invariants,
e.g., [21, 22, 30, 31]). These fundamental notions have been introduced by E.W.
Dijkstra in the early sixties [17, 18, 19, 20]. (The interested reader will find more
historical and scientific developments in [2, 6, 32, 36, 39, 45, 53, 55, 57, 58].)

1At the very beginning, the corresponding underlying multiprocessor machine was simulated
on a single mono-processor enriched with peripheral devices. Then it was a real physical mul-
tiprocessor. Today it is provided by what is sometimes called an Internet machine covering the
world.
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2 Parallel Computing vs Distributed Computing

Parallel computing Parallel computing is a natural extension of sequential com-
puting in the sense that the aim of parallel computing is to detect and exploit data
independence to obtain efficient programs: once identified, independent sets of
data can be processed independently from each other on a multiprocessor. It is
nevertheless important to notice that, while independent data can be processed in
parallel, any parallel program could be executed on a single processor with an
appropriate scheduler (the corresponding sequential execution could be of course
highly inefficient!).

Distributed computing The nature of distributed computing is totally different.
Namely, distributed computing is characterized by the fact that there is a set of
predefined (and physically distributed) computing entities (processes) that are im-
posed to the programmers and these entities need to cooperate to a common goal.
Moreover the behavior of the underlying infrastructure (also called environment)
on which the distributed application is executed is not under the control of the pro-
grammers who have to consider it as an hidden input. Asynchrony and failures are
the most frequent phenomenons produced by the environment that create a “con-
text uncertainty” distributed computing has to cope with. In short, distributed
computing is characterized by the fact that, in any distributed run, the run itself is
one of its entries [54].

A duality To summarize, parallel computing is the exploitation of the indepen-
dence of input data to obtain efficient algorithms (programs), while the aim of
distributed computing is to allow predefined computing entities to cooperate to a
common goal in a consistent way.

3 Mutex vs Consensus: Preliminary Remark

Both problems were originally addressed in different system models, namely
asynchronous systems with no failures for mutex [18] (the only “adversary” was
asynchrony), and synchronous systems with Byzantine failures for consensus [48]
(the only “adversary” was Byzantine failures).

They were then extended to more general system models including both asyn-
chrony and process failures, namely asynchronous systems with process crashes
failures for mutex and asynchronous systems with process crashes/Byzantine fail-
ures for consensus. As we will see, this required to add computability power to
the underlying system model for these problems can be solved.



BEATCS no 140

150

4 1965: Mutual Exclusion

The very first objects that were shared by concurrent processes were physical
objects (resources) such as discs, tapes, and shared memory. Mutual exclusion
was then introduced to make their accesses by the processes consistent (what does
happen if several processes simultaneously access such a physical object?). The
problem and its answer were introduced by E.W. Dijkstra who proposed the notion
of a critical section, namely a part of code that can be accessed by a single process
at a time [18].

The mutex object To ensure this property, E.W. Dijkstra introduced a new
concurrency-related object that we call here mutex (shortcut for mutual exclu-
sion). This synchronization object provides processes with two operations de-
noted acquire() and release() that allow to bracket the critical section code as
described by the following pattern:

acquire(); critical section; release().
As any computing object, the mutex object is specified with a set of properties
that describe all its correct behaviors, namely:

• Mutual exclusion (safety). At most one process at a time executes the criti-
cal section.

• Starvation freedom (liveness). Any invocation of acquire() terminates (and
consequently the invoking process eventually enters the critical section)2.
(Let us observe that fact that any invocation of acquire() must terminate
implies that any invocation of release() must also terminate.)

Encapsulation and sequential execution The two operations acquire() and
release() are not visible at the application level. At this level a process invokes
higher level operations, e.g., op() such that

operation op() is acquire(); critical section; release() end operation.

In some cases the object protected by a mutex object, say mtr, provides pro-
cesses with several operations. This is for example the case of two resources R1
and R2 that, due to energy consumption, cannot be used at the very same time. In
this case we have a single mutex object and two operations
operation opR1() is mtr.acquire(); access R1; mtr.release() end operation,

2When he introduced mutual exclusion, Dijkstra considered a weaker liveness property, named
deadlock-freedom: If one or several processes invoke acquire(), at least one of them will enter the
critical section.
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and
operation opR2() is mtr.acquire(); access R2; mtr.release() end operation.

This approach has also naturally been used for data objects (for example a
stack where opR1 is push() and opR2 is pop()).

It is easy to see that mutual exclusion allows processes to execute sequentially
(we also say linearize [29]) predefined parts of code concerning their cooperation.
So, mutual exclusion allows the processes to build a total order on the execution
of the critical section codes protected by the same mutex object. From a historical
point of view, mutex can be considered as the first distributed computing problem:
it allows a predefined set of processes to cooperate to a common goal, namely
preserve the consistency of an object in the presence of concurrency. A rigorous
exposition of the mutex theory is presented in [38].

Instantiating a mutex algorithm Let us consider a n-process system. While
it is possible to design mutex algorithms tailored for ad’hoc values of n (for ex-
ample there are mutex algorithms specifically designed for two processes only),
e.g. [50], and consequently such algorithms do not work for more than two pro-
cesses. Nearly all mutex algorithms are designed to work for any value of n ≥ 2,
i.e., n is a parameter that can differ in each instance of the algorithm.3.

On the fault-tolerance side A process crashes when it unexpectedly and defini-
tively halts. Usual algorithms that solve mutex allow a process to crash when it
is not executing acquire(), release() or the code in the critical section. Unfortu-
nately mutual exclusion cannot solved if a process may crash at any time. This is
due to the fact that if a process crashes while executing acquire(), release() or the
code in the critical section, due to asynchrony, no other process can be informed
of its crash. To solve this issue, the system must be enriched with additional com-
putational power.

An approach consists in providing processes with information on failures.
This is the failure detector approach introduced in [11]. The integer n being the
number of processes, let us consider a model that allows up to t processes to crash.
When considering systems where processes communicate through read/write reg-
isters, the weakest failure detector (denoted QP for Quasi-Perfect) that allows
mutex to be solved has been introduced in [16]. Weakest means that no failure
detector that provides processes with less information on failures than QP allows
mutex to be solved in read/write systems. Assuming t < n/2 (i.e. the system

3As we will see in Section 7, due to computability issues, the situation is different for consensus
where a consensus algorithm for n processes does not work for (n + x) processes for x ≥ 1. This is
related to the additional computability power needed to solve consensus in crash-prone systems.
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is partition-free), the weakest failure detector (denoted T ) that allows mutual ex-
clusion to solved in synchronous message-passing systems has been introduced
in [15].

These two failure detectors have close but different definitions. Both are
weaker that the perfect failure P and stronger than the eventually perfect fail-
ure detector ^P defined in [11]. Moreover, both are stronger than the weakest
failure detector (eventual leader denoted Ω) that allows consensus to be solved in
read/write systems when t < n [43] and in message-passing when t < n/2 [10].

Transactional memory The concept of transactional memory was proposed
by M. Herlihy and J. Moss in 1993 [28], and later refined by N. Shavit and D.
Touitou[56]. The idea is to provide the designers of multiprocess programs with
a language construct (namely, the notion of an atomic operation called a transac-
tion) that discharges them from the management of synchronization issues. More
precisely, a programmer has to concentrate her efforts only on defining which
parts of processes have to be executed atomically and not on the way atomicity
(mutual exclusion) is realized, this last issue being automatically handled by the
underlying system.

5 A Trivial Observation:
Physical Objects vs Logical Objects

A physical object is an object that cannot be replicated by software (e.g., a printer),
while a logical (or immaterial) object is an object the value of which can by repli-
cated by software (data). Said differently, at the basic level the value of a logical
object is a structured set of bits while a physical object is a hardware device.

6 1971, 1977: Once Upon a Time:
the Readers/Writers Problem

A file is a logical object that provides processes with two operations: read_file()
that allows a process to read the file and write_file() that allows a process to
modify its content.

The Readers/Writers Problem It was observed by P. Courtois, F. Heymans,
and D. Parnas [14] (1971) that mutual exclusion is stronger than necessary to
provide the synchronization needed to correctly implement the write_file() and
read_file() operations, namely, only each execution of write_file() must be
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executed in mutual exclusion with any other operation execution (read_file()
or write_file()), while the executions read_file() needs to be executed in
mutual exclusion only with respect to write_file() (and not among themselves).
As far as we know, this was the first (implicit) distinction between physical and
logical objects.

The wait-freedom approach This approach was later generalized by L. Lam-
port to allow concurrent readings while writing [34] (1977), which showed that
(as a file is a logical object) the readers/writer problem does not need mutual
exclusion to be solved (see also [51]). This approach culminated in the notion
of wait-free computing introduced by M. Herlihy [26]. Wait-free means that the
progress of a process cannot be prevented by the behavior of the other processes
(arbitrary unknown speed or crash failures).

From safe read/write bits to atomic read/write registers In a very interesting
way, it has been shown by L. Lamport that, while the atomicity of basic read/write
registers are sufficient to solve mutex, they are not necessary to solve it. More
precisely, mutual exclusion can be solved on top of single-writer multi-reader safe
registers (see [33, 37]). A safe register is a register that can be written by a single
process and read by any number of processes. A write defines the new value of
the register. A read whose execution is not concurrent with a write returns the
last value written in the register. A read concurrent with a write returns any value
that the register can contain (so it can return a value that has never been written
in the register!). In a non-trivial way, multi-writer multi-reader atomic registers
can be built on top of single-writer single-reader safe bits (despite asynchrony and
process failures. A survey of such constructions is presented in Section V of [53].

7 1980: The Advent of Consensus:
On Fault-Tolerant Distributed Computing

Definition The consensus problem was introduced by S. Pease, R. Shostak and
L. Lamport in [41, 48] in the context of synchronous distributed systems prone
to Byzantine process failures (arbitrary misbehavior of a process). This problem
is at the core of distributed computing agreement problems. We consider here
asynchronous read/write or message-passing systems prone to crash failures. Let
a process be correct in a run if it does not crash during that run. In such a context
a consensus object is defined by a single operation denoted propose() that takes a
value as input parameter and returns a value. When a process invokes propose(v)
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and obtains the value v′ we say that it proposes v and decides v′. Consensus is
defined by the following properties.

• Validity (safety). If a process decides v then a process proposed v.

• Agreement(safety). No two processes decide different values.

• Termination (liveness). If a process invokes propose() and does crashes, it
decides.

Impossibility Unfortunately consensus is impossible to solve in the presence
of asynchrony and even a single process crash, be the communication system
message-passing [24] or read/write registers [44]. This means that the system has
to be enriched with additional computability power to make consensus solvable.
Several enrichments are possible.

• Enrich the system with synchrony assumptions (e.g. [23]).

• Enrich the system with scheduling assumptions (e.g. [5]).

• Enrich the system with randomization (e.g. [4, 46]).

• Restrict the set of input vectors that can be proposed (e.g. [47]). (An input
vector has one entry per process containing the value it proposes. Of course
a process knows only the value of its entry).

• Enrich the system with information on failures (failure detector approach [10,
11]).

• Enrich the system with asynchronous rounds such that, for each round r and
each process p, the model provides the set of processes that p hears of at
round r. The features of a specific system is then captured as a whole, just
by a predicate over the collection of heard-of sets [12].

Consensus number of an object Let us consider an asynchronous crash prone
system in which the processes communicate by reading and writing atomic reg-
isters (RW type). As just noticed, the previous impossibility results states that
consensus cannot be solved in such a system. So, a fundamental question is:
which additional computability power (defined not in terms of system behaviors
but in terms additional object types) needs to be added to the system model so
that the consensus can be solved. To this end, M. Herlihy introduced the notion of
consensus number [26].
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The consensus number of an object type T , denoted CN(T ), is the greatest
number of processes for which consensus can be solved from any number of
atomic read/write registers and any number of objects of type T . If there is no
such greatest number, the consensus number of T is +∞.

Let RW_TS be the type of RW registers accessed with Test&Set() operation,
and RW_CS be the type of RW registers accessed with Compare&Swap() oper-
ation4. It has been shown in [26] that CN(RW_TS)= 2 and CN(RW_CS)= +∞.
More generally, [26] introduces an infinite hierarchy of objects, that cover all pos-
sible consensus numbers. The interested reader can look at [49] where is defined
the notion of k-sliding window RW register. This object family spans the whole
consensus hierarchy: the consensus number of the k-sliding window RW register
is exactly k.

8 Consensus:
a Simple Way to Agree on a Total Order

Ordering object operations Let us consider an object defined by a sequential
specification, e.g., a stack with its two operations push() and pop(). To cope with
asynchrony and failures, the stack (which is a logical object, i.e. a structured set
of bits) is replicated on each process. So the main issue consists in ensuring that
the push() and pop() operations issued by the processes are applied in the same
order to all the local copies of the stack. A simple way to attain this goal consists
for each process in:

1. announcing the operation it wants to execute,

2. regularly defines a sequence on the operations it sees as announced and not
yet executed,

3. and proposes this sequence as input to a consensus instance.

Combined with a sequence of consensus instances (in which all processes agree a
priori), this allows all the local copies of the stack to progress the same way [10,
26].

Hence, as it allows to build a total order on operations, consensus lies at the
core of fault-tolerant implementations for the objects defined by a sequential spec-
ification. (For objects not defined by a sequential specification, i.e. concurrent
objects, the reader can consult [7, 8, 52].)

4Roughly speaking both operations return the current value of the register and write a new
value in it. The difference lies in the fact that Test&Set() is an unconditional write of a predefined
value, while Compare&Swap() is a conditional write of a value.
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Consensus vs mutex: illustration Let us consider money transfer as an object
providing its users (a user is a process associated with one and only one money
account) with two operations transfer() that allows a process to transfer money
from its account to another account, and balance() that allows a user to read an
account. Let us observe that an account is a logical object.

It has recently been shown that money transfer among a set of processes, each
having its own account, does not need consensus [3, 13, 25] 5. It is an announce-
ment/broadcast problem that must satisfy some causality requirements.

When several persons share the same account, the associated process consists
of several threads, one per person co-owner of the account. The invocations of the
operations transfer() issued by the threads that are co-owners of the same account
must then be ordered in order to prevent double-spending from the corresponding
account. This could be realized with mutex (enriched with an appropriate failure
detector or random numbers if the system is crash-prone).

But, as an account is a logical object this ordering can be realized (despite
process failures and asynchrony) with the help of consensus. It follows that if each
account can be accessed by at most k threads, an object the consensus number of
which is k is sufficient to realize money transfer (this was first noticed in [25]).

9 Both Sides of the Same Coin

When considering objects the consistency of which is defined by a sequential
specification (i.e, objects whose operations must appear as being executed sequen-
tially), it follows from the previous simple observations that, while both mutex and
consensus can be used to build a total order, mutex is for physical objects (which
by nature cannot be replicated), and consensus is for logical objects (structured
sets of bits which can be replicated)6. In this sense, mutex and consensus are the
two sides of the same coin. The content of this note is summarized in Table 1.

The “Underlying coordination” column refers to the type of synchronization
needed to implement mutex or consensus, namely, mutex ensures that the con-
cerned object can be physically accessed by at most one process at a time, while
consensus does not prevent several processes from invoking and simultaneously
executing object operations (after these operations have been totally ordered by
a consensus instance). The column “Helping needed” refers to the fact the al-

5It is pleasant to observe that the heavy Blockchain machinery was introduced to built a total
order on the cryptocurrency operations issued by users, and this is not needed! For the inter-
ested reader, [13, 25] consider money transfer as an object defined by a sequential specification,
while [3] considers money transfer as an object defined by a concurrent specification.

6Of course, in some specific contexts, it can be interesting to use mutex for logical objects, but
this is another issue not addressed in this note.
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Nature of Possible Total order Underlying Helping Weakest
the object replication obtained from Coordination needed FD
Physical No Mutex strong Yes QP, T
Logical Yes Consensus weak Yes Ω

Table 1: Total order: mutex vs consensus

gorithms implementing mutex or consensus need specific helping mechanisms to
ensure the liveness of the operations on the object that is built [1, 9, 26, 54]7. The
last column “Weakest FD” concerns the weakest failure detectors that allows mu-
tex or consensus to be solved. As already indicated, for read/write systems it is the
failure detector QP for mutex [16] and Ω for consensus [43], while, for message-
passing systems such that t < n/2, it is the failure detector T for mutex [15] and
the eventual leader failure detector Ω for consensus [10]. It is worth noticing that
the weakest information on failures that allows mutex to be solved includes a per-
petual property [15, 16], while that the weakest information on failures needed to
solve consensus needs to satisfy an eventual property only [10]. This is strongly
related to the underlying nature of the object (physical vs logical).

Let us again insist on the fact that, in a crash-prone system where the pro-
cesses communicate through read/write atomic registers (resp. message-passing
when assuming t < n/2), the weakest failure detectors QP (resp. T ) that allows
mutex to be solved is stronger than the weakest failure detector Ω that allows
consensus to be solved. As previously noticed, this is due to the fact that the
implementation of mutex requires a stronger underlying synchronization than the
one needed to implement consensus. More precisely, this is the main difference
between mutex and consensus, because of their very definitions mutex does not
allow concurrency at the implementation level, whereas consensus does.

Last but not least, let us notice that a recent paper by L. Lamport [40] describes
a deconstruction of his famous Bakery mutex algorithm [33] from which is built a
distributed state machine as defined in [35] (i.e., any object defined by a sequential
specification). This can be seen as an answer to the question posed in the title of
this note.

7As far liveness properties are concerned, wait-freedom [26] and non-blocking [29] for consen-
sus correspond to starvation-freedom and deadlock-freedom for mutex. Differently obstruction-
freedom [27] for consensus has no corresponding liveness property that could be associated with
mutex (this is due to the fact that mutex implicitly considers the object to with it is applied as a
“physical” object.
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Abstract

The Bebras challenge is an international initiative that aims to promote
informatics and computational thinking concepts to students in schools. It
is designed as a contest where participants solve a set of tasks that require
problem-solving skills, logical reasoning, and algorithmic thinking. The
challenge is open to students of various age groups, typically ranging from
primary school to high school. It provides an opportunity for students to
engage with informatics concepts in a fun and interactive way. The tasks are
carefully designed to be intellectually stimulating and encourage students
to think critically and creatively. The Bebras challenge focuses on concept-
based tasks that cover a wide range of informatics topics. These tasks may
involve understanding and analyzing information, algorithmic thinking and
problem-solving, using computer systems effectively, recognizing patterns
and structures, considering social and ethical issues related to technology,
and solving puzzles.

The challenge is organized annually in countries all over world, and partic-
ipating students solve tasks at different levels. The tasks are carefully crafted
by teams of educators, researchers, and professionals to ensure their rele-
vance, educational value, and suitability for the target age groups. The tasks
are usually based on real-life scenarios or practical situations that require
computational thinking skills to solve. Participating in the Bebras challenge
offers students an opportunity to develop their computational thinking abil-
ities, improve their problem-solving skills, and gain exposure to various
aspects of informatics. It also encourages collaboration, critical thinking, and
a deeper understanding of how technology impacts our daily lives. Thus, the
Bebras challenge serves as a platform to engage students in computational
thinking and foster their interest in informatics, laying the foundation for
future studies and careers in computer science and related fields.
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1 Introduction
Seven years ago, I published an article “Bringing Informatics Concepts to Children
through Solving Short Tasks” about the Bebras challenge in the Bulletin of the
EATS [2]. Since then, Bebras challenge has doubled in size: the number of
countries now stands at 78, with more than 3 million students participating; see
Figure 1.

The Bebras community consists of full members (55 countries) and provi-
sional members (23 countries). Each year new provisional countries are applying
and some of them get permission to enter (fulfilling required criteria), e.g., four
countries (Azerbaijan, Paraguay, Peru, and Puerto Rico) have qualified to join
the challenge this year. The provisional members need to establish the Bebras
challenge in their countries by forming networks with schools, involving teachers,
translating and adapting Bebras tasks, and promoting informatics education.

The main time of the Bebras challenge is the second week of November each
year. Every Bebras member country plans a competition, training, and activities.
Several countries in the Southern Hemisphere (Australia, Cambodia, Malaysia,
New Zealand, Singapore, and South Korea) hold the main competition in March,
when the school year starts, but they usually hold additional rounds in November.

In 2003, the idea of the Bebras competition was proposed. “Bebras” is Lithua-
nian word for “beaver,” a hard-working, intelligent, goal seeking, and lively animal.
In the past years, the number of Bebras participants has been notably growing.
Over 3 million students from over 70 countries were involved in solving Bebras
tasks world-wide each year. Slovenia had the strongest relative participation with
over 30 000 students, whereas France had the highest total number of participants,
nearly 0.7 million; see Figure 2.

The BETT (British Education and Training Technology), the largest education
and technology event for 37 years, took place from March 29–31, 2023. The
Bebras challenge was presented as one of the initiatives of Lithuanian researchers;
see Figure 3.

In preparation for the BETT exhibition, a team from Vilnius University created
a presentation of visual materials such as flyers, task cards and special bookmarks
with short tasks; see Figure 4. The app created especially for the exhibition was
particularly successful, as it allowed users to solve 10 Bebras tasks and win prizes.

Bebras is not only a contest, but also a platform for learning and discovery,
allowing students to develop their problem-solving skills and deepen their knowl-
edge in the field of informatics. This is not only beneficial for students, but also for
teachers who can use Bebras tasks and resources in their teaching.

The aim of the Bebras challenge is to stimulate students’ interest in computer
science, to develop a deeper understanding of technology, to encourage the ability to
solve algorithmic and logical problems, to develop critical thinking, programming
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Figure 1: The Bebras challenge covers 78 countries

and computer literacy skills, and to attract more talented young people to study
computer science.

Students participating in the Bebras challenge are given a wide variety of tasks,
each tailored to their age group and level of logical reasoning. The appeal of Bebras
tasks comes from their complexity and variety. The challenges are often complex
but very interesting and require not only logical thinking but also creativity. In
addition, the tasks often involve the application of various concepts and ideas that
are relevant in real-world informatics. All these elements help to increase the
attractiveness and relevance of the tasks, as well as to stimulate students’ interest
and encourage the development of computational thinking and other skills.

The competition gives students the opportunity to test their skills and creativity,
as well as to expand their knowledge in the field of computer science.

The famous Finnish educator Pasi Sahlberg has highlighted the significance
of playful learning, games, and gamification as factors contributing to the success
of Finnish education [9]. Playful learning activities have the ability to capture
children’s attention and engage them in various subjects. The combination of the
joy of discovery and unexpected solutions is a hallmark of such activities.

Bebras is an international initiative aiming to promote informatics among
school students of all ages. The challenge is organized annually by each partici-
pating country locally. Participants are usually supervised by teachers who may
integrate the Bebras tasks into their teaching activities. For running the challenge,
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Figure 2: Number of participants in the Bebras Challenge during November 2022
and April 2023

countries use different technologies mainly based on online contest management
systems (CMS). Each country chooses tasks from the Bebras task pool approved
by the annually-organized international Bebras task workshop.

2 Bebras Tasks
The essence of the Bebras challenge lies in informatics concept-based tasks [1, 8].
Developing a challenging set of tasks is crucial for the success of the challenge.
Task developers strive to choose interesting problems that motivate students to
engage with informatics and think deeply about its core concepts. There is a need
for consensus on task development criteria. Initially, six task topics were proposed:
Information comprehension, algorithmic thinking, using computer systems, struc-
tures, patterns and arrangements, social, ethical, cultural, international, and legal
issues, as well as puzzles [3, 10]. In recent years, a two-dimensional system for
categorizing tasks has been elaborated, incorporating both informatics concepts
and computational thinking skills [6].
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Figure 3: At BETT exhibition: Lithuanian EdTech presents Bebras challenge

Figure 4: Variety of Bebras didactical material for teaching informatics

An annual international Bebras workshop is organized in different countries,
focusing on the creation of concept-based tasks for students of all age groups.
The primary objective of these workshops is to develop a set of tasks for the
upcoming challenge, facilitate discussions among countries with diverse curricula
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and teaching traditions, and reach a consensus on the task selection.
The challenge incorporates various types of tasks to engage participants, in-

cluding interactive (dynamic) tasks, open-ended tasks, and multiple-choice tasks.
The emphasis is on creating context-rich and powerful tasks that motivate and
captivate students, encouraging them to delve deeper into informatics concepts.
The development and introduction of such tasks pose significant challenges for
researchers and educators [4, 7, 11].

Multiple-choice tasks typically feature four distinct and well-defined answer
choices, with only one correct solution. Interactive tasks, on the other hand, involve
a two-way transfer of information between the user and the computer. These tasks
provide a problem specification, requiring students to interact directly with the
computer by performing actions such as dragging and dropping objects, clicking
on specific areas of pictures, manipulating objects using a keyboard, or selecting
elements from a list.

Numerous countries have established networks and teams comprising re-
searchers, teachers, and educators dedicated to the creation and discussion of
Bebras tasks. These teams consistently propose new tasks each year. In the
following section, four examples of Bebras tasks will be provided and discussed.

Solving short concept-based tasks is a powerful method that can support a
pedagogical shift in the classroom and foster pupils’ engagement and motivation to
learn. Many publications deal with problem-solving methods. Solving short tasks
can be one of the strategies that engage and motivate students for deeper learning
and foster deeper thinking skills.

The developers of Bebras tasks are seeking to choose interesting tasks (prob-
lems) to motivate students to deal with informatics and to think deeper about
technology. Also they want to cover as many informatics and computer literacy
topics as possible. In informatics, there is also the problem of syllabus. Even if
there is an education standard for informatics at school in some countries, until
now there is no common agreement on what should be included in an integrated
syllabus [5].

All tasks including graphics, tables, etc. are developed under the Creative
Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

Example 1. Beavers vs. Kangaroos (Lithuania 2020, medium for 14–16 years)

While crossing a swamp by using a log path, five beavers meet a group of kangaroos
going into the opposite direction; see Figure 5. Nobody wants to become wet or
dirty so they stay on the path. The Kangaroos found out that from one specific log
it is possible to jump onto a stone next to the log path and jump back to that one
log. However, only one kangaroo can stand on the stone at a time.

The kangaroos and beavers don’t mind going all the way back, except for Fred,
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Figure 5

the leading beaver, who is the first to meet the kangaroos. Fred only wants to take
a step back 10 times. With Fred’s behaving this way, how many kangaroos can
pass him without taking a step back?

This task introduces the design of an algorithm as a main concept including a
sequence of operations (steps) and repetition, also understanding the concept of
variables. Recognition of patterns in algorithms (similar steps that are repeated)
can be turned into reusable code for a quick and automatic solution of a problem
(as the formulation here). The logs and the stone are like registers in a processor or
on a tape drive that can store data.

Example 2: Stickers (Finland 2020, medium for 16–19 years)

Betty Beaver is playing with four kinds of stickers that contain the words ABBA,
GAGA, GIBB, and IGGY. She creates a word by using the stickers on an empty piece
of paper. When a sticker is used at some position, it covers four characters starting
from this position; see Figure 6. Betty has many stickers of each kind.

For example, one of the ways to create the word GIABIGGYGA would be to use
the stickers as follows (asterisks indicate empty positions):

1. GIBB at position 1: GIBB******

2. ABBA at position 3: GIABBA****

3. GAGA at position 7: GIABBAGAGA

4. IGGY at position 5: GIABIGGYGA

Which of the following four words can be created by Betty’s stickers? There
may be several correct answers; find them all.
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Figure 6

(A) AGGIBBAGGAGABABGA

(B) AGGIBBAGAGGABABGA

(C) AGIBBGAGAGGYBAYBB

(D) AGGIBBAGAGGYBAGGY

This is an example of a problem that can be analyzed using “backward in-
duction” and “backtracking,” which are common problem-solving methods in
informatics. Backward induction is a process of reasoning backwards in time: we
start from the end of a problem or situation (in this task, a created word), and
try to determine an action (in this task, the use of some sticker) that leads to a
feasible preceding situation. This is repeated until the initial situation (in this task,
a completely empty state) is reached. In many problems, the process may have
several possibilities for selecting actions, and in such cases the backward induction
process may need to be applied in a backtracking manner: if the currently selected
sequence of actions fails to reach the initial situation, then we may change some
previous action selection and try again to proceed towards the initial situation.

Example 3. Strawberry Thief (Switzerland 2021, medium for 8–10 years)

Anja is playing outdoors and makes a design on the ground using four types of
objects: acorns, hazelnuts, stones, and strawberries. She then adds sticks to her
design according to her Very Important Rule:

A stick can go between two objects only if they are of different types.

Anja’s completed design is shown in Figure 7. Anja’s sister Zoë sees the
design and eats the strawberry. To hide what she has done, she tries to replace
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Figure 7

the strawberry with a different type of object. Which object can Zoë replace the
strawberry with, without breaking Anja’s Very Important Rule?

(A)

(B)

(C)

(D) None. Only the strawberry could go there.

The correct answer is Option D. Unfortunately, Zoë is not able to replace the
strawberry with a different type of object, without breaking Anja’s Very Important
Rule. In Anja’s original design, the strawberry had sticks between it and two
acorns, two stones, and one hazelnut. Changing the strawberry to anything other
than another strawberry would force a stick to exist between two objects of the
same type.

Anja’s design can be called a graph. The objects can be called nodes and the
sticks can be called edges. In a graph, edges connect nodes. Two nodes that share
an edge are called neighbors. A subset of nodes where each node is a neighbor
of every other node in the subset is called a clique. Anja’s design contains two
cliques: the left half and the right half of the design. Now suppose you wanted
to assign the nodes of a graph a color so that no edges connect two nodes of the
same color. Of course, the number of colors needed to do this is at least the size of
the largest clique. The largest clique in Anja’s design has size four, which is one
reason why Zoë could not satisfy the Very Important Rule using just three types
of objects.
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Figure 8

Example 4: Logs (Estonia 2021, medium for 14–16 years)

Jack and Sam are building a log house. Jack is bringing logs from the forest to
the storage area. He can move from the forest to the storage area in 5 minutes and
drag two logs at the same time. Sam is taking the logs from the storage area to the
construction site. He can move from the storage area to the construction site in just
2 minutes, but only carry one log. Both beavers move at the same speed to and
from the storage area with or without logs. They are working as follows:

When Jack arrives at the storage area with new logs, he will drop the logs and
call out to Sam before returning to the forest; Sam will then stop working at the
construction site and take the logs from the storage area.

When Sam takes the last log from the storage area and returns to the house,
he will resume doing his work at the construction site; but if there are logs left at
the storage area, Sam will drop the log at the house and immediately return to the
storage area for more logs.

How many logs will be at most at the construction site 30 minutes after the
friends start working? The way the two friends are working is similar to the
producer-consumer model of parallel processing in computers. Jack is the producer
of logs for Sam, and Sam is the consumer of the logs that Jack has produced.

The storage area acts as a buffer so that Jack does not have to wait until Sam
comes to collect the logs; instead, Jack can return to the forest for the next pair of
logs immediately and be more productive. Jack calling out to Sam when he adds
new logs to the empty storage area is like the signals used in computer systems to
allow one program to alert another. This lets Sam do other work instead of just
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Figure 9: According to Google Scholar, 954 papers from January 2019 to May
2023 were indicated

waiting at the storage area. However, when Jack does call Sam, it takes some time
for Sam to go from the construction site to the storage area, causing latency in the
movement of logs. A difference of our task from the classical producer-consumer
model is that in our case all the logs are considered equal and it is not required for
Sam to bring the logs to the construction site in the same order as Jack collected
them in the forest.

Tasks are very important both for competitors (students) and task developers
(teachers): students have been “pushed” to think on computer science, educators
should think about harmonization of syllabus of computer science. Creative,
interesting tasks are the main drive for the Bebras contests.

3 Research in Connection with Bebras Activities

The annual Bebras challenge provides a lot of data for making inquiries on how
students accept informatics concepts, how they develop computational and algo-
rithmic thinking, what types of tasks help attract and motivate them for further
involvement, etc. Some countries started to develop research papers year by year.
Other countries have published overviews of tasks with detailed explanations on
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Figure 10: Research papers collected at the website https://bebras.org

how to solve the tasks and what concepts are behind them. There are articles to
promote the Bebras challenge in particular countries, and also articles dealing with
particular contest results; Figure 9. The Bebras community collects articles and
publishes their list on the Bebras website annually;1 see Figure 10.

4 Conclusion

Finding the right balance between continuity and innovation is crucial in infor-
matics education. While continuity may seem monotonous, it provides a sense of
stability and comfort in our daily lives. Similarly, in teaching informatics, main-
taining a consistent framework of lessons, problem-solving exercises, and core
concepts can create a comfortable learning environment. Additionally, occasional
contests can serve as motivating factors for students.

However, the most significant aspect of introducing informatics in schools is
the human connection. Amidst long hours at work and moments of uncertainty,
receiving messages from others who share the same interests and struggles can be

1https://www.bebras.org/publications.html
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incredibly impactful. It is essential to foster a culture of dreaming, searching, and
communication, both in everyday life and within informatics education.

To engage students and recognize informatics as a scientific discipline, we
should strive for a more successful involvement. Well-organized activities with
intriguing and exciting tasks can immerse students in the world of informatics,
helping them grasp the core concepts and develop a genuine interest.
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Report from EATCS Japan Chapter
Yukiko Yamauchi (Kyushu University)

EATCS-JP/LA Workshop on TCS and Presentation Awards
The 21st EATCS-JP/LA Workshop on Theoretical Computer Science was held
fully face-to-face at Research Institute of Mathematical Sciences, Kyoto Univer-
sity, January 30th to February 1st, 2023. (The details can also be found, although
this website is written in Japanese, at
https://la-symposium2022.github.io/winter_program.html.)

Every year, we choose the best presenter and the best student presenter. This
year, we celebrated the following presentation as the 21st LA/EATCS-Japan Pre-
sentation Award:

“Hardness Self-Amplification”, Shuichi Hirahara (National Institute
of Informatics), Nobutaka Shimizu (Tokyo Institute of Technology)

We celebrated the following presentation as the 12th LA/EATCS-Japan Student
Presentation Award:

“Lipschitz Continuous Algorithms for Graph Problems”, Soh Kum-
abe (The University of Tokyo), Yuichi Yoshida (National Institute of
Informatics)

The awards were recognized publicly on the last day, February 1st, 2023.

Congratulations!

This workshop is jointly organized by LA symposium, Japanese association
of theoretical computer scientists. Its purpose is to give a place to discuss topics
on all aspects of theoretical computer science. This workshop is an unrefereed
meeting. All submissions are accepted for the presentation. There should be no
problem of presenting these papers at refereed conferences and/or journals. This
meeting is unofficial, familiar, and widely open for everyone who is interested
in theoretical computer science. It is held twice a year (January/February and
July/August). If you have a chance, I recommend that you attend it. Check the
website http://www.ecei.tohoku.ac.jp/alg/EATCS-J/ for further details.
The list of the presentations is as below; you can see the activity of the Japanese
society of theoretical computer science.
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Program of the 21st EATCS-JP/LA workshop on TCS (January 30th to Febru-
ary 1st, 2023)

In the following program, “*” indicates non-student speakers, while “**” indi-
cates student speakers. The number [Sxx] means it is in student session, namely,
it is a shorter talk than a regular one.

[1] Groups whose Word Problem is Accepted by an Abelian G-automaton
**Takao Yuyama (Tokyo Institute of Technology)

[2] Theoretical limits of the stochastic multiprocessor scheduling problem
**Daiki Suruga (Nagoya University)

[3] Online Job Scheduling with k Servers
**Jiang Xuanke (Kyushu University), Sherief Hashima (RIKEN AIP), Kohei
Hatano (Kyushu University / RIKEN AIP), Eiji Takimoto (Kyushu University)

[4] Computing maximal generalized palindromes
*Mitsuru Funakoshi (Kyushu University), Takuya Mieno (University of Electro-
Communications), Yuto Nakashima, Shunsuke Inenaga (Kyushu University),
Hideo Bannai (Medical and Dental University), Masayuki Takeda (Kyushu Uni-
versity)

[5] Reverse Engineering of Right-to-Left Position Heaps
**Koshiro Kumagai, Diptarama Hendrian, Ryo Yoshinaka, Ayumi Shinohara
(Tohoku University)

[6] Quantum Search-to-Decision Reduction for the LWE problem
**Kyohei Sudo (Osaka University), Masayuki Tezuka (National Institute of Tech-
nology, Tsuruoka College), Keisuke Hara (National Institute of Advanced Indus-
trial Science and Technology / Yokohama National University), Yusuke Yoshida
(Tokyo Institute of Technology)

[7] Distributed Quantum Interactive Proofs: Parallelization and Application
Francois Le Gall, **Masayuki Miyamoto, Harumichi Nishimura (Nagoya Uni-
versity)

[8] Hardness Self-Amplification
Shuichi Hirahara (National Institute of Informatics), *Nobutaka Shimizu (Tokyo
Institute of Technology)

[9] Overlapping of Lattice Unfolding for Cuboids
**Takumi Shiota (Kyushu Institute of Technology), Tonan Kamata, Ryuhei Ue-
hara (Japan Advanced Institute of Science and Technology)

[10] On the Security of Chameleon-Hash Functions with Ephemeral Trapdoors
**Kafu Hamada, Yoshida Yusuke, Keisuke Tanaka (Tokyo Institute of Technol-
ogy)

[11] Turedo, a novel class of Turing machines for programming RNA co-
transcriptional folding

Daria Pchelina (Université Paris 13), Nicolas Schabanel (ENS Lyon), *Shin-
nosuke Seki (The University of Electro-Communications), Guillaume Theyssier
(Aix-Marseille Université)

[12] Application of inside and outside judgment method in complex shape
*Satoshi Kodama (International Professional University of Technology in Tokyo)

[13] Algorithmic Meta-Theorems for Combinatorial Reconfiguration Revisited
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**Tatsuya Gima (Nagoya University), Takehiro Ito (Tohoku University), Yasuaki
Kobayashi (Hokkaido University), Yota Otach (Nagoya University)

[14] Accessing the Suffix Array via Φ−1-Forest
Christina Boucher (University of Florida), *Dominik Köppl (TMDU), Herman
Perera (University of Florida), Massimiliano Rossi (University of Florida)

[15] On The Number of Maximal Cliques in Two-Dimensional Random Geometric
Graphs: Euclidean and Hyperbolic

**Hodaka Yamaji (The University of Tokyo)
[16] On a Nash equilibrium of the path planning game under bidirectional traffic costs

**Yuya Sekiguchi (Nagoya University), Tesshu Hanaka (Kyushu University), Hi-
rotaka Ono (Nagoya University)

[17] Optimal LZ-End Parsing
Hideo Bannai (Tokyo Medical and Dental University), Mitsuru Funakoshi
(Kyushu University), Kazuhiro Kurita (Nagoya University), *Yuto Nakashima
(Kyushu University), Kazuhisa Seto (Hokkaido University), Takeaki Uno (Na-
tional Institute of Informatics)

[18] Computation of Minimal Unique Substrings and Maximal Repeats on Necklaces
**Ryoki Moritake, Koshiro Kumagai, Diptarama Hendrian, Ryo Yoshinaka,
Ayumi Shinohara (Tohoku University)

[S1] Lipschitz Continuous Algorithms for Graph Problems
**Soh Kumabe (The University of Tokyo), Yuichi Yoshida (National Institute of
Informatics)

[S2] Computing an optimal coalition structure on fractional hedonic games
**Airi Ikeyama (Nagoya University), Tesshu Hanaka (Kyushu University), Hiro-
taka Ono (Nagoya University)

[S3] Constrained LCS of Non-linear Texts
**Yonemoto Yuuki, Nakashima Yuto, Inenaga Shunsuke (Kyushu University)

[S4] Certification of Bin-Packing Algorithms using Why3
**Masaya Sano, Hiroshi Fujiwara, Hiroaki Yamamoto (Shinshu University)

[S5] Largest repetition factorizations of Fibonacci words
**Kaisei Kishi, Yuto Nakashima, Shunsuke Inenaga (Kyushu University)

[S6] Computational Complexity of Shironabe Puzzles
**Kosuke Shinohara, Tetsuya Araki, Kazuyuki Amano (Gunma University)

[S7] Lower bounds on quantum query complexity for linear list search
**Yutaro Sakai, Akinori Kawachi (Mie University)

[S8] Concurrent Signal Passing by Co-transcriptional Folding
**Naoya Iwano, Yu Kihara (The University of Electro-Communications)

[S9] Gray code generation on left-child sequences of binary trees
**Sawaka Hori, Kenji Mikawa (Maebashi Institute of Technology)

[S10] Improved Analysis of Decryption Error Probability for the Post-Quantum
Cryptosystem HQC

**Kohei Yamaguchi, Akinori Kawachi (Mie University)
[S11] On the distribution of minimal a, b separators dominating each other

**Kohei Nomura, Koichi Yamazaki (Tokyo Denki University)
[S12] Probabilistic Logspace Algorithm for Spectral Gap Amplification of Stochastic
Matrices

**Kensuke Suzuki, Maharshi Ray (Mie University), Francois Le Gall (Nagoya
University), Akinori Kawachi (Mie University)
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[S13] On a spectral lower bound of treewidth
**Kohei Noro, Tatsuya Gima (Nagoya University),Tesshu Hanaka (Kyushu Uni-
versity), Yota Otachi, Hirotaka Ono (Nagoya University)

[S14] Graph Linear Notations with Regular Expressions
**Ren Mimura, Kyohei Miyabe, Kengo MiyamotoK, Akio Fujiyoshi (Ibaraki Uni-
versity)

[S15] The Upper Bound on the Minimum Density for Anti-slide Packing Using 2x2x1
Pieces

**Kento Kimura, Kazuyuki Amano (Gunma University)
[S16] Collecting Balls on a Line by Robots with Limited Energy

**Nicolas Honorato Droguett, Kazuhiro Kurita (Nagoya University),Tesshu
Hanaka (Kyushu University), Yota Otachi, Hirotaka Ono (Nagoya University)

[S17] The ultimate sign of second-order holonomic sequences
Kawamura Akitoshi, **Hagihara Fugen (Kyoto University)

[S18] Extension of non-deterministic ZDD by introduction of set difference operation
and application for set similarity searching

**Shota Shikama (Kyushu University)
[S19] Approximation Algorithms for Finding the Myerson Centrality of a Network

**Yuto Kuwabara, Masaaki Matsumoto, Toshinori Yamada (Saitama University)
[S20] Structural Parameterizations of Vertex Integrity

**Ryota Murai, Tatsuya Gima (Nagoya University), Tesshu Hanaka (Kyushu
University), Yasuaki Kobayashi (Hokkaido University), Hirotaka Ono, Yota
Otachi (Nagoya University)

[S21] On nonnegative k-submodular relaxation
**Kotaro Uchida, Yuni Iwamasa (Kyoto University)

[S22] Cartesian Tree Subsequence Matching on Indeterminate Strings
**Kento Hirose (Kyushu University), Takuya Mieno (The University of Electro-
Communications), Yuto Nakashima, Shunsuke Inenaga (Kyushu University)

[S23] A fast algorithm for finding a maximal common subsequence of multiple
strings

**Miyuji Hirota, Yoshifumi Sakai (Tohoku University)
[S24] Head-or-Tail Bin-Packing Algorithms for Sorted Items

**Rina Atsumi, Hiroshi Fujiwara, Hiroaki Yamamoto (Shinshu University)

Forthcoming Event
ISAAC 2023
International Symposium on Algorithms and Computation (ISAAC) is intended to provide
a forum for researchers working on algorithms and computation. The 34th edition of this
symposium will be held in Kyoto from December 3rd to 6th, 2023. In this year, all
the accepted papers are expected to be presented on-site by some of the authors. See
https://www.kurims.kyoto-u.ac.jp/isaac/isaac2023/ for more information on
ISAAC 2023.

Submission Deadline: June 30, 2023 (Anywhere on Earth)

Notification of Acceptance: September 4, 2023
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OPODIS 2023
International Conference on Principles of Distributed Systems (OPODIS) is an open fo-
rum for the exchange of state-of-the-art knowledge concerning distributed computing and
distributed computer systems. All aspects of distributed systems are within the scope of
OPODIS, including theory, specification, design, performance, and system building. The
27th edition of this conference will be held in Tokyo from December 6th to 8th, 2023.
See https://opodis.net for more information on OPODIS 2023.

WALCOM 2024
The 18th International Conference and Workshops on Algorithms and Computation (WAL-
COM 2024) will be held at Kanazawa, Japan from March 18th to 20th, 2024. This
conference was established to encourage young researchers of theoretical computer sci-
ence in Asia, especially, India and Bangladesh. Nowadays, there are many participants
not only from a wide range of Asia but also from Europe and North America. See
https://www.kono.cis.iwate-u.ac.jp/~yamanaka/walcom2024/ for more infor-
mation on WALCOM 2024.

New member of EATCS-J (by Ryuhei Uehara)
Professor Yukiko Yamauchi had been a secretary of the Japan chapter of EATCS for

long years. Now she has retired, and Professor Yuto Nakashima has joined as a secretary.
All members thank Yukiko for her kind support, and welcome Yuto to our team!

EATCS Japan Chapter

Chair: Ryuhei Uehara

Vice Chair: Takehiro Ito

Secretary: Yukiko Yamauchi

email: eatcs-jp@grp.tohoku.ac.jp

URL: http://www.ecei.tohoku.ac.jp/alg/EATCS-J/index.html
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Report on BCTCS 2023

The 39th British Colloquium for Theoretical Computer Science

3–4 April 2023, University of Glasgow

Ciaran McCreesh

The British Colloquium for Theoretical Computer Science (BCTCS) is an annual
forum in which researchers in Theoretical Computer Science can meet, present
research findings, and discuss developments in the field. It also provides a wel-
coming environment for PhD students to gain experience in presenting their work
to a broader audience, and to benefit from contact with established researchers.

BCTCS 2023 was hosted by the University of Glasgow and held from 3rd

to 4th April 2023. The event attracted 37 registered participants, and featured
an interesting and wide-ranging programme. A total of 15 contributed talks –
predominantly by PhD students – were presented at the meeting alongside the five
keynote speakers. The meeting also featured a special session on the pedagogy of
theoretical computer science.

BCTCS 2024 will be hosted by the University of Bath from 3rd–5th April 2024.
Researchers and PhD students wishing to contribute talks concerning any aspect
of Theoretical Computer Science are cordially invited to do so. Further details are
available from the BCTCS website at www.bctcs.ac.uk.

Invited Talks

Ruth Hoffmann (University of St Andrews)
Composable Constraint Models for Permutation Patterns and their enumera-
tion
Permutation pattern research started off as investigating which sequences of num-
bers can be sorted by using a stack. This has now extended into many fields such
as using permutations which contain or avoid certain types of patterns when in-
vestigating for example Mahonian statistics. Constraint programming is a way of
solving combinatorial problems by taking variables, the values they can take and
constraints which involve the variables. It then searches for one (all, or the opti-
mal) solution (variable, value assignments) which does not violate the constraints.
We will explore different permutation patterns, properties and statistics. While
giving you the many definitions we will see how each translates into a constraint
model. Having these many models means that we can now easily mix and match
them into useful tools to help solve or help investigate permutation problems com-
putationally.
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Steve Linton (University of St Andrews)
Three Trips Around the “Virtuous Circle”: Theory, Algorithms, Software and
Experiments
My thesis in this talk is that there can be a powerful synergy between the study of
mathematical and combinatorial structures in the abstract; the theoretical study of
algorithms for computing with those structures and their complexity; the devel-
opment of flexible and usable software implementations of those algorithms; and
the gathering of experimental data using that software, which can fuel new conjec-
tures and lead to new mathematical results, completing the circle. I will illustrate
this thesis with examples from three areas: permutation groups; transformation
monoids; and token-passing networks and pattern classes of permutations.

David Manlove (University of Glasgow)
Models and Algorithms for the Kidney Exchange Problem
A patient who requires a kidney transplant, and who has a willing but incompat-
ible donor, may be able to ‘swap’ his or her donor with that of another patient,
who is in a similar situation, in a cyclic fashion. Altruistic donors can also trigger
“chains” of transplants involving multiple recipients together with their willing
but incompatible donors. Kidney exchange programmes (KEPs) organise the sys-
temic detection of optimal sets of cycles and chains based on their pools of donors
and recipients. There are many examples of KEPs around the world, including the
UK Living Kidney Sharing Scheme (UKLKSS). In this talk I will describe inte-
ger programming models and algorithms that can be used to solve the underlying
optimisation problem involved in a KEP. This includes the algorithms developed
at Glasgow that have been used by NHS Blood and Transplant for the UKLKSS
since 2008.

Faron Moller (Swansea University)
Technocamps: Transforming Digital Education Throughout Wales
By 2000, it became evident that, in Wales, interest in, knowledge of, and capacity
for computing was not keeping pace with the transformational rise of the digital
society and economy. Technocamps, the pan-Wales school and community out-
reach unit established at Swansea University but with a hub in every university in
Wales, has throughout this time researched, championed and delivered change in
national curricula, qualifications, delivery and professional development in order
to foster a sustainable digital skills pipeline in Wales. In this presentation, we
highlight the activities and impact of Technocamps, showcasing its wider impact
on computing education, practitioners, schools, and learners in Wales, especially
with the introduction of the new Curriculum for Wales in September 2022, with
its major reform of computer science and cross-curricular digital competencies.
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Syed Waqar Nabi (University of Glasgow)
Navigating Pedagogies: Teaching Theory-Heavy Courses to Software Engi-
neering Student
The landscape of teaching pedagogies is a rich one, and not always easy to nav-
igate. While there has been a shift towards student-centered, “constructivist” ap-
proaches to teaching, the more traditional teacher-centred approaches like direct-
instruction are still prevalent, more so in theory-heavy courses. For this talk, I
will use theory-heavy courses I teach to Software Engineering Graduate Appren-
ticeship students as conduits for exploring this pedagogy landscape, discussing
experiences with using a number of teaching instruments along the way. This will
lead to the specific pedagogy that I have been converging on called “Competency-
Based Education” (CBE), similar to what’s called “mastery learning”. Based on
the outcome of a working group on CBE, I will go a bit more into what CBE is,
how it relates to some other pedagogies, how we can draw inspiration from other
teaching domains, and what it might mean to use it for computing education. Fi-
nally, I will connect this discussion to theory-heavy computing science courses in
general, and share some thoughts on how (or if) CBE can work for such courses.

Contributed Talks

Andrew Ryzhikov (University of Oxford)
On Cost Register Automata with Few Registers
Cost register automata (CRA) are an extension of deterministic finite state au-
tomata. Instead of accepting or rejecting words, they assign each word a value
(which can mean, for example, a cost, probability or duration of an event). This
value is computed with a finite set of write-only registers which are updated every
time a transition is taken. CRA are tightly related to weighted automata (WA), and
natural syntactic restrictions for CRA allow to define new subclasses of functions
which are not definable in terms of WA. One such restriction is to bound the num-
ber of registers. We show that for CRA with only three registers universality (are
the values of all words below/above a certain threshold?) remains undecidable
both over the tropical semiring and over the semiring of rational numbers with
usual addition and multiplication. In contrast, we show that the zeroness problem
(does there exist a word of value zero?) for CRA over the tropical semiring be-
comes solvable in polynomial time if the number of registers is constant, while it
is PSPACE-complete without this assumption.

This is a joint work with Laure Daviaud (City, University of London).

Peter Strulo (University of Warwick)
An Exercise in Tournament Design: When Some Matches Must Be Scheduled
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In single-elimination tournaments, players play one-on-one matches with the win-
ner proceeding to the next round until only one player remains. The problem of
manipulating the outcome of the tournament by carefully choosing which oppo-
nents play each other in each round (the seeding) has been studied extensively.
We introduce a new variant of this problem where the aim is to choose a seeding
which results in certain desired matches being played, rather than a specific player
winning. We obtain both hardness and tractability results: the problem is NP-hard
in general but polynomial-time solvable when the input digraph modelling the
pairwise results is acyclic.

Marcel De Sena Dall’Agnol (University of Warwick)
Streaming zero-knowledge proofs
We initiate the study of zero-knowledge proofs for data streams. Streaming in-
teractive proofs (SIPs) are well-studied protocols whereby a space-bounded algo-
rithm with one-pass sequential access to a massive stream of data communicates
with an all-powerful but untrusted prover to verify a computation that requires
large space.

We define the notion of zero-knowledge in the streaming setting and construct
zero-knowledge SIPs for the two main building blocks in the streaming interactive
proofs literature: the sumcheck and polynomial evaluation protocols. To the best
of our knowledge all known streaming interactive proofs are based on either of
these tools, and indeed, this allows us to obtain zero-knowledge SIPs for central
and well-studied streaming problems, such as index, frequency moments, and in-
ner product. Our protocols are efficient both in terms of time and space, as well
as communication: the space complexity is polylog(n) and, after a non-interactive
setup that uses a random string of near-linear length, the remaining parameters are
sub-polynomial.

En route, we develop a toolkit for designing zero knowledge data stream pro-
tocols that may be of independent interest, consisting of an algebraic streaming
commitment protocol and a temporal commitment protocol. The analysis of our
protocols relies on delicate algebraic and information-theoretic arguments and re-
ductions from average-case communication complexity.

Bruno Pasqualotto Cavalar (University of Warwick)
Constant-Depth Circuits vs. Monotone Circuits
We establish strong separations between the power of monotone and general (non-
monotone) Boolean circuits:

• For every k ≥ 1, there is a monotone function in AC0 (constant-depth poly-
size circuits) that requires monotone circuits of depth Ω(logk n). This vastly
extends a classical result of Okol’nishnikova (1982) and Ajtai and Gurevich
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(1987). Our separation holds for a monotone graph property, which was
unknown even in the context of AC0 versus mAC0.

• For every k ≥ 1, there is a monotone function in AC0[⊕] (constant-depth
poly-size circuits extended with parity gates) that requires monotone cir-
cuits of size exp(Ω(logk n)). This makes progress towards a question posed
by Grigni and Sipser (1992).

These results show that constant-depth circuits can be considerably more efficient
than monotone circuits when computing monotone functions.

In the opposite direction, we observe that non-trivial simulations are possi-
ble in the absence of parity gates: every monotone function computed by an
AC0 circuit of size s and depth d can be computed by a monotone circuit of size
2n−n/O(log s)d−1

. We show that the existence of significantly stronger monotone sim-
ulations would lead to breakthrough circuit lower bounds. In particular, if every
monotone function in AC0 admits a polynomial size monotone circuit, then NC2

is not contained in NC1.
Finally, we revisit our separation result against monotone circuit size and in-

vestigate the limits of our approach, which is based on a monotone lower bound
for constraint satisfaction problems established by Göös et al. (2019) via lift-
ing techniques. Adapting results of Schaefer (1978) and Allender et al. (2009),
we obtain a classification of the monotone circuit complexity of Boolean-valued
CSPs via their polymorphisms. This result and the consequences we derive from
it might be of independent interest.

Nathan Flaherty (University of Liverpool)
On Transposition Distance of Words with Fixed Parikh Vectors
The operation of transposition is a permutation that swaps any two symbols in a
word. The Parikh Vector P denotes the number of occurrences of each letter in
a given word and the operation of transposition preserves its Parikh Vector. We
consider the configuration graph where the set of vertices are words with the same
Parikh Vector and edges are defined by transposition operations on these words.
The question about the maximal shortest path between two words by transposition
corresponds to the estimation of the diameter D in a configuration graph. We
show the tight bound on the diameter D which is equal to n − maxi∈[q] Pi where
q is the size of a finite alphabet, and n =

∑
i∈[q] Pi is the length of considered

words. The lower bound is based on the analysis of cyclic covers of auxiliary
graph structure and the matching upper bound follows from the direct proof of
algorithmic transformation. This is the joint work with Duncan Adamson, Igor
Potapov and Paul Spirakis.

Ben Lloyd-Roberts (Swansea University)
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Mining Invariants from State Space Observations
The application of model checking to verify railway signalling systems has a long
history within academia and is beginning to seen some real applications in the
railway sector. One limitation of such model checking is that verification can fail
due to over approximation, typically when using techniques such as inductive ver-
ification. Here, one solution is to introduce so-called invariants, formal properties
satisfied by all states, to suppress false positives. However, automatically gener-
ating sufficiently strong invariants to help bound the region of reachable states is
complex. In this work, we show it is possible to use machine learning to generate
candidate invariants for model checking. Our methodology starts by providing
a first formal mapping of state spaces to a reinforcement learning (RL) environ-
ment. We then train agents to explore large regions of states spaces while building
a dataset of unique state observations. Finally we demonstrate that statistical anal-
ysis of state observations gives rise to interesting correlations between variables,
allowing proposals for candidate invariant properties.

Matthew McIlree (University of Glasgow)
How can a constraint solver prove it is telling the truth?
A proof log for a problem-solving algorithm provides a verifiable certificate that
the result is correct, and also an auditable record of the steps taken to obtain that
result. In the field of Boolean satisfiability, proof-logging has become an expected
capability of modern solvers, with a standard proof format called DRAT widely
accepted for independent verification. In contrast, a similar standard practice has
not yet been adopted for Constraint Programming (CP), due to the difficulties
of applying DRAT to the more expressive formulations and reasoning present in
this paradigm. However, recent work towards “An Auditable Constraint Program-
ming Solver” (Gocht et al. 2022) has shown how a proof system working in a
pseudo-Boolean format can certify the reasoning carried out for several important
expressive global constraints, offering a strong candidate for a complete, general
CP proof logging method. This talk will be an introduction to proof logging in the
context of constraint programming. It will summarise the main motivations; the
core techniques developed so far; and the reasons for being optimistic about the
applicability of the method going forward.

Laura Larios-Jones (University of Glasgow)
Minimising temporal reachability in graphs with uncertainty
Temporal graphs consist of an underlying graph and an assignment of timesteps
to edges that specifies when each edge is active. This allows us to model spread
through a network which is time-sensitive. Previous work has explored minimis-
ing spread by edge deletion for applications such as epidemiology. In reality,
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these models cannot be exact. This motivates the introduction of uncertainty to
the problem. Our goal is to remove a set of edges in our graph such that the max-
imum number of vertices reachable from any starting vertex is minimised even
when there is uncertainty in our input. We will discuss some preliminary analo-
gous structural and algorithmic results.

Fabricio Mendoza Granada (University of Glasgow)
On finding the b-chromatic number of a tree
Graph colouring is an extensively studied problem in computer science, discrete
mathematics and other disciplines. It involves assigning colours or labels to the
vertices so that not two adjacent vertices share the same colour. This assignment
is called a proper colouring. The problem was originally proposed as a puzzle to
colour the map of counties in England in 1878. Its applications arise in the context
of scheduling, timetable construction, register allocation and many others. The
first graph colouring parameter to be studied was the chromatic number of a graph
G, χ(G), which is the minimum number of colours used by a proper colouring of
G. In this talk we will discuss the b-chromatic number φ(G) of a graph G, a
concept introduced by Irving and Manlove in 1998. The b-chromatic number of a
graph is the maximum integer k for which G admits a proper colouring such that
for every colour c there exists a vertex v of colour c that is adjacent to at least one
vertex of every other colour. Deciding whether φ(G) ≥ k for a given graph G and
integer k was proved to be NP-complete by Irving and Manlove, and this holds
even for bipartite graphs. However, they proved that the b-chromatic number of a
tree can be computed in polynomial time by describing an algorithm to find a b-
chromatic colouring using φ(G) colours. In this talk we will present the algorithm
for finding a b-chromatic number of a tree in pseudocode form. Futhermore, we
show that the algorithm runs in linear time; previously it was only claimed that
the algorithm runs in polynomial time. Finally, we will present some experimental
results on families of random trees.

Filippos Pantekis (Swansea University)
GPGPUs, Supercomputers, and a Game of Chess
The evolution of General Purpose Graphics Processing Unit (GPGPU) devices,
paired with their wide commercial availability, has enabled a broader spectrum
of problems to benefit from the superior mathematical capabilities offered by this
hardware. Perhaps the biggest obstacle in using GPGPUs to accelerate the solv-
ing for all problems, is the restrictive computation flow (regularity) expected by
the hardware in order to maximise performance. This talk presents how certain
algorithmic choices together with hardware-specific optimisations can transform
an irregular algorithm for the N-Queens problem to a competitive solver.
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Carlos A. Perez Delgado (University of Kent)
Towards a Physical Fundamental Computational Complexity Theory
In theoretical computer science, the fundamental yardstick of computational cost
is left largely undefined. The (time) cost of performing a computation/algorithm
is measured in its number of “primitive operations”. However, one is allowed to
choose the set of primitive operations at will. Big “Oh” notation allows one to
do so, while retaining a consistent measure. This allows for an elegantly simple
theory that can nevertheless make meaningful statements about algorithms.

The theory is not without its flaws, however. The first is the already men-
tioned arbitrariness of the yardstick(s). Second, it fails to say anything meaning-
ful when attempting to compare different architectures, or comparing algorithms
across them. For instance, computations running on massively parallel architec-
tures, quantum computers, and/or single-core processors cannot be meaningfully
compared with one another without introducing extra assumptions.

In this talk I will propose a fundamental theory of computational complexity.
This theory uses the physical resource action (that is energy in joules times time
in seconds), as the fundamental unit of computation. We will introduce a model
of computation that allows us apply this metric, much like Turing machines can
be used for (traditional) computational complexity cost. We will discuss how
to recover all existing results from computational complexity, and we will dis-
cuss benefits of this model in terms of meaningful comparisons that traditional
complexity theory cannot make.

Peace Ayegba (University of Glasgow)
Resolving the complexity of variants of stable matching problems.
Matching problems involve the allocation of one set of agents to another set of
agents based on preferences, with application in various real-world centralised
matching schemes. A common objective is to find a stable matching where no set
of agents would rather be matched together than with their current assignment.
It is well known that finding a maximum cardinality stable matching for several
matching problems such as the Stable Marriage problem with Ties and Incomplete
lists (MAX-SMTI), is NP-hard, even with strong restrictions on the input. How-
ever, a polynomial-time algorithm exists for a restricted version of MAX-SMTI,
where each man’s list is of length at most 2 and each woman’s list can be of un-
bounded length. This talk resolves the complexity of other maximum cardinality
stable matching problems (e.g., in the context of hospitals-residents with ties, and
student-project allocation) under strong restrictions on the input.

Xin Ye (Durham University)
Computing Balanced Solutions for Large International Kidney Exchange
Schemes
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To overcome incompatibility issues, kidney patients may swap their donors. In in-
ternational kidney exchange programmes (IKEPs), countries merge their national
patient-donor pools. We consider a recently introduced credit system. In each
round, countries are given an initial “fair” allocation of the total number of kid-
ney transplants. This allocation is adjusted by a credit function yielding a target
allocation. The goal is to find a solution that approaches the target allocation as
closely as possible, to ensure long-term stability of the international pool. As so-
lutions, we use maximum matchings that lexicographically minimize the country
deviations from the target allocation. We first introduce a novel approach for in-
corporating credits that has not been proposed in the literature before. Namely,
let the solution concepts prescribe a set of target allocations for a credit-adjusted
game, where the credits are incorporated into the value function of the game di-
rectly. We perform a computational study for a large number of countries, up
to fifteen countries. For the initial allocations we extend by also considering the
tau value and Banzhaf value, and compare them to previously obtained results,
namely the benefit value, contribution value, Shapley value and nucleolus. Our
experiments show that using lexicographically minimal maximum matchings in-
stead of ones that only minimize the largest deviation from the target allocation
(as previously done) may make an IKEP up to 54% more balanced. This is joint
work with Marton Benedek, Peter Biro and Daniel Paulusma.

David Kutner (Durham University)
The TaRDiS and epidemics in temporal graphs
We are interested in the resilience to infection of a population of n individuals
who will interact m times, with k of those individuals being initially infectious.
In the worst case, the entire population is infected once all the interactions have
occured; and this is necessarily the case k = n. Our question is then to find the
size of the smallest set of infectious individuals which would still infect the entire
population.

Temporal graphs (graphs which change over time) offer us a convenient model
for this problem. In our case, vertices corresponding to individuals remain con-
stant and edges, each corresponding to an interaction, appear at exactly one
(unique) time. We denote this temporal graph G = (V, E), λ : E → [|E|], and
say a node v0 reaches another node vl (denoted by v0 ⇝ vl) if there is a static path
v0, v1, . . . , vl ∈ G and λ(vi, vi+1) ∀i ∈ {0, l − 1}.

Then our problem can be formalized as follows: given a temporal graph G, λ,
and integer k, is there a set of vertices S ⊆ V(G) such that for every v ∈ V(G)
either v ∈ S or ∃u ∈ S : u ⇝ v? We call this problem Temporal Reachability
Dominating Set, or TaRDiS, and present hardness and tractability results for it.

Thomas Karam (University of Oxford)
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Lower-order ranks and the structure of the ranges of boolean polynomials on
finite prime fields
Let p be a prime integer, and let 1 ≤ d < p be a positive integer. The degree-d rank
of a polynomial P : Fn

p → Fp was defined in 2007 by Green and Tao as the smallest
nonnegative integer k such that we can find polynomials P1, . . . , Pk : Fn

p → Fp

with degree at most d and a function F : Fk
p → Fp satisfying P = F(P1, . . . , Pk).

As shown by Green and Tao, if 2 ≤ d < p and P is a degree-d polynomial not
approximately uniformly distributed on Fn

p, then P must have bounded degree-
(d − 1) rank. The literature after that has largely focused on the equidistribution
of polynomials, and hence on the notion of degree-(d − 1) rank.

Recently, Gowers and the speaker showed that this statement could be ex-
tended to boolean polynomials: if P is not approximately uniformly distributed
on {0, 1}n, then P coincides on {0, 1}n with a polynomial that has bounded degree-
(d − 1) rank.

In this talk I shall explain how this extension, which is still based purely on
the degree-(d − 1) rank, may be used to deduce a description of the range of a
polynomial on S n which uses the other ranks defined by Green and Tao.
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Scientific colloquium in honor of former
EATCS President BurkhardMonien on the

occasion of his 80th birthday

Ulf-Peter Schroeder
Paderborn University
ups@upb.de

On May 5, 2023, a colloquium was held at Paderborn University in honor
of Burkhard Monien on the occasion of his 80th birthday. The colloquium paid
extensive tribute to Burkhard’s approximately 50 years of work and scientific con-
tributions to the theoretical computer science community in general and to Pader-
born University in particular. Among the approximately 90 invited guests were
many long-time scientific colleagues, his scientific descendants, and also numer-
ous representatives of various national and international scientific organizations
(EATCS, GI, DFG, Academy of Sciences). The lecture program was opened by
the current Vice Dean of the Paderborn Faculty of Computer Science, Christian
Scheideler, who incidentally also succeeded Burkhard on the Chair of Theoretical
Computer Science at Paderborn University. In addition to a personal review by
Burkhard Monien, the program then included talks on his long-time research in-
terests (Complexity Theory, Parallel Computing, and Algorithmic Game Theory),
by scientific descendants (Ewald Speckenmeyer, Oliver Vornberger, and Christian
Plessl) and by long-time colleagues (I. Hal Sudborough and Marios Mavronico-
las).

As a service to EATCS, Burkhard Monien has held almost every position dur-
ing his long career. He has been a long-time Secretary, Council member, Vice
President, and President of EATCS. Among his more than 200 papers, this in-
cludes 12 ICALP papers and two proceedings volumes of ICALP as PC-chair,
1991 and 1996. For his scientific contributions, Burkhard Monien received, among
others, the Leibniz Prize of the DFG, various memberships and awards of scien-
tific academies as well as the Test-of-Time Award of the conference series Work-
shop on Graph-Theoretic Concepts in Computer Science. The traces of his sci-
entific work at the computer science location of Paderborn University cannot be
enumerated within the scope of this report, so it should only be recalled here that
Burkhard was the first appointed computer science professor at Paderborn Uni-
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versity in 1977, at that time entrusted with the establishment of the new subject
of computer science. In the following years, he was the founder of important
scientific institutions at Paderborn University, such as the Paderborn Center for
Parallel Computing (PC2) and the Heinz Nixdorf Institute (HNI) both of which
have since then achieved great national and international reputation.
Incidentally, Burkhard Monien will chair the Golden Anniversary Session at the
50th ICALP to be held in Paderborn from July 10-14, 2023. For this, two outstand-
ing keynote speakers, Kurt Mehlhorn and Thomas Henzinger, have been invited.
Don’t miss this event and register for ICALP 2023!

The Vice Dean of the Faculty of Computer Science at Paderborn University presents
the jubilarian with a jersey of his favorite soccer club HSV with the number 80 on
the back.
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Burkhard Monien presents a personal retrospective of his approximately 50 years
as researcher at Paderborn University.

The audience fully enjoyed the invited research talks as well as the spiritual ex-
cursion by Burkhard Monien on his long-life research career.
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Group picture of the speakers at the colloquium: Christian Scheideler (Paderborn
University), Ewald Speckenmeyer (University of Cologne), Oliver Vornberger
(Osnabrück University), Burkhard Monien (Emeritus of Paderborn University),
I. Hal Sudborough (Emeritus of University of Texas at Dallas), Christian Plessl
(Paderborn Center for Parallel Computing), Marios Mavronicolas (University of
Cyprus).
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EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the EATCS Distinguished Dissertation Award, the Nerode
Prize (joint with IPEC) and best papers awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

Benefits offered by EATCS to Young Researchers also include:
- Database for Phd/MSc thesis
- Job search/announcements at Young Researchers area
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(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Jerusalem, Israel 1994
- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997
- Aalborg, Denmark 1998

- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013
- Copenhagen, Denmark 2014
- Kyoto, Japan 2015
- Rome, Italy 2016
- Warsaw, Poland 2017
- Prague, Czech Republic 2018
- Patras, Greece 2019
- Saarbrücken, Germany (virtual conference) 2020
- Glasgow, UK (virtual conference) 2021
- Paris, France 2022
- Paderborn, Germany 2023

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.
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Contributions to any of the above areas are solicited, in electronic form only according to for-
mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Vienna), J. Hromkovič
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are D. Sannella (Edinburgh), L. Kari and P.G. Spirakis
(Patras).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Artur Czumaj,
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues are e 40 for a period of one year (two years for students / Young Researchers ). Young
Researchers, after paying, have to contact secretary@eatcs.org, in order to get additional
years. A new membership starts upon registration of the payment. Memberships can always be
prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 35 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 35 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.
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HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, contact the Secretary Office of EATCS:

Mrs. Efi Chita,
Computer Technology Institute & Press (CTI)
1 N. Kazantzaki Str., University of Patras campus,
26504, Rio, Greece
Email: secretary@eatcs.org,

Tel: +30 2610 960333, Fax: +30 2610 960490
If you are an EATCS member and you wish to prolong your membership or renew the subscription
you have to use the Renew Subscription form. The dues can be paid via paypal and all major credit
cards are accepted.
For adittional information please contact the Secretary of EATCS:

Dmitry Chistikov
Computer Science
University of Warwick
Coventry
CV4 7AL
United Kingdom
Email: secretary@eatcs.org,


