
ISSN 0252–9742

Bulletin
of the

European Association for

Theoretical Computer Science

EATCS

EA
T

C
S

Number 141 October 2023

Council of the

European Association for

Theoretical Computer Science

President: Artur Czumaj United Kingdom
Vice Presidents: Anca Muscholl France

Giuseppe F. Italiano Italy
Treasurer: Jean-Francois Raskin Belgium
Bulletin Editor: Stefan Schmid Germany

Ivona Bezakova USA
Tiziana Calamoneri Italy
Thomas Colcombet France
Artur Czumaj UK
Javier Esparza Germany
Fabrizio Grandoni Switzerland
Thore Husfeldt Sweden, Denmark
Giuseppe F. Italiano Italy
Fabian Kuhn Germany
Slawomir Lasota Poland
Elvira Mayordomo Spain
Emanuela Merelli Italy

Anca Muscholl France
Luke Ong UK
Tal Rabin USA
Eva Rotenberg Denmark
Maria Serna Spain
Alexandra Silva USA
Jiri Sgall Czech Republic
Ola Svensson Switzerland
Jukka Suomela Finland
Till Tantau Germany
Sophie Tison France

Past Presidents:
Maurice Nivat (1972–1977) Mike Paterson (1977–1979)
Arto Salomaa (1979–1985) Grzegorz Rozenberg (1985–1994)
Wilfred Brauer (1994–1997) Josep Díaz (1997–2002)
Mogens Nielsen (2002–2006) Giorgio Ausiello (2006–2009)
Burkhard Monien (2009–2012) Luca Aceto (2012–2016)
Paul Spirakis (2016–2020)

Secretary Office: Dmitry Chistikov UK
Efi Chita Greece

EATCS Council Members
email addresses

Ivona Bezakova . ib@cs.rit.edu
Tiziana Calamoneri . calamo@di.uniroma1.it
Thomas Colcombet . Thomas.Colcombet@irif.fr
Artur Czumaj . A.Czumaj@warwick.ac.uk
Javier Esparza . esparza@in.tum.de
Fabrizio Grandoni . fabrizio@idsia.ch
Thore Husfeldt . thore@itu.dk
Giuseppe F. Italiano giuseppe.italiano@uniroma2.it
Fabian Kuhn . kuhn@cs.uni-freiburg.de
Slawomir Lasota . sl@mimuw.edu.pl
Elvira Mayordomo . elvira@unizar.es
Emanuela Merelli emanuela.merelli@unicam.it
Anca Muscholl . anca@labri.fr
Luke Ong . luke.Ong@cs.ox.a.uk
Tal Rabin . chair.sigact@sigact.acm.org
Jean-Francois Raskin . jraskin@ulb.ac.be
Eva Rotenberg . eva@rotenberg.dk
Maria Serna . mjserna@cs.upc.edu
Stefan Schmid . stefan.schmid@tu-berlin.de
Alexandra Silva alexandra.silva@cornell.edu
Jiri Sgall . sgall@iuuk.mff.cuni.cz
Ola Svensson . Ola.Svensson@epfl.ch
Jukka Suomela . jukka.suomela@aalto.fi
Till Tantau . tantau@tcs.uni-luebeck.de
Sophie Tison . sophie.tison@lifl.fr

Bulletin Editor: Stefan Schmid, Berlin, Germany
Cartoons: DADARA, Amsterdam, The Netherlands

The bulletin is entirely typeset by pdfTEX and ConTEXt in TXfonts.

All contributions are to be sent electronically to

bulletin@eatcs.org

and must be prepared in LATEX 2ε using the class beatcs.cls (a version of
the standard LATEX 2ε article class). All sources, including figures, and a
reference PDF version must be bundled in a ZIP file.
Pictures are accepted in EPS, JPG, PNG, TIFF, MOV or, preferably, in PDF.
Photographic reports from conferences must be arranged in ZIP files layed out
according to the format described at the Bulletin’s web site. Please, consult
http://www.eatcs.org/bulletin/howToSubmit.html.

We regret we are unfortunately not able to accept submissions in other for-
mats, or indeed submission not strictly adhering to the page and font layout
set out in beatcs.cls. We shall also not be able to include contributions not
typeset at camera-ready quality.

The details can be found at http://www.eatcs.org/bulletin, including
class files, their documentation, and guidelines to deal with things such as
pictures and overfull boxes. When in doubt, email bulletin@eatcs.org.

Deadlines for submissions of reports are January, May and September 15th,
respectively for the February, June and October issues. Editorial decisions
about submitted technical contributions will normally be made in 6/8 weeks.
Accepted papers will appear in print as soon as possible thereafter.

The Editor welcomes proposals for surveys, tutorials, and thematic issues of
the Bulletin dedicated to currently hot topics, as well as suggestions for new
regular sections.

The EATCS home page is http://www.eatcs.org

vii

Table of Contents

EATCS MATTERS
Letter from the President . 3
Letter from the Editor . 7
Obituary: Gregory Tseytin . 9
SIROCCO Prize for Innovation in Distributed
Computing - Laudatio for Boaz Patt-Shamir 15
ICALP 2024 - Call for Papers . 17

EATCS COLUMNS

The Interview Column, by C. Avin, S. Schmid
Know the Person behind the Papers Today:
Michał Pilipczuk, . 29

The Viewpoint Column, by S. Schmid
Removing the Barriers: Overcoming Impostor
Phenomenon as a Community, by U. Schmidt-Kraepelin 37

The Theory Blogs Column, by L. Trevisan
Computational Complexity, by L. Trevisan 47

The Computational Complexity Column, by M. Kouckŷ
Reusing Space: Techniques and Open Problems,
by I. Mertz . 57

The Distributed Computing Column, by S. Gilbert
The Relationship between APSP and Matrix
Multiplication in Congested Clique, by D. Leitersdorf . . 107

The Logic in Computer Science Column, by Y. Gurevich
What are kets?, by Y. Gurevich, A. Blass 121

Τhe Formal Language Theory Column by G. Pighizzini
25 Editions of DCFS: Origins and Directions, by
J. Dassow, M. Kutrib, G. Pighizzini . 133

News and Conference Reports

Report on ICALP 2023, by A. Muscholl . 171

EATCS LEAFLET . 178

EATCS Matters

E
A
T
C
S

The Bulletin of the EATCS

3

Dear EATCS members,

I hope that you had a good summer break and
that you are getting ready for the
challenges awaiting you in the new academic
year. This has been a great year with many
activities in theoretical computer science.
At the same time, I am troubled and deeply
saddened by the enormous loss of life in
Israel and Gaza, in Ukraine, and all the
wars around us; let me express my deep
wishes for peace.

This has been an exciting summer for
theoretical computer science. As one of
the highlights, ICALP 2023, the EATCS
flagship conference, took place this July
in Paderborn. As always, the conference
had an impressive scientific program
highlighting the strength of the research
across many areas within theoretical
computer science. On behalf of the entire
community and the EATCS I would like to
thank the Programme Committee led by the
chairs Uriel Feige and Kousha Etessami, the
organizers Paderborn, led by Sevag
Gharibian, and especially — all the
participants, for their fantastic efforts
that helped to make the ICALP 2023
conference a great success. A detailed
report of ICALP 2023 is available on the
pages of this issue of the Bulletin.

We also had very successful three EATCS
partner conferences this summer: ESA 2023
in Amsterdam, MFCS 2023 in Bordeaux, and
DISC 2023 in L’Aquila, Italy.

In the next months, you will see the calls
for nominations for the EATCS Award, the
Presburger Award, the EATCS Distinguished

BEATCS no 141

4

Dissertation Award, the EATCS Fellows, and
some joint awards: the Gödel Prize, the
Alonzo Church Award, and the Dijkstra
Prize. As usual, we are lucky to have very
strong committees for each of the awards,
and I thank all the award committee members
in advance for their important service. I
strongly encourage you to send nominations
for these prestigious awards. I am aware
of the fact that we are all very busy and
that it takes time and efforts to prepare
strong nominations, but our best
researchers and best papers can only win
awards if they are nominated. Moreover,
awards put areas of, as well as
inspirational figures in, theoretical
computer science in the spotlight and can
serve to inspire young researchers. I look
forward to seeing who the award winners
will be and to working with all of you to
make the EATCS even more influential than
it already is.

As usual, the October issue of the Bulletin
has the first Call for Papers for ICALP
2024, the flagship conference of the EATCS
and an important meeting of the theoretical
computer science community world-wide. The
51st EATCS International Colloquium on
Automata, Languages, and Programming (ICALP
2024) will be held on July 8–12, 2024
(workshops on July 7) in Tallinn, Estonia
(https://compose.ioc.ee/icalp2024/). The
conference chair is Pawel Sobocinski. We
have a great list of invited speaker and
expect a fantastic scientific program
selected by the PCs led by the chairs Karl
Bringmann and Ola Svensson (track A) and
Martin Grohe (track B). ICALP 2024 will be
collocated with LICS (39th Annual ACM/IEEE
Symposium on Logic in Computer Science) and

The Bulletin of the EATCS

5

FSCD (9th International Conference on
Formal Structures for Computation and
Deduction). Please pencil these dates in
your diary and I hope to see many of you
attending the next ICALP in Tallinn.

The EATCS Council decided that ICALP 2025
will be held in Aarhus, Denmark, July 8–11,
2025. The conference chairs are Ioannis
Caragiannis and Kasper Green Larsen.

As usual, let me close this letter by
reminding you that you are always most
welcome to send me your comments,
criticisms and suggestions for improving
the impact of the EATCS on the Theoretical
Computer Science community at
president@eatcs.org. We will consider all
your suggestions and criticisms carefully.

I look forward to seeing many of you
around, in-person or online, and to
discussing ways of improving the impact of
the EATCS within the theoretical computer
science community.

Artur Czumaj
University of Warwick, UK

President of EATCS
president@eatcs.org

October 2023

BEATCS no 141

6

7

Dear EATCS member!

In front of you is the 141st Bulletin!

In this October edition, we interview
Michał Pilipczuk who shares with us many
experiences from his career as well as
suggestions and thoughts, for example about
the main challenges and opportunities for
theoretical computer in the near future.
Ulrike Schmidt-Kraepelin, in her Viewpoint
Column, discusses the impostor phenomenon,
a wide-spread problem in academia,
especially in underrepresented groups and
early-career researchers, and appeals to
the community to help mitigate this
phenomenon, making concrete suggestions.

In the Theory Blog Column, Bill Gasarch
answers our questions on his experience
writing for a theory blog with a very large
and engaged community of readers, also
highlighting two posts, one related to open
problems in mathematics and another on
using SAT solvers to get concrete bounds on
extremal combinatorics problems.

The Distributed Computing Column features
Dean Leitersdorf who won the 2023
Principles of Distributed Computing
Doctoral Dissertation Award and whose work
on sparse matrix multiplication has led to
several breakthroughs.

In the Computational Complexity Column, Ian
Mertz invites us to dip our toes into the
sometimes paradox world of reusing space,
discussing some highlight results in the
area and presenting a wide variety of open
problems. In the Logics Column, Yuri
Gurevich and Andreas Blass explain the ket
notation introduced in quantum mechanics.

BEATCS no 141

8

The Formal Language Theory Column presents
a historical review of the International
Conference of Descriptional Complexity of
Formal Systems (DCFS) which encompasses all
aspects of descriptional complexity, both
in theory and application, and discusses
outstanding topics.

The Bulletin further includes, among other,
the laudation for Boaz Patt-Shamir, the
winner of the SIROCCO Prize for Innovation
in Distributed Computing, an obituary for
Gregory Tseytin, as well as the report on
ICALP 2023.

Stefan Schmid, Berlin
October 2023

9

Obituary
Gregory Tseytin

On August 27, 2022, Gregory Tseytin, a brilliant Russian and American logician and com-
puter scientist, passed away1. Tseytin was born in Leningrad, USSR (now St. Petersburg,
Russia) on November 15, 1936. His mother was an engineer economist and his father a
teacher of mathematics. Both parents came from large Jewish families in Belarus. During
the war, the mother and son were evacuated to the Kirov (now Vyatka) region. Gregory
was a child prodigy. In 1945, when Gregory entered the fifth grade, a committee, compris-
ing renowned mathematicians G. M. Fichtenholz, V. A. Tartakovsky, and D. K. Faddeev,
concluded that “Gregory’s development in mathematics is extraordinary. He is fluent in
the material taught in high school . . . ” At age 9, Gregory won the first prizes in the high
school competitions in mathematics and physics. At school, he showed great interest in
languages. He was also excellent at skating. In 1951, he graduated from high school with
the highest honors but, because of his age, he was not admitted to Leningrad State Univer-
sity (LSU). So he just audited the lectures. In September 1952, with the permission of the
Ministry of Education and supported by the LSU rector A.D. Alexandrov, he was admitted
as a second-year student.

Those around Gregory were pleasantly surprised by his youthful innocence and his
thirst for contacts. But it was difficult for him to socialize with his classmates. He was
younger than his fellow students but knew much more. His mother accompanied him to the
university and waited for him there until the classes were over. Also, he adhered strictly to
formal rules in speech and actions. Eventually he adjusted to student life and became very
active in the student scientific society, published a student mathematical journal, took part
in organizing an English club, released the first rotaprint collection of student and tourist
songs, and worked at student construction sites. In the meantime, he also graduated from
an adult music school. Later, in 1960, he was among the organizers and teachers of the
Youth Mathematical School.

1A version of this obituary was published in the Russian journal Óñïåõè Ìàòåìàòè÷åñêèõ Íàóê 78:3
(2023) 170–176. (The journal used to be translated until recently as Russian Mathematical Surveys).

BEATCS no 141

10

In his second university year, Gregory attended Andrei A. Markov Jr.’s lectures on the
theory of algorithms and realized that he found his teacher. Mathematical logic suited his
way of thinking like no other area. His first mathematical work “On the number of steps
in an algorithm” was completed by the end of the second year. Probably, this student
result became part of the paper [5]. Tseytin’s diploma thesis “Associative calculi with
undecidable equivalence problems” was published in Reports of the Academy of Sciences
[1, 2].

A few words should be said about the history of this work. In 1947, Markov and an
American mathematician Emil Post independently established the algorithmic unsolvabil-
ity of the word problem for finitely presented semigroups. The problem was formulated
by A. Thue in 1914, long before the concept of algorithm was formalized. Markov’s un-
solvable Thue system was given by 13 generators and 33 relations. Tseytin’s system had 5
generators and 7 relations:

ac ⇐⇒ ca ad ⇐⇒ da

bc ⇐⇒ cb bd ⇐⇒ db

ce ⇐⇒ eca de ⇐⇒ edb

cca ⇐⇒ ccae

To this end, Tseytin used a group with an unsolvable word problem, the existence of which
had been established shortly before by a Russian mathematician Pyotr S. Novikov. For
more than a decade, Tseytin’s example remained the simplest example of an undecidable
Thue system. Eventually, Tseytin’s ideas were used to construct other simple examples of
relevance to computer science.

In 1956, Tseytin received his master degree in mathematics and entered the postgrad-
uate course under Prof. Markov. For some time he worked in constructive mathematics
of the Markov–Shanin school. One of Tseytin’s significant achievements was proving the
non-existence of a constructive real function on an interval that takes values of different
signs at its ends but has no constructive root on this interval. On the other hand, he also
proved that there is no algorithm that, for any constructive function with the same property,
finds a constructive root in the interval.

Gregory Tseytin with his academic advisor Andrei Markov Jr. (1960)

Another remarkable Tseytin discovery was the first nontrivial positive result in this
area that consisted in the fact that any constructive mapping of a constructive complete

The Bulletin of the EATCS

11

separable metric space into another constructive metric space is continuous (in constructive
mathematics, continuity implies the existence of an algorithm that finds δ from ε). This
remarkable theorem was a fundamental strengthening of an earlier result by Prof. Markov
on the absence of constructive discontinuities of constructive functions.

In 1959, Tseytin started as a research associate at the Institute for Mathematics and
Mechanics at the LSU. In 1960, he defended his Ph. D. thesis on algorithmic operators
in constructive complete separable metric spaces. His official opponents (examiners) were
Vladimir Uspensky and Nikolai Shanin. For several years he continued to study construc-
tive mathematics. Based on new results, partially obtained with his friend Igor Zaslavsky, in
1968 Tseytin defended his second (higher) doctoral thesis [4]. His official opponents were
Markov, Boris Trakhtenbrot, and Shanin. In this work, Tseytin summed up his research in
the field of constructive mathematics, and never returned to this subject.

Another of Tseytin’s major research topics was computational complexity theory. He
was a pioneer in the analysis of lower bounds for the time complexity of algorithms and
lengths of proofs for propositional formulas. The Markov school worked with Markov
normal algorithms, more versatile than Turing machines. (To account for the greater power
of Markov algorithms, in 1954, Tseytin enriched the Turing machine appropriately [5].) In
1957, he proved the lower bound n2/ log2 n for the time complexity of inverting a word by
Markov algorithms. In 1969, Tseytin obtained a tight lower bound c ·n2 where the constant
c depends on the given inverting algorithm [6].

There are three concepts introduced by Tseytin that are constantly used in the theory of
proof complexity.

1. Tseytin’s extension rule that allows one to introduce new variables and use them to
denote arbitrary formulas [3]. This rule makes even a rather weak system, the resolution
method, so strong that we still cannot prove exponential lower bounds for the resulting
system.

2. Tseytin tautologies, systems of linear equations over a finite field constructed according
to a given graph. These were the first formulas for which a superpolynomial lower bound
for the complexity of propositional proofs was proved. This proof, due to Tseytin, dealt
with regular resolutions. This work [3, 9] had a great influence on further studies of
the complexity of propositional proofs and became one of the most cited works of the
Russian school in mathematical logic and algorithm theory.

3. Tseytin’s efficient translation of propositional formulas into conjunctive normal form,
which became a standard technique in computational complexity theory.

After the completion of his second doctoral thesis, Tseytin’s attention switched to com-
puter science. He quickly became the informal leader of the Leningrad programming
school. It was most fortunate that a brilliant mathematician became a pioneer and a leader
in computer science supporting its autonomy and distinct character. Tseytin pointed out
the crucial role of the social dimension in computer science [10]: the collective nature of
software creation, the need to adapt the product to human perception, the problem of pro-
tecting programs, etc. At that time Tseytin admitted to his colleagues that he no longer
considered himself a mathematician.

BEATCS no 141

12

Tseytin taught numerous courses. A notable example was his course on the theory of
algorithms and recursive functions, which was taught over five semesters. His teaching
was non-standard. He explained the ideas, tricks and algorithms, but the main emphasis
was on complex open problems. He encouraged nontrivial questions, new problems, and
new ideas, which he valued more than a simple reproduction of the class material. Students
had to put a lot of effort in and between the classes, and many commented that they learned
more from Tseytin than from other professors who taught the same course. Here is what
some of Tseytin’s colleagues had to say:

• Whatever Tseytin did, be it programming or kerosene stove repair, he did it better than
anybody else.

• Tseytin’s talks for the department were not just interesting, they were always brilliant, a
celebration of thought.

Inspired by Noam Chomsky’s research on formal grammars, Tseytin became interested
in machine processing of texts in natural languages. One facet of this problem was the
automatic translation from one language to another. Additional problems emerged that
required a deep understanding of the mechanisms underlying natural languages and their
description in a form suitable for computer applications. In the 1960s, Tseytin headed a
new LSU research group working on experimental systems in this area. Later his group
became the Laboratory of Mathematical Linguistics and eventually the Laboratory of In-
telligent Systems. At the time, many tried to automate translation from any language to any
other. To Tseytin, an avid polyglot and an Esperanto enthusiast, this idea was especially
close. Over years, he developed a programming framework based on semantic networks
that combined methods of linguistics, formal logic, and systems programming. Automatic
translation built on semantic networks has never competed with modern translation tools
based on statistical methods. However, Tseytin’s methods were capable of extracting the
text’s meaning and rendering it in applicable areas, such as understanding of natural lan-
guage, synthesis of computer programs, and artificial intelligence. In the 1980s–90s, using
the computers available at the time, the computer scientists working with Tseytin got prac-
tical results that were quite advanced even by today’s standards.

It was typical of Tseytin to reevaluate his research priorities from the point of view of
new results and ideas. In the late 1960s, inspired by the new trends in the theory of algo-
rithmic languages, he focused his research in this field and away from mathematical logic.
His 1981 report of this transition titled “From logicism to proceduralism” [8] contains in-
sightful observations about the problems of language processing and artificial intelligence
that are still relevant today.

Also at the same time and influenced by the same ideas, a strong group of computer sci-
entists was formed at the Department of Computer Science and the Institute of Mathematics
and Mechanics. This group was engaged in the development of compilers for various pro-
gramming languages. Tseytin was especially interested in Algol-68, a language with a
very rich syntax, whose implementation presented a serious scientific challenge. Suffice
it to say that only two complete compilers of this language have ever been implemented.
Tseytin headed the project at the initial stage and developed the basic ideas; in 1968 the
group joined the international cooperation on the development and implementation of this

The Bulletin of the EATCS

13

language [7]. Svyatoslav Lavrov who headed the LSU Dept of Computer Science between
1972 and 1988, an eminent authority in mathematical logic and computer science, wrote
that it was under the influence of this remarkable work that the Leningrad school of pro-
gramming was born and developed. He also noted that even if Algol-68 had not found any
application, the emergence of the Tseytin programming school alone would have been an
excellent justification of the group existence.

The times were changing, and Tseytin began to cooperate with foreign research and
development groups engaged in practical computer science. In 1990–1995, Tseytin worked
on making improvements to the MS DOS operating system and creating a text database.
Next, in 1995–1996, he worked with the Italian company Microstar Software Ltd.

In 1997, Tseytin spent several months at the IBM Almaden Research Center in Cali-
fornia doing research in phenomenal data mining. In the spring of 1999, he continued this
work at Trinity College Dublin [11] where he also taught data mining.

Later, in 1999, Tseytin participated in a natural language processing project at the Uni-
versity of New Mexico. This project only lasted one year, after which Tseytin decided to
stay in the USA for good. With the support of prominent experts from several countries, he
applied for permanent residency under the Extraordinary Ability category. One of those ex-
perts was the famous Stanford professor John McCarthy who highly appreciated Tseytin’s
research, promoted Tseytin’s 1997 visit to the Almaden Center, and helped Tseytin dur-
ing his first years in the USA. Tseytin became a permanent US resident in 2002 and an
American citizen in 2008.

In 2000, Tseytin moved to the San Jose, CA, area. He first worked at Rational Software
Corporation on their Purify Software, a tool for runtime analysis of complex computer
software. In 2003, Rational Software was acquired by IBM, where Tseytin worked with
the same group until 2009, receiving 4 patents in the process. After that Tseytin worked for
4 years at Stanford University in the project of the philosopher and logician Patrick Suppes
on the construction of an automatic learning system for schoolchildren. Eventually, the
project matured, was sold to a commercial company, and now is used as part of Redbird
Personalized Learning System.

Tseytin was well into retirement age, but he did not wish to retire and continued to
interview for other positions. He did some work with a startup company, was a visiting
professor at Stanford, volunteered for political campaigns and the advocacy group Indivisi-
ble, and was employed by the Census Bureau for the 2020 population count. Unfortunately
he never found in the USA an adequate application for his extraordinary capabilities.

Throughout his life, Tseytin was very active in the scientific community. He was an
active member of the Leningrad (later St. Petersburg) Mathematical Society almost from
the time of its resumption in 1959. Starting in 1989, he became deeply involved in the
work of the St. Petersburg Union of Scientists (SPbSU) serving as a member of its coor-
dinating council. After his departure, the SPbSU commissioned Tseytin to be the union’s
representative in the USA.

Tseytin had a huge and rare gift. People around him admired his mathematical talent,
which was realized in many of his remarkable works. His achievements have been univer-
sally recognized by the scientific community. Yet, any sense of superiority was completely
foreign to him. People were often surprised with his genuine kindness and sincere will-

BEATCS no 141

14

ingness to help colleagues in any work. His talent was not only in the generation of new
ideas, but also in his perseverance in completing their implementation. It is challenging
to match rare abilities with suitable professional opportunities, and unfortunately, there are
times when some talents are not adequately appreciated. Tseytin had periods when his abil-
ities were not in demand, or economic conditions impeded his professional progress. We
will remember this amazing scientist and a wonderful and generous person who, despite
formidable obstacles, managed to bring to life so many of his ideas. See Tseytin’s main
papers at http://mathsoc.spb.ru/pers/tseytin/bib.html

References

[1] “Concerning the problem of recognizing properties of associative calculi,” Doklady Akad.
Nauk USSR 107:2 (1956) 209–212 (in Russian)

[2] “Associative calculi with undecidable equivalence problems,” Doklady Akad. Nauk USSR
107:3 (1956) 370–371 (in Russian)

[3] “On the complexity of derivation in propositional calculus,” in “Studies in constructive mathe-
matics and mathematical logic, part 2” (A.O. Slisenko, editor), Consultants Bureau, New York
1970 115–125

[4] “Research in constructive calculus (constructive real numbers, pointwise specified functions),”
Doctor of Sciences thesis. Leningrad State University 1968 (in Russian)

[5] “Reduced form of normal algorithms and a linear acceleration theorem,” J. Math. Sci. 1 (1973)
148–153

[6] “Lower estimate of the number of steps for an inverting normal algorithm and other similar
algorithms,” J. Math. Sci. 1 (1973) 154–168

[7] “Algol 68. Methods of implementation (G.S. Tseytin, editor), Leningrad State University 1976
224 pages (in Russian)

[8] “From logicism to proceduralism (an autobiographical account),” in Algorithms in modern
mathematics and computer science, Springer Lecture Notes in Computer Science 122 (1981)
390–396

[9] “On the complexity of derivation in propositional calculus,” in “Automation of Reasoning:
Classical Papers on Computational Logic 1967–1970,” (J.H. Siekmann and G. Wrightson,
editors), Springer 1983 466–483

[10] “Is mathematics part of computer science?” Computer-based tools in education no. 5 (1999)
3–7 (in Russian)

[11] “Tracing individual public transport customers from an anonymous transaction database”
(with M. Hofmann, M. O’Mahony, D. Lyons), Journal of Public Transportation — Univer-
sity of South Florida 9:4 (2006) 47–60

Sergei N. Artemov, Lev D. Beklemishev, Leo Borkin, Evgeny Dantsin, Yuri Gurevich, Ed-
ward A. Hirsch, Ildar A. Ibragimov, Gene Kalmens, Dmitri Koubenski, Vladik Kreinovich,
Andrei A. Lodkin, Yuri V. Matiyasevich, Boris A. Novikov, Vladimir P. Orevkov, Aleksey L.
Semenov, Alexander Shen, Anatol Slissenko, Anatoly M. Vershik

15

SIROCCO Prize for Innovation in
Distributed Computing

Laudatio for Boaz Patt-Shamir

It is our pleasure to award the 2023 SIROCCO Prize for Innovation in Dis-
tributed Computing to Boaz Patt-Shamir, professor at Tel-Aviv University, Israel,
for his outstanding contributions to distributed computing under bandwidth limi-
tations.

Boaz Patt-Shamir is one of the main contributors to distributed network com-
puting, especially regarding solving graph problems efficiently under the con-
straint that nodes can exchange limited information with their neighbors in each
round. Typical problems addressed in Boaz Patt-Shamir’s papers are routing,
matching, shortest paths, sorting, and checkability, to mention just a few. They
also include problems motivated by applications such as sensor networks, recom-
mendation systems, peer-to-peer applications, etc.

At the beginning of the 2000s, Boaz Patt-Shamir co-authored two breakthrough
papers, namely:

• Zvi Lotker, Boaz Patt-Shamir, David Peleg: Distributed MST for constant
diameter graphs. In Proc. of 20th ACM Symposium on Principles of Dis-
tributed Computing (PODC 2001).

• Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, David Peleg: MST construction
in O(log log n) communication rounds. In Proc. of 15th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA 2003).

Indeed, since the work by J. Garay, S. Kutten, D. Peleg, and V. Rubinovich (SIAM
J. of Computing, 1998 and 2000), it was known that constructing a minimum-
weight spanning tree (MST) can be done in roughly O(D +

√
n) rounds in n-node

networks with diameter D = Ω(log n) when the nodes are restricted to exchange
O(log n)-bit messages in each round. It was also known that this bound is essen-
tially tight. In his PODC 2001 paper, Boaz Patt-Shamir et al. proved that an nΩ(1)

BEATCS no 141

16

lower bound also holds in networks with constant diameter, specifically Ω̃(
√

n)
rounds in networks with diameter 4, and Ω̃(n1/4) rounds in networks with diam-
eter 3. In contrast, the same paper shows that, in graphs with diameter 2, MST
can be solved in O(log n) rounds, hence establishing an exponential gap between
the computing power of networks with diameter 3 and those with diameter 2. An-
other exponential gap was established in the SPAA 2003 paper, in which Boaz
Patt-Shamir et al. proved that MST can be solved in just O(log log n) rounds in
cliques. The model introduced in the SPAA 2003 paper is now commonly re-
ferred to as the Congested Clique model, which completes the trio of core models
for distributed network computing, now known as LOCAL, CONGEST, and Con-
gested Clique.

The Congested Clique model enables to focus solely on the impact of con-
gestion caused by narrow communication links, putting aside effects caused by
the distance between nodes, and, more generally, by the structure of the network.
As such, the Congested Clique model is an elegant, flexible, and fruitful abstrac-
tion enabling to understand the power and limitation of computing with limited
communication resources. Unsurprisingly, the SPAA paper introducing the Con-
gested Clique model had a huge impact on research in the framework of principles
of distributed computing. Last but not least, the Congested Clique model links
together distributed and parallel computing, thanks to its close connections to the
Massively Parallel Computation (MPC) model, which emerged in the years 2008–
2012 owing to the deployment of popular computing platforms such as MapRe-
duce and Hadoop.

For his participation to the discovery of the Congested Clique model, and for
all his contributions to distributed computing in models constrained by bandwidth
limitations such as Congested Clique, CONGEST, sensor networks, etc., Boaz
Patt-Shamir fully deserves to be recognized by the distributed computing commu-
nity as one of its prominent members.

The 2023 Award committee:1

Paola Flocchini (University of Ottawa, Canada)
Magnús M. Halldórsson (Reykjavik University, Iceland)
Tomasz Jurdziński (University of Wroclaw, Poland)
Zvi Lotker (Ben-Gurion University of the Negev, Israel)
Merav Parter (Weizmann Institute, Israel)
Andréa W. Richa (Arizona State University, USA)
Stefan Schmid (Technical University of Berlin, Germany)

1We wish to thank the nominators for the nomination and for contributing heavily to this text.

17

ICALP 2024
51st EATCS International Colloquium on Automata, Languages and

Programming
Tallinn, Estonia, July 8-12, 2024
https://compose.ioc.ee/icalp2024/

Call for Papers

The 51st EATCS International Colloquium on Automata, Languages, and Pro-
gramming (ICALP) will take place in:

Tallinn, Estonia, July 8-12, 2024

ICALP is the main conference and annual meeting of the European Association
for Theoretical Computer Science (EATCS). As usual, ICALP will be preceded
by a series of workshops, which will take place on July 7.

The 2024 edition has the following features:

- Submissions are anonymous and there is a rebuttal phase. - The conference is
planned as a physical, in-person event. - ICALP 2024 is co-located with Logic
in Computer Science (LICS) 2024 and Formal Structures for Computation and
Deduction (FSCD) 2024.

Important dates

Submissions: February 14, 2024 (1pm CET)
Rebuttal: March 26-29, 2024
Author notification: April 14, 2024
Camera-ready version: April 28, 2024
Early registration: TBA
Conference: July 8-12, 2024 (Workshops on July 7)

Deadlines are firm; late submissions will not be considered.

Conference website: https://compose.ioc.ee/icalp2024/

BEATCS no 141

18

Submission guidelines:

1) Papers must present original research on the theory of computer science. No
prior publication and no simultaneous submission to other publication outlets (ei-
ther a conference or a journal) is allowed. Authors are encouraged to also make
full versions of their submissions freely accessible in an on-line repository such
as ArXiv, HAL, ECCC.

2) Submissions take the form of an extended abstract of no more than 15 pages,
excluding references and a clearly labelled appendix. The appendix may consist
either of omitted proofs or of a full version of the submission, and it will be read
at the discretion of program committee members. The use of the LIPIcs document
class is an option, but not required. The extended abstract has to present the merits
of the paper and its main contributions clearly, and describe the key concepts and
technical ideas used to obtain the results. Submissions must provide the proofs
which can enable the main mathematical claims of the paper to be verified.

3) Submissions are anonymous. The conference will employ a lightweight double-
blind reviewing process. Submissions should not reveal the identity of the authors
in any way. Authors should ensure that any references to their own related work
are in the third person (e.g., not “We build on our previous work . . . ” but rather
“We build on the work of . . . ”). The purpose of this double-blind process is to help
PC members and external reviewers come to an initial judgment about the paper
without bias, and not to make it impossible for them to discover who the authors
are if they were to try. Nothing should be done in the name of anonymity that
weakens the submission or makes the job of reviewing the paper more difficult. In
particular, important references should not be omitted. In addition, authors should
feel free to disseminate their ideas or draft versions of their paper as they normally
would. For example, authors may post drafts of their papers on the web, submit
them to arXiv, and give talks on their research ideas.

4) Submissions authored or co-authored by members of the program committee
are allowed.

5) The submissions are done via Easychair to the appropriate track of the con-
ference (see topics below). The use of pdflatex or similar pdf generating tools is
mandatory and the page limit is strict (see point 2.) Papers that deviate signifi-
cantly from these requirements risk rejection without consideration of merit.

6) During the rebuttal phase, authors will have from March 26-29, 2024 to view
and respond to initial reviews. Further instructions will be sent to authors of sub-
mitted papers before that time.

7) At least one author of each accepted paper is expected to register for the con-
ference, and all talks are in-person. In exceptional cases, there may be support for

The Bulletin of the EATCS

19

remotely presenting a talk.

8) Papers authored only by students should be marked as such upon submission
in order to be eligible for the best student paper awards of the track.

Awards

During the conference, the following awards will be delivered:

– the EATCS award,
– the Gödel prize,
– the Presburger award,
– the EATCS distinguished dissertation award,
– the best papers for Track A and Track B,
– the best student papers for Track A and Track B.

Proceedings

ICALP proceedings are published in the Leibniz International Proceedings in In-
formatics (LIPIcs) series. This is a series of high-quality conference proceedings
across all fields in informatics established in cooperation with Schloss Dagstuhl
– Leibniz Center for Informatics. LIPIcs volumes are published according to the
principle of Open Access, i.e., they are available online and free of charge. The
accepted papers will need to comply with the LIPIcs style.

Topics

Papers presenting original research on all aspects of theoretical computer science
are sought. Typical but not exclusive topics of interest are:

Track A: Algorithms, Complexity and Games

• Algorithmic and Complexity Aspects of Network Economics

• Algorithmic Aspects of Biological and Physical Systems

• Algorithmic Aspects of Networks and Networking

• Algorithmic Aspects of Security and Privacy

• Algorithmic Game Theory and Mechanism Design

• Approximation and Online Algorithms

• Combinatorial Optimization

BEATCS no 141

20

• Combinatorics in Computer Science

• Computational Complexity

• Computational Geometry

• Computational Learning Theory

• Cryptography

• Data Structures

• Design and Analysis of Algorithms

• Distributed and Mobile Computing

• Foundations of Machine Learning

• Graph Mining and Network Analysis

• Parallel and External Memory Computing

• Parameterized Complexity

• Quantum Computing

• Randomness in Computation

• Sublinear Time and Streaming Algorithms

• Theoretical Foundations of Algorithmic Fairness

Track B: Automata, Logic, Semantics, and Theory of Programming

• Algebraic and Categorical Models of Computation

• Automata, Logic, and Games

• Database Theory, Constraint Satisfaction Problems, and Finite Model The-
ory

• Formal and Logical Aspects of Learning

• Formal and Logical Aspects of Security and Privacy

• Logic in Computer Science and Theorem Proving

• Models of Computation: Complexity and Computability

The Bulletin of the EATCS

21

• Models of Concurrent, Distributed, and Mobile Systems

• Models of Reactive, Hybrid, and Stochastic Systems

• Principles and Semantics of Programming Languages

• Program Analysis, Verification, and Synthesis

• Type Systems and Typed Calculi

ICALP 2024 Programme Committee

Track A: Algorithms, Complexity, and Games

Nima Anari (Stanford University)
Karl Bringmann (co-chair, Saarland University)
Parinya Chalermsook (Aalto University)
Vincent Cohen-Addad (Google Research)
Jose Correa (Universidad de Chile)
Holger Dell (Goethe University Frankfurt)
Ilias Diakonikolas (University of Wisconsin-Madison)
Yuval Filmus (Technion)
Arnold Filtser (Bar Ilan University)
Naveen Garg (IIT Delhi)
Pawel Gawrychowski (University of Wrocław)
Anupam Gupta (Carnegie Mellon University)
Samuel Hopkins (MIT)
Sophie Huiberts (Columbia University)
Giuseppe Italiano (LUISS University)
Michael Kapralov (EPFL)
Eun Jung Kim (Université Paris-Dauphine)
Sándor Kisfaludi-Bak (Aalto University)
Tomasz Kociumaka (Max-Planck-Institute for Informatics)
Fabian Kuhn (University of Freiburg)
Amit Kumar (IIT Delhi)
William Kuszmaul (Harvard University)
Rasmus Kyng (ETH Zurich)
Kasper Green Larsen (Aarhus University)
François Le Gall (Nagoya University)
Pasin Manurangsi (Google Research)
Daniel Marx (CISPA Helmholtz Center for Information Security)

BEATCS no 141

22

Yannic Maus (TU Graz)
Nicole Megow (University of Bremen)
Ruta Mehta (University of Illinois at Urbana-Champaign)
Jakob Nordström (University of Copenhagen)
Richard Peng (University of Waterloo)
Seth Pettie (University of Michigan)
Adam Polak (Bocconi University)
Lars Rohwedder (Maastricht University)
Eva Rotenberg (DTU Compute)
Sushant Sachdeva (University of Toronto)
Melanie Schmidt (University of Cologne)
Sebastian Siebertz (University of Bremen)
Shay Solomon (Tel Aviv University)
Nick Spooner (University of Warwick)
Clifford Stein (Columbia University)
Ola Svensson (co-chair, EPFL)
Luca Trevisan (Bocconi University)
Ali Vakilian (Toyota Technological Institute Chicago)
Jan van den Brand (Georgia Tech)
Erik Jan van Leeuwen (Utrecht University)
Oren Weimann (University of Haifa)
Nicole Wein (University of Michigan)
Andreas Wiese (TU Munich)
John Wright (UC Berkeley)

Track B: Automata, Logic, Semantics, and Theory of Programming

Arnold Beckmann (Swansea University)
Manuel Bodirsky (TU Dresden)
Patricia Bouyer (LMF Cachan)
Yijia Chen (Shanghai Jiao Tong University)
Victor Dalmau (Universitat Pompeu Fabra)
Laurent Doyen (CNRS, LMF)
Marcelo Fiore (Cambridge University)
Stefan Göller (University of Kassel)
Martin Grohe (RWTH Aachen University, chair)
Sandra Kiefer (Oxford University)
Aleks Kissinger (Oxford University)
Bartek Klin (Oxford University)

The Bulletin of the EATCS

23

Antonin Kucera (Masaryk University Brno)
Carsten Lutz (University of Leipzig)
Jerzy Marcinkowski (University of Wrocław)
Annabelle McIver (Macquaire University Sidney)
Andrzej Murawski (Oxford University)
Pawel Parys (University of Warsaw)
Michał Pilipczuk (University of Warsaw)
Joel Ouaknine (Max Planck Institute for Software Systems)
Christian Riveros (Pontificia Universidad Catolica de Chile)
Alexandra Silva (Cornell University)
Balder ten Cate (ILLC Amsterdam)
Szymon Toruńczyk (University of Warsaw)
Igor Walukiewicz (CNRS, University of Bordeaux)
Sarah Winter (IRIF, University Paris Cité)
Georg Zetzsche (Max Planck Institute for Software Systems)
Martin Ziegler (KAIST)

ICALP 2024 Workshops
The call and the selection of workshops will be done jointly with LICS. The first
call will be issued in October.

ICALP 2024 Proceedings Chairs
Gabriele Puppis (University of Udine, Italy)

ICALP-LICS-FSCD 2024 Organizing Committee

Pawel Sobocinski (Tallinn University of Technology) Conference Chair
Niccolò Veltri (Tallinn University of Technology)
Amar Hadzihasanovic (Tallinn University of Technology)
Fosco Loregian (Tallinn University of Technology)
Matt Earnshaw (Tallinn University of Technology)
Diana Kessler (Tallinn University of Technology)
Kristi Ainen (Tallinn University of Technology)

Institutional
Sponsors

BEATCS no 141

26

CTI, Computer Technology Institute & Press "Diophantus"
Patras, Greece

CWI, Centum Wiskunde & Informatica
Amsterdam, The Netherlands

MADALGO, Center for Massive Data Algorithmics
Aarhus, Denmark

Microsoft Research Cambridge
Cambridge, United Kingdom

Springer-Verlag
Heidelberg, Germany

EATCS
Columns

28

The Bulletin of the EATCS

29

The Interview Column
by

Chen Avin and Stefan Schmid

Ben Gurion University, Israel and TU Berlin, Germany
{chenavin,schmiste}@gmail.com

BEATCS no 141

30

Know the Person behind the Papers

Today: Michał Pilipczuk

Bio: Michał Pilipczuk is an associate professor at the Institute of Informatics of
the University of Warsaw, Poland, to where he returned after earning his PhD
degree at the University of Bergen, Norway. His research mostly revolves around
structural graph theory, its applications in the design of algorithms (most often
parameterized), and connections with logic. He received several awards, includ-
ing the Witold Lipski Prize in 2015 and ERCIM Cor Baayen Award in 2016, and
was a recipient of an ERC Starting Grant in 2020.

EATCS: We ask all interviewees to share a photo with us. Can you please tell us
a little bit more about the photo you shared?
MiPi: Let me actually provide two photos, which show me in my two natural
habitats. The first one is from my office in Warsaw; the scribbles in the back-
ground are some actual math. The second one is from a week-long hike we did this
year in Apuseni mountains in Romania together with my friends (and coauthors)
Karolina Okrasa and Filip Mazowiecki. We try to find time for such holidays in
the wilderness every year.

The Bulletin of the EATCS

31

EATCS: Can you please tell us something about you that probably most of the
readers of your papers don’t know?

MiPi: Similarly to many of my Polish colleagues, my adventure with mathemat-
ics started for real in high school with participation in the Polish Mathematical
Olympiad. Later I became heavily involved in the organization of the olympiad,
including chairing the problem selection committee for some time. For a few
years I also served as the leader of the Polish team at the International Mathe-
matical Olympiad. Even though I drifted away from these duties a few years ago,
outreach activities for talented high school students are still very close to my heart.
So you can meet me once in a while at various mathematical camps, where I have
the pleasure of teaching interesting mathematics to young and fresh minds.

EATCS: Is there a paper which influenced you particularly, and which you rec-
ommend other community members to read?

MiPi: Personally I find it extremely hard to motivate myself to read a paper, I
much more prefer to see it explained at a blackboard. Nevertheless, it was quite
often the case that when I eventually forced myself to do it, it paid off really well,
because in this way you learn tricks that lie at the very bottom of the reasoning.
A particular example that comes to my mind is the paper Structure Theorem and
Isomorphism Test for Graphs with Excluded Topological Subgraphs, by Martin
Grohe and Dániel Marx (SIAM J. Computing, 2015). I believe this paper taught
me how to design and prove decomposition theorems for graphs.

EATCS: Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

BEATCS no 141

32

MiPi: I am not sure if I can recommend any single paper. Most of them are
probably quite boring reads, which in the hindsight should have been presented
differently. But one material I can definitely suggest, and of which I am quite
proud, are the lecture notes on the theory of sparse graphs that we wrote together
with Sebastian Siebertz and Marcin Pilipczuk. They are freely available on the
website of the second edition of our Warsaw course on this topic: https://www.
mimuw.edu.pl/~mp248287/sparsity2/.

The story is that Sebastian came to Warsaw in 2016 for a two-years POLONEZ
fellowship1. I was his research partner and the goal was to work on the said theory
of sparse graphs. At this point we were both very interested in this topic: it was
clear that the area had a huge potential and was on the brink of fundamental devel-
opments. To get a better grasp, in 2017 we decided to run together a course about
this subject at the University of Warsaw, and simultaneously write high-quality
lecture notes. This was an excellent decision: in this way we forced ourselves to
deeply understand which arguments and notions are truly fundamental, and how
they should be presented. This understanding had a tremendous impact on our
research, and led to multiple discoveries.

The lecture notes got updated when we repeated the course with my brother
Marcin two years later. We also supplemented them with recordings of all the lec-
tures; these recordings are freely available on youtube. The plan is to eventually
turn the lecture notes into a textbook, but this project is unfortunately stalled at the
moment. And we definitely should get back to it, as the theory of sparse graphs is
a beautiful piece of graph theory with a wealth of powerful tools that should find
a much wider recognition in the broad TCS community.

EATCS: When (or where) is your most productive working time (or place)?
MiPi: When it comes to creative work, for instance trying to come up with an
idea on how to attack a problem, I very much enjoy thinking alone while walking
outdoors. So a longer Saturday hike in a forest would be my preferred way of
approaching a harder scientific nut. For less brain-demanding work, for instance
writing up papers or working on reviews, I like to work in trains, somehow this
helps with concentration. Though, calmer evening hours at home are also good
for this purpose.

EATCS: What do you do when you get stuck with a research problem? How do
you deal with failures?
MiPi: Patience and persistence are not my strong sides when it comes to re-
search... If after a week or two a problem does not give in, I typically like to put it

1POLONEZ is a clone of the Marie Skłodowska-Curie individual fellowship programme, it
offers fellowships at Polish academic institutions. It is run by the Polish National Science Center
(NCN) and is funded from ERC funds.

The Bulletin of the EATCS

33

on a shelf to mature. Perhaps after a while some new ideas will emerge. Indeed,
we had quite a few good problems that “cracked” after a few years of maturing in
this way. I also like to juggle with several projects at the same time with differ-
ent research groups, so that one can focus on directions that seem interesting or
promising at the current moment.

EATCS: Is there a nice anecdote from your career you like to share with our
readers?

MiPi: As some readers may know, I have an older brother Marcin, who also works
in our algorithmic group at the University of Warsaw. In fact, we work together
a lot; probably at least a third of my papers are coauthored with him. Having
a brother with the same initials (Thanks, Mom and Dad!) working in the same
area can lead to multiple confusing situations. At least once a month one of us
receives some semi-sensitive e-mail addressed to the other; it is unclear how many
reviews each of us did that were actually meant for the other one. At some point
there was alarm in ERC administration when they figured out that there was an
M. Pilipczuk in Warsaw that was holding two ERC grants at the same time. My
personal favourite was when my brother was called to testify in a court case, and
he needed to clarify to the court right at the start of his testimony that they invited
the wrong M. Pilipczuk.

EATCS: Do you have any advice for young researchers? In what should they
invest time, what should they avoid?

MiPi: I think my only piece of advice would be not to take advice of senior
people too seriously, particularly of some supposed experts in various bulletins.
A bit more seriously, relying on external opinions, especially when making career
decisions, should be done with caution. When it comes to work-life balance,
advice from more experienced colleagues may very often be biased in the work
direction, because they will never see the full picture of your goals, motivations,
and feelings outside of the work context. It is good to ask some friends you trust
for their thoughts, just not to miss any obvious points. But make sure that at the
end of the day, you always make the decision yourself.

And about investing time, just invest time in your private life. If you like what
you do, papers will come about anyways.

EATCS: What are the most important features you look for when searching for
graduate students?

MiPi: I guess “passion” is a heavily overused word, but you just need to truly
enjoy thinking about mathematical problems. If you have it, then it is a dream job
for you, and otherwise it will not work out.

BEATCS no 141

34

EATCS: Do you see a main challenge or opportunity for theoretical computer
scientists for the near future?
MiPi: I believe theoretical computer science has now matured as an area of math-
ematics, but maintained a lot of unhealthy habits from its puberty. This mostly
concerns publishing practices and research culture. For instance, when TCS was
young, papers were a dozen pages long and could be read during a reasonably long
bus ride. Nowadays, a typical paper at FOCS, STOC, LICS, or SODA contains
50 pages of highly nontrivial mathematics. Yet, we still pretend that skimming
through the first 10 pages and giving an educated guess on whether the results are
interesting is a good enough “peer-review”. Even worse, both FOCS and SODA
have recently lifted the page limit on camera ready versions. This means that
now everyone can just publish all the technical sections that literally nobody read,
which, from the point of view of scientific integrity, is just an acquiescence to
systemic laziness. I consider these developments distinctly negative.

I believe this issue is a symptom of a larger problem that in theoretical com-
puter science, particularly in algorithms, the increasingly dominant understanding
of research is that of a race to obtain a yet another improved result, and conse-
quently a yet another paper. And in a race there is little time to look back, or even
to contemplate the goal of the race. The best example of this is the phrase “we are
the first to...”, which slowly becomes a must-have in every abstract of an algorith-
mic paper. The classic mathematical culture of humility is slowly being replaced
by a culture of bragging. Admittedly, all of this is partly fueled by the overblown
expectations about publication records in the academic job market, but partly it is
also a consequence of how theoretical computer science developed as a field.

I do not really have any concrete proposition on how to address these is-
sues, but my feeling is that the current situation and the direction of changes are
detrimental in the long run. We should, as a community, think consciously on
how to implement more scientifically mature practices. Transitioning from the
conference-based publication culture to a journal-based one, or some kind of a
hybrid model, would be a natural step.

EATCS: Can you recommend some source of information that you enjoy (e.g., a
specific blog, podcast, youtube channel, book, show, ...)?
MiPi: Outside of mathematics I am also very interested in history, particularly
contemporary, say of 20th century. Nowadays in the internet one can find a wealth
of great history-related content. One particular pointer that I would like to recom-
mend is a class on the history of Ukraine given at Yale University by Timothy
Snyder. The course consists of 23 lectures, all of which are freely available on
youtube. I was impressed by the extent of the material presented, how all the
intricate connections between different actors in the past have been explained in
order to give a really deep understanding of the background and motives behind

The Bulletin of the EATCS

35

the current Russo-Ukrainian war. This is a great piece of content that can provide
a western viewer a lot of much needed context of what is happening now.

Please complete the following sentences?

• Being a researcher... was the obvious choice for me.

• My first research discovery... still did not make it to any journal :(

• Being a happy human being ... is key to being a happy academic.

• Theoretical computer science in 100 years from now... will still have no
clue about the P vs NP question.

36

The Bulletin of the EATCS

37

The Viewpoint Column
by

Stefan Schmid

TU Berlin, Germany
stefan.schmid@tu-berlin.de

BEATCS no 141

38

Removing the Barriers: Overcoming
Impostor Phenomenon as a Community

Ulrike Schmidt-Kraepelin

Abstract

The impostor phenomenon (aka impostor syndrome) is a wide-spread
problem in academia, especially in fields that (supposedly) require “natural
talent” or “genius”. The phenomenon is particularly prevalent among un-
derrepresented groups and early-career researchers. Overcoming feelings of
self-doubt and perceived inadequacy is often left to the individual, which
exerts a heavy mental load and a competitive disadvantage. In this article, I
argue that any efforts to make our research community more diverse should
especially aim to mitigate impostor phenomenon for all current and future
members. To this end, I offer concrete suggestions for community members
wishing to contribute to this endeavor.

As for many young researchers, self-doubt was a constant companion through-
out my PhD. Now that I am coming to grips with these concerns myself, I keep
wondering about the broader impact of self-doubt on our field. If I experienced
these feelings despite many privileges and a very supportive environment, how
does self-doubt impact those less privileged? Why is self-doubt so concentrated
in certain demographic groups and academia in general? What can we, as a re-
search community, do for future researchers? In this article, I want to share some
of my (partial) answers to these questions. In the first part, I summarize recent
literature and argue why the community should take more responsibility. In the
second part, I derive concrete suggestions for change.

The Impostor Phenomenon, Its Impact, and our Responsibility

The impostor phenomenon, first described by Clance and Imes [1978], is a psy-
chological phenomenon where individuals, despite external evidence of their com-
petence and accomplishments, believe they do not deserve the success they have
achieved. A person experiencing impostor phenomenon (Slank [2019] calls them
“IPP”) feels like they are just pretending to be competent. As a consequence,
they fear that others will eventually discover their supposed inadequacies. IPPs
attribute their accomplishments to luck or external factors and their failures to

The Bulletin of the EATCS

39

their assumed lack of competence. This phenomenon is also frequently referred
to as the “impostor syndrome”. However, in line with the psychology literature
[Clance and Imes, 1978], I prefer the term “impostor phenomenon”, since it avoids
the connotation of an individuals’ psychological deficit. In contrast to this conno-
tation, I will argue below for an understanding of the phenomenon as a natural
reaction to certain environments and biases faced by people from underrepre-
sented groups. Similar arguments have been put forward, e.g., by Olah [2019]
and Tulshyan and Burey [2021].

Effects and consequences. Individuals experiencing impostor phenomenon wit-
ness increased fear of failure and psychological distress. For example, this may in-
clude anxiety about exams, presentations, but also casual research conversations.
IPPs are less likely to ask questions, be proactive, and expand their professional
network. Impostor phenomenon has also been related to a decreased sense of be-
longing [Muradoglu et al., 2022], i.e., feeling connected to others, which is a basic
need that is closely connected to motivation, interest, and persistence. IPPs also
appear to pursue qualitatively different goals: Kumar and Jagacinski [2006] found
that IPPs have a higher tendency to pursue performance goals, i.e., they derive
feelings of competence from outperforming others or avoiding failure compared
to others. In contrast, individuals not experiencing impostor phenomenon have a
higher tendency to purse task goals, i.e., they focus on learning and understanding
the task; for them task mastery is motivated intrinsically. Even without consider-
ing the negative psychological effects resulting from pursuing performance goals,
it seems evident that pursuing task goals is much more effective for building a
career in theoretical computer science and also for the progress of our field as a
whole. Lastly, impostor phenomenon has been found to be strongly correlated
with perfectionism [Henning et al., 1998]. Perfectionist behavior, which is pur-
sued in order to make up for the perceived lack of ability, can lead to overwork and
prioritization issues. Ironically, pairing perfectionism with a performance mindset
can fuel the impostor phenomenon even more, as spending more time than oth-
ers on a task is interpreted as proof of intellectual inferiority. All in all, impostor
phenomenon decreases an early-career researcher’s quality of life and sets hur-
dles in the way of accessing their full academic potential. In particular, impostor
phenomenon thus quite directly limits the scientific progress of our field.

Impostor phenomenon in academia, brilliance, and stereotypes. Since the
1970s, the impostor phenomenon has been extensively studied in psychology.
Key findings are that the risk of experiencing impostor phenomenon varies by
demographic group, amount of experience in a field, and work environment. In
general, impostor phenomenon has been found to be prevalent in academia, es-

BEATCS no 141

40

pecially among early-career researchers. In a survey of over 4000 academics,
Muradoglu et al. [2022] moreover identified a strong correlation between the oc-
currence of impostor phenomenon and the amount to which a research field values
“innate talent” or “brilliance”. Clearly, theoretical computer science falls into this
category [Leslie et al., 2015]. Even more concerning, the authors found that un-
derrepresented groups in these fields (such as women and some ethnic groups)
are significantly more likely to experience impostor phenomenon, and that this
disparity grows as a function of the extent to which the research field is brilliance-
oriented. Interestingly, brilliance-orientation is also closely related to the number
of researchers from these groups. Leslie et al. [2015] uncovered this correlation
in their seminal study and conclude that “the extent to which practitioners of a
discipline believe that success depends on sheer brilliance is a strong predictor
of women’s and African American’s representation in that discipline”. Hence,
brilliance-orientation and impostor phenomenon can be hypothesized to discour-
age underrepresented groups from joining or staying in academia. Leslie et al.
[2015] explain this effect with stereotypes of women and some ethnic groups pos-
sessing less innate talent. Such stereotypes not only lead to biases of evaluators,
but also make these groups prone to stereotype threats1 and self-selection biases.
Sadly, these stereotypes appear to persist. For example, Napp and Breda [2022]
recently confirmed that girls are still stereotyped to possess less innate talent –
paradoxically – even more so in gender-egalitarian countries.

Responsibility. If the community leaves the responsibility of overcoming im-
postor phenomenon to the individual, this induces an additional burden and a
competitive disadvantage that might be too large to compensate for in some cases.
Hence, it is evident that interventions have to take place. The research summa-
rized above indicates that the prevalence of impostor phenomenon among certain
demographic groups is not a fact of life but a reaction to persisting stereotypes
about what is thought to be one of the crucial prerequisites for success in their
fields, i.e., “natural talent”. Yet, the most common interventions against impostor
phenomenon are targeted at the underrepresented groups rather than their envi-
ronment. These initiatives serve an important purpose, as they can in particular
increase the sense of belonging. Nevertheless, I believe that restricting ourselves
to these group-targeted initiatives would be problematic for multiple reasons: Tar-
geted groups can get the impression that they have a “condition” that needs to
be fixed, whereas we should in fact fix the environment. Second, as previously
stressed, all early-career researchers in our field are at increased risk of experi-
encing impostor phenomenon, albeit not equally. Hence, any strategy that solely

1Stereotype threat describes the well-studied theory that negative stereotypes can decrease the
performance of individuals, even without the individual needing to subscribe to the stereotype.

The Bulletin of the EATCS

41

targets specific demographic groups is at danger of overlooking early-career re-
searchers that come from groups that are targeted less often. For example, first-
generation students are at increased risk of experiencing impostor phenomenon,
nevertheless they are rarely targeted by initiatives. Last, the traditional approach
does not promise to be sustainable if it has to address each new generation of
junior researchers, without improving the underlying conditions. Complement-
ing existing interventions, I therefore want to discuss actions that we all can take,
which might reduce impostor phenomenon in early-career researchers in the first
place. This allows the community to take responsibility for a problem that is not
caused by an inadequacy of affected groups, but rather by our stereotype-prone so-
ciety. I am not alone in this assessment, as Muradoglu et al. [2022] conclude that
"brilliance-oriented fields have failed to create an environment in which women,
particularly those from groups underrepresented in academia, and early-career
academics feel capable of succeeding. Thus, the onus of reducing impostor feel-
ings should be on the fields, not on the academics themselves."

What Can We Do? Overcoming Impostor Phenomenon as a Community

Hopefully, the preceding discussion has convinced the reader that overcoming
impostor phenomenon is in the shared interest of all members of the theoretical
computer science community. Not only does impostor phenomenon have a neg-
ative impact on life quality and mental health of many of our colleagues, but it
also inhibits the development of many early-career researchers, reduces scientific
progress, and hinders efforts of increasing the field’s diversity. In the following,
I suggest actions we can take as educators, advisors, and colleagues that can mit-
igate impostor phenomenon in students and researchers. I am not claiming that
this list is exhaustive, nor that it should be followed blindly. Rather, I aim to ini-
tiate (and support ongoing) discussions. I derived some of the suggestions from
reflecting on the literature discussed above; others stem from personal experience
of colleagues and myself.

1. De-emphasizing brilliance and innate talent: The question to which ex-
tent innate talent is necessary to succeed in theoretical computer science is
up for debate and certainly out of scope for this article. However, we can at
least acknowledge that (over)emphasizing the role of talent can work against
the aim to diversify our research field and carries the risk of worsening the
situation for groups that are negatively stereotyped to have less innate tal-
ent. Leslie et al. [2015] even go one step further by concluding that “[their]
data suggest that academics who wish to diversify their fields might want
to downplay talk of innate intellectual giftedness and instead highlight the
importance of sustained effort for top-level success in their field.”

BEATCS no 141

42

2. Creating an environment of growth: Individuals who view intelligence
as a fixed entity which cannot be changed are more likely to experience im-
postor fears (see, e.g., [Kumar and Jagacinski, 2006]). Luckily, this “entity
theory” has been frequently challenged, e.g., by Dweck [2006] who offers
the idea of a growth mindset. In a nutshell, the idea is that abilities are de-
veloped and that learning, challenges, and setbacks should be embraced as
a source of growth. I believe that it is vital that research groups and collab-
orators communicate the core ideas of a growth mindset. For example, this
can mitigate the issue that individuals experiencing impostor phenomenon
are often hesitant to ask questions, as they assume that every other person
in the room knows the answer and their question will expose their assumed
intellectual inferiority. In contrast, a “growth environment” would not judge
questions but rather welcome them in order to jointly derive a deep under-
standing of the problem at hand.

3. Giving constructive and specific feedback: One might be tempted to
think that individuals experiencing impostor phenomenon would just need
enough praise and cannot deal with criticism. I strongly disagree and be-
lieve that advisors should empower students to objectively assess their own
work. Specifically, mindless praise might make an IPP believe that they
“fooled yet another person.” On the other hand, specific and honest positive
comments about their work are easier to accept and more helpful. Similarly,
constructive feedback coming from a growth mindset is extremely powerful.
Ideally, (if true), the advisor can communicate that they believe in the stu-
dents ability to succeed in the field despite seeing areas for improvement,
and that their feedback aims to support the scientific development of the
student. Moreover, I believe it is important to introduce students to tech-
niques for receiving and giving constructive feedback early on. I learned
about such techniques within a masters’ seminar and found them extremely
helpful later on.

4. Detecting perfectionism: Many individuals experiencing impostor phe-
nomenon tend to overcompensate by spending enormous time on perfecting
their work (e.g., posters and recorded talks). In the short run, this behavior
rarely appears to be disadvantageous, it can provide a feeling of security,
and it is often even encouraged. However, if students struggle prioritizing,
this behavior can lead to overworking, inefficient allocation of efforts, and
high opportunity costs. Here, I think that advisors and collaborators can
play a crucial role in communicating clear expectations and giving feed-
back on what is “good enough.” Personally, I do remember the relief I felt
when my PhD advisor protected me from my own overly high expectations

The Bulletin of the EATCS

43

regarding unimportant tasks by simply saying “let’s try to finish this today,
it really doesn’t have to be perfect.”

5. Creating awareness: Discussing the impostor phenomenon and its impact
with students at an early stage serves at least two purposes: (i) Those stu-
dents experiencing impostor phenomenon understand that these feelings are
– unfortunately – rather common and should not be interpreted as a signal
regarding their abilities but as a reaction towards their environment. Also,
hearing that even successful researchers have experienced similar feelings at
some point in their careers (even if not labeled as “impostor phenomenon”)
can be empowering. (ii) Those students that do not experience impostor
phenomenon can help to improve the situation for their fellow students by
acting more empathically and not interpreting others’ insecurities as a lack
of competence. Personally, I remember a discussion with a fellow PhD stu-
dent who had never heard of impostor phenomenon before and who could
not imagine why someone would be hesitant to ask a question in front of an
audience.

6. Encouraging applications: Clearly, students and early-career researchers
who doubt their own abilities are less likely to apply for scholarships, awards,
selective workshops, or prestigious jobs. By the Matthew effect2, this can
have a long lasting negative effect on their careers. Here, advisors, mentors,
and colleagues can make a vital difference by nominating the student or
proactively pointing towards calls and emphasizing that they are confident
about the suitability of the student. Related to this, decision makers should
keep this effect in mind when evaluating academic profiles.

7. Normalizing failure: Whereas all academics encounter failures, setbacks,
and rejections, individuals experiencing impostor phenomenon might inter-
pret them as “proof” for their lack of competence. Thus, it is important for
more established researchers to share their failures, in particular with early-
career researchers. A prominent example are “CVs of failure”3, but also
occasional examples in casual conversations can be very helpful.

8. Avoiding judgmental comments: Researchers often have different and
strong opinions about the quality of journals and conference proceedings,
or even entire subfields, and discussions about these are popular. When

2The Matthew effect describes a hypothesis stating that small initial advantages can build up
disproportionately over the course of a career, also summarized by the phrase “the rich get richer”.

3See, for example https://www.uni-goettingen.de/de/document/download/
bed2706fd34e29822004dbe29cd00bb5.pdf/Johannes_Haushofer_CV_of_Failures[1]
.pd or http://everydayscientist.com/CV/sjl_CV-failures.pdf.

BEATCS no 141

44

engaging in such discussions, we should be careful with judgmental com-
ments, especially when early-career researchers are around. First, by doing
so we might implicitly disparage other researchers work, for example, if
they publish at the discussed venues, or even worse, their work got rejected
from these venues. Second, the perception of a journal or conference can
vary enormously across subfields. Regardless of the reason, disparaging
comments can make early-career researchers doubt their accomplishments.
Instead, we could emphasize that despite the fact that publication venues
are often used as a proxy for the quality of a work, they are by no means a
perfect indicator for such.

9. Avoiding stereotypes: There are many stereotypes about theoretical com-
puter scientists. (ChatGPT summarizes us as “introverted”, “nerdy”, “unre-
latable”, and “male”.) While joking about these stereotypes can be empow-
ering for some people, overemphasizing these characteristics can decrease
the sense of belonging in individuals that do not match this narrow image.

10. Reflecting on discussions about affirmative actions: Several times, some
of my fellow students confronted me with the preconception that I was given
higher chances of being selected for scholarships or jobs because I was a
woman. This is a tricky point, as there is no denial that, in some situations,
affirmative action does take place. While I think it is important to main-
tain an open discussion about the necessity and implementation of these ac-
tions, these discussions can also quickly fuel impostor phenomenon among
underrepresented groups. It is therefore essential that we reflect on the con-
text and our own intentions before engaging in these discussions. Lastly,
we should keep in mind that, even though individuals of underrepresented
groups might be prioritized at a handful of moments during their careers,
there are good arguments for doing so. Just to name two: As exemplified in
this article, it probably took them significantly more struggles to reach this
point in their career compared to their peers. Moreover, the visibility and
representation they create can pave the way for generations to come, who
will hopefully experience less impostor phenomenon.

Acknowledgments. While writing this article, I was faced with my very own
set of insecurities: Am I the right person to write this article? Is the issue even
big enough? Aren’t there enough articles on the topic? Do I want to be associ-
ated with the issue? I am extremely grateful to my friends and colleagues who
strongly encouraged me to write this article, contributed some of the ideas men-
tioned above, and provided valuable feedback on a first draft. You know who you
are. Thank you for your support and openness.

The Bulletin of the EATCS

45

References
P. R. Clance and S. A. Imes. The imposter phenomenon in high achieving women:

Dynamics and therapeutic intervention. Psychotherapy: Theory, research &
practice, 15(3):241, 1978.

C. S. Dweck. Mindset: The new psychology of success. Random house, 2006.

K. Henning, S. Ey, and D. Shaw. Perfectionism, the impostor phenomenon and
psychological adjustment in medical, dental, nursing and pharmacy students.
Medical education, 32(5):456–464, 1998.

S. Kumar and C. M. Jagacinski. Imposters have goals too: The imposter phe-
nomenon and its relationship to achievement goal theory. Personality and Indi-
vidual differences, 40(1):147–157, 2006.

S.-J. Leslie, A. Cimpian, M. Meyer, and E. Freeland. Expectations of brilliance
underlie gender distributions across academic disciplines. Science, 347(6219):
262–265, 2015.

M. Muradoglu, Z. Horne, M. D. Hammond, S.-J. Leslie, and A. Cimpian.
Women—particularly underrepresented minority women—and early-career
academics feel like impostors in fields that value brilliance. Journal of Edu-
cational Psychology, 114(5):1086, 2022.

C. Napp and T. Breda. The stereotype that girls lack talent: A worldwide investi-
gation. Science Advances, 8(10):eabm3689, 2022.

N. Olah. “Impostor syndrome” is a pseudo-medical name for a class problem.
The Guardian, 19, 2019.

S. Slank. Rethinking the imposter phenomenon. Ethical Theory and Moral Prac-
tice, 22(1):205–218, 2019.

R. Tulshyan and J.-A. Burey. Stop telling women they have imposter syndrome.
Harvard Business Review, 11, 2021.

46

The Bulletin of the EATCS

47

The Theory Blogs Column
by

Luca Trevisan
Bocconi University

Via Sarfatti 25, 20136 Milano, Italy

L.Trevisan@UniBocconi.it

https://lucatrevisan.github.io

Bill Gasarch is a professor of computer science at the University of Maryland

at College Park. He works on computational complexity and combinatorics, and he

is interested in math education. Bill writes with Lance Fortnow (who was featured

in an earlier column) the “Computational Complexity Blog.”

In his guest column, Bill answers our questions on his experience writing for a

theory blog with a very large and engaged community of readers, he tells us about

his sources of inspiration, and he highlights two posts from his archives: one on

open problems in mathematics and another on using SAT solvers to get concrete

bounds on extremal combinatorics problems.

BEATCS no 141

48

Computational Complexity

A Conversation with Bill Gasarch

(If you are reading this in pdf then you can click on the links in this article by
clicking on the “here” of “see here”.)

Q: Bill, thanks for taking the time for this conversation. Can you tell us how
your collaboration with Lance Fortnow on the Computational Complexity Blog
got started?

Lance started complexityblog on August 22, 2002. Lance invited me to do
a Complexitycast with him (see here). That went well. He went on vacation in
January of 2006 and asked me to guest post for the week. My first guest post was
titled Are you a Luddite (see here and follow up posts see here and see here). That
post went well!

I began doing a few more guest posts. On March 25, 2007 Lance suddenly
decided that he said all he wanted to say, so he retired (temporarily as it turned
out) from blogging (see here).

He got several blog posts and emails saying that the blog SHOULD go on. I
was the only person in the intersection of WANT TO DO IT and COULD DO IT.
My first post as a non-guest blogger was on March 30, 2007 and just said I am the
new Complexity Blogger (see here).

My first real post was on The Continuum Hypothesis since Paul Cohen had
died recently (see here). I revisited this topic in 2020 (see here).

Q: Your writing style is very idiosyncratic, and when I read a post in the Compu-
tational Complexity Blog I can always tell if it was written by you or by Lance.
Do you have any inspirations or models for your writing?

I list some of my influencers.

1. My hobby is comedy and novelty songs (I have a large collection) so I have
absorbed some from that realm. Hence I keep it light (with pointers to more
serious material), try to use clever wordplay, and know when to stop (its a
maxim among comedians that you should tell the same joke twice, but no
more than that).

2. Lance obviously influences me. He started the blog and set the tone for it.

The Bulletin of the EATCS

49

3. The following authors all influenced me

(a) In High School I read many books by Martin Gardner on recreational
math (I find the di↵erence between recreational math and serious math
to be either thin or non-existent). I liked his style and content. I re-read
some of his book for my book review column as an adult.

(b) As an adult I read the Brian Hayes’s Group Theory in the Bedroom
which is not as sexy as it sounds, but is excellent at explaining math to
the layperson.

(c) Ian Stewart’s book Ian Stewart’s Cabinet of Mathematical Curiosities
stands out for style since some chapters are long, some are short, some
are funny, some are serious, some are doing math, some are comment-
ing on math and some are not-quite-math. This influences me to NOT
feel the need to be uniform.
As an example of an entry that was short, funny, and not-quite-math,
here is a poem from the book:

A challenge for many long ages
Had ba✏ed the savants and sages

Yet at last came the light
Seems that Fermat was right

To the margin add 200 pages

(While trying without success to find the origin of that poem I found
many great poems about Fermat’s last theorem. See here.)

(d) I read Doug Hofstadter’s Godel-Escher-Bach in the summer between
undergrad school and graduate school. I knew JUST ENOUGH logic
to understand it but NOT SO MUCH as to be bored. I try to hit that
sweet spot in my blogs as well.

(e) This is not an author but a pointer: I wrote book reviews of books by
some of the above authors.

i. I wrote joint book review of books by Gardner, Hayes, and Stew-
art. See here.

ii. I wrote a book review of Martin Gardner in the Twenty First Cen-
tury which is about serious math he inspired. See here.

iii. Note to Self: Reread Godel Escher Bach and write a review of it.

4. My Darling knows enough computer science and math to know what I
am talking about (she has a Masters Degree in Computer Science) but not

BEATCS no 141

50

enough to have drunk the Kool-aid. This has influenced some posts. The
most obvious is that when I told her the Banach-Tarski Paradox she declared
Math is broken! She may be right. The BT paradox was the subject of a blog
post (see here) and has been mentioned in other posts.

Q: You often solicit reader’s opinions or feedback on your posts, and you engage
with them. Can you recall some memorable exchange that took place following
one of your posts? Has your research ever been influenced by such discussions?

The comments I get inspire me to READ up on some topics, which helps my
research indirectly. More likely what I get out of the comments is

1. material for my open problems column (I am currently the SIGACT News
Open Problems Column Editor),

2. surveys,

3. books to read and write review of,

4. problems for the Maryland High School Math Competition,

5. blog posts which will give me

(a) material for my open problems column (I am currently the SIGACT
News Open Problems Column Editor),

(b) surveys,
(c) books to read and write review of,
(d) problems for the Maryland High School Math Competition,
(e) blog posts which will give me . . .

Even though I was trained as a mathematician I will go against that training
and give some examples. I give summaries of blog posts in italics with a pointer
to the original post, and then some comments on the comments.

(See here) Alice, Bob, Carol each have an n-bit number on their fore-
heads and they want to know if the sum is 2n � 1. They can do this
with n bits of communication. Can they do the problem with less bits
of communication? This sounds like it could be a FUN problem to tell
your undergraduates about. Chandra-Furst-Lipton [1] showed that,
for large n, they can do it in

p
n bits. The proof uses large 3-free sets

(from Ramsey Theory) which I find fun, but your typical undergrad-
uate might not. Is there a way to make this problem FUN by finding
a way to do it with (say) n

10 bits but in a way undergraduates can
understand?

The Bulletin of the EATCS

51

One of the comments gave an elementary n
2 + O(1) solution. Now that I have a

starting point I will write an open problems column where I ask how well we can
do using elementary methods. Lower bounds are impossible here since elementary
methods is not rigorous; however, upper bounds would be great. I also (easily)
extended the solution to k people and n

k�1 + O(1).

2) (See here) Hilbert’s 10th problem is to (in todays terms) find an al-
gorithm that will, given a poly p(x1, . . . , xn) 2 Z[x], determine if there
is a solution in Z. From the work of Davis, Putnam, Robinson, and
Matiyasevich the problem is known to be undecidable. Let H10(d, n)
be the problem where the polynomial is of degree d and has n vari-
ables. There should be a grid of (d, n) saying, for each entry, if its
undecidable (U), decidable (D), or unknown (UK). But there is not.
Darn.

The comments on this blog inspired me to do a survey of what is known, which
appeared in the BEATCS algorithms column [2]. A later version is on arxiv (see
here). An email from a reader was very enlightening and I quoted it in the arxiv
version:

Timothy Chow o↵ered this speculation in an email to me: One rea-
son there isn’t already a website of the type you envision is that from
a number-theoretic (or decidability) point of view, parameterization
by degree and number of variables is not as natural as it might seem
at first glance. The most fruitful lines of research have been geomet-
ric, and so geometric concepts such as smoothness, dimension, and
genus are more natural than, say, degree. A nice survey by a number
theorist is the book Rational Points on Varieties by Bjorn Poonen [4]
Much of it is highly technical; however, reading the preface is very en-
lightening. Roughly speaking, the current state of the art is that there
is really only one known way to prove that a system of Diophantine
equations has no rational solution.

Q: I know you are quite interested in mathematics education and about getting K-
12 kids interested in mathematical thinking and research. What role do you think
that blogs can play in getting young people interested in mathematics?

This has two answers.
1) If a K-12 student reads my blog (probably High School, though I do know one
9 year old who reads it) then since it’s light and we highlight the ideas it may

BEATCS no 141

52

inspire them to read something more serious, or to contact Lance or I (some have
contacted me).
2) Because I write the blog, I come up with ideas for High School projects. Be-
cause I am good at coming up with ideas for High School projects, I write the
blog. I end up with many projects for High School Students.

Q: Can you highlight one post from the past and tell us about it?

I will highlight a few posts.

1) My advisor Harry Lewis emailed me that his 9 year old granddaughter Alexan-
dra wants to know what happens when you get a Millenium prize so that she will
be ready.

This inspired some silly and serious thoughts:

1. How likely is it that Alexandra will resolve P vs NP (or if she is rebellious,
the Navier-Stokes equation)? Alas, not likely.

2. How much progress as a community have we made on P vs NP? Not much.
That topic has been blogged about and discussed a lot before, so no need to
rehash that topic.

3. Erdős has said of the Collatz Conjecture that
Mathematics is REALLY not ready for this problem

Alexandra and Erdős jointly inspire the following:

The post (see here) was a historical tour-de-force of open or previously open
problems in mathematics. The most intriguing was the three problems of antiq-
uity: can you, with just a ruler and a compass (as a kid I wondered why knowing
what direction north was would help with geometry) trisect an angle, double a
cube, or square the circle. When it was posted

Mathematics was not ready for this problem.
I then went through other math problems with the question was math ready

for it when it was posed? The problems were: FLT, Completeness of Peano Arith-
metic, the Continuum Hypothesis, Hilbert’s 10th problem, The Four Color prob-
lem, Poincare’s Conjecture, The Erdős Distance problem, The Collatz Conjecture
(spoiler alert: Math is still not ready for it), Ramsey of 5 (not ready but sadly, not
that interesting), and the Twin Primes Conjecture.

The post ended with the note that Alexandra was going to work on Collatz
over the summer, and I wished her luck.

The post inspired me to read the book Tales of the Impossible: The 2000 year
quest to solve the mathematical problems of antiquity by David Richeson, which
was very enlightening. For my review of it in SIGACT News see here.

The Bulletin of the EATCS

53

2) An n⇥m grid is c-colorable if there is a map from [n]⇥ [m]! [c] so that there
are no rectangles where all four corners are the same color. I was working on
the following problem (with co-authors Stephen Fenner, Charles Glover, Semmy
Purewal): for which n,m, c is n⇥m c-colorable? We had determined exactly which
grids were 2-colorable. We had determined exactly which grids were 3-colorable.
We had reason to think that 17⇥ 17 IS 4-colorable. But we could not prove it. On
November 30, 2009 I posted about the problem on the blog and:

o↵ered a bounty of $ 289 to the first person to email me a 4-coloring of the
17 ⇥ 17 grid. (See here.)

Brian Hayes saw this and popularized the challenge in his column. His column
has far more readers than mine does, so this got the problem more out there.
Several people told me just throw a SAT SOLVER at it. Those who tried had no
success. Until. . .

In 2012 Steinbach and Postho↵ [5, 6, 7] obtained the coloring (and a few
others that I needed) and I happily paid them the $289.00. I blogged about it (see
here). I was thus able to solve exactly which grids were 4-colorable. The problem
of 5-colorability seems to be beyond todays technology and might always be.

This is the most direct case of me posing a problem on the blog and getting it
answered. For the final paper see here.

3) On April 1, 2010 I posted a manifesto that the theory community should STOP
proving that our techniques won’t su�ce to solve certain problems (e.g., oracles,
natural proofs) and PROVE SOMETHING. I laid down some problems where
progress seemed possible.

1. Prove that NP is di↵erent from time 2O(n).

2. Determine how NL and P compare.

3. Determine how deterministic primitive recursive and nondeterministic
primitive recursive compare.

4. Determine how deterministic finite automata and nondeterministic finite au-
tomata compare.

I stated that these problems should be solvable with the methods available to
us since neither oracles nor natural proofs rule out current techniques. So progress
is possible.

The astute reader of this column may notice two things: (a) all four open
problems mentioned are not open at all but it is well known what the answers are,
and (b) this was posted on April fools day. One may also note that YES, they can
be solved with current methods.

BEATCS no 141

54

I am particularly proud of this post since it has become a cliche to post on
April fools day that some open problems have been closed. I turned that around:
I posted that some closed problems are open.

Q: Is there something else that you would like to share with our readers?

Some random thoughts:

1. Early on Lance told me to NOT worry about comments. Engage YES, but
do not write a post thinking this will get a lot of comments! Unlike todays
journalists (or perhaps social media aggregator) we are not paid by-the-
click. We write what we find interesting and hope others will, but are not
obsessed with that part. To quote Ricky Nelson’s song Garden Party you
can’t please everyone, so you’ve got to please yourself. For the video on
you tube of that song, see here.

2. Blogs are a wonderful place to exchange ideas without referees or program
committees getting in the way.

3. Clyde Kruskal and I have written a book based on some of my blog posts.
We took those that made a point about Math or CS, and then did some
Math or cs to illustrate the point. The essays in the book are polished and
completed versions of the posts, or in some cases a set of posts. Problems
with a point: Exploring Math and Computer Science. See here.

4. While the blog is called complexityblog we do not feel constrained by that.
Many topics are in our scope. I am a fan of Ramsey Theory, so that comes up
a lot. Non-theory topics in computer science, issues about academic com-
puter science or academia in general are certainly fine topics. We sometimes
comment on current event. When Jimmy Bu↵ett passed away I had a blog
(see here) about songs that have a contradiction (thats is relevant for logic!)
between what the lyrics say and what people think they say since Jimmy
Bu↵ett’s Margaritiville is a great example.

5. This column has 25 links in it. Is that a BEATCS record? The blog post with
the most links was titled Disproving that Myth that many early logicians
were a few axioms short of a complete set (see here) which had 71 links.

References
[1] A. Chandra, M. Furst, and R. Lipton. Multiparty protocols. In Proceedings of the

Fifteenth Annual ACM Symposium on the Theory of Computing, Boston MA, pages
94–99, 1983. http://portal.acm.org/citation.cfm?id=808737.

The Bulletin of the EATCS

55

[2] W. Gasarch. Hilbert’s tenth problem for fixed d and n. Bulletin of the European
association of theoretical computer science (BEATCS), 133, 2021. See the arxiv
article LINK.

[3] W. Gasarch and C. Kruskal. Problems with a point: exploring math and computer
science. World Scientific, 2019.

[4] B. Poonen. Rational points on varieties, volume 186 of Graduate studies in mathe-
matics. American Mathematical Society, 2017.

[5] B. Steinbach and C. Postho↵. Extremely complex 4-colored rectangle-free grids:
Solution of an open multiple-valued problem. In Proceedings of the Forty-Second
IEEE International Symposia on Multiple-Valued Logic, 2012.

[6] B. Steinbach and C. Postho↵. The solution of ultra large grid problems. In 21st
International Workshop on Post-Binary USLI Systems, 2012.

[7] B. Steinbach and C. Postho↵. Utilization of permutation classes for solving extremely
complex 4-colorable rectangle-free grids. In Proceedings of the IEEE 2012 interna-
tional conference on systems and informatics, 2012.

56

The Bulletin of the EATCS

57

The Computational Complexity Column
by

Michal Koucký

Computer Science Institute, Charles University
Malostranské nám. 25, 118 00 Praha 1, Czech Republic

koucky@iuuk.mff.cuni.cz

https://iuuk.mff.cuni.cz/~koucky/

BEATCS no 141

58

Reusing Space: Techniques and Open
Problems

Ian Mertz*†

Abstract

In the world of space-bounded complexity, there is a strain of results
showing that space can, somewhat paradoxically, be used for multiple pur-
poses at once. Touchstone results include Barrington’s Theorem and the
recent line of work on catalytic computing. We refer to such techniques, in
contrast to the usual notion of reclaiming space, as reusing space.

In this survey we will dip our toes into the world of reusing space. We do
so in part by studying techniques, viewed through the lens of a few highlight
results, but our main focus will be the wide variety of open problems in the
field.

In addition to the broader and more challenging questions, we aim to
provide a number of questions that are fairly simple to state, have clear
practical and theoretical implications, and, most importantly, that a new-
comer with little background experience can still sit down and play with for
a while.

The first subroutine I coded, learning the principles of object oriented pro-
gramming in a CS 101 course, was the swap function. Every coder knows it by
heart: three lines—their syntax is nearly universal across all languages—and only
using the two input variables in question plus one additional:

temp = x
x = y
y = temp

Years later I was adding the same function as part of the preamble to a larger
assignment, when the TA gave me a puzzle: can you swap two bits without the
temp register? Yes, and with no increase in the length of the program:

*Centre for Discrete Mathematics and its Applications (DIMAP), University of Warwick, UK.
Email: ian.mertz@warwick.ac.uk.

†The author received support from the Royal Society University Research Fellowship
URF\R1\191059 and from the Centre for Discrete Mathematics and its Applications (DIMAP)
at the University of Warwick.

The Bulletin of the EATCS

59

x = x ⊕ y
y = x ⊕ y
x = x ⊕ y

While not as ubiquitous as the standard program, no shortage of experienced
coders have encountered this problem before; indeed it is one of many gateways
to the wide world of bit-tricks. But like all good hammers, the answer, an elegant
improvement to one of the standard subroutines in all of computer science, begs
one to go looking for nails, or, better still, more hammers of a similar ilk.

1 TCS Wants YOU (To Reuse Space)

1.1 Who, me?
Why should we think about reusing space? Consider some clickbait-ized head-
lines for the successes of the field thus far:

• any function can essentially be computed using just a three-bit memory

• access to a hard drive can be more powerful than non-determinism, even
when it’s full

• our central approach to separating P from L contains a fatal flaw

• the max flow rate is not an upper bound on the size of messages that can be
sent through a network

These are sensational highlights, and for those in space-bounded complexity
or similar fields they may warrant scrutiny on their own merit. But in this work,
rather than giving a status report on a distant field, I want to invite a broader
audience to consider coming into the fold themselves, and so our focus will be
slightly different.

The survey will be split into two parts. For the readers in search of hammers,
we will give an overview of the major techniques in the field, which should be
sufficiently general and straightforward so as to spark the reader’s imagination.
And for the readers who enjoy a good nail, we will present a broad swath of open
problems in the field, from puzzles to be worked on over an idle lunch to the titanic
central problems in space complexity.

Part I will give some background into the existing techniques on reusing space.
This part will follow more of the typical pattern of a survey, but with all proofs
kept at a fairly high level with minimal definitions or details; we eschew all formal
preliminaries of basic objects—e.g. circuits, branching programs, etc.—in favor

BEATCS no 141

60

of brief descriptions of relevant characteristics, as our goal is simply to give the
reader a taste for past arguments. We also include a number of exercises to the
reader1, whose answers can be found in the appendix at the end.

In Part II we lay out a number of open problems in the world of reusing space.
These sections will give a flavor of the problem itself, known results and tech-
niques, possible hindrances, and consequences of solving them. Again the details
will be left fairly light, focusing on breadth rather than depth in order to appeal
to many types of problem solvers, as well as to avoid personal biases as much as
possible, although in this I admit to have largely failed.

1.2 Reducing via Reusing (beyond Recycling)

Per the title, we focus on reusing, rather than simply saving, space, even though
proving upper bounds through space-saving algorithms is our ultimate aim. Let
us disambiguate these terms now.

What could reuse mean, beyond reclaiming space as it becomes available? The
latter is something we understand quite well. When we study the space complex-
ity of some function, we naturally focus on what the algorithm needs to remember
during the computation, and so we design algorithms with the aim of remember-
ing, at any point in time, as little information as possible.

In this survey we study a slightly different question: can we store lots of in-
formation but do so using much less space? By this we do not mean a simple
question of compression, for which the same information theoretic bottlenecks
still hold sway. We ask a more suggestive question: can we use space for two
things at the same time?

We prime the reader to this possibility by mentioning two distinct uses of space
as a resource writ large: storage and work. At any moment in a computation, there
may be information concerning the global computation that must be written down
for future use, while simultaneously there are local computations that must be
performed with the aid of the tape as well.

The question of whether these need occupy separate places in memory—what
one could call the composition question for space—may at first glance appear
trivially true, but this is not the case. In Section 2 we will see how memory can be
used for two such purposes at once by analyzing the proof of Barrington’s seminal
result [Bar89], as adapted from a follow-up work of Ben-Or and Cleve [BC92].

1Typically we write “this is left as an exercise to the reader” to denote either something trivial
or something technical but lacking in key ideas; in any event, something to be glossed over. In this
survey it means precisely the opposite: readers who want to get comfortable with the techniques
presented are highly encouraged to try them out and check their work.

The Bulletin of the EATCS

61

1.3 Our test module: catalytic computing

Our goal in this survey is to appeal to a broad audience within theoretical (and
possibly even applied) computer science about the intriguing mysteries of reusing
space. Thus as much as possible we will refrain from narrowing the focus to one
model or another.

However, we cannot avoid introducing a model of space which has been inter-
twined with such questions for many years now, and which seems a natural first
stop when studying any questions about reusing space: catalytic computing.

Consider the two uses alluded to in the previous section: storage space and
work space. How can we focus on separating out these uses? The simplest way is
to imagine a situation where the work space we seek to use stores information that
is completely unrelated to any computation at hand; in fact, we go a step further
and consider a work tape populated with arbitrary bits, and see whether or not
such a tape can still be useful for computation.

To focus on this question, imagine a space-bounded machine in the usual
sense, but now we also give it access to a second work space, which we call the
catalytic tape. While our main work tape is initialized to be empty, our catalytic
tape is initialized to be full; what information fills the tape is arbitrary and out of
our control, and while we allow the machine to use the catalytic tape however it
chooses, we stipulate that the machine should return this memory to its original
state at the end of the computation.2

Seeing if clever use of the catalytic memory allows us to exceed the power of
a typical bounded space machine is one clear way to test our ability to reuse space
without simply reclaiming memory used for past computations. In Section 3 we
will mention some key results in catalytic computing, and more importantly the
techniques used in these results, which shows that such reuse is not only possible
but quite powerful.

1.4 Many flavors of questions

Given these preliminary motivations, there are many types of problems we can
ask. We loosely group these into four categories. In Section 4, we tackle the
basic premise of our field by looking to apply the techniques of reusing space to
answer questions in space-bounded complexity. In Section 5, we ask how the cat-
alytic computing model compares with traditional complexity classes, both space-

2The term catalytic refers to a catalyst in chemistry, which is a chemical unrelated to, and
ultimately preserved in quantity by, a given reaction, but whose presence is nevertheless necessary
for the reaction to occur. We also note that there are multiple unrelated definitions of “catalytic
computing” circulating in the CS literature, including one for network systems and another in
quantum computing; all of these models, of course, are named for the same physical phenomenon.

BEATCS no 141

62

bounded and otherwise. Section 6 asks similar questions but comparing catalytic
classes to one another in an attempt to flush out a parallel structural theory of
space. Finally in Section 7 we go beyond space-bounded complexity classes and
consider when the techniques we have seen in this work may apply to alterna-
tive computational models; in this section in particular I invite the reader to think
about their own research and build novel connections to the framework of reusing
space.

1.5 The purpose of this survey
Writing a survey article is a chance for the author to bring a new and (person-
ally) exciting field to the reader’s attention, and to isolate the central and furthest
reaching successes therein. It can appeal to the utility of such results and proofs,
ones the reader, a researcher with a full schedule and their own field and goals,
may have never even heard of. It is, then, a way to plant the seed of interest while
respecting the reader’s time.

Why, then, do we focus not on the use to the reader, but rather to beg them
to drop their own work and spend time on an alien set of questions? One answer
is that the former duty has already been discharged in the 2016 edition of this
column by Michal Koucký [Kou16]; while there have been exciting results since
then, another review only seven years later is hardly warranted. We will spend
Part I of our survey covering some of the basics that appeared in this excellent
work, but it will be for the sake of definition and intuition; for all other purposes,
I refer you to therein.

Another answer, which was alluded to in the preamble, is that the nascent
field finds itself in a very fortunate position: many of the existing open ques-
tions in reusing space can be described, motivated, and attacked with very little
background. Some revolve around basic arithmetic; some involve drawing small
graphs. There are no shortage of questions that ask for a slight twist on some
fundamental theorem from an undergraduate complexity course. Hence they may
be appropriate for those looking for “toy” (but still consequential) problems to
play with, such as early career researchers—I have even given some problems to
undergraduates in the past—or those who enjoy doing puzzles at dinner.

Lastly, I hope that beyond the specific problems at hand, the reader will take
with them, back to their own specific subfield, the question of how one might use
space, or indeed any other resource, in more than one way at once, and to what
end. The faith that motivates this survey is that the question of reusing space
will both benefit and benefit from researchers from a wide variety of fields; I will
present one approach to solving one type of question, but more than pushing this
particular angle forward, what the field needs, and potentially offers, is a greater
variety of approaches to, and understandings of, its central tenets.

The Bulletin of the EATCS

63

PART I: WHAT WE KNOW (THE BASICS)

2 An introductory example: Barrington’s Theorem

2.1 Statement and proof
In order to calibrate ourselves to the task of reusing space, let us see one simple
but foundational example of what this actually looks like.

Our adversary will be the circuit, a classical model of computation wherein an
input x is fed bit by bit into a network of AND, OR, and NOT gates. Let C be
a circuit taking n inputs; to simplify matters, we remove every OR gate from C
using de Morgan’s laws, and assume every AND gate takes two inputs.

“Theorem”: C can be computed using effectively three bits of memory.

The statement “C can be computed using three bits of memory” is, of course,
assuredly false; the proof of our “theorem” will fall short of this, due to a vari-
ety of technical considerations, including uniformity, counters for runtime, etc.
However, it is correct in a moral sense, one which can be converted into useful
statements and algorithms, and, more important at the present, provides the basis
for our view of reusing space throughout the rest of this survey.

The proof is self-contained and only relies on basic modular arithmetic, and
thus we state the proof first and save the background and intuition for the rest of
the section.

Proof. Our argument will be by induction on the gates of the circuit C. Let
(R0,R1,R2) be our three bit memory, initialized to (0, 0, 0), and fix the input x
under consideration. Our inductive statement is as follows:

Lemma 1. Let (R0,R1,R2) be in some state (τ0, τ1, τ2) ∈ {0, 1}3, and let g be a
gate in C which takes value vg on input x. Then for i ∈ {0, 1, 2}, there is a program
Pg(i) which transforms the memory as follows:

R j = τ j ⊕ vg j = i
R j = τ j j , i

We see that this is sufficient to compute f . Our first recursive call will be to
the output gate out of C, say Pout(0), and here (τ0, τ1, τ2) is the initial blank tape,
i.e. (0, 0, 0); thus at the end of the computation, R0 will be in state 0 ⊕ vout = f (x).

So now we take up this task. From here out out we view everything through
the lens of arithmetic modulo 2, meaning + denotes ⊕. We use notation R += v
to mean R ← R + v, and so our goal is to design, for every gate g ∈ C and

BEATCS no 141

64

i ∈ {0, 1, 2}, a program Pg(i) which computes Ri += vg while leaving all other
memory untouched.

The base case is simple enough: if g is one of the inputs to the global function
f , say x j, then we can simply add the relevant input to whichever register we
please and we are done:

Ri += x j

Now let g be an internal gate in the circuit, i.e. either NOT or AND. NOT is
simple enough: let g = ¬h, let vh be the value of h, and by induction let Ph(i) be a
program computes Ri += vh. Then simply running Ph(i) and then adding 1 yields

Ri = τi + vh + 1 = τi + ¬vh = τi + vg

Thus our last case is to compute g = g1 ∧ g2, and without loss of generality we
focus on Pg(0), as Pg(1) and Pg(2) can be accomplished by relabeling.

Let g1 and g2 take values v1 and v2, and by induction let P1(1) and P2(2) be
programs which send R1 to τ1 + v1 and R2 to τi + v2, respectively. The following
program sends R0 to τ0 + v1v2; the relevant memory states are listed inline, with
brackets separating out the previous memory state and the new additions:

1. P1(1) R1 = [τ1] + [v1]

2. R0 += R1R2 R0 = [τ0] + [(τ1 + v1)(τ2)]
= τ0 + τ1τ2 + v1τ2

3. P2(2) R2 = [τ2] + [v2]

4. R0 += R1R2 R0 = [τ0 + τ1τ2 + v1τ2] + [(τ1 + v1)(τ2 + v2)]
= τ0 + τ1v2 + v1v2

5. P1(1) R1 = [τ1 + v1] + [v1]
= τ1 ✓

6. R0 += R1R2 R0 = [τ0 + τ1v2 + v1v2] + [(τ1)(τ2 + v2)]
= τ0 + τ1τ2 + v1v2

7. P2(2) R2 = [τ2 + v2] + [v2]
= τ2 ✓

8. R0 += R1R2 R0 = [τ0 + τ1τ2 + v1v2] + [(τ1)(τ2)]
= τ0 + v1v2 ✓

which completes the proof, as R0 = τ0 + vg and Ri = τi for i = 1, 2. □

The statement and proof above are adaptations of the seminal works of Bar-
rington [Bar89] and Ben-Or and Cleve [BC92]. We give a more exact statement
at the end of this section, turning now to focus on a higher level understanding of
their technique.

The Bulletin of the EATCS

65

2.2 Back to basics
Let us now rewind and build back towards our “theorem” from the ground up.
Our goal is to demystify the proof we have just seen, and in the process to begin
thinking about how these principles can be be extended.

2.2.1 Circuits and space

∧

∧ ¬

. . .

x3 x9
. . .

x1

Fig.: circuit

In the world of Boolean functions, circuits are one
of the most fundamental computation models, and are
universal in the sense that any function has a corre-
sponding circuit. However, we typically consider the
class of functions f which are efficiently computable
by circuits, both with respect to total time, measured
by the number of gates, and parallel time, measured by
the longest path from any input wire to the output of
the circuit. We say the size of a circuit is the number
of gates, while the depth of a circuit is the length of the
longest input-output path.

More specifically, consider a family of functions
f = { fn}n∈N, each fn taking in n input bits. Let f be computable by a family
of circuits C = {Cn}n∈N, where each Cn has size sn and depth dn. Our goal will be
to design a machine which computes fn using the minimal possible space.

As should be clear from the initial statement, we will not be rigorous about
which operations are allowed and such; we will assume that our machine has
knowledge of Cn, and that at each step it makes use of all available information—
by which we mean the circuit, the input, and the current state of our memory—to
progress in the computation.

We begin with a sanity check: each fn can be computed without reusing any
space, and the space complexity corresponds to the size of Cn.

Claim 1. fn can be computed in space sn.

Proof. We assign to each gate in Cn a spot on our work tape, and progress through
the circuit in order writing down the value of each gate. If the gate uses any
input bits directly we take them from the input tape, while if it takes previously
computed gates as input we read their values from the work tape. The final gate
will compute the output of Cn, and thus the value of fn. □

This procedure is simplicity itself, and yet clearly wasteful. As soon as some
internal gate of Cn becomes irrelevant to future computation, we could reclaim
this space to use for later gates.

BEATCS no 141

66

Alternatively, we can throw away information about a gate even if it is required
for later use, as long as we are willing to pay to recompute it in the future, perhaps
when more space is at our disposal.

Can this logic be exploited when we know nothing about Cn besides its size
and depth? Indeed we can, if we consider how and when computations are reused.
Thus we can reduce the space complexity from the total runtime of Cn to its par-
allel runtime, from size to depth.

Claim 2. fn can be computed in space dn.

Proof. For each gate g ∈ Cn, we define the level of g to be the length of the longest
finite path any input of the circuit takes to get to g. Since every input takes at most
dn steps to reach the output of the circuit, every gate is at level at most dn, and the
output gate is at level dn exactly.

We will inductively prove that any gate at level k can be computed with space
k, thus proving the claim by considering the output gate at level dn. For any gate g
at level 1, the inputs to g simply come from the input itself, and thus we can write
down the value of g directly from considering the input tape.

Now for gate g at level k, let g1 and g2 be the inputs to g, each of which occur
at some level strictly less than k. To compute g we first compute g1, which by
induction can be done in space at most k − 1. Now we erase the entire work tape
save for the output of g1, and we then compute g2 in the free space on our tape.
This again can be done in space at most k − 1, and combining this with the output
of g1 we saved earlier gives us space k to compute g itself. □

2.2.2 Constant space: who could expect it?

Here we see that a careful view of how the internal computation of a circuit works
can point us towards lowered space. Can this be pushed further?

While it may seem bold to press on, we may take heart from observing that at
any moment in time, only two bits of the work tape are relevant to the computation
at hand, no matter where in the recursion we may find ourselves. Thus the true
test of our resolve is to ask: can we compute f using only a constant amount of
memory?

On the face of things, this task is manifestly impossible. It is certainly true
that only two bits are needed at any moment in time; yet this is making a similar
oversimplification as saying only the output gate of Cn is truly important for com-
puting the value of fn. Each internal computation is unimportant alone, but is vital
for the next step, and as such it is not just which bits are relevant in this step, but
also which bits will be relevant in later steps. For a concrete example, during the
computation of g2 in the proof of Claim 2, it may be correct to say the value of g1

The Bulletin of the EATCS

67

is irrelevant now, but to erase it would clearly be shooting ourselves in the foot in
a moment’s time.

Thus to begin, we must ask whether we can broaden our horizons in defining
what it means to reuse space. So far we have limited ourselves to reclaiming space
and using it as if it were fresh. A more daring idea is to reuse space in situ, or in
other words to use space for more than one purpose at the same time.

Here we focus on two distinct uses of space during the computation: space as
providing inputs to the current computation and space as storage for future com-
putation. If a bit of memory could play both roles simultaneously—to again use
our previous proof as a concrete reference, if we imagine that the space storing g1

could be used in parallel for computing g2—then our previous objection becomes
weaker.

2.3 Proof redux

We are now ready to challenge our “theorem” once again. By building our ideas
of how to reuse space from the ground up, we will once again reach the proof
given at the beginning of this section.

Naturally we will once again attempt an inductive approach, computing the
circuit gate by gate. The proof lies in two insights: first, in the way that it arrives
at an algebraic definition for reusing space which can be turned into a suitable
recursive statement; and second, in the way that definition’s algebraic nature sug-
gests the method by which the statement can be achieved, if one tries at every step
to do what immediately brings them closer to the goal.

2.3.1 Idea 1: modular arithmetic

As suggested by the discussion from the previous section, we need to choose a
recursive statement whereby g is successfully added in memory while not erasing,
and in fact in a formal sense preserving, its current state.

The term “adding” in the previous statement should immediately call to mind
one such potential definition: XORing the value of g to memory. To figure out our
exact statement, let us put ourselves in a moment within the computation.

With respect to memory as storage, we will imagine our three-bit memory is
in some state (τ0, τ1, τ2) ∈ {0, 1}3, the exact value of which will be dictated by the
recursion thus far; rather than subject ourselves to working out an exact statement
for the values τi, we consider them to be arbitrary and out of our control.

With respect to memory as computation, our goal will be to send one of these
bits, say τ0, to the value τ0+vg mod 2, where again vg is the value of g in question.
This statement suggests that recursively we should assume we have the ability to

BEATCS no 141

68

do the same below us, namely that we can send τi to τi + vh mod 2 for any gate h
which is an input to g.

Furthermore, in order to respect the stored values τi, we will design our pro-
gram in such a way that after computing vg into R0, the values stored in R1 and R2,
namely τ1 and τ2, are left unchanged, and whereby recomputing vg allows us to
recover τ0, i.e. to restore our last piece of memory R0.

This brings us squarely to our choice of recursion statement as given by Lemma 1.
Given this concrete goal, and with the assurance that proving it is sufficient to
proving the “theorem”, we may be encouraged by how simply the base case, i.e.
the input layer, as well as the case of g = ¬h, can be dismissed with.

This only leaves us with proving the recursive statement for g = g1 ∧ g2. The
reader is invited to pause here and take stock by attempting to do so themselves; it
is the certainly the only tricky part of the argument once Lemma 1 is formulated,
but it can be accomplished with a little trial and error.

2.3.2 Idea 2: handling multiplication

It seems that the only place to start is adding g1 ∧ g2 to τ0 in any way we can, and
then seek to fix things up from there. The most natural way to do this is to execute
P1(1) and P2(2), and add the AND of the resulting memory to τ0. Viewing AND
as multiplication modulo 2 and expanding the product, we get

τ0 + (τ1 + g1)(τ2 + g2) = τ0 + τ1τ2 + τ1g2 + g1τ2 + g1g2

which contains exactly the terms we want, namely τ0 + g1g2, as well as three junk
terms, namely τ1τ2 + τ1g2 + g1τ2.

To remove these terms, let us start with τ1g2, which suggestively does not
contain g1. Executing P1(1) sends τ1 + g1 to τ1 + g1 + g1 = τ1, and thus the AND
of our two work bits is τ1(τ2+g2) = τ1τ2+τ1g2. We add this to our target memory.

We can take care of g1τ2 similarly, executing P2(2) to remove g2 and P1(1) to
get back g1, and then adding R1R2 = (τ1 + g1)τ2 to our target register. Thus our
memory contains

(τ0 + g1g2 + τ1τ2 + τ1g2 + g1τ2) + (τ1τ2 + τ1g2) + (τ1τ2 + g1τ2) = τ0 + g1g2 + τ1τ2

at which point we can simply reset our “external memory” by executing P1(1) one
last time, and then adding the AND of R1 and R2 one last time seals the deal.3

After all is said and done we have not only added g1∧g2 to τ0, but in fact have
set R1 and R2 back to their original values, thus fulfilling the other requirement of
our recursive call.

3Note that our original proof was more efficient in terms of recursive calls; our only instructions
are recursive calls and R0 += R1R2, meaning the order in which we add our terms is irrelevant.

The Bulletin of the EATCS

69

2.4 Afterword: next steps
The techniques involved in this section are crucial to understanding many of the
arguments at the forefront of reusing space. Thus we will use this opportunity
to give the reader their first exercise; since the solution can be found earlier in
this section, the solutions manual will only contain an alternate analysis of the
multiplication program.

Exercise 1. Watch an episode of Gilligan’s Island4, then come back and attempt
to reprove our “theorem”.

We also dismiss with the tedious use of “theorem” by stating the actual result
in question. This statement, the true form of Barrington’s Theorem [Bar89], fol-
lows by a more optimized variant of Lemma 1, while Ben-Or and Cleve [BC92]
devised Lemma 1 essentially as stated to prove a more general theorem.

x3

x4

x1

x1

x6

xn

. . .

0

10

1

0

1

0

1

1

1

0

Fig.: branching program

Space-bounded computation has a very
well-studied syntactic model to call its
own: branching programs. A branching
program is an directed acyclic graph with
a start (source) node and two potential end
(sink) nodes, one for each output of the
function, where each node is labeled with
an input variable x j and has one outgoing
edge for each potential value of x j, i.e. 0 or
1. Computation is done in the natural way,
starting at the source and at each node fol-
lowing the edge whose label agrees with
the value of the x j labeling the node itself,
until we reach an output node whose value
is declared the output of the function.

While space is formally captured by the log of the size of the branching pro-
gram, i.e. the number of bits needed to keep track of where in the graph we are at
each moment in time, we have more fine-grained notions that are relevant. We say
the program is layered if the nodes can be arranged into layers, starting with the
source at layer 0, such that the edges coming out of any node at layer i go to nodes
at layer i + 1. In this case we can speak of time and space as being the length and
width of the program, i.e. the number of layers and the largest size of any layer,
respectively.

4Any activity lasting a half hour or more and which does not involve mathematics will do; I
suggest a cup of tea and a nice book. However, as this strategy was originally taught to me as “the
Gilligan’s Island method” (by a professor whose age was betrayed therein) I have preserved it as
such.

BEATCS no 141

70

Theorem 1 (Barrington’s Theorem). Let C be a circuit of depth d. Then there
exists a layered branching program of length 4d and width 5 computing the same
function as C.

Lemma 1 immediately gives Theorem 1 with width 23 = 8 instead of 5 (as well
as some loss in the length). It can also be used to prove a more general arithmetic
statement, which was the original motivation and result of [BC92]. This leads in
to one of the key ideas in the upcoming section, and so we encourage readers to
attempt this generalization for themselves.

Exercise 2. Let C be an arithmetic circuit of depth d, meaning a circuits whose
inputs are from a ring R instead of {0, 1} and whose gates are + and × over R.
Extend Theorem 1 to show that there exists a layered branching program of length
4d and width |R|3 computing the same polynomial as C.

3 A brief primer on catalytic computing
The proof in the previous section gave us a taste of how one could use full memory,
represented in Lemma 1 by the arbitrary values τi in Ri, in a non-trivial way. We
now broaden the scope of such ideas to discuss our central, although certainly not
exclusive, model for testing the reuse of space: catalytic computation.

3.1 The basic definitions

. . .

work tape

0 1 1 . . . 0 1

catalytic tape

x1 x2 . . . xn

input tape output

Fig.: catalytic Turing Machine

We start with the definition of Buhrman et
al. [BCK+14], who first introduced the concept of
catalytic computation.

Definition 1. A catalytic Turing Machine with
space s := s(n) and catalytic space c := c(n) is a
Turing Machine M with two read-write work tapes,
which we call the work tape and the catalytic tape,
which have lengths s and c respectively.

In addition to the usual restrictions on space-
bounded Turing Machines, M obeys the following
additional property: for any τ ∈ {0, 1}c, if we ini-
tialize the catalytic tape to τ, then on any input, M
contains τ on the catalytic tape when it halts.

This definition gives rise to a natural complexity class, which is a variant of
the ordinary class SPACE(s).

The Bulletin of the EATCS

71

Definition 2. The class CSPACE(s, c) is the set of all functions which can be
computed by a catalytic Turing Machine which has space s and catalytic space c.

CSPACE(s, c) sits between SPACE(s) and SPACE(s + c), with neither con-
tainment known to be strict in any interesting setting. Showing CSPACE(s, c)
is strictly more powerful than SPACE(s) would be a validation of our ideas of
reusing full space, even in the generic setting where we make no considerations
of what the full memory actually contains.

The most well-studied variant of CSPACE is catalytic logspace, where s is
logarithmic and c is polynomial. For most of this survey we frame our discus-
sions around this class, but the reader should be aware that almost all results and
problems we pose can be scaled up to pertain to other CSPACE(s, c) classes ac-
cordingly.

Definition 3. The class CL is defined as CSPACE(O(log n), nO(1)).

Following our earlier discussion, CL sits somewhere between L and PSPACE.
Current evidence, which we now turn to, suggests that both containments are
strict.

3.2 Upper bounds
3.2.1 Compression: useful even when it fails

Let us disregard the techniques we saw in Section 2 and consider the definition of
CSPACE at face value.

It is a natural knee-jerk reaction to think that CSPACE(s, c) must be approx-
imately the same as SPACE(s) for any c. The only obvious approach to refuting
such a statement would be applying some type of compression to the catalytic
tape, and when one considers that such compression must succeed for any initial-
ization of the catalytic tape—never mind the technical hurdles needed to imple-
ment such an approach—even this seems unlikely to help.

However, failure to compress such a string does not leave us with only free
space s; it leaves us with free space s plus an incompressible string, hardly a
trivial object to come by. Such a string may suggest many uses, but perhaps the
first one that comes to mind is to use it as a source of entropy, i.e. randomness.

This insight can be pushed all the way through for simulating randomized
space, due to a few peculiarities in how randomized space-bounded algorithms
are defined. This proof [Lof] is unpublished as it was quickly subsumed by a very
different argument, one which we turn to in the next subsection. We neverthe-
less reproduce it here because it is one of the few techniques which is known for
catalytic space.

BEATCS no 141

72

Theorem 2. BPL ⊆ CL

Proof. Let us recall the definition of BPL: these are the functions f for which
there exists a logspace machine B taking in an input x and which can generate a
polynomial amount of randomness r, such that for every x, B(x) outputs f (x) with
probability at least 2/3 over all choices of r. Furthermore, we have the crucial
restriction that B can only read each bit of randomness once; any bits of r that it
wishes to use in the future must be stored on the logspace work tape.

Let B be a BPL machine, fix an input x to B, and without loss of generality
assume B reads a bit of its random tape at every time step during its execution. To
start thinking about derandomizing B, we must ask what a random string r needs
to look like in order to be useful to B.

Nisan [Nis93] provided the following test for a collection of strings R. Run B
on each r ∈ R up to a fixed time step i, and partition up R based on which con-
figuration σ—meaning the contents of the work tape, location of all tape heads,
etc—B ends up in at this step. Essentially, Nisan’s condition is that no matter
which i and σ we look at, the i + 1st bit should be fairly unbiased. This condition
is checkable in logspace, and should it succeed then Nisan proves that a majority
of strings in R will output the correct answer to B(x).

We will let our catalytic tape be large enough that it can be broken into a
collection R of candidate random strings. Using Nisan’s criteria, we can use the
normal work tape to check if the condition holds for each i and σ, and if it does
then we simply run B on x using each r ∈ R and take a majority vote. Note that in
this case we never alter the catalytic tape, so we fulfill our additional requirement
by default.

If this condition fails, then we can identify a timestep i and a configuration σ
for which it fails. We let Γ be our set of strings from R which put B in configuration
σ at step i, and by making |R| sufficiently large we ensure that Γ has sufficiently
many more strings with b ∈ {0, 1} than ¬b in the i + 1st location. Note that
membership in Γ can be identified by running the BPL machine up to step i on our
logspace worktape, and so by extension we can form a subtape T of the catalytic
tape which exactly contains the i + 1st locations of strings in Γ, with this tape
containing, without loss of generality, polynomially more zeroes than ones.

Because of the severe imbalance of T , we can compress it in place and free up
a polynomial number of cells.5 At this point we can simulate our BPL machine B
in a brute force manner, by using the empty cells of T to try every possible random
string and take a majority vote. Afterwards, we save the answer on the smaller
work tape, and before halting we run the inverse of our previous compression
algorithm to return the catalytic tape to its original state. □

5We will not cover the details of this procedure. It is not difficult, but also not the style of
argument we are concerned with in this survey.

The Bulletin of the EATCS

73

catalytic tape

r1

r2

. . .

random

compress

r1

r2

. . .

B(x)
B(x)

B(x)

MAJ

i

ΓT

. . .

Fig.: compress-or-random argument

Throughout the rest of this survey, we refer to this proof as the compress-or-
random argument. In thinking about the compress case, it seems like we have
moved back from the goal of reusing space to that of simply saving space in the
traditional sense. However, the real insight is coming from the random case, where
the space that is being used for storage, i.e. the catalytic tape, is also being mobi-
lized for a computational purpose.

3.2.2 Transparency and arithmetic

From the simple insight that incompressability gives us non-trivial power, we ob-
tained a surprising use of catalytic machines. For this, we made essential use of
the initial values stored in the catalytic tape. We now return to the ideas from
Section 2 and take a different path to the power of full memory, one where we
formally cancel out the contributions of the initialized catalytic tape without ever
inspecting its values.

For this approach, we will define a toy model based on the statement in Lemma 1,
in order to focus on the nature of our approach as both recursive and mathemati-
cal. For this section let R be a ring, i.e. a set of values and two operations + and
× under which it is closed.

Definition 4. A register program P with space s := s(n) and time t := t(n) is
comprised of a set of s blocks of memory, or what we will call registers, R1 . . .Rs,
each of which can hold a single value from R, plus a list of t instructions, each
of which updates a single register by adding to its current value some polynomial

BEATCS no 141

74

over all the other registers.

Ri ← Ri + p(x j,R1 . . .Ri−1,Ri+1 . . .Rs)

Often we will allow the program P to execute some other program P′ in place of
an instruction. In this case, we will usually keep two separate notions of time: the
number of basic instructions and the number of recursive calls.

Clearly this definition captures the algorithms defined in Lemma 1; for exam-
ple, for gate g = g1∧g2, our program P := Pg(0) used three registers over F2, four
basic instructions, and four total recursive calls to the programs P1(1) and P2(2).

These programs had an essential characteristic which made them useful to re-
cursion as well as the ultimate task of reusing space: they worked even when all
the registers Ri were initialized to ring values τi, and at the end of the computa-
tion they left all but one register untouched. This was given explicit attention by
Buhrman et al. [BCK+14] for its use in building recursive procedures.

Definition 5. A transparent register program P is one in which all registers Ri are
initialized to some value τi ∈ R. The result of the program is that for some register
Ri,

Ri = τi + v

If our transparent register program further fulfills the property that

R j = τ j ∀ j , i

then we say it is a clean register program. In both cases we say that v is the value
that P computes and Ri is the target register, and write

P : Ri ← Ri + v

to indicate the function of P. We also occasionally say that P computes v into Ri.
For convenience, we also assume that for every clean register program P there

exists a clean register program P−1 such that

P−1 : Ri ← Ri − v

for the same Ri and v as P.

To put this definition to use in the catalytic setting, let us rephrase Lemma 1
in our new language.

Lemma 2. Let P1 and P2 be clean register programs over F2 computing g1 and g2

into target registers R1 and R2 respectively. There exist clean register programs

P¬ : R0 ← R0 + ¬g1

The Bulletin of the EATCS

75

P∧ : R0 ← R0 + (g1 ∧ g2)

P¬ uses only the two registers R1 and R0, and makes one recursive call to P1 plus
two basic instructions. P∧ uses only the three registers R1, R2, and R0, and makes
two recursive calls each to P1 and P2 plus four basic instructions.

Moving to the regime of CL allows us to consider a polynomial number of
registers, rings of larger size, and so on. Thus we can ask what other functions
can be computed by clean register programs using efficient time and space. For
example, we could apply the principles of Lemma 1 at a larger scale to handle
arbitrarily large products.

Exercise 3. Let P1 . . . Pd be clean register programs over F2, where Pi computes
gi into register Ri for each i. Prove there exists a clean register program

P∧ : R0 ← R0 + ∧igi

where P∧ uses only the registers R1 . . .Rd, and R0, and makes 2O(d) recursive calls
in total plus 2O(d) basic instructions.6

Focusing on circuit models for which our recursively-structured register pro-
grams may be useful, the first stop above L would be AC1, which contains un-
bounded fan-in ANDs, or perhaps VP, which contains unbounded fan-in + and
fan-in two × over Z. We will skip ahead to a much greater prize: unbounded
fan-in majority.

Theorem 3. CL ⊇ TC1(⊇ NL)

g=n/2

g=20 g=1
. . .

g=n−8

. . .

x3 x9
. . .

x1

Fig.: TC1

This statement is clear evidence of the power of cat-
alytic computing; the catalytic tape captures the power
of non-determinism, and likely much more.

TC1 is defined as log depth circuits with unbounded
fan-in majority gates, or, equivalently, log depth cir-
cuits with unbounded fan-in g=ℓ gates for every ℓ,
where g=ℓ outputs 1 iff the number of 1-inputs is ex-
actly ℓ. This characterization allows us to reduce The-
orem 3 to a simple statement about register programs,
plus a bit of care in the application.

6Note that this can be done with fewer registers and recursive calls by executing Lemma 1 on
a tree of fan-in two ∧ gates of height log d, but there is a program that works more directly on the
whole product at once, and which is more useful for other applications since it can be generalized.

BEATCS no 141

76

Lemma 3. Let m ∈ N and let p > m be a sufficiently
large prime. For i ∈ [m], let Pi be a clean register
program over Fp computing

Pi : Ri ← Ri + vi

Then for every ℓ ∈ [m] there exists a clean register program P=ℓ which cleanly
computes the indicator function

P=ℓ : R0 ← R0 +

∑
i

vi = ℓ


P=ℓ uses O(m) registers and makes eight total calls to each Pi plus O(p) basic
instructions.

We include an outline of proof below with a number of exercises for readers
who want to get a feel for crafting register programs, although readers who want
to see the full program for themselves will accordingly find it in the appendix.

Proof. P=ℓ works in two parts. First, we define program PΣ which cleanly com-
putes

PΣ : RΣ ← RΣ +
∑

i

vi

given the programs Pi. Second, given a program Pv which cleanly computes some
value v into Rv, we define program Pk which cleanly computes

Pk : R0 ← R0 + vk

There are two straightforward tasks and one more difficult one. First, construction
P=ℓ given PΣ and Pk is almost immediate from Fermat’s Little Theorem; since
p >

∑
i vi: ∑

i

vi = ℓ

 ≡ 1 −

ℓ −∑
i

vi

p−1

mod p

We define Pv to be the following program:

1. P−1
Σ

RΣ = [τΣ] −

∑
i

vi


2. RΣ += ℓ RΣ =

τΣ −∑
i

vi

 + [ℓ]

= τΣ +

ℓ −∑
i

vi



The Bulletin of the EATCS

77

and thus with Pv being our subroutine to Pk—using v = ℓ−
∑

i vi and Rv = RΣ—and
choosing k = p − 1, the following program computes P=ℓ:

1. P−1
p−1 R0 = [τ0] −


ℓ −∑

i

vi

p−1
2. R0 += 1 R0 =

τ0 −

ℓ −∑
i

vi

p−1 + [1]

= τ0 +

1 −
ℓ −∑

i

vi

p−1 ✓

which completes our program by the previous equation and the fact that our pro-
gram is over Fp.

Now we need only construct PΣ and Pk, both of which we leave as exercises.
PΣ is almost immediate and should not be overthought.

Exercise 4. Construct PΣ making one call to each Pi and one call to each P−1
i .

Pk is a bit trickier, but it follows nicely from the following observation:

vk = (τv − (τv − v))k =

k∑
j=0

(
k
j

)
(τv) j(−1)k− j(τv − v)k− j

The utility of this equation is that we always have access to either τv (at the start
of the program) or τv − v (after running P−1

v). This is a variant of Lemma 1, but
it takes a bit of clever thinking, plus using some external memory besides Rv and
R0.

Exercise 5. Construct Pk making one call each to Pv and P−1
v .

When all is said and done there is a solution using m+ p+ 2 = O(m) registers,
eight calls to each program Pi or its inverse, and roughly 2p + 12 = O(p) basic
instructions, although anything in this ballpark works fine. □

We refer to this and similar proofs as register program arguments. Such argu-
ments are at the forefront of our knowledge with regards to catalytic computation,
as we have not proven a stronger result using compress-or-random up to this point.

3.3 Lower bounds
3.3.1 The average catalytic tape

We began our discussion of the power of catalytic computation with the obser-
vation that even an incompressible tape can be useful. We now turn to the other

BEATCS no 141

78

side of the same coin: the average catalytic tape is incompressible. This has a
surprisingly simple implication for the runtime of our machines.

Theorem 4. CL ⊆ ZPP

If Theorem 3 gives a strong indication that CL is strictly more powerful than
L, Theorem 4 is an even stronger signal that CL is exponentially weaker than
PSPACE.

Proof. Recall the argument that L ⊆ P: there are at most 2O(log n) = poly n possible
machine configurations, and if any such configuration ever repeats then they must
repeat ad infinitum, a contradiction.

Despite having an exponential number of configurations, the same argument
applies to CL, albeit only in an average sense. Fix an input x, and consider the
configuration graph of our CL machine; rather than a single line of polynomial
length emanating from the all zeroes starting node, as in the case of L, there are
as many lines as there are starting configurations τ of the catalytic tape, a number
which we call m. By extension, the total number of configurations is at most
m · 2O(log n).

One further observation is needed, and it comes from the catalytic restoration
property: no two lines coming from different initial catalytic tapes may cross, for
if they did then at most one of the two intersecting paths can correctly reset its
catalytic tape. Thus the average length of a computation path is poly n as before.

Hence we can simulate our CL machine by a randomized P machine by choos-
ing a random catalytic tape and running for a polynomial number of steps. The
zero errorness, i.e. inclusion in ZPP rather than BPP, follows because the ma-
chine never errs; we declare failure only if the machine takes too long. □

Note that the above argument does not give us a guaranteed poly time bound
on the runtime of a catalytic algorithm. Thus it is unknown whether CL ⊆ P,
and Theorem 4 gives us little guidance in solving this problem, as coming up
with random strings seems as hard as derandomizing polynomial time classes
themselves.

3.3.2 Reversibility

The view of configuration graphs of catalytic machines being collections of lines
gives us a nice extension, which is a reversibility property. Reversibility as a
technique developed across many papers, most notably those by Bennett [Ben73,
Ben89]. We refer the interested reader to the catalytic survey by Koucký [Kou16]
for an historic overview.

For our purposes, this is not so much a direct lower bound as a tool used in
results similar to Theorem 4, which we will discuss more in the next section. It

The Bulletin of the EATCS

79

also makes formal the intuition that a catalytic machine must undo all its work
at the end of a computation. This version of the proof—originally appeared in
unpublished work by Dulek [Dul] and later proven by Datta et al. [DGJ+20]—is
based on a technique of Lange et al. [LMT00].

Theorem 5. Let C be a deterministic catalytic machine. Then there is another
deterministic catalytic machine C′, computing the same function and using the
same amount of work and catalytic space as C, such that at any point in the
execution of C′ on some input x, there is both a unique forward instruction and a
unique backward instruction.

Proof. In the proof of Theorem 4 we noted that after fixing an input x, no two
configuration paths coming from different initial catalytic tape configurations can
ever meet; hence we called such paths “lines”. If the configuration graph was truly
a collection of lines then we would be done; at every state there is at most one way
forward and one way back.

This view is almost correct, but slightly off: there may be configurations un-
reachable from any start state but that nevertheless hang off the side of a path;
namely, if we were given such an illegal configuration and were asked to take
a step forward, we may end up on a legal path. This is no issue when running
forwards, but causes some concern when running in reverse.

The solution is to have our new machine C′ take an Eulerian tour around the
configuration graph of C. Hence as it travels along such forward lines, it may in
fact stray into a branch of illegal configurations, but eventually it will work its
way around and make it back to the original path. The key point is that it will
never reach any state with the wrong answer—we start by altering C to make sure
all accept/reject states have outdegree zero—nor any other path coming from a
different initial catalytic tape by our earlier discussion.

The details of how to modify the transitions of C to allow this tour to happen,
and how to use the right hand rule to avoid infinite loops, are mostly technical
curios which we omit. Recall that for our deterministic machine C each transition
only relies on a constant amount of information. Some other small tweaks to C
may be in order. □

The upshot is that without loss of generality we can assume a catalytic machine
runs forward until it discovers the output, then switches direction and runs the
same algorithm in reverse until it returns to the beginning.

3.4 Variants of CSPACE

In defining a basic catalytic space-bounded computation class, we invariably have
opened the door to a whole parallel complexity hierarchy, both of the basic CSPACE

BEATCS no 141

80

classes and of augmentations therein. We mention some of these variants and their
highlights now.

3.4.1 Choices of s and c

In this survey we mostly focus on the case where s = log c, but this is not the only
possible consideration. Bisoyi et al. [BDS22] consider many different regimes,
from the high end where s = cϵ , to the low end where s = log log c or even
s = O(1), which they call CR since it corresponds to regular languages with
catalycity. Their investigation was preliminary, and so we do not discuss these
results in more detail, but the low end regime will come back in some form during
our discussion of branching programs in Section 6.

3.4.2 Randomized and non-deterministic computation

Two fundamental resources, both of which we have already seen in the classic
space-bounded setting, are randomness and non-determinism. The randomized
class CBPL was introduced by Datta et al. [DGJ+20] in relation to Theorem 5,
while CNL was defined by Buhrman et al. [BKLS18] in a follow-up to their orig-
inal work.

In both cases there is an immediate question to be answered: when does the
catalytic tape need to be reset? The answer given by both [DGJ+20] in the ran-
domized case and [BKLS18] in the non-deterministic case is the safe one: the
catalytic tape must always be reset, whether or not the correct answer is returned.

So far we do not have many results about the additional power of either CBPL
or CNL. Structurally we have a few results in the non-deterministic world that mir-
ror the traditional space-bounded setting, such as a (conditional) catalytic Immer-
man-Szelepcsényi Theorem [Imm88, Sze88], i.e. CNL = coCNL [BKLS18], and
a conditional reduction of CNL to its unambiguous variant CUL [GJST19].

One other note about both models is that because we have no explicit runtime
restrictions, our catalytic machines are allowed to use a superpolynomial amount
of randomness or non-determinism as they so choose. It is then quite surprising
that using both our upper bound techniques in tandem, namely average catalytic
tapes and reversibility, gives us a way to upper bound both classes in ZPP just as
with CL.

Exercise 6. Use ideas from Theorems 4 and 5 to show that CBPL and CNL are
contained in ZPP.

Similar arguments can show various other results, such as 1) CBPL is con-
tained in CZPL if we are allowed to read the randomness twice in the latter case;
or 2) CL gains no power when we allow it to err during the resetting of the catalytic
tape in O(1) spots.

The Bulletin of the EATCS

81

3.4.3 Non-uniform computation

One nice aspect of space complexity is that it is syntactically captured by the
branching program model, which in particular gives a straightforward way to think
about non-uniform computation. How does this model translate to the catalytic
world?

Girard et al. [GKM15] define catalytic branching programs in the following
way: rather than having a single start node and going to two different end nodes,
we have m different start nodes, each with their own label τ, and 2m end nodes
which are each labeled with both an output to the function and a start node τ. The
catalytic property, naturally, states that on input x, each start node τ must reach
exactly the end node labeled with f (x) and τ.

If the program has size s · m, we can think of this non-uniformly computing
CSPACE(log s, log m): we use log sm bits to remember the current node, but log m
of which are set at the start and must be reset at the end.

Notice that we no longer need to address into the catalytic tape using the work
tape, and so unlike with CSPACE it makes sense to talk about m as being much
greater than 2s. In fact, Potechin [Pot17] showed that for m = 22n

, s = O(n) is
sufficient for any function f , a non-uniform CSPACE(log n, 2n) = ALL theorem.

Exercise 7. Let P1 . . . Pn be clean register programs where Pi computes xi into
Ri for each i. Show that for any function f (x1 . . . xn) there exists a clean register
program P f computing f into R0, where P f uses 2O(n) registers and makes O(1)
recursive calls to each Pi.

This is optimal in terms of “work space” s, while follow up works of Robere
and Zuiddam [RZ21] and Cook and Mertz [CM22] have improved on the “cat-
alytic space” m needed as well.

In the spirit of connecting catalytic computation to broader questions in com-
plexity, we mention that Potechin [Pot17] also made a nice connection of catalytic
branching programs to a notion of amortized space-bounded complexity. For a
catalytic branching program B with m start nodes of size s · m computing f , we
can think of s as being the average size of a branching program needed to com-
pute f , where the averaging is over the m “different branching programs” (one
start node, two end nodes) for f embedded inside B. Thus the previous results
also show that the amortized branching program size of any function is linear, and
the question remains how much amortization is necessary to achieve this.

3.5 Afterword: eyes on the prize
We take a step back once again before moving to the open problems. We have
now introduced catalytic computation, with catalytic Turing Machines and a set

BEATCS no 141

82

of complexity classes, plus some results.
Without any prompting from us, readers to whom this definition appeals can

begin to form a network of open problems for themselves. We will leave one last
exercise to these readers to start them on their way.

Exercise 8. Pick your favorite function inside TC1—STConn,
⊕

, Tribes,...—
and give a CL algorithm for it directly. You can use compress-or-random, register
programs, or anything else you like, as long as you use the catalytic tape in an
interesting way.

However, our goal is ultimately to study reusing space, and so we turn back
to the reader who is interested in techniques and applications to classical space-
bounded classes rather than this new exotic definition. To reiterate: catalytic com-
putation is a test bed for how to use memory both as storage and as computation
simultaneously. Thus, for example, when we say

“problem x is computable in catalytic logspace”

we may take this to mean a variety of things aside from what is stated. Practically
it could mean

“if we need to compute x as a subroutine many many times to compute problem
y, the space to do so need not compound linearly”

or in terms of studying x itself it could mean

“while x may require a lot of space, it can be quite well-structured with regards
to its space usage”

et cetera. Similarly, if we show that problem x is in, for example, CBPL or CNL,
this means that a space-bounded algorithm with access to randomness or non-
determinism can implement space reuse techniques to compute x as above.

Any statement about catalytic computation, even structural results, may be
looked at in this way, and we encourage readers to interpret catalytic questions
and results in whatever light is most useful.

PART II: WHAT WE DON’T KNOW (YET)
We now move to our second, and main, purpose in this work: a curated list of some
of the open questions in the field. Most will rely on terminology introduced in the
previous sections, but some will need some definitions later; in either case we
endeavor to keep the statements themselves at a high level, and we then expound
upon each of them in rough detail in the remainder of the survey.

The Bulletin of the EATCS

83

Below is the complete list of problems, presented in the order in which they
will appear. We make no attempt to segregate them by perceived difficulty or
concreteness, but we provide this loose table of contents for readers who have a
certain type of question in mind, or alternatively for those who want to get a broad
sense of what questions are being asked before diving into specifics.

The list of problems
1. Give a simple, direct proof of uSTConn ∈ L.

2. Give a simple, direct proof of uSTConn ∈ CL.

3. Give a simple, direct proof of STConn ∈ CL.

4. Try to improve Savich’s Theorem: prove NSPACE(s) ⊆ SPACE(o(s2)).

5. Improve the deterministic space complexity of BPSPACE(s).

6. Decide the space complexity of TreeEval.

7. Give a register program for computing any polynomial p(x1 . . . xn) using
O(n) registers over a constant size ring R and O(1) recursive calls Px, whose
effect is to add x1 . . . xn to R1 . . .Rn respectively.

8. Show that for any branching program B of sufficiently large width w = Ω(1)
and length ℓ, there exists a branching program B′ of width w/2 and length
O(ℓ) computing the same function.

9. Show that for any branching program B of sufficiently large width w and
length ℓ, there exists a branching program B′ of width w − 1 and length
poly (ℓ) computing the same function.

10. Find any function whose optimal space algorithm can be made almost en-
tirely catalytic, i.e. a function requiring—or even that we only know how to
do in—SPACE(s) but which is computable in CSPACE(≪ s,≈ s).

11. Prove CL ⊆ P.

12. Show that L ⊊ P implies CL ⊆ P.

13. Show that CL ⊆ P would give strong evidence ZPP ⊆ P.

14. Show that NC2, or even any circuit of ω(log n) depth, can be computed in
CL.

BEATCS no 141

84

15. Give a register program for computing xk in the non-commutative setting
using linear space and a constant number of recursive calls to x.

16. Show that BPNC1 ⊆ CL.

17. Design a catalytic branching program with 2O(n) start nodes and total size
2O(n) · O(n) for any function f .

18. What is the power of CL/poly, and does it have a natural syntactic charac-
terization?

19. Show the existence of an oracle D such that CLD = EXPD.

20. Extend the BPL ⊆ CL simulation to show CBPL ⊆ CL.

21. Show that CL is equivalent even if we allow ω(1) many errors on the cat-
alytic tape at the end, or alternatively if we allow Ex,τ[O(1)] many such
errors.

22. Utilize non-determinism in conjunction with catalytic computing in a non-
trivial way.

23. Prove CNSPACE(s, c) ⊆ CSPACE(s2, c2).

24. Implement a catalytic algorithm such that it is actually useful.

25. What does quantum catalytic space look like?

26. Devise a register program using basic instructions inspired by unitary com-
putation, and use it to show non-trivial results for e.g. BQP.

27. Devise a circuit that uses known results from space reuse and catalytic com-
puting to efficiently solve some problem in a way that we do not know how
to do directly.

28. Show TC1 ⊆ VP.

29. Is the network coding conjecture true or false?

30. Prove or disprove the network coding conjecture when all nodes are re-
stricted to sending linear transformations of their incoming messages.

31. Is there a meaningful notion of a catalytic data structure, or is there anything
to be gained from a data structure stored in catalytic memory?

32. Show CL is contained in some subclass of P, perhaps NC, given a believable
cryptographic assumption.

The Bulletin of the EATCS

85

33. Show evidence against objects in cryptography based on techniques in reusing
space.

34. Show the existence, conditional or otherwise, of a natural class of crypto-
graphic objects by using clean computation.

35. Prove that the existence of one-way functions in CL, or even any one-way
function computable by a poly-size poly-length register program, implies
the existence of one-way functions in NC0.

4 What can be done with reusing space?
We first turn our attention to questions in pure (i.e. non-catalytic) space-bounded
complexity. Most of these problems will be well-known to the reader, and our
only exhortation is to turn the tools seen in this survey upon them for a fresh look.

4.1 Connectivity
Reingold’s brilliant result [Rei08] shows that uSTConn ∈ L, thus resolving the
connection between logspace and symmetric logspace. The algorithm uses tools
such as zig-zag product, which are pretty heavy hitting and incur large losses in
both time and space. This is in contrast to e.g. the standard RL algorithm, which
solves uSTConn efficiently with very high probability simply by taking a random
walk on the graph.

Can reusing space be used to give a simpler, more efficient deterministic al-
gorithm for uSTConn? This would be a useful addition to our study of space-
bounded complexity.

Problem 1. Give a simple, direct proof of uSTConn ∈ L.

Perhaps less ambitiously, consider the case of CL. Both compress-or-random
and register programs are enough to show uSTConn ∈ CL, but besides being
fairly lossy in the constants, as of now neither technique can be nicely described
in terms of uSTConn itself.

A simple, efficient, and clear algorithm for uSTConn ∈ CL would be a useful
way of illustrating the counterintuitive power of catalytic space to newcomers in
the field, as well as potentially providing an angle on Problem 1.

Problem 2. Give a simple, direct proof of uSTConn ∈ CL.

We also know that NL ⊆ CL, meaning we can drop the undirected restriction
and still have a CL algorithm for connectivity via register programs. If Problem 2
can be solved, we can hope it also is amenable to such a change.

BEATCS no 141

86

Problem 3. Give a simple, direct proof of STConn ∈ CL.

4.2 Savitch’s Theorem
Taking a space reuse-style approach to STConn may also give us insights on one
of the major unsolved questions in structural space complexity. Savitch’s The-
orem [Sav70], which states that NSPACE(s) ⊆ SPACE(O(s2)), is one of the
bedrocks of space complexity, but it is not known to be tight. After over fifty
years, it may be time to seriously revisit this question, with reusing space being
one of the new tools in our arsenal.

Problem 4. Try to improve Savitch’s Theorem: prove NSPACE(s) ⊆ SPACE(o(s2)).

If Problem 2 gives us a way to solve Problem 1, then perhaps Problem 3 will
point the way to attacking Problem 4 in similar fashion.

4.3 Derandomizing space
Derandomizing BPL is a longstanding open problem with a flurry of recent work.
There is a wide pool of techniques to draw from, including targeted and weighted
PRGs, approximate matrix inversion, certified derandomization, and more; we
refer readers to an excellent survey by Hoza [Hoz22] on the topic. Perhaps our
techniques will be useful as well.

Problem 5. Improve the deterministic space complexity of BPSPACE(s).

We state Problem 5 less specifically than other problems in this survey because
it is an active line of research, and so any target we lay out may be obsolete by
the time the reader reaches this survey, and for reasons having nothing to do with
reusing space. For example, Hoza [Hoz21] recently improved on the best known
upper bound of SPACE(s3/2), due to Saks and Zhou [SZ99], for the first time in
thirty years.

4.4 The Tree Evaluation Problem
Another key question in the study of space-bounded computation is how it com-
pares to time-bounded computation. One central question is whether logspace is
strictly contained in polynomial time or not.

Cook et al. [CMW+12] proposed that a function known as the Tree Evaluation
Problem, or TreeEval for short, may be the key to separating L from P. The
function is defined, for an alphabet size k and height h, by a height h rooted full
binary tree, where leaves are given values in [k] and internal nodes are labeled

The Bulletin of the EATCS

87

with functions from [k] × [k] to [k]. In other words, it is a sort of alternate circuit
model where the values come from a broader alphabet than just {0, 1}, and the
topology is fixed but the functions at each gate are given as input.

Problem 6. Decide the space complexity of TreeEval.

v1

1 2
2 1

v2

2 1
2 2

v4

2
v5

1

v3

2 1
1 1

v6

1
v7

1

Fig.: TreeEval

The logic for thinking TreeEval < L relies exactly
on not being able to use space both for memory and
for computation. Building on ideas we have seen pre-
viously, and in particular a generalization of Lemma 1
first to larger products (see Exercise 3) and then to ar-
bitrary polynomials, Cook and Mertz [CM20, CM21]
gave an algorithm for computing TreeEval more effi-
ciently than Cook et al. conjectured. An optimal ver-
sion of their key register program remains open, and
would be sufficient to show TreeEval ∈ L for all values
of k and h.

Problem 7. Give a register program for computing any
polynomial p(x1 . . . xn) using O(n) registers over a con-
stant size ring R and O(1) recursive calls to program
Px, whose effect is to add x1 . . . xn to R1 . . .Rn respec-
tively.

4.5 The power of formulas?
Barrington’s Theorem allows us to characterize the class NC1 of all polynomial
size formulas as functions computable by branching programs of polynomial length
and constant width. This is in contrast to L, whose branching programs can be
polynomial in both length and width.

Problem 6 has been posed in the world of formulas as the KRW conjecture
[KRW95], a depth-based composition theorem that states that no “depth reuse”
in the vein of our results should be possible. Resolving the KRW conjecture in
the affirmative while also showing TreeEval ∈ L would separate L from NC1, an
extremely fine-grained separation.

On the other hand, we have seen the surprising power of constant space, and so
it is entirely possible that not just L but even NC1 can implement our techniques. In
fact, by the characterizations laid out above, a length-width tradeoff for branching
programs would be sufficient.

Problem 8. Show that for any branching program B of sufficiently large width
w = Ω(1) and length ℓ, there exists a branching program B′ of width w/2 and
length O(ℓ) computing the same function.

BEATCS no 141

88

Problem 8 would show NC1 = L. We note that a Savitch-style argument may
work if we relax the length requirement to poly (ℓ), which would only reprove that
L ⊆ NC2. We formulate an even weaker version of the question just to get the ball
rolling.

Problem 9. Show that for any branching program B of sufficiently large width
w and length ℓ, there exists a branching program B′ of width w − 1 and length
poly (ℓ) computing the same function.

In Section 7 we return to the question of other models that may be able to
implement our techniques.

5 Where does catalytic fit in to complexity theory?
Moving from catalytic techniques to catalytic computing itself, the most impactful
questions remain those relating catalytic computing to more traditional complex-
ity classes. While we already have a reasonably narrow range where classes such
as CL can possibly sit, there are many important details to be resolved, as well as
orthogonal questions about the use of catalytic computing.

5.1 Space versus catalytic space
At first glance, [BCK+14] settles the question of CSPACE in relation to SPACE
once and for all. On one hand, for those that believe that L , NL, there are many
natural classes sitting inside CSPACE(s, 2s) and outside SPACE(s). Even more
widely believed is that ZPP , PSPACE; in fact, it seems dubious that CL can
even contain any class SPACE(s) where s = ω(log n), as such classes are widely
believed to be separate from P.

Yet if we put aside entire complexity classes for a moment, we can still look
to individual problems and ask concrete questions about what catalytic space can
offer. Perhaps the most natural such question is to ask an instance-wise version of
CL versus PSPACE.

Problem 10. Find any function whose optimal space algorithm can be made al-
most entirely catalytic, i.e. a function requiring—or even that we only know how
to do in—SPACE(s) but which is computable in CSPACE(≪ s,≈ s).

This question, while interesting in its own right, is not a mere curio. Recently
Doron and Tell [DT23] gave derandomization with almost no memory overhead
conditioned on a few natural assumptions, but to get the optimal result requires a
function computable by CSPACE(ϵs, s) but not by SPACE((1−ϵ)s); an affirmative
answer to our problem would also make this assumption hold unconditionally by

The Bulletin of the EATCS

89

padding. Note that here “almost entirely catalytic” means we cannot tolerate even
a factor of 2 in the simulation; this is truly CSPACE(s, c) versus SPACE(s + c).

5.2 The catalytic holy grail: CL versus P

Problem 11. Prove CL ⊆ P.

Throughout this survey I have (hopefully without confusion) used hyperbole
for stylistic flair, and calling any problem the “holy grail” of a nine-year-old field
is as blatant as hyperbole can be. Nevertheless, resolving the relationship between
CL and P has proved as fascinating as tenacious, and I can think of no better way
to study the structure of catalytic machines than to attempt to resolve Problem 11.

For starters, even a conditional result—short of derandomizing ZPP, of course—
could be very useful. It would be interesting to go outside the realm of derandom-
ization in general, or at least to start from an earlier point, such as a novel use
of the hardness-versus-randomness paradigm (see e.g. Pyne et al. [PRZ23] for a
discussion of such techniques in the space-bounded setting).

Problem 12. Show that L ⊊ P implies CL ⊆ P.

On the flip side, there may be barrier results that make the proof difficult even
for those who believe ZPP = P. Buhrman et al. made initial progress on the
relativization barrier, showing oracles A and B such that CLA = PSPACEA and
NLB ⊈ CLB. Perhaps a more direct barrier result is possible.

Problem 13. Show that CL ⊆ P would give strong evidence ZPP ⊆ P.

5.3 The power of CL

For those more interested in the power of catalytic computing, the frontier of CL
stands at Theorem 3. There is a long way to go even for those who believe CL ⊆ P.

5.3.1 Going up

The next clear challenge is going beyond logarithmic depth. Consider that when
studying alternate problems such as Tree Evaluation, the register program tech-
nique has no obvious way of moving beyond objects of logarithmic depth, as re-
cursively computing and uncomputing the inputs to a subroutine leads to runtime
costs which are exponential in the recursion depth.

NC circuits contain only fan-in two AND and OR gates—Lemma 1 is meant
to handle these circuits specifically—and so looking at log2 n depth NC circuits
allows us to focus on overcoming the depth barrier. Moving beyond logarithmic

BEATCS no 141

90

depth in any capacity would then allow us to consider bootstrapping or other such
techniques.

Problem 14. Show that NC2, or even any circuit of ω(log n) depth, can be com-
puted in CL.

There is one proposition to Problem 14 that skirts around the difficulty of
higher depth: compress many layers into one, and then handle the resulting func-
tions directly using register programs as before. For example, using the fact that
NC1 is contained in L, for which matrix powering is complete, an extension of
Lemma 3 to the non-commutative realm could be sufficient to prove CL ⊆ NC2.

Problem 15. Give a register program for computing xk in the non-commutative
setting using linear space and a constant number of recursive calls to x.

To connect this to an earlier problem, all state-of-the-art approaches to Prob-
lem 6—i.e. register programs for arbitrary polynomials—work in the non-commuta-
tive setting as well, and thus optimal improvements therein may yield non-commuta-
tive powering as a special case.

5.3.2 Orthogonal improvements

There are other classes we could study in relation to CL, not linearly up from TC1

but still interesting. One odd gap in our understanding is that of read-multiple
randomness. It is well-known that while NC1 ⊆ L, the same is not known for
their randomized variants, because BPL has the restriction of only reading its
random bits once. This is also the key to using Nisan’s argument as it appeared in
Theorem 2, and thus the following question is still open.

Problem 16. Show that BPNC1 ⊆ CL.

If we treat the catalytic tape as a potential source of randomness à la The-
orem 2, we can in fact read these “random” bits as many times as we need to
compute the circuit. Thus Problem 16 boils down to understanding what proper-
ties of randomness are enough to fool circuits, and how to compress when these
properties are not met.

5.4 Non-uniform catalytic computation
Moving to the non-uniform setting, we are free from many of the restrictions on
CL that we previously faced. While many individual problems can be posed,
it seems likely that non-uniform CL is universal even for the strictest setting of
parameters, i.e. linear catalytic space and a log space work tape free of constant
multipliers. This would obviate most other results that could be proposed.

The Bulletin of the EATCS

91

Problem 17. Design a catalytic branching program with 2O(n) start nodes and
total size 2O(n) · O(n) for any function f .

As with Problem 15, this would follow directly from an optimal improvement
to Problem 7.

However, we should note that calling this class “non-uniform CL” is somewhat
of a misnomer. If we consider the class CL/poly , the equivalence of syntactic
models and advice breaks down, as it is not at all obvious that this can capture
such a class of exponential-sized branching programs; in fact considering CL ⊆
ZPP and ZPP/poly = P/poly , ALL, these are clearly not equivalent modulo
Problem 17. It is worth understanding the actual non-uniform CL in its own right.

Problem 18. What is the power of CL/poly, and does it have a natural syntactic
characterization?

5.5 Oracle results
As mentioned briefly before, Buhrman et al. [BCK+14] also give a few oracle
results that complicate our potential attempts to resolve e.g. Problem 11. Oracle
results in the world of space-bounded computation are notoriously finicky, and
so they may not end up being of much use in the end, but for now it is useful to
increase our understanding of catalytic computation.

One result we mentioned previously was an oracle A such that CLA = PSPACEA;
the oracle in question is essentially an optimal compress-or-random object, which
takes in a string w and either gives a compression of w if it has low entropy or the
answer to a PSPACE-complete problem if it has high entropy. This kind of “pass-
word oracle” is similar to the one showing ZPPB = EXPB.7 It seems plausible
that the two approaches can be merged into one.

Problem 19. Show the existence of an oracle D such that CLD = EXPD.

Note that this would make resolving Problem 11 much more difficult, as it
would give an oracle with respect to which CLD , PD by the relativized time
hierarchy theorem.

6 Structural catalytic complexity
The second set of questions we have regarding catalytic computing is the struc-
tural complexity of catalytic computing itself, as a parallel to the hierarchy of

7This is commonly attributed to Heller [Hel86], but according to Morgan Shirley the result as
stated is actually unpublished and only appeared during a conference talk for a related paper. Very
similar results and proofs do however exist in the literature, and it has been subsumed by Beigel
et al. [BBF98]. My thanks to him for finding this information as well as the proof itself.

BEATCS no 141

92

traditional logspace-bounded classes. Since [BCK+14] introduced catalytic com-
putation, this structural theory has seen the most exposition, and so there are many
possible questions to study. We again refer the reader interested in catalytic com-
putation in its own right to the survey of Koucký [Kou16].

6.1 Randomness
6.1.1 Derandomization

Problem 5 posed the question of derandomization for space-bounded complexity
classes. We can also ask a catalytic version: if we cannot solve derandomize BPL
into L, can we at least do the same with their catalytic variants?

Problem 20. Extend the BPL ⊆ CL simulation to show CBPL ⊆ CL.

In the catalytic world, we have the compress-or-random argument from The-
orem 2 in addition to all the tools coming from the study of BPL. This technique
is worth regarding for Problem 20 for at least two reasons: 1) it is likely that
variants of the argument can accommodate other derandomization techniques in
tandem; and 2) considering CL has a catalytic tape itself, working against BPL
with a catalytic tape may not be much harder than working against BPL.

Recall that CBPL ⊆ ZPP, meaning that we can remove the two-sided error
from CBPL; in fact the argument only used randomness to pick an initial catalytic
tape. [DGJ+20] Thus if CL can find a “good” catalytic tape, we are already done.
However, there is an exponentially large configuration graph to consider if we pick
the wrong tape. Furthermore our compress-or-random argument now has to work
for random tapes that are useful against CBPL rather than CL, a harder condition
to quantify.

6.1.2 Robustness

There is a related question, which is the robustness of the catalytic definition to
small errors. Every bit of the catalytic tape forgotten is a bit that can be used
for free memory, and so we cannot expect CL to remain the same with too many
errors, but as of now we only know how to recover from a constant number of
errors on the catalytic tape8, while intuitively even a logarithmic number should
hardly be earth-shattering. An alternative result would be to show that CL can
recover from only having a constant number of errors on average, rather than for
every input and catalytic tape.

8This result is originally due to Jain et al. and will appear in upcoming work. The proof
can once again be seen by taking an Eulerian tour around the configuration graph, while keeping
track of the (polynomially bounded, since there are only O(1) errors possible on the catalytic tape)
number of starting configurations we pass so we can find the correct one to go back to.

The Bulletin of the EATCS

93

Problem 21. Show that CL is equivalent even if we allow ω(1) many errors on the
catalytic tape at the end, or alternatively if we allow Ex,τ[O(1)] many such errors.

6.2 Non-determinism

Despite our structural results in the non-deterministic setting, we have no natural
problems which have been placed in CNL but that are not known to be in CL. Right
now non-deterministic catalytic computation seems to be a definition in search of
an application.

Problem 22. Utilize non-determinism in conjunction with catalytic computing in
a non-trivial way.

As a sign of our paucity of knowledge with regards to CNL, we do not yet
have an equivalent of Savitch’s Theorem in the catalytic world. This is one of the
most fundamental questions remaining in importing the structural theory space
complexity to the catalytic computing world.

Problem 23. Prove CNSPACE(s, c) ⊆ CSPACE(s2, c2).

As in Problem 20, the tableau method of Savitch’s original proof will result in
an exponential number of configurations being considered, which seems to be the
major obstacle. Even putting this aside, however, such a tableau of configurations
of the original CNSPACE machine would have to be kept on the catalytic tape of
the simulating CSPACE machine, to be written and read off without issue.

With that said, we note that CNSPACE(s, c) has the same ZPTIME(2s) upper
bound as CSPACE(s, c) [DGJ+20], and there has been no work to suggest it is
significantly stronger.

7 Reusing space beyond space

Our last set of problems is more speculative than the rest. In a word, we ask
where techniques involving space reuse may find traction outside the study of
space-bounded complexity itself.

There are as many proposals to do so as there are fields, and throughout this
survey the reader has been encouraged to think to their own research, of which
the author certainly knows very little. These are just the ones I personally see as
having potential.

BEATCS no 141

94

7.1 Practical implementations
When Buhrman et al. introduced catalytic computation, they began with a fun
illustration of the potential of the model:

Imagine the following scenario. You want to perform a computation
that requires more memory than you currently have available on your
computer. One way of dealing with this problem is by installing a
new hard drive. As it turns out you have a hard drive but it is full with
data, pictures, movies, files, etc. You don’t need to access that data at
the moment but you also don’t want to erase it. Can you use the hard
drive for your computation, possibly altering its contents temporarily,
guaranteeing that when the computation is completed, the hard drive
is back in its original state with all the data intact? [BCK+14]

Before considering any theoretical models beyond Turing machines, we should
see if the algorithms we already have in the abstract can be put into concrete use.

Problem 24. Implement a catalytic algorithm such that it is actually useful.

James Cook [Coo21] has already taken a stab at streamlining the program
in Theorem 3 for STConn and seeing how it does on an actual computer; his
program involves concrete tricks from programming, such as replacing addition
with rotation. If we take seriously the promise of using hard disk space as our
catalytic memory, there are many optimizations that would need to happen in
order to make such algorithms practical.

7.2 Quantum computation
As stated in Theorem 5, catalytic computation is built from reversible operations.
This calls to mind another complexity setting where every operation is invertible:
evolution by unitaries, i.e. quantum computation.

There are many potential ways of approaching the potential connection be-
tween quantum and catalytic computation. One is to observe that the one-clean
qubit model, known as DQC1 [KL98], is a catalytic-looking quantum model that
has been widely studied for many years. Another is to think about how efficient
space simulation of circuits may carry over when intermediate circuit computa-
tions no longer have the locality we exploited to get down to constant space in
Section 2. A third is more optimistic: what other reversible tools for space reuse
can come from the wide toolbox of unitaries?

Before jumping the gun, the precise definition of quantum catalytic computing
has to be nailed down.

The Bulletin of the EATCS

95

Problem 25. What does quantum catalytic space look like?

Even more so than with CBPL and CNL, care needs to be taken to get the right
definition. Probably the most standard model in quantum computation is that of
quantum circuits, capturing such classes as BQP. However, a circuit has a fixed
notion of time, i.e. depth, and as we saw in Theorem 4, while we can reason
about the average time a catalytic algorithm could take, there is no subexponen-
tial guarantee on the worst-case runtime of algorithms such as the compress-or-
random argument in Theorem 2. Thus the quantum Turing Machine model of
Watrous [Wat99], while somewhat non-standard, may be more appropriate.

Instead of focusing on catalytic computing per se, we could also look to ex-
isting models of quantum computation and ask what techniques such as register
programs could buy us.

Problem 26. Devise a register program using basic instructions inspired by uni-
tary computation, and use it to show non-trivial results for e.g. BQP.

7.3 Circuits
Recall that our main examples of space reuse, such as our “theorem” in Section 2,
were about space-efficient computation of circuits. In the hierarchy of syntac-
tic models, it is known that circuits can efficiently simulate branching programs,
while there are separations known in the other direction; hence why results such
as Theorem 3 are so interesting.

However, if we consider the power of circuits to simulate branching programs,
this means that in some ways a circuit class of sufficient power should be able
to implement the space reuse techniques we have seen. It is unclear what that
actually looks like when we convert our branching programs over, or if it is even
necessary or interesting to do so.

Problem 27. Devise a circuit that uses techniques from space reuse and catalytic
computing to solve some problem in low size or depth in a way that we do not
know how to do directly.

With all the circuit classes sitting between L and P, there is also the question
of whether or not implementing catalytic-style techniques can help clean up this
landscape.

For example, a longstanding conjecture of Immerman and Landau [IL95]
states that the determinant of integral matrices is complete for TC1. It is known
that the determinant is complete for the class of log-depth arithmetic circuits
whose + gates have unbounded fan-in and whose × gates have fan-in two, a class
known as VP. Given that Theorem 3 states that TC1 can be simulated by register

BEATCS no 141

96

programs, and such programs are arithmetic in nature, perhaps VP can implement
our theorem as well.

Problem 28. Show TC1 ⊆ VP.

7.4 Network coding
Our first example of saving space in this survey was the XOR trick for swapping
values. Between this and our register program technique, it makes sense to look
at areas where bit tricks and XOR tricks come in handy.

s1 s2

t2 t1

m1 m2

m1 m2m1 ⊕ m2

Fig.: network coding
(directed counterexample)

One such area is the network coding conjec-
ture. In essence, the question is whether or not, for
a given undirected graph with capacities on each
edge and a set of source-sink pairs, we can send
more message bits from each source to its corre-
sponding sink than the network flow should allow
if we think of the messages as being generic com-
modities instead. While this seems implausible,
we note that this is in fact possible in the directed
graph setting, as alluded to in our bulleted list in
Section 1, and the counterexample uses an XOR
trick.

Problem 29. Is the network coding conjecture true
or false?

Resolving Problem 29 in the affirmative, i.e. showing that no tricks are possi-
ble for sending more bits than the network flow, would lead to circuit lower bounds
for a number of fundamental problems such as sorting [FHLS20] and multiplica-
tion [AFKL19].

There are many potential approaches to Problem 29 beyond XOR tricks, but
for our purposes it is sufficient to focus on this case for starters. Such “lin-
ear” strategies are known to not be optimal in terms of how many bits can be
sent [DFZ05], but to the best of our knowledge we still have not resolved the
network coding conjecture even in this case.

Problem 30. Prove or disprove the network coding conjecture when all nodes are
restricted to sending linear transformations of their incoming messages.

7.5 Data structures
One setting where space usage is a key metric to study is that of data structures.
Unlike in the usual complexity setting, the balance of time and space is sepa-
rated into two phases: first, a preprocessing phase where some amount of space is

The Bulletin of the EATCS

97

consumed in order to prepare useful information about the input; and second, we
receive a list of queries about the input that we want to answer quickly, using both
the input itself as well as whatever we prepared in the first phase.

This two-phase process somewhat muddies the waters when it comes to think-
ing about space reuse, which is all about recomputing things many times, usually
at the cost of time, in order to avoid some bottleneck in the information we have
to store. It seems to be an orthogonal style of question.

Nevertheless, with space as one of the main players in the world of data struc-
tures, it seems that at least a basic investigation may be warranted.

Problem 31. Is there a meaningful notion of a catalytic data structure, or is there
anything to be gained from a data structure stored in catalytic memory?

7.6 Cryptography
As with quantum computing, there are many ways to approach the possible link
between reusing space and cryptography.

An obvious consequence of Theorem 4, as well as other explicit results [BKLS18,
GJST19], is that cryptography implies lower bounds against catalytic computing,
as an appropriate pseudorandom generator would show CL and many of its vari-
ants are contained in P. Such results could also resolve many of our questions
about randomized computation without using any of our space reuse techniques;
from the perspective of this survey this would be somewhat disappointing, but in
the end results are results.

Problem 32. Show CL is contained in some subclass of P, perhaps NC, given a
believable cryptographic assumption.

There is also the contrapositive side to Problem 32, of whether reusing space
provides a potential barrier against cryptography just as it was a barrier against
composition for space. For example, the notion of proofs of space, a variant of
the proofs of work paradigm used in cryptocurrency, was complicated by Pietrzak
[Pie19], who showed that a stronger object known as catalytic proofs of space
would be necessary to constitute an actual “proof of work”.

Problem 33. Show evidence against objects in cryptography based on techniques
in reusing space.

To again err on the side of optimism however, we prefer to ask not what cryp-
tography can do for catalytic computing, but rather what catalytic computing can
do for cryptography.

While compress-or-random seems like the more relevant argument for ran-
domized computation, we would like to draw attention to the register program

BEATCS no 141

98

argument at this juncture. Consider our proof of e.g. Lemma 1 again, and now
let our initial values τi be chosen i.i.d. from {0, 1}. Then a clear consequence is
that at every individual point in the execution of our algorithm, our memory is
distributed i.i.d. as well, i.e. (τ0, τ1, τ2) is distributed uniformly across {0, 1}3.

In other words, our memory at every point in time reveals no secrets about the
computation of f . This calls to mind potential applications such as homomorphic
encryption, leakage resilience, etc. There are definitions and problems to be cod-
ified, and more steps may be needed for this approach to work; for example, any
two points in time together may tell quite a bit about the computation of f .

Problem 34. Show the existence, conditional or otherwise, of a natural class of
cryptographic objects by using clean computation.

A more concrete problem would be to extend the results of Applebaum et
al. [AIK06] to show that cryptography in CL implies cryptography in NC0. The
warm-up for their result is based on Barrington’s Theorem, i.e. our “theorem”
from Section 2, and so it seems natural to believe that register programs in general
could be turned into one-way functions with appropriate tinkering.

Problem 35. Prove that the existence of one-way functions in CL, or even any
one-way function computable by a poly-size poly-length register program, implies
the existence of one-way functions in NC0.

8 Conclusion: to a broader theory
This brings an end to our list of open questions. We will conclude this survey, just
as we began, with an entreaty, and my gratitude, to the reader who has made it to
the end.

The two most important questions in the field of reusing space are also the
most general: to develop new techniques and to develop new applications. New
techniques may involve using more cutting-edge tools in complexity, group the-
ory, etc., or they may simply be new ways of approaching the model beyond
compression or arithmetic-style reuse. New applications could be with questions
that have to do with space, or it could be that the techniques we have described in
this work have a home in a very different model.

This survey was an attempt to solve a third, no less important problem: to
develop new interest. I hope to have provided the reader with enough of a peek
at this burgeoning field to garner interest, and to have provided at least a few
problems which can be played with without too much further context. With any
luck these techniques and problems will be only a prelude to the exploration of a
wider world of reusing space.

The Bulletin of the EATCS

99

References
[AFKL19] Peyman Afshani, Casper Benjamin Freksen, Lior Kamma, and Kasper Green

Larsen. Lower bounds for multiplication via network coding. In Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP, vol-
ume 132 of LIPIcs, pages 10:1–10:12. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0.
SIAM J. Comput., 36(4):845–888, 2006.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in nc1. J. Comput. Syst. Sci.,
38(1):150–164, 1989.

[BBF98] Richard Beigel, Harry Buhrman, and Lance Fortnow. NP might not be as
easy as detecting unique solutions. In ACM Symposium on the Theory of
Computing (STOC), pages 203–208. ACM, 1998.

[BC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a
constant number of registers. SIAM J. Comput., 21(1):54–58, 1992.

[BCK+14] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian
Speelman. Computing with a full memory: catalytic space. In Symposium
on Theory of Computing, STOC 2014, pages 857–866. ACM, 2014.

[BDS22] Sagar Bisoyi, Krishnamoorthy Dinesh, and Jayalal Sarma. On pure space vs
catalytic space. Theor. Comput. Sci., 921:112–126, 2022.

[Ben73] C. H. Bennett. Logical reversibility of computation. IBM Journal of Re-
search and Development, 17(6):525–532, 1973.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM
J. Comput., 18(4):766–776, 1989.

[BKLS18] Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. Cat-
alytic space: Non-determinism and hierarchy. Theory Comput. Syst.,
62(1):116–135, 2018.

[CM20] James Cook and Ian Mertz. Catalytic approaches to the tree evaluation prob-
lem. In Proceedings of the 52nd Annual ACM Symposium on Theory of
Computing, STOC 2020, pages 752–760. ACM, 2020.

[CM21] James Cook and Ian Mertz. Encodings and the tree evaluation problem.
Electron. Colloquium Comput. Complex., page 54, 2021. URL: https://eccc.
weizmann.ac.il/report/2021/054.

[CM22] James Cook and Ian Mertz. Trading time and space in catalytic branching
programs. In 37th Computational Complexity Conference, CCC 2022, vol-
ume 234 of LIPIcs, pages 8:1–8:21, 2022.

BEATCS no 141

100

[CMW+12] Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and
Rahul Santhanam. Pebbles and branching programs for tree evaluation. ACM
Trans. Comput. Theory, 3(2):4:1–4:43, 2012.

[Coo21] James Cook. How to borrow memory, 2021. URL: https://www.falsifian.
org/blog/2021/06/04/catalytic/.

[DFZ05] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding
in network information flow. IEEE Transactions on Information Theory,
51(8):2745–2759, 2005.

[DGJ+20] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath
Tewari. Randomized and symmetric catalytic computation. In CSR, vol-
ume 12159 of Lecture Notes in Computer Science, pages 211–223. Springer,
2020.

[DT23] Dean Doron and Roei Tell. Derandomization with minimal memory foot-
print. In Amnon Ta-Shma, editor, Computational Complexity Conference,
CCC 2023, volume 264 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

[Dul] Yfke Dulek. Catalytic space: on reversibility and multiple-access random-
ness.

[FHLS20] Alireza Farhadi, Mohammad Taghi Hajiaghayi, Kasper Green Larsen, and
Elaine Shi. Lower bounds for external memory integer sorting via network
coding. Commun. ACM, 63(10):97–105, 2020.

[GJST19] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Un-
ambiguous catalytic computation. In 39th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2019, volume 150 of LIPIcs, pages 16:1–16:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[GKM15] Vincent Girard, Michal Koucky, and Pierre McKenzie. Nonuniform catalytic
space and the direct sum for space. Electronic Colloquium on Computational
Complexity (ECCC), 138, 2015.

[Hel86] Hans Heller. On relativized exponential and probabilistic complexity classes.
Inf. Control., 71(3):231–243, 1986.

[Hoz21] William M. Hoza. Better pseudodistributions and derandomization for
space-bounded computation. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2021, volume 207 of LIPIcs, pages 28:1–28:23, 2021.

[Hoz22] William M. Hoza. Recent progress on derandomizing space-bounded com-
putation. Bull. EATCS, 138, 2022.

[IL95] Neil Immerman and Susan Landau. The complexity of iterated multiplica-
tion. Inf. Comput., 116(1):103–116, 1995.

The Bulletin of the EATCS

101

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation.
SIAM J. Comput., 17(5):935–938, 1988.

[KL98] E. Knill and R. Laflamme. Power of one bit of quantum information. Phys.
Rev. Lett., 81:5672–5675, 1998.

[Kou16] Michal Koucký. Catalytic computation. Bull. EATCS, 118, 2016.

[KRW95] Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth
lower bounds via the direct sum in communication complexity. Comput.
Complex., 5(3/4):191–204, 1995.

[LMT00] Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. Reversible space
equals deterministic space. J. Comput. Syst. Sci., 60(2):354–367, 2000.

[Lof] Bruno Loff. Private correspondence.

[Nis93] Noam Nisan. On read-once vs. multiple access to randomness in logspace.
Theor. Comput. Sci., 107(1):135–144, 1993.

[Pie19] Krzysztof Pietrzak. Proofs of catalytic space. In Avrim Blum, editor, In-
novations in Theoretical Computer Science Conference, ITCS, volume 124
of LIPIcs, pages 59:1–59:25. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019.

[Pot17] Aaron Potechin. A note on amortized branching program complexity. In
Computational Complexity Conference, volume 79 of LIPIcs, pages 4:1–
4:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[PRZ23] Edward Pyne, Ran Raz, and Wei Zhan. Certified hardness vs. randomness
for log-space. CoRR, 2023.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–
17:24, 2008.

[RZ21] Robert Robere and Jeroen Zuiddam. Amortized circuit complexity, formal
complexity measures, and catalytic algorithms. In FOCS, pages 759–769.
IEEE, 2021.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic
tape complexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

[SZ99] Michael E. Saks and Shiyu Zhou. BP hspace(s) subseteq dspace(s3/2). J.
Comput. Syst. Sci., 58(2):376–403, 1999.

[Sze88] Róbert Szelepcsényi. The method of forced enumeration for nondeterminis-
tic automata. Acta Informatica, 26(3):279–284, 1988.

[Wat99] John Watrous. Space-bounded quantum complexity. J. Comput. Syst. Sci.,
59(2):281–326, 1999.

BEATCS no 141

102

Exercise solutions
Solution 1. As stated, we will only seek to reprove the correctness of the program for g1 ∧ g2.
Define y1 = τ1 + g1 and y2 = τ2 + g2; in other words, before running P1 the register R1 contains
τ1, while afterwards it contains y1, and likewise for P2. Then by simple arithmetic

g1g2 ≡ y1y2 + y1τ2 + τ1y2 + τ1τ2 mod 2

Thus we can add g1g2 to R0 by adding each of the four monomials in this expansion to R0, one by
one, each obtained by running a combination of P1 and P2.

In fact, by ordering them as

g1g2 ≡ τ1τ2 + τ1y2 + y1y2 + y1τ2 mod 2

this can be done using only four recursive calls as presented in the original proof of Lemma 1,
rather than however many were in our subsequent exposition.

Solution 2. We will use the same recursive statement as Lemma 1, with two changes. First, we
will need a program to handle gates of the form g = g1 + g2. This is clearly accomplished by the
following program Pg(i):

1. P1(i) Ri = [τi] + [v1]
2. P2(i) Ri = [τi + v1] + [v2] = τi + v1 + v2 ✓

Before moving on to × gates, we need to handle the fact that executing Pg(i) twice no longer resets
memory, as we are no longer over F2. To handle this, we will extend our recursion to state that
in addition to Pg(i) we also have a program P−1

g (i) whose function is to subtract vg from Ri. This
is clearly true at the leaves since reading inputs is atomic, and swapping P1(i) and P2(i) for their
inverses in our + program above gives P−1

g (i).
Now we can move on to g = g1g2. Our program from Lemma 1 works almost directly for

× gates, with the only catch being that we convert + into − in some places in order to get the
cancellations to work. Concretely our program Pg(0) is as follows:

1. P1(1) R1 = [τ1] + [v1]

2. R0 += −R1R2 R0 = [τ0] + [−(τ1 + v1)(τ2)]
= τ0 − τ1τ2 − v1τ2

3. P2(2) R2 = [τ2] + [v2]

4. R0 += R1R2 R0 = [τ0 − τ1τ2 − v1τ2] + [(τ1 + v1)(τ2 + v2)]
= τ0 + τ1v2 + v1v2

5. P−1
1 (1) R1 = [τ1 + v1] + [−v1]

= τ1 ✓
6. R0 += −R1R2 R0 = [τ0 + τ1v2 + v1v2] + [−(τ1)(τ2 + v2)]

= τ0 − τ1τ2 + v1v2
7. P−1

2 (2) R2 = [τ2 + v2] + [−v2]
= τ2 ✓

8. R0 += R1R2 R0 = [τ0 − τ1τ2 + v1v2] + [(τ1)(τ2)]
= τ0 + v1v2 ✓

and it is easy to show that running the same program with all signs flipped gives P−1
g (0) as well.

Once again all other programs P−1
g (i) can be obtained by relabeling.

The Bulletin of the EATCS

103

Solution 3. The following program computes P∧:

for all S ⊆ [d] :
1. Pi ∀i ∈ S

2. R0 +=

d∏
i=1

Ri

3. P−1
i ∀i ∈ S

This follows by a generalization of the alternate analysis given in the previous exercise, namely

d∏
i=1

gi ≡
∑

S⊆[d]

∏
i∈S

τi + xi


∏

i<S

τi


by inclusion-exclusion.

Solution 4. The following program computes PΣ:

1. Pi ∀i Ri = [τi] + [vi] ∀i

2. RΣ +=
∑

i

Ri R0 = [τ0] +

∑
i

(τi + vi)


= τ0 +

∑
i

τi +
∑

i

vi

3. P−1
i ∀i Ri = [τi + vi] + [−vi] ∀i

= τi ∀i ✓

4. RΣ += −
∑

i

Ri R0 =

τ0 +
∑

i

τi +
∑

i

vi

 + −∑
i

τi


= τ0 +

∑
i

vi ✓

We note that this also gives a program P−1
Σ

by running the program in reverse order and flipping
all signs.

Solution 5. The following program computes Pk given Pv, and uses k registers R′1 . . .R
′
k in addition

to R0 and Rv:

1. P−1
v Rv = [τv] + [−v]

2. R′j += (Rv) j ∀ j = 0...k R′j = [τ′j] + [(τv − v) j] ∀ j = 0...k

3. Pv Rv = [τv − v] + [v]
= τv

4. R0 +=

k∑
j=0

(
k
j

)
(Rv) j(−1)k− jR′k− j R0 = [τ0] +

 k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τ′k− j + (τv − v)k− j)


= τ0 +

k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τ′k− j)

+

k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τv − v)k− j

BEATCS no 141

104

5. P−1
v Rv = [τv] + [−v]

6. R′j += −(Rv) j ∀ j = 0...k R′j = [τ′j + (τv − v) j] + [−(τv − v) j]
= τ′j ∀ j = 0...k ✓

7. Pv Rv = [τv − v] + [v]
= τv ✓

8. R0 += −

k∑
j=0

(
k
j

)
(Rv) j(−1)k− jR′k− j R0 = [τ0 +

k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τ′k− j)

+

k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τv − v)k− j]

+

− k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τ′k− j)


= τ0 +

k∑
j=0

(
k
j

)
τ

j
v(−1)k− j(τv − v)k− j

= τ0 + vk ✓

As before we get an inverse program by running in reverse and flipping all signs.

Solution 6. The same averaging argument as Theorem 4 shows that a random catalytic tape will
only have a polynomial size component in the configuration graph, even when this component is
no longer a line and can branch based on randomness or non-uniformity. We choose a random
catalytic tape using the randomness of ZPP, copy it to remember where we started, and then take
an Eulerian tour of the given component in the same way as Theorem 5.

To simulate CNL it is enough to look for any accept state we see before returing to our starting
configuration, while for CBPL we keep a list of how many accept and reject states we encounter
and take a majority vote. Note that in either case we will never get the wrong answer, although
as before we may have to declare “I don’t know” if we pick a bad starting catalytic tape and the
procedure takes too long.

Solution 7. As in our alternate proof of Lemma 1, define yi = τi + xi for each i. Let p f (x1 . . . xn)
be the F2 polynomial computing f given by interpolation, and let q f (τ1 . . . τn, y1 . . . yn) be defined
by substitution into p f , namely

q f (τ1, . . . , τn, y1, . . . , yn) = p f (y1 − τ1, . . . , yn − τn)

Given this substitution, consider all monomials in q f , i.e.

q f =
∑

S ,T⊆[n]

cS ,T (
∏
i∈S

τi)(
∏
i∈T

yi)

for some constants cS ,T ∈ F2. Note that by construction we need only consider disjoint S and T ,
since p f is over F2 and thus is multilinear. For convenience we relabel these products τS and yT

respectively.
We will use registers Ri for each i as well as registers RS ,τ and RT,y for each S ,T ⊆ [n]. Our

idea is to store each τS into the corresponding RS ,τ and similarly for y, so that

RS ,τ · RT,y = (τS ,τ + τ
S)(τT,y + yT) = τS ,ττT,y + τS ,τyT + τS τT,y + τ

S yT

and as in Lemma 1 we use four rounds to cancel out the various junk terms to get exactly τS yT .
Thus the following program computes P f :

The Bulletin of the EATCS

105

1. RS ,τ +=
∏

i∈S Ri ∀S ⊆ [n] RS ,τ = [τS ,τ] + [τS] ∀S ⊆ [n]

2. R0 +=
∑

S ,T⊆[n]

cS ,T RS ,τRT,y R0 = [τ0] +

 ∑
S ,T⊆[n]

cS ,T (τS ,τ + τ
S)(τT,y)


= τ0 +

∑
S ,T⊆[n]

cS ,T (τS ,ττT,y + τ
S τT,y)

3. Pi ∀i ∈ [n] Ri = [τi] + [vi] ∀i ∈ [n]

4. RT,y +=
∏

i∈T Ri ∀T ⊆ [n] RT,y = [τT,y] + [yT] ∀T ⊆ [n]

5. R0 +=
∑

S ,T⊆[n]

cS ,T RS ,τRT,y R0 = [τ0 +
∑

S ,T⊆[n]

cS ,T (τS ,ττT,y + τ
S τT,y)]

+

 ∑
S ,T⊆[n]

cS ,T (τS ,τ + τ
S)(τT,y + yT)


= τ0 +

∑
S ,T⊆[n]

cS ,T (τS ,τyT + τS yT)

6. RS ,τ +=
∏

i∈S Ri ∀S ⊆ [n] RS ,τ = [τS ,τ + τ
S] + [τS] ∀S ⊆ [n]

= τS ,τ ∀S ⊆ [n] ✓

7. R0 += +
∑

S ,T⊆[n]

cS ,T RS ,τRT,y R0 = [τ0 +
∑

S ,T⊆[n]

cS ,T (τS ,τyT + τS yT)]

+

 ∑
S ,T⊆[n]

cS ,TτS ,τ(τT,y + yT)


= τ0 +

∑
S ,T⊆[n]

cS ,T (τS ,ττT,y + τ
S yT)

8. Pi ∀i ∈ [n] Ri = [τi + vi] + [vi] ∀i ∈ [n]
= τi ∀i ∈ [n] ✓

9. RT,y += +
∏

i∈T Ri ∀T ⊆ [n] RT,y = [τT,y + yT] + [yT] ∀T ⊆ [n]
= τT,y ∀T ⊆ [n] ✓

10. R0 += +
∑

S ,T⊆[n]

cS ,T RS ,τRT,y R0 = [τ0 +
∑

S ,T⊆[n]

cS ,T (τS ,ττT,y + τ
S yT)]

+

 ∑
S ,T⊆[n]

cS ,TτS ,ττT,y


= τ0 +

∑
S ,T⊆[n]

cS ,Tτ
S yT = τ0 + q f ✓

Solution 8. The world is your oyster.

106

The Bulletin of the EATCS

107

The Distributed Computing Column

Seth Gilbert
National University of Singapore
seth.gilbert@comp.nus.edu.sg

This month, the Distributed Computing Column is featuring Dean Leitersdorf,
winner of the 2023 Principles of Distributed Computing Doctoral Dissertation
Award. His work on sparse matrix multiplication has led to several breakthroughs
that improve significantly on the state of the art. These new approaches have led
to faster algorithms for a variety of related problems, including constant-round
algorithms for computing graph spanners, approximate all-pairs-shortest-paths,
and the girth of a graph (up to an additive 1) in the congested clique model.

Recent progress in distributed matrix multiplication has been fast, and real-
world applications of matrix multiplication have only been increasing in impor-
tance. In this column, Dean Leitersdorf gives an overview of the state of the art
for distributed matrix multiplication, and its connection to all-pairs shortest paths
in the congested clique model. He provides both a summary of his new sparity-
aware approach, along with a discussion of open questions and possible future
directions. Overall, then, this column provides a succinct overview of a rapidly
moving area of distributed algorithms!

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would
like to write such a column, please contact me.

BEATCS no 141

108

The Relationship between APSP andMatrix
Multiplication in Congested Clique

Dean Leitersdorf

Introduction
The field of distributed computing has recently explored the fundamental bidirectional rela-
tionship between matrix multiplication and the all-pairs-shortest-path (APSP) problem in the
distributed Congested Clique model. Matrix multiplication is the foundation for a wide vari-
ety of problems in the exact sciences, with significant algorithmic research effort having been
invested in finding the smallest ω such that sequential matrix multiplication [12, 20, 33, 34]
can be computed in O(nω) time (where ω < 2.37286 is the best currently-known result [4]).
Similarly, graph theory has been the bedrock of computer science research for much of the
past century, with the fundamental problem of distance computation having wide implications.
While it is well known that the all-pairs-shortest-path (APSP) variant of distance computation
can be related to matrix exponentiation through the min-plus semiring, a recent line of works
in distributed computing has explored the implication of this connection on approximation al-
gorithms that utilize only o(poly(n)) Congested Clique rounds.

In this text, we analyze this line of works and discuss the future research directions of the
field. The current state-of-the-art results exploit exact Congested Clique matrix multiplication
to perform exact APSP in O(n1/3) rounds, and O(1)-approximate APSP in O(log log n) rounds
or O(poly log n)-approximate APSP in O(1) rounds. It is of significant interest whether it is
possible to perform O(1)-approximate APSP in O(1) rounds as this would imply a drastic re-
duction in time complexity between exact APSP in O(poly(n)) rounds and approximate APSP
(with a constant approximation factor) in constant rounds. In the rest of this text we highlight
the results of this research direction and speculate with regards to future results.

Preliminaries
We begin by presenting the Congested Clique model, proceed to defining matrix multiplication
(MM) and the all-pairs-shortest-path (APSP) problem in this setting, and conclude the prelim-
inaries by showing some basic relationships between MM and APSP in Congested Clique.

In CONGEST [32], computational nodes and communication links between them are repre-
sented by a graph, G. Every node can perform unlimited computation, is initially only aware of
its incident edges, and can communicate in synchronous rounds with its neighbors by sending
each a O(log n)-bit message per round. Typically, algorithms solve problems over G (e.g. dis-
tance computations), where the main complexity measure is the number of rounds an algorithm
takes. The Congested Clique model [28] is similar to CONGEST, but separates the input from
the communication topology: the input is a graph G, but the communication topology allows
all nodes to communicate directly with one another.

The Bulletin of the EATCS

109

Definition 1 (MM in Congested Clique). Let S , T be two n by n matrices such that, for all i,
node i holds the ith rows of S and T . Computing the product P = S · T in Congested Clique is
achieved when, for all i, node i knows row i of P.

Definition 2 (APSP in Congested Clique). Let G be an input graph. Computing the APSP
over G is achieved when for for every nodes u, v, node u knows the distance from u to v in G.

Brief Overview
Many recent Congested Clique papers study distance problems [7,10,18,21,24,29,31]. Specif-
ically, [10, 21] exploit a well-known connection between distances and matrix multiplication –
the nth power of the adjacency matrix A of a graph, taken over the min-plus (or tropical) semir-
ing, corresponds to shortest-path distances. Hence, iteratively squaring a matrix log n times
gives the best known algorithms for APSP in Congested Clique, including (1) an Õ(n1/3) round
algorithm for exact APSP in weighted directed graphs [10], (2) O(n0.158) round algorithms for
exact APSP in unweighted undirected graphs and (1 + o(1))-approximate APSP in weighted
directed graphs [10], and (3) an O(n0.2096) round algorithm for exact APSP in directed graphs
with constant weights [21].

Faster approximations for larger constants are obtained by computing a k-spanner (sparse
subgraph approximating distances by a factor of k), and having all nodes learn the spanner.
Using the results of [31], this gives a (2k − 1)-approximation for APSP in Õ(n1/k) rounds,
which is polynomial for any constant k. This raises the following fundamental question.

Question 1. Are there constant-factor APSP approximations in sub-polynomial time?

For SSSP, this is indeed possible [7,23], with a gradient-descent-based algorithm obtaining
a (1 + ε)-approximation in O(ε−3polylog n) rounds (even in BCC) [7].

In [27], we develop a line of sparsity aware matrix multiplication algorithms. The com-
plexities of our algorithms do not depend on the sparsity structures of the matrices, rather, only
on the total number of non-zero elements. We then apply our sparse matrix multiplication al-
gorithms to efficiently implement basic primitives for distance computations. For instance, we
compute for every node the distances to the O(n2/3) nodes closest to it in O(poly log n) rounds.
Together with other tools we develop, we show a (2 + ε) APSP approximation in O(log2 n/ε)
rounds. This is the first sub-polynomial constant-factor APSP approximation, and is an expo-
nential speedup over previous results. Following our work and using our distance tools, [16]
show further improvement, bringing the round complexity down to O(poly log log n), leading
to the following question.

Question 2. Is it possible to obtain an o(log log n)-round good APSP approximation?

In [27], we enhance our tools using a technique we call partition trees, to develop a sparsity-
aware sparsification tool to answer this in the affirmative. We construct O(log n)-spanners and
approximate APSP (with polylogarithmic approximation factors) in O(1) rounds.

The Matrix Multiplication Cube
We describe the following visualization accompanying our techniques. How does one multiply
matrices? By definition, given two n by n matrices, S and T , matrix P is their product if

BEATCS no 141

110

∀i, j ∈ [n] : P[i, j] =
∑
k∈[n]

S [i, k]T [k, j] .

Typically, in introductory linear algebra courses, this is shown via a 2-dimensional depic-
tion: “multiply (element-wise) a row of S by a column of T , and sum the values”. Instead, we
use the 3D Cube of Matrix Multiplication (see e.g. [2, 3]). Formally, it is an n × n × n cube,
where entry (i, j, k) corresponds to S [i][k]T [k][j]. Two dimensions correspond to S and T , and
each index in the third dimension represents a page, where P is the sum of all n pages.

Figure 1: An illustration of the multiplication cube. The green (left) and blue (right) shapes
correspond to S (transposed) and T , respectively, the brown (center) are point-wise multiplica-
tions, and the orange (bottom) are P. The value of every brown shape is the product of its green
and blue projections. The value of every orange shape is the sum of the brown values above it.

The cube is useful for visualizing parallel and distributed algorithms. Assume k compu-
tational devices. A subcube V1 × V2 × V3, where V1,V2,V3 ⊆ [n], corresponds to the task
S [V1,V2] · T [V2,V3], where S [V1,V2] is the submatrix limited to rows V1 and columns V2 of S ,
and similarly for T . Thus, a partition of n3 into k subcubes breaks the larger matrix multiplica-
tion into smaller tasks.

Efficiently partitioning the cube is heavily dependant on the distributed setting considered.
To compute the value at index (i, j, k), a device needs both its projections, S [i][k] and T [k][j].
How can we factor in the (potentially different) sparsities of S and T? Is it easier to learn
the projections onto S than those onto T? Computing the values of P requires computational
devices computing intermediate values “above” one another (in the figure) to communicate –
is this communication more expensive than that for learning the projections onto S and T?

We split our approaches for overcoming these challenges to input-sparsity awareness (S
and T) and output-sparsity awareness (P). Designing output-sparsity aware algorithms is prob-
lematic as P, by definition, is not known in advance. Thus, this necessitates adaptive behaviour
throughout the communication, before the output is fully computed. Our most complex algo-
rithm, Filtered Sparse Matrix Multiplication, deals with dense output, where only some sparse
set of it (matching specific predicates) is desired. Thus, already at the stage when only some
of the intermediate computation is performed, we deduce which values of P we want to fully
compute.

Note that in [27], we extend this further to deal with subgraph existence problems and not
just matrix multiplication and distance computations. What if we use higher dimensions (4, 5,
6, etc.)? What if we reverse the information flow such that data flows into the cube from the

The Bulletin of the EATCS

111

bottom (orange shapes) instead of out? What if, in some dimensions, we can perform quantum
computation? For instance, reversing the information flow w.r.t. P turns a boolean matrix
multiplication algorithm to one that finds all triangles (three fully connected nodes) in a graph.
Thus, the cube amounts to a unified perspective for seemingly unrelated distributed problems
– intuition w.r.t. a property of the cube is carried over to many problems.

Warmup: Using the MM Cube for Input Sparsity Awareness
for exact APSP
In [11], we investigate how to perform matrix multiplication faster if it is given that the two
input matrices are sparse. As a warmup, we leverage this to design faster exact APSP algo-
rithms for sparse graphs. Later, we show how to extend the matrix multiplication algorithms
to also take into account the sparsity of the output matrix, which allows approximating APSP
exponentially faster, even on general graphs.

A central challenge in non-sequential matrix multiplication is high skew in input matrices,
as Ballard et al. [5] describe in the parallel setting: “[We] are not aware of any algorithms
that dynamically determine and efficiently exploit the structure of general input matrices. In
fact, a common technique of current library implementations is to randomly permute rows and
columns of the input matrices in an attempt to destroy their structure and improve compu-
tational load balance." We show deterministic algorithms overcoming this, as well as other
challenges which arise in distributed settings and not in parallel or sequential ones.

In Congested Clique, the round complexity is typically dominated by the node participat-
ing in the most communication. This leads us to defining two main goals: minimizing the total
message count, and implementing load balancing mechanisms to ensure the round complexity
is governed by the average number of messages each node communicates, and not the maximal.

On a high-level, our approach is threefold, with the first part minimizing the total number
of messages sent, and the latter parts load balancing among the nodes.

First, split the n × n × n matrix multiplication cube into n equally sized sub-cubes whose
dimensions are determined dynamically, based on the sparsity of the input matrices. Fix some
values a, b. We partition P into ab sub-matrices of size n/a×n/b, denoted by Pi, j for i ∈ [a], j ∈
[b], and assign n/ab nodes, denoted Ni, j, for computing Pi, j.

Second, notice that permutations of rows of S and columns of T result in a reversible
permutation of P. Thus, we permute the S and T such that the number of non-zero entries
required for computing each n/a×n/b sub-matrix is roughly the same for each sub-matrix. We
call the two permuted matrices, S ′ and T ′, sparsity-balanced matrices with respect to (a, b).
The rest of our algorithm deals with computing the product of such matrices.

Third, we assign the computation of pages of sub-matrices to nodes in a non-consecutive
manner. Each Pi, j is the sum of n sub-pages Pi, j,`. Each v ∈ Ni, j computes some of the Pi, j,`

sub-pages and sums them locally. The local sums are then aggregated, to obtain Pi, j. We assign
sub-pages to nodes in a non-consecutive manner, such that each node receives a roughly equal
number of non-zero entries to compute its assigned sub-pages (See Figure 2).

While the above ensure nodes receive roughly the same number of messages, it is paramount
that nodes also send a roughly equal number of non-zero matrix entries. We rearrange the en-
tries of S and T held by each node such that each holds a roughly equal amount of non-zero
entries. In this step, we do not permute S or T , rather, we merely redistribute their entries.

Crucially, these assignments are not global knowledge, leading to routing challenges. That
is, for every Pi, j, nodes Ni, j decide which matrix entries are received by which node, yet, this is

BEATCS no 141

112

a

b

S’

T’

P’

Figure 2: An illustration of the multiplication cube for P′ = S ′T ′. Each sub-matrix is assigned
to n/ab nodes, with a not necessarily consecutive page assignment that is computed on-the-fly
to minimize communication.

unknown to other nodes who need to send the entries. Likewise, the redistribution of S and T is
not known to all. However, clearly, a node must know the destination of each message it sends.
We design our solution such that every node computes a small set of nodes potentially holding
information it requires, and request it from them. Upon receipt of the request, the nodes can
compute whether they actually have the relevant information, and, if so, send it over.

For matrix M, let nz(M) denote the total number of non-zero entries in M, and let ρM =

dnz(M)/ne denote the density of M. Our first main contribution is the following.

Theorem 1. Given two n × n matrices S and T , it is possible to deterministically compute
P = S T over a semiring, within O((ρSρT)1/3/n1/3 + 1) rounds in Congested Clique.

An important case of Theorem 1, especially when squaring the adjacency matrix of a graph,
is when the sparsities of the input matrices are roughly the same.

Corollary 2. Given two n×n matrices S and T , where O(nz(S)) = O(nz(T)) = m, it is possible
to compute P = S T over a semiring, in O(m2/3/n + 1) rounds in Congested Clique.

For m = O(n2), Corollary 2 gives the same O(n1/3) rounds complexity as that of [10], the
state-of-the-art for non-sparse matrix multiplication. Our algorithm is fast also when only one
of the matrices is sparse, as stated in the following.

Corollary 3. Given two n × n matrices S and T , where min{nz(S), nz(T)} = m, it is possible to
compute P = S T over a semiring, in O((m/n)1/3 + 1) rounds in Congested Clique.

This allows computing powers that are larger than 2 of a sparse input matrix. We cannot
repeatedly square a matrix, as this may require multiplying dense matrices, yet, we can repeat-
edly increase its power by 1. This gives the following for exact APSP, whose comparison to the
state-of-the-art depends on the trade-off between the number of edges and the graph diameter.

Theorem 4. Given an unweighted graph G, there is a deterministic algorithm that computes
APSP in O(D((m/n)1/3 + 1)) rounds in the Congested Clique model.

To compare, the best known complexity for general graphs is O(n1−2/ω) [10] (currently
roughly O(n0.158)). For a graph with m = o(n4−6/ω/D3) (currently o(n1.474/D3)), our algorithm
is faster.

The Bulletin of the EATCS

113

O(1) APSP approximation in O(poly log log n) rounds
In [9], we turn our attention to general graphs, and aim to compute a constant approximation
of APSP in sub-polynomial rounds.

Distance Products. We start from the basic idea of using matrix multiplication to compute
distances. Specifically, if A is the weighted adjacency matrix of a graph G, it is well known that
distances in G can be computed by iterating the distance product A ? A, defined as

(A ? A)[i, j] = min
k

(
A[i, k] + A[k, j]

)
,

that is, the matrix multiplication over the min-plus semiring.
However, as A ? A can be dense even if A is sparse (e.g. a star graph), iterative squaring

is not guaranteed to be efficient. Moreover, our goal is to compute distances in general graphs
and so we do not even assume A itself is sparse. We thus take a step back, first showing several
distance computation building blocks, before directly tackling end-problems such as APSP.

Our Distance Tools. The key observation is that building blocks for distance computation
are actually based on computations in sparse graphs or subgraphs. Concrete examples include:

• k-nearest: Compute distances for each node to the k nodes closest to it.

• (S , d, k)-source detection: Given a set of sources S , compute the distances for each node
to the k sources closest to it, using paths of at most d hops.

• distance through sets: Given a set of nodes S and distances to all nodes in S , compute
the distances between all nodes using paths through nodes in S .

For all of these problems, there is a degree of sparsity we can hope to exploit if k or |S | are
small. For example, the (S , d, k)-source detection problem, requires the multiplication of a
dense adjacency matrix with a possibly sparse matrix, depending on the size of S . However,
for any S of polynomial size, the round complexity of the input sparsity aware algorithm is
polynomial. An interesting property in this problem is that the output matrix is also sparse,
giving room for improvement. As another example, in k-nearest both input matrices are sparse,
which makes it fast using the previous sparse matrix multiplication algorithm. However, this
does not exploit the sparsity of this problem to the end: we are interested only in computing
the k nearest nodes to each node, hence there is no need to compute the full output matrix.
The challenge in this case is that we do not know the identity of the k closest nodes before the
computation.

To exploit this sparsity we design new matrix multiplication algorithms that, in particular,
can sparsify the output matrix throughout its computation, and get a complexity that depends
only on the size of the output we are interested in. The core reason that significant challenges
arise in output sparsity awareness w.r.t. input sparsity awareness is that the input matrices are
known beforehand, while clearly this does not hold in the output case. Thus, we are required to
recognize patterns in the output during the computation and perform actions affected by these
patterns. In particular, our approaches uses both binary search and sorting, in a novel way,
to efficiently perform the summation step of the matrix multiplication, while abstracting away
effects of the output patterns. We obtain the following matrix multiplication variants.

• One variant assumes that the sparsity of the output matrix is known.

BEATCS no 141

114

• The other sparsifies the output on the fly, keeping the ρP smallest entries in each row.

For these two scenarios, we obtain round complexities

O
((ρSρTρP)1/3

n2/3 + 1
)
, and O

((ρSρTρP)1/3

n2/3 + log n
)
,

respectively, improving over our input sparsity aware matrix multiplication for ρP = o(n).

Applications of Sparse Matrix Multiplication. Using output sensitive sparse matrix multi-
plication, we obtain faster distance tools:

• We solve k-nearest in O
((

k
n2/3 + log n

)
log k

)
rounds.

• We solve (S , d, k)-source detection in O
((

m1/3 |S |2/3

n + 1
)

d
)

rounds, where m is the number
of edges in the output graph; note that dependence on d becomes linear in order to exploit
the sparsity.

In concrete terms, with these output sensitive distance tools we still get subpolynomial running
times even when the parameters are polynomial. For example, we get the distances to the
Õ(n2/3) closest nodes in Õ(1) rounds. Note that though our final results are only for undirected
graphs, these distance tools work for directed, weighted graphs.

Hopsets. An issue with our (S , d, k)-source detection algorithm is that in order to exploit the
sparsity of the matrices, we must perform d multiplications to learn the distances of nodes at
hop-distance at most d from S . Hence, to learn the distances of all nodes from S , we need to
do n multiplications, which is no longer efficient. To overcome this challenge, we use hopsets.
Given a (β, ε)-hopset H, it is enough to look only at β-hop distances in G ∪ H to approximate
distances by a factor of (1 + ε). Using our source detection algorithm together with a hopset
allows getting an efficient algorithm for approximating distances, as long as β is small enough.

However, the round complexities of all current hopset constructions [17, 18, 23] is at least
O(ρ) for a hopset of size nρ. This is a major obstacle for efficient shortest paths algorithms,
since, based on recent existential results, there are no hopsets where both β and ρ are polyloga-
rithmic [1]. Nevertheless, we show that our new distance tools build a hopset in a time that does
not depend on its size. In particular, we show how to implement a variant of the recent hopset
construction of in [18] in O(log2 n

ε
) rounds. The size of our hopset is Õ(n3/2), hence constructing

it using previous algorithms requires at least Õ(
√

n) rounds.

Applying the Distance Tools. As a direct application of our source detection and hopset
algorithms, we obtain an algorithm for computing distances from k sources at once (k-SSP).
This is the first sub-polynomial result, with such approximations, for polynomial k.

Theorem 5. There is a deterministic (1 + ε)-approximation algorithm for weighted undirected
k-SSP that takes

O
((k2/3

n1/3 + log n
)
·

log n
ε

)
rounds in the Congested Clique, where S is the set of sources. In particular, the complexity is
O(log2 n

ε
) as long as k = O(

√
n · (log n)3/2).

The Bulletin of the EATCS

115

In turn, this forms the basis of our (3 + ε)-approximation for weighted APSP. To obtain a
(2+ε)-approximation for unweighted APSP, the idea is to deal separately with paths containing
a high-degree node and paths without. A crucial ingredient is showing that in sparser graphs
we can efficiently compute distances to a larger set S .

Theorem 6. There is a deterministic (2+ε)-approximation algorithm for unweighted undirected
APSP in the Congested Clique model that takes O(log2 n

ε
) rounds.

Our approximation is almost tight for sub-polynomial algorithms in the following sense.
As noted by [26], a (2 − ε)-approximate APSP in unweighted undirected graphs is essentially
equivalent to fast matrix multiplication, so obtaining a better approximation in complexity be-
low O(n0.158) would result in a faster algorithm for non-sparse matrix multiplication in the
Congested Clique. Likewise, a sub-polynomial-time algorithm with any approximation ratio
for directed graphs would give a faster matrix multiplication algorithm [14].

As stated above in the overview, this concludes the first sub-polynomial constant-factor
APSP approximation, showing an exponential speedup over previous results which all required
polynomial rounds for such an approximation. Following this work and using the above de-
scribed distance tools, [16] bring the complexity down to O(poly log log n). In weighted graphs,
an O(log1+ε n)-approximation to APSP is known in a similar round complexity [8].

O(poly log n) APSP approximation in O(1) rounds
In [15], we ask whether it is possible to spend just O(1) rounds in order show a good approxi-
mation of APSP. We answer this by showing poly-logarithmic approximations to APSP in such
a round complexity.

Spanners. A k-spanner is a sparse subgraph, preserving distances up to a factor of k. Any
graph has a (2k − 1)-spanner with O(n1+1/k) edges, which is assumed to be tight by the Erdős
Girth Conjecture [19]. We aim for spanners with O(n) edges, requiring k = Θ(log n). The
classic algorithm of [6] builds (2k − 1)-spanners with O(kn1+1/k) edges in expectation, and is
simulated in O(k) rounds. Faster, poly(log k)-round algorithms appear in [8, 31]. Specifically,
[31] shows a randomized (deterministic) construction of (2k−1)-spanners (O(k)-spanners) with
Õ(n1+1/k) edges (O(kn1+1/k) edges). For weighted undirected graphs, [8] show a randomized
construction of O(k1+o(1))-spanners with O(n1+1/k · log k) edges.

The Locality Barrier. Intuitively, these take poly(log k) rounds as the locality of spanners is
linear in k. In the LOCAL model, where a node can learn its entire t-neighborhood in t rounds,
constructing (2k− 1)-spanners with O(n1+1/k) edges takes Ω(k), assuming the Erdős Girth Con-
jecture [13]. The connection between LOCAL and Congested Clique is captured via graph
exponentiation, whereby nodes learn their 2i-neighborhoods in round i. This requires much
bandwidth, nevertheless, is sometimes used with other ideas, leading to O(log t) algorithms in
Congested Clique based on t-round algorithms in LOCAL (e.g. [16, 31]). In variants of MPC,
this approach is conditionally tight [22], for certain algorithms.

We break through the locality barrier, by utilizing techniques from our distances computa-
tions (above), our partition trees tool (see ??), as well as recent developments for computing a
minimum spanning tree (MST) in Congested Clique in O(1) rounds [25, 30].

A powerful ingredient is our sparsification tool, Theorem 7, based on our partition trees
(??), that finds spanners for graphs F connecting some nodes in G.

BEATCS no 141

116

Theorem 7. Let G = (V, E) be a Congested Clique, and F = (VF , EF) a graph with VF ⊆ V,
|VF | = N nodes, |EF | = M edges, and maximum degree ∆F . There is an O(M1/3·N2/3

n + 1)-round
algorithm in G that finds a (2k − 1)-spanner for F with O(M1/3 · N2/3+1/k) edges.

In a recent work on MST computation, given F = (VF , EF), |VF | = N, |EF | = M, [30] uses
the following. Let d = 2M/N and partition VF into S 1, · · · , S √d, where |S i| = O(N/

√
d) and

|E(S i, S j)| = O(N). Then, the edges E(S i, S j) are sent to some node, which replaces them with
an MST, with |S i| + |S j| edges, on the graph induced by S i × S j. Since |S i ∪ S j| = O(N/

√
d),

each MST has O(N/
√

d) edges, and all MSTs have d · O(N/
√

d) = O(
√

M · N) edges in total.
We show Theorem 7 by partitioning into d1/3 sets, and follow the notion where each node

sparsifies the edges it gets, by returning a spanner (instead of an MST). Our partitioning in
[15] is randomized, and using our partition trees technique (see ??), we show a deterministic
version. The key behind this is that applying our partition trees technnique on the “subgraph”
H = (VH, EH) which is simply one edge (i.e. VH = {a, b}, EH = {{a, b}}) redistributes the edges
of G = (V, E) such that every v knows some set of edges Ev, where {Ev|v ∈ V} is a partition
of E, and the amount of nodes incident to each Ev is rather small. Based on this approach, we
show a very powerful partitioning which leads to Theorem 7.

Unweighted Graphs We apply Theorem 7 on cluster graphs generated by a smart sampling
procedure. Let d = 2m/n. We construct a cluster graph C. Find a hitting set D ⊆ V (every
node is either in D or has at least one neighbor in D) of size O(n log d/d). Then, each node in
D is denoted the center of a cluster in C, and each node in V \ D joins the cluster of one of its
neighbors in D. For any two clusters C1 and C2 in C, connect them with an edge if, in G, any
node in C1 is connected to any node in C2. As C has M ≤ m edges but only N = O(n log d/d)
nodes, we can apply Theorem 7 on C, to get a spanner with ` = O(M1/3 ·N2/3+1/k) = O((dn)1/3 ·

(n log d/d)2/3+1/k) = O(n1+1/k) edges in O(M1/3·N2/3

n) = O(1) rounds.
Any α-spanner HC of Cwith ` edges can be translated to an O(α)-spanner H for G with `+n

edges. Replace each edge in HC by an edge in G that connects two nodes in the corresponding
clusters. Then, for each v ∈ V , add to H the edge that connects it to the center of the cluster v
belongs to. H is an O(α)-spanner for G, as any path PC of length α in HC translates to a path P
in H through α + 1 clusters. As the radius of each cluster is 1, P has length O(α).

However, it is hard to find a hitting set with |D| = O(n log d/d). In graphs with minimum
degree d, a sampling procedure suffices, yet d is our average degree. Thus, we bucket G, where
bucket i contains edges Ei, incident to nodes with degree in [2i, 2i+1), and run the above, for
bucket i1 computing Ci and HCi . The size of all spanners, where ∆ is the maximum degree, is:

|

log ∆⋃
i=0

Hi| = |H0| +

log ∆∑
i=1

O((ni/2i)2/3+1/k(n2i)1/3) ≤ O(n) +

log ∆∑
i=1

O(n1+1/k)i2/3/2i/3 = O(n1+1/k)

Finally, we convert HCi to Hi which is a spanner for edges Ei of G, and H =
⋃

i Hi is
a spanner of G, as required. However, as above, |Hi| ≤ |HCi | + n, where the +n is due to
connecting each node its cluster center. This may result in |H| = O(n1+1/k + n log ∆), instead
of O(n1+1/k). To solve this, we construct the graphs Ci such that for each v ∈ V , all clusters v
belongs to have the same center. Hence, each node adds at most only one edge in total, which
means that across all Hi at most n edges are added, and not n edges per Hi.

1Except for i = 0, where we define HCi as all edges incident to a node of degree at most 2.

The Bulletin of the EATCS

117

Theorem 8. Given k and an undirected unweighted graph G, there is an O(1)-round Congested Clique
algorithm constructing an O(k)-spanner for G with O(n1+1/k) edges, w.h.p.

Choosing k = Θ(log n) gives an O(log n)-spanner of size O(n), thus implying the following.

Theorem 9. Given an undirected unweighted graph G, there is an O(1)-round Congested Clique
algorithm computing an O(log n)-approximation of APSP w.h.p.

Weighted Graphs We develop two additional tools to extend our results to weighted graphs.
First, we split the edges into buckets of exponentially increasing weights Bl = {e | 2l ≤ w(e) <
2l+1}, and construct, in parallel, a spanner for each bucket using the unweighted algorithm.
The union of these spanners is an O(k)-spanner for G, yet with a total of O(n1+1/k log n) edges.
To obtain a spanner with O(n1+1/k) edges (yet O(k log n) stretch), we draw a connection to
MSTs. We construct an MST using [30] and use it to contract the graph to n/ log n nodes, while
preserving distances up to a factor of O(log n). This is done by replacing low diameter subtrees
of the MST, each with a single node, and due to the property that the edges of the MST cannot
be the heaviest along a cycle, we show that graph distances are stretched only by O(log n).
Then, we execute the above spanner algorithm on the contracted graph, and as the number of
nodes is n/ log n, the resulting spanner has O((n/ log n)1+1/k log (n/ log n)) = O(n1+1/k) edges.

Theorem 10. Given an undirected weighted graph G, there is an O(1)-round algorithm in the
Congested Clique model that computes an O(log2 n)-approximation of APSP, w.h.p.

Conclusion
The research community has recently made rapid progress in APSP approximations in the
Congested Clique model, mainly based on algorithms solving variants of matrix multiplica-
tion. Currently, the state-of-the-art is a constant approximation in O(poly log log n) rounds,
or an O(log n) approximation in constant rounds (O(poly log n) if the graph is weighted). We
hypothesize that the community is close to achieving a constant approximation in constant
rounds barring a few additional insights. This is certain to lead to several new exciting research
directions in the upcoming years.

Concretely, it is interesting to see whether the techniques behind the two extreme results
detailed above (constant approximation in O(poly log log n) rounds or O(poly log n) approxi-
mation in constant rounds) can be merged in order to show a better overall result. These are
active research directions which the community is currently investigating.

References
[1] Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear additive

spanners. SIAM Journal on Computing, 47(6):2203–2236, 2018.

[2] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-dimensional approach
to parallel matrix multiplication. IBM Journal of Research and Development, 39(5):575–582,
1995. doi:10.1147/rd.395.0575.

[3] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Communication complexity of prams. Theoret-
ical Computer Science, 71(1):3–28, 1990. doi:https://doi.org/10.1016/0304-3975(90)
90188-N.

BEATCS no 141

118

[4] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix mul-
tiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, Virtual Conference, January 10 - 13, 2021, pages 522–539, 2021. doi:10.1137/1.
9781611976465.32.

[5] Grey Ballard, Aydin Buluç, James Demmel, Laura Grigori, Benjamin Lipshitz, Oded Schwartz,
and Sivan Toledo. Communication optimal parallel multiplication of sparse random matrices.
In Proceedings of the 25th ACM Symposium on Parallelism in Algorithms and Architectures,
(SPAA), pages 222–231, 2013. URL: http://doi.acm.org/10.1145/2486159.2486196,
doi:10.1145/2486159.2486196.

[6] Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for comput-
ing sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532–563, 2007.

[7] Ruben Becker, Sebastian Forster, Andreas Karrenbauer, and Christoph Lenzen. Near-optimal ap-
proximate shortest paths and transshipment in distributed and streaming models. SIAM Journal on
Computing, 50(3):815–856, 2021. doi:10.1137/19M1286955.

[8] Amartya Shankha Biswas, Michal Dory, Mohsen Ghaffari, Slobodan Mitrovic, and Yasamin
Nazari. Massively parallel algorithms for distance approximation and spanners. SPAA 2021, 2021.

[9] Keren Censor-Hillel, Michal Dory, Janne H. Korhonen, and Dean Leitersdorf. Fast approx-
imate shortest paths in the congested clique. Distributed Computing, 2020. doi:10.1007/
s00446-020-00380-5.

[10] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami Paz, and Jukka
Suomela. Algebraic methods in the congested clique. Distributed Computing, 32(6):461–478,
2019. doi:10.1007/s00446-016-0270-2.

[11] Keren Censor-Hillel, Dean Leitersdorf, and Elia Turner. Sparse matrix multiplication and triangle
listing in the congested clique model. Theoretical Computer Science, 809:45–60, 2020. doi:
10.1016/j.tcs.2019.11.006.

[12] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. J.
Symb. Comput., 9(3):251–280, 1990. doi:10.1016/S0747-7171(08)80013-2.

[13] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the locality of distributed
sparse spanner construction. In Proceedings of the twenty-seventh ACM symposium on Principles
of distributed computing (PODC), pages 273–282, 2008.

[14] Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740–1759, 2000.

[15] Michal Dory, Orr Fischer, Seri Khoury, and Dean Leitersdorf. Constant-round spanners and short-
est paths in congested clique and mpc. In Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing, page 223–233, 2021. doi:10.1145/3465084.3467928.

[16] Michal Dory and Merav Parter. Exponentially faster shortest paths in the congested clique. In
PODC ’20: ACM Symposium on Principles of Distributed Computing, August 3-7, 2020, pages
59–68. ACM, 2020. doi:10.1145/3382734.3405711.

[17] Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications to approximate
shortest paths. SIAM J. Comput., 48(4):1436–1480, 2019. doi:10.1137/18M1166791.

[18] Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and constant-
hopbound hopsets in RNC. In The 31st ACM on Symposium on Parallelism in Algorithms
and Architectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019, pages 333–341, 2019.
doi:10.1145/3323165.3323177.

[19] Paul Erdős. Extremal problems in graph theory. In Theory Of Graphs And Its Applications, Pro-
ceedings of Symposium Smolenice, pages 29–36. Publ. House Cszechoslovak Acad. Sci., Prague,
1964.

The Bulletin of the EATCS

119

[20] François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. ISSAC 2014, pages
296–303, 2014. doi:10.1145/2608628.2608664.

[21] François Le Gall. Further algebraic algorithms in the congested clique model and applications
to graph-theoretic problems. In Proceedings of the 30th International Symposium on Distributed
Computing (DISC), pages 57–70, 2016. doi:10.1007/978-3-662-53426-7_5.

[22] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for massively parallel
computation from distributed lower bounds. In 2019 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), pages 1650–1663. IEEE, 2019.

[23] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A deterministic almost-tight
distributed algorithm for approximating single-source shortest paths. SIAM J. Comput., 50(3),
2021. doi:10.1137/16M1097808.

[24] Stephan Holzer and Nathan Pinsker. Approximation of distances and shortest paths in the broadcast
congest clique. In Proc. OPODIS 2015, 2015. doi:10.4230/LIPIcs.OPODIS.2015.6.

[25] Janne H. Korhonen. Deterministic MST sparsification in the congested clique. CoRR,
abs/1605.02022, 2016.

[26] Janne H. Korhonen and Jukka Suomela. Towards a complexity theory for the congested clique. In
Proc. SPAA 2018, pages 163–172, 2018. doi:10.1145/3210377.3210391.

[27] Dean Leitersdorf. Fast Distributed Algorithms via Sparsity Awareness. PhD thesis, Technion -
Israel Institute of Technology, Israel, 2022. URL: https://www.cs.technion.ac.il/users/
wwwb/cgi-bin/tr-info.cgi/2022/PHD/PHD-2022-09.

[28] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning tree
construction in O(log log n) communication rounds. SIAM J. Comput., 35(1):120–131, 2005.
doi:10.1137/S0097539704441848.

[29] Danupon Nanongkai. Distributed approximation algorithms for weighted shortest paths. In Proc.
STOC 2014, pages 565–573. ACM, 2014.

[30] Krzysztof Nowicki. A deterministic algorithm for the MST problem in constant rounds of con-
gested clique. STOC 2021, 2021.

[31] Merav Parter and Eylon Yogev. Congested clique algorithms for graph spanners. In Proc. DISC
2018, pages 40:1–40:18, 2018. doi:10.4230/LIPIcs.DISC.2018.40.

[32] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for Industrial and
Applied Mathematics, USA, 2000.

[33] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354–356,
1969. doi:10.1007/BF02165411.

[34] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In
Proceedings of the 44th ACM Symposium on Theory of Computing (STOC), pages 887–898,
2012. URL: http://doi.acm.org/10.1145/2213977.2214056, doi:10.1145/2213977.
2214056.

120

The Bulletin of the EATCS

121

The Logic in Computer Science Column

by

Yuri Gurevich

Computer Science & Engineering
University of Michigan, Ann Arbor, Michigan, USA

gurevich@umich.edu

BEATCS no 141

122

What are kets?

Yuri Gurevich
Computer Science & Engineering

University of Michigan

Andreas Blass
Mathematics

University of Michigan

Abstract

According to Dirac’s bra-ket notation, in an inner-product space, the inner
product xx | yy of vectors x, y can be viewed as an application of the bra xx| to
the ket |yy. Here xx| is the linear functional |yy ÞÑ xx | yy and |yy is the vector y.
But often — though not always — there are advantages in seeing |yy as the function
a ÞÑ a � y where a ranges over the scalars. For example, the outer product |yyxx|
becomes simply the composition |yy � xx|. It would be most convenient to view
kets sometimes as vectors and sometimes as functions, depending on the context.
This turns out to be possible.

While the bra-ket notation arose in quantum mechanics, this note presupposes
no familiarity with quantum mechanics.

1 The question

Q1: Gentlemen, I have a question for you. But first I need to motivate it and explain
where I am coming from.

The question is related to the so-called inner-product spaces which are vector spaces
over the field R of real numbers or the field C of complex numbers, furnished with inner
product xx | yy, also known as scalar product. Euclidean spaces and (more generally)
Hilbert spaces are the most familiar examples of inner-product spaces. I’ll stick to the
case of C which is of greater interest to me.

LetH be an inner-product space over C, and let x, y range over the vectors inH . A
vector x gives rise to the linear functional y ÞÑ xx | yy that maps any vector y to the scalar
xx | yy. This linear functional is called a bra and denoted xx| in Dirac’s bra-ket notation,
introduced by Paul Dirac [1]. The vector y is called a ket and denoted |yy. Thus the
inner product xx | yy can be viewed as the application xx| |yy � xx|p|yyq of the bra xx| to
the ket |yy.

1Quisani is a former student of the first author.

The Bulletin of the EATCS

123

By the way a side question occurs to me. If kets are vectors and bras are linear
functionals, then xx | yy can just be defined as the application xx| |yy in any vector space
V , rather than presumed to exist. Does the inner product contribute anything?

A2: It does. It provides a particular embedding |xy ÞÑ xx| of our vector space H to the
vector space of linear functionals on H , which is the dual of H in the theory of vector
spaces. Notice that the axiom xx | xy ¥ 0 makes good sense for inner product spaces but
not if we have no connection between |xy and xx|. IfH is a Hilbert space, in particular
ifH is finite dimensional, this embedding is an isomorphism.

Q: Thanks. Let me proceed to my main question. As I said, kets are vectors according
to Dirac, and the point of view that kets are vectors is ubiquitous. Here is a quote from
my favorite textbook on quantum computing: “The notation |�y is used to indicate that
the object is a vector” [2, p. 62].

But recently I watched a recorded lecture [3] by Reinhard Werner, a professor of
physics, who defined |yy as the linear function a ÞÑ a � y from scalars to vectors, so that
y is |yyp1q.

A: Did Prof. Werner compare the definitions?

Q: No, there was only one definition of kets in his lecture. But I think that the outer
product |yyxx| demonstrates an advantage of his approach. In the traditional approach,
|yyxx| is defined to be a (linear) function by fiat. For example, Nielsen and Chuang [2,
p. 68] write:

“Suppose |vy is a vector in an inner product space V , and |wy is a vector in an
inner product space W. Define |wyxv| to be the linear operator from V to W
whose action is defined by

�
|wyxv|

�
p|v1yq � |wy xv | v1y � xv | v1y |wy.”

I do not know how consistent Prof. Werner is in using his definition of kets, but for the
purpose of this discussion let me introduce a purely functional approach where a ket
|yy is always the function a ÞÑ a � y. In this approach, |yyxx| is simply the composition
|yy � xx| of two linear functions and thus |yyxx| is naturally a linear function, the same
function that Nielsen and Chuang define.

At last, I come to my question: Is a ket a vector or a function? It cannot be both, can
it?

A: Well, abuse of notation is common in mathematics, especially if the meaning is
obvious from the context.

Q: Mathematically, the purely functional approach is attractive. Since composition of

2The authors speaking one at a time

BEATCS no 141

124

functions is associative, we can drop the parentheses in expressions like

|uy xv| |wy xx| |yy xz|.

But the purely functional approach has some problems. Consider the scalar product
xx | yy for example. The composition xx| � |yy is a linear operator on C, not a scalar.
We can define, by fiat, that the original xx | yy is, in the purely functional approach,
pxx| � |yyq p1q. It would be more natural, of course, to view |yy as a vector in the context
of scalar product.

I wonder whether one can take advantage of both approaches even if this leads to
abuse of notation. Maybe there is a resolution of this abuse so that the intended meaning
is obvious from the context.

2 Dirac terms

A: It seems that there are such resolutions. We need some analysis to understand what
is going on. This discussion may be more pedantic than usual.

To keep the notation simple, we restrict attention to kets and bras over the same
inner-product space H . For the purpose of the analysis, we put forward the following
tentative convention.

Tentative Convention. Every occurrence of a ket is marked as a vector ket or a func-
tion ket. If y is a vector then the vector ket |yy denotes the vector y but the corresponding
function ket |yy denotes the function a ÞÑ a � y. More generally, for any label L, the vec-
tor ket |Ly denotes some vector v⃗ in H , while the function ket |Ly denotes the function
a ÞÑ a � v⃗, from C toH , for the same vector v⃗. �

Q: You can avoid marking by declaring that, by default, kets are function kets; the
corresponding vector ket is |Ly(1).

A: This is correct. We stick to marking because of its symmetry. Your proposal may
give an impression of bias in favor of function kets.

You have mentioned inner products xx | yy and outer products |yyxx|. Let’s consider
more general products of alternating kets and bras.

Dirac terms: syntax. Kets and bras are Dirac characters. By a Dirac term3 we mean
a nonempty sequence of Dirac characters where kets and bras alternate; the sequence is

The Bulletin of the EATCS

125

often furnished with parentheses.

More formally, Dirac terms are defined inductively. Dirac characters are terms. A
concatenation s1s2 of Dirac terms s1, s2 where kets and bras alternate is a Dirac term.

By default, a Dirac term s comes with enough parentheses to parse s, i.e. to deter-
mine how s is constructed from kets and bras by means of concatenation.

Q: Suppose some ket |Ly occurs more than once in a Dirac term. Can some occurrences
of |Ly be vector kets and some function kets?

A: Sure, why not?

Dirac terms: semantics.

Q: Since kets are disambiguated in the Tentative Convention, semantics seems obvious.

A: It is obvious, but we need to spell out details in order to pursue our analysis.

By induction, we define the intended values Valpsq of (or denoted by) Dirac terms s
and check that the the following equivalences hold.

E1 Valpsq is a linear function with domainH ðñ s ends with a bra, and
Valpsq is a linear function with domain C ðñ s ends with a function ket.

E2 Valpsq is a vector or a scalar ðñ s ends with a vector ket.
E3 Valpsq is a scalar or a scalar-valued function ðñ s starts with a bra.
E4 Valpsq is a vector or a vector-valued function ðñ s starts with a ket.

The value Val
�
xx|
�

of a bra xx| is the linear H Ñ C function denoted by xx|. The
ket values are described in the Tentative Convention above. The equivalences E1–E4
are obvious in these cases.

Let s be a concatenation s1s2 of constituent subterms (which satisfy E1–E4 of
course), and let V1,V2 be the values of s1, s2 respectively. Four cases arise depending on
whether V1,V2 are functions or not.

FF If V1 is a function and V2 is a function, then Valpsq is the composition V1 � V2, so
that Valpsq is a function whose domain is that of V2 and

ValpsqpAq �
�
V1 � V2

�
pAq � V1pV2pAqq for all A P DompV2q.

3While logicians speak about terms, computer scientists speak about expressions. Here we use the
logicians’ vocabulary for a very utilitarian reason: “term” is shorter than “expression.”

BEATCS no 141

126

FN If V1 is a function but V2 is not then

Valpsq � V1pV2q.

NF If V1 isn’t a function but V2 is then Valpsq is the function V1 � V2 so that Valpsq is
a function whose domain is that of V2 and

ValpsqpAq �
�
V1 � V2

�
pAq � V1 � pV2pAqq for all A P DompV2q.

NN If neither V1 nor V2 is a function then

Valpsq � V1 � V2.

Q: I see that you overload the multiplication symbol � with different types.

A: We do. But notice that at least one of the factors is always a scalar. It is very
common to multiply scalars, vectors, and linear functions by scalars. But let’s check
that our definitions make sense and that the equivalences E1–E4 hold.

Clauses FF and FN make sense in that V2 belongs to or takes values in DompV1q.
Indeed, by E1, s1 ends with a bra or a function ket. If s1 ends with a bra, then Domps1q �
H by E1 for s1, and s2 starts with a ket, and the desired property follows from E4 for
s2. If s1 ends with a function ket, then Domps1q � C by E1 for s1, and s2 starts with a
bra, and the desired property follows from E3 for s2.

Clauses NF and NN also make sense, which is obvious if V1 is a scalar. Otherwise
V1 is a vector and it suffices to check that V2 is a scalar or scalar-valued function. By
E2, s1 ends with a ket. Hence s2 starts with a bra. Use E3 for s2.

It remains to check that Valpsq satisfies the equivalences E1–E4. By FF–NN, Valpsq
is a function if and only if V2 is a function, and if Valpsq is a function then its domain is
DompV2q, and if Valpsq is not a function then it is a vector or scalar. And of course s, s2

share the final character. Hence E1 and E2 hold.

Further, by FF–NN, Valpsq is a vector or vector-valued function if and only if V1 is
so. It follows that Valpsq is a scalar or scalar-valued function if and only if V1 is so. And
of course s, s1 share the first character. Hence E3 and E4 hold.

Q: Let me just note that your clause NF generalizes the definition of outer product |wyxv|
quoted in §1 provided that the vector spaces V and W coincide withH .

The Bulletin of the EATCS

127

3 Associativity

A: It turns out that parentheses are unnecessary in Dirac terms because the partial oper-
ation

Valps1q � Valps2q � Valps1s2q

on the values of Dirac terms is associative. The operation is defined if the concatenation
s1s2 is a Dirac term, i.e. if kets and bras alternate in s1s2.

Q: What if Valpsiq � Valptiq? Will we have that Valps1s2q � Valpt1t2q?

A: Yes, because the concatenation clauses in the definition of Valps1s2q are formulated
in terms of Valps1q and Valps2q, without examining the terms s1 and s2.

Lemma 1. The partial operation � is associative. In other words, let s1, s2, s3 be Dirac
terms such that kets and bras alternate in the concatenation s1s2s3 and let V1,V2,V3 be
the values of s1, s2, s3 respectively. Then

pV1 � V2q � V3 � V1 � pV2 � V3q (1)

Proof. First examine V3. If V3 is a scalar, factor it out of the equation, so that (1)
becomes obvious. Similarly, if V3 is a scalar-valued function, then

pV1 � V2q � V3pAq � V1 � pV2 � V3pAqq holds for every A P DompV3q (2)

because the scalar V3pAq can be factored out of the equation. If V3 is a vector-valued
function, it suffices to prove (2) because it implies (1). In order to prove (2) for vector-
valued functions, it suffices to prove (1) for the case where V3 is a vector. In this case,
by E4, s3 starts with ket, s2 ends with a bra, and therefore, by E1, V2 is a function with
domainH .

Next examine V1. If V1 is a scalar, factor it out, and then (1) is obvious. If V1 is a
function then, using FF and FN in §2, we have:

pV1 � V2q � V3 �
�
V1 � V2

�
pV3q � V1pV2pV3qq

V1 � pV2 � V3q � V1 � pV2pV3qq � V1pV2pV3qq

It remains to prove (1) in the case where V1,V3 are vectors and V2 is a function with
domainH . Since V1 is a vector, s1 ends with a ket by E2, so that s2 starts with a bra and
V2 is a scalar-valued function by E3. We have

pV1 � V2q � V3 �
�
V1 � V2

�
pV3q � V1 � V2pV3q,

V1 � pV2 � V3q � V1 � pV2pV3qq � V1 � V2pV3q. □

BEATCS no 141

128

4 Resolution

Q: What does the associativity buy you?

A: It allows us to prove a certain robustness phenomenon which can be illustrated on
the example where

s �
�
xx | yy

�
xu|

Let |vy be an arbitrary vector in H and c, d be the scalar products xx | yy and xu | vy,
respectively. If |yy as is a vector ket in s then, by value, i.e., writing terms instead of
their values (as it is commonly done)

s|vy �
��
xx | yy

�
xu|
	
|vy �

�
c � xu|q|vy � c � d.

If |yy is a function ket in s then xx| � |yy is the the operation of multiplying by c, and so
(again by value) we have

s|vy �
�
xx| |yy xu|

	
|vy �

�
xx| � |yy � xu|

	
|vy �

�
xx| � |yy

	
� d � c � d,

getting exactly the same result.

Lemma 2 (Robustness). Let s be a Dirac term and let a ket |yy occur in a particular
non-final position in sequence s. Valpsq is the same whether (the occurrence of) |yy in
that position is a vector ket or a function ket.

Proof. First suppose that |yy is the first character in s. By Lemma 1, we may assume
that s is a concatenation of |yy and some Dirac term s2. Let V,V2 be the values of |yy
and s2 respectively. By E3, V2 is a scalar or a scalar-valued function. Recall that there
is a vector v⃗ such that y is a marked version of v⃗. If |yy is a vector ket then V � v⃗, and if
|yy is a function ket it is the function Vpaq � a � v⃗.

If V2 is a scalar then, by NF–NN in §2,

Valpsq �

#
VpV2q � V2 � v⃗ if |yy is a function ket,
V � V2 � v⃗ � V2 � V2 � v⃗ if |yy is a vector ket.

Similarly, if V2 is a scalar-valued function then, by FF and FN, for every argument A of
V2, we have

ValpsqpAq �

#
VpV2pAqq � V2pAq � v⃗ if |yy is a function ket,
V � V2pAq � v⃗ � V2pAq � V2pAq � v⃗ if |yy is a vector ket.

This completes the proof in the case that |yy is at the beginning of s.

The Bulletin of the EATCS

129

Now suppose that s � s1|yys2 where s1, s2 are Dirac terms with values V1,V2. By
Lemma 1, we may assume that s is the concatenation of s1 and |yys2, so that Valpsq
is determined by V1 and Val

�
|yys2

�
. By the first part of the proof, Val

�
|yys2

�
does not

depend on how the ket |yy is marked. It follows that Valpsq does not depend on how |yy
is marked. □

Now we drop the Tentative Convention of §2. The kets are not marked anymore.
One should be able to tell from the context whether a ket denotes a vector or a function.

Q: By the robustness lemma, we have a whole spectrum of possible resolutions of the
abuse of notation in question.

A: One natural resolution is to view kets as function kets where possible:

In a Dirac term, an occurrence of a ket is viewed as a vector if and only if it is the
final character in the term.

Q: The direct opposite strategy is to view an occurrence of a ket as a function if and
only if it is the first character in the term. I’m kidding.

A: Actually, a close relative of your strategy works: View an occurrence of a ket as a
function if and only if it is the first character and the last character is a bra.

Q: Explain.

A: If the first character is a bra or if the last character is a ket, then the given Dirac term
has the form

xx1| |y1y . . . xxn| |yny, xx1| |y1y . . . xxn| |yny xx0|, or |y0y xx1| |y1y . . . xxn| |yny.

Pair up every xxi| with |yiy and let c �
±

ixxi | yiy. Every ket is viewed as a vector, and
you get c, c � xx0|, or c � |y0y respectively.

If the first character is a ket and the last character is a bra, the term has the form

|y0y xx1| |y1y . . . xxn| |yny xx0|.

Pair up xx1|, . . . , xxn| with |y1y, . . . , |yny respectively and let c �
±n

i�1xxi | yiy. You get
c � |y0yxx0| � c � |y0y � xx0|.

BEATCS no 141

130

References

[1] Paul A.M. Dirac, “A new notation for quantum mechanics,” Mathematical Proceedings of
the Cambridge Philosophical Society 35:3 (1939) 416–418

[2] Michael A. Nielsen and Isaac L. Chuang, “Quantum Computation and Quantum Informa-
tion,” 10th Anniversary Edition, Cambridge University Press 2010

[3] Reinhard F. Werner, “Mathematical methods of quantum information theory, Lecture 1,”
at minute 35, https://www.youtube.com/watch?v=vb0ZEsATUcw&t=2109s

The Bulletin of the EATCS

131

132

The Bulletin of the EATCS

133

The Formal Language Theory Column
by

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano

20133 Milano, Italy
pighizzini@di.unimi.it

BEATCS no 141

134

25 Editions of DCFS: Origins and Directions

Jürgen Dassow
Otto-von-Guericke-Universität Magdeburg

Fakultät für Informatik
PSF 4120, 39016 Magdeburg, Germany
dassow@iws.cs.uni-magdeburg.de

Martin Kutrib
Institut für Informatik, Universität Giessen

Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Giovanni Pighizzini
Dipartimento di Informatica

Università degli Studi di Milano
Via Celoria, 18, 20133 Milano, Italy
pighizzini@di.unimi.it

Abstract

Since the late nineties the scope of the International Conference of Descrip-
tional Complexity of Formal Systems (DCFS) encompasses all aspects of de-
scriptional complexity, both in theory and application. We first consider the
historical development of the conference. Then we turn to some impressions
from the 25 editions of the conference, which we particularly remember. In
order to give a deeper inside in the field of descriptional complexity, we
present some of its very basics from a general abstract perspective. Then we
turn to some of the outstanding and dominating directions in the course of
time. The results presented are not proved but we merely draw attention to
the overall picture and some of the main ideas involved.

1 Introduction
Since the dawn of theoretical computer science the relative succinctness of differ-
ent representations of (sets of) objects by formal systems have been a subject of

The Bulletin of the EATCS

135

intensive research. An obvious choice to encode the objects is by strings over a
finite alphabet. Then a set of objects is a set of strings, that is, a formal language.
Formal languages can be described by several means, for example, by automata,
grammars, rewriting systems, equation systems, etc. In general, such a descrip-
tional system is a set of finite descriptors for languages. Core questions of descrip-
tional complexity are “How succinctly (related to a size complexity measure) can
a system represent a formal language in comparison with other systems?” and
“What is the maximum trade-off when the representation is changed from one
descriptional system to another, and can this maximum be achieved?” In the clas-
sification of automata, grammars, and related (formal) systems it turned out that
the gain in economy of description heavily depends on the considered systems.

The approach to analyze the size of systems as opposed to the computational
power seems to originate from Stearns [115] who studied the relative succinctness
of regular languages represented by deterministic finite automata (DFAs) and de-
terministic pushdown automata. He showed the decidability of regularity for de-
terministic pushdown automata in a deep proof. The effective procedure revealed
the following upper bound for the simulation. Given a deterministic pushdown au-
tomaton with n > 1 states and t > 1 stack symbols that accepts a regular language,
then the number of states which is sufficient for an equivalent DFA is bounded
by an expression of the order tnnn

. Later this triple exponential upper bound has
been improved by one level of exponentiation in [116]. In the levels of expo-
nentiation it is tight, as proved in [95] by obtaining a double exponential lower
bound. The precise bound is still an open problem. Probably the best-known
result on descriptional complexity is the construction of a DFA that simulates a
given nondeterministic finite automaton (NFA) [113]. By this so-called power-
set construction, each state of the DFA is associated with a subset of NFA states.
Moreover, the construction turned out to be optimal, in general. That is, the bound
on the number of states necessary for the construction is tight in the sense that for
an arbitrary n there is always some n-state NFA which cannot be simulated by any
DFA with strictly less than 2n states [79, 95, 97].

Let us turn to another cornerstone of descriptional complexity theory in the
seminal paper by Meyer and Fischer [95]. In general, a known upper bound for
the trade-off answers the question, how succinctly can a language be represented
by a descriptor of one descriptional system compared with the representation by an
equivalent descriptor of the other descriptional system? In [95] the sizes of finite
automata and general context-free grammars for regular languages are compared.
The comparison revealed a qualitatively new phenomenon. The gain in economy
of description can be arbitrary, that is, there are no recursive functions serving as
upper bounds for the trade-off, which is said to be non-recursive. Non-recursive
trade-offs usually sprout at the wayside of the crossroads of (un)decidability, and

BEATCS no 141

136

in many cases proving such trade-offs apparently requires ingenuity and careful
constructions.

Nowadays, descriptional complexity has become a large and widespread area.
On our tour on the field we first consider the historical development of the confer-
ence Descriptional Complexity of Formal Systems (DCFS). Then we turn to some
impressions from the 25 editions of the conference, which we particularly remem-
ber. In order to give a deeper inside in the field of descriptional complexity, we
present some of its very basics from a general abstract perspective. Our tour on
the subjects covers some outstanding and dominating topics. It obviously lacks
completeness and it reflects our personal view of what constitute some of the most
interesting links to descriptional complexity theory. In truth there is much more
to the field than can be summarized here and in the related papers [31, 39, 69, 70].
The results presented are not proved but we merely draw attention to the overall
picture and some of the main ideas involved.

2 History of DCFS 1

In 1998, the history of DCFS started at the conference Mathematical Foundations
of Computer Science (MFCS) in Brno. During a lunch break, Detlef Wotschke
(1944–2019) suggested the organization of a workshop on descriptional complex-
ity and related topics. It seems that there were two reasons for such a proposal.

Firstly, in 1997, within the organization International Federation of Infor-
mation Processing (IFIP), a reestablishment of the Technical Committee TC1
Foundations of Computer Science took place, and within TC1 a Working Group
WG 1.02 Descriptional Complexity was created. The chairman of this WG was
Detlef Wotschke. It was natural to found a special workshop of the working group.

Secondly, the MFCS conference in Brno was accompanied by more than 10
workshops, some of them were organized as single events and some of them took
place as a part of certain workshop series. Descriptional complexity was present
in some of these workshops, but a special workshop on this topic was missing.

Detlef did not only come with the proposal of a workshop, he also had an
idea for the place – Magdeburg (where DLT took place in 1995 and where Jürgen
Dassow, the head of the group working in formal languages in Magdeburg, had a
good position in the university). After some discussions, Jürgen accepted that his
group will organize a workshop in Magdeburg in 1999.

In July 20–23, 1999, the workshop Descriptional Complexity of Automata,
Grammars and Related Systems (DCAGRS) took place in Magdeburg. It was a

1The conference series Descriptional Complexity of Formal Systems has two roots, the work-
shops Formal Descriptions and Software Reliability and Descriptional Complexity of Automata,
Grammars and Related Systems. Here we reflect only the latter one.

The Bulletin of the EATCS

137

terrible title, but the organizers wanted a title which describes very well the topic
of the workshop. The event was successful with respect to the invited lectures
(e. g. J. Gruska, Sh. Yu (1950–2012), J. Shallit) as well as to the number and
quality of submissions as well as to the large number of participants.

Detlef Wotschke
(1944–2019)

Helmut Jürgensen
(1942–2019)

We mention two facts where the first DCAGRS essentially differs from the
later DCFS conferences. Firstly, the conference fee was only 70 euros, the average
registration fee of some of the last normal DCFS conferences was 280 euros.
Secondly, the program committee consisted of six person, the average of the last
conferences was 24.

By the success of the first edition, it was necessary to look for a continuation.
One weak before the workshop in Magdeburg, there was the Workshop on Imple-
mentation of Automata in Potsdam, organized by Helmut Jürgensen (1942–2019).
During the excursion of this event (a boat tour through the lakes around Pots-
dam) Detlef and Jürgen talked to Helmut concerning the next DCAGRS. Finally,
Helmut accepted to organize it in London (Ontario) (not knowing that it will be
organized in London four times almost like a biannual conference, and that he will
organize it three times). The site London was chosen, because, from the begin-
ning, there was the idea to organize the workshop alternately in Europe and North
America. This idea has been followed in the sequel with only three exceptions as
one can see from Figure 1.

In the following years, there was a steering committee which was looking for
the persons and places of the next (two) DCFS editions. This task was not easy in
some cases, but finally the committee was successful in all the years. In 2015 the
international workshop DCFS became an international conference to underline

BEATCS no 141

138

the grown importance and the history of the event. A list of all editions of DCFS
is given in Figure 1.

time place organizing institution / chairman
DCAGRS 1999 July 20–23 Magdeburg, Germany O.-v.-Guericke-Universität Magdeburg

J. Dassow
DCAGRS 2000 July 27–29 London, Canada The University of Western Ontario

H. Jürgensen
DCAGRS 2001 July 20–22 Vienna, Austria Technical University of Vienna

R. Freund
DCFS 2002 August 21–25 London, Canada The University of Western Ontario

H. Jürgensen
DCFS 2003 July 12–14 Budapest, Hungary Hungarian Academy of Sciences

E. Csuhaj-Varjú
DCFS 2004 July 26–28 London, Canada The University of Western Ontario

L. Ilie
DCFS 2005 June 30 - July 2 Como, Italy University of Milan

G. Pighizzini
DCFS 2006 June 21–23 Las Cruces, USA New Mexico State University

H. Leung
DCFS 2007 July 20–22 Nový Smokovec, Slovakia R.J.Šafarik University Košice

V. Geffert
DCFS 2008 July 16–18 Charlottetown, Canada University of Prince Edward Island

C. Câmpeanu
DCFS 2009 July 6–9 Magdeburg, Germany O-v-Guericke-Universität Magdeburg

J. Dassow, B. Truthe
DCFS 2010 August 8-10 Saskatoon, Canada University of Saskatchewan

I. McQuillan
DCFS 2011 July 25–27 Limburg, Germany Justus-Liebig-Universität Gießen

M. Holzer, M. Kutrib
DCFS 2012 July 23–25 Braga, Portugal Univ. of Porto and Univ. of Minho

N. Moreira, R. Reis
DCFS 2013 July 22-25 London, Canada The University of Western Ontario

H. Jürgensen
DCFS 2014 August 5–8 Turku, Finland University of Turku

J. Karhumäki, A. Okhotin
DCFS 2015 July 25–27 Waterloo, Canada University of Waterloo

J. Shallit
DCFS 2016 July 5–8 Bucharest, Romania University of Bucharest

C. Câmpeanu
DCFS 2017 July 3–5 Milan, Italy University of Milan

G. Pighizzini
DCFS 2018 July 25–27 Halifax, Canada Saint Mary’s University

St. Konstantinides
DCFS 2019 July 17–19 Košice, Slovakia Slovak Academy of Sciences

G. Jirásková
DCFS 2020 Collected Papers

G. Jirásková, G. Pighizzini
DCFS 2021 Collected Papers

Y.-S.Han, S.-K. Ko
DCFS 2022 August, 29–31 Debrecen, Hungary University of Debrecen

Gy. Vaszil
DCFS 2023 July 4–6 Potsdam, Germany University of Potsdam

H. Bordihn

Figure 1: List of conferences.

We mention some important facts.

The Bulletin of the EATCS

139

The initiative for DCFS came from the chairman of WG 1.02 of TC1 of IFIP,
and all editions were organized by some institution and this IFIP working group
together. Thus DCFS can be considered as the conference of WG 1.02. Since
some years, the meetings of the Working Group take place as an evening session
of DCFS.

If we compare the list of topics from 2007 (the oldest which can be found in
the Web) and 2023 (the last conference) and those in between, then one notice
that they are identical in appr. 75% of the items. This proves that there is a strong
continuity and no following of short-lived modern directions.

In the years 2020 and 2021, DCFS conferences were planned in Vienna orga-
nized by R. Freund and in Seoul organized by Y.-S. Han and S.-K. Ko, respec-
tively. Due to the crisis caused by the Corona virus, both conferences had to be
canceled. However, there were invitations to the world for submitting papers such
that proceedings could also be published in these years. Thanks go to the editors
G. Jirásková/G. Pighizzini and Y.-S. Han/S.-K. Ko for their contribution to the
survival of DCFS during the Corona time.

From the very beginning there was the idea that DCAGRS/DCFS should be
organized with respect time and place in connection with some other conference
such that e. g., only one crossing of the Atlantic Ocean is necessary to visit at
least two conferences. As favorite accompanying conferences were considered
Developments in Language Theory (DLT) and the International Conference Im-
plementation and Application of Automata (CIAA, formerly Workshop on Imple-
mentation of Automata, WIA). Also this idea was realized for almost all editions
(see Figure 2). Sometimes, the events were very near; for instance, in 2001, there
was one day which was part of the DLT as well as of the DCFS program. Some-
times, the distance was large (in 2006, the distance between Las Cruces and Santa
Barbara was 1600 km, but the Europeans had to cross the ocean only once; the
four days between the two conferences could be used e. g., for a visit of the Grand
Canyon almost in the middle between the towns).

The special event 50 Years of Automata Theory, that took place in 2000, was
particularly remarkable. The list of speakers was very impressive. One could hear,
meet and talk to all those persons which contributed by famous basic theorems as
M. Rabin, D. Scott, and Sh. Greibach, introduced essential concepts as R. Mc-
Naughton or wrote famous textbooks as J. Hopcroft and A. Salomaa (note that the
mentioned names represent less than half of speakers). However, we do not know
why automata theory became 50 years in 2000.

In 2015, one day before DCFS, the birthday of Janusz (John) Brzozowski
(1935–2019) was celebrated in a one-day-conference.

Some remarks concerning proceedings. In the years 1999–2008, proceedings
were published by the organizing institution. In the following two years, the pro-

BEATCS no 141

140

year/place accomp. event year/place accomp. event
1999 Magdeburg WIA Potsdam 2010 Saskatoon DLT London and
2000 London CIAA London and CIAA Winnipeg

50 Years Automata Th. 2012 Braga CIAA Porto
2001 Vienna DLT Vienna 2013 London CIAA Halifax
2003 Budapest DLT Szeged 2014 Turku CIAA Gießen
2004 London CIAA Kingston 2015 Waterloo Birthday Brzozowski
2005 Como CIAA Sophia Antipolis 2017 Milan DLT Liege and
2006 Las Cruces DLT Santa Barbara CIAA Marne-la-Vallé
2007 Nový Smokovec CIAA Prague 2018 Halifax CIAA Charlottetown
2008 Charlottetown CIAA San Francisco 2019 Košice CIAA Košice
2009 Magdeburg DLT Stuttgart 2022 Debrecen NCMA Debrecen

Figure 2: List of events accompanying DCAGRS/DCFS. (NCMA is an interna-
tional workshop on Non-Classical Models of Automata and Applications.)

ceedings appeared in the series Electronic Proceedings in Theoretical Computer
Science as numbers 3 and 31, respectively. There were some attempts to pub-
lish in the LNCS series of Springer-Verlag, but only in 2011 we were successful.
Starting with the thirteenth edition of DCFS, the Proceedings appeared as Lecture
Notes in Computer Science.

Proceedings have mostly a page limit for the contributions, i. e., they do not
contain often full versions. Therefore, from the very beginning, full versions of
selected papers were published as special issues of some scientific journals. Thus,

year journal volume year year journal volume year
DCFS (issue) journal DCFS (issue) journal
1999 JALC 5 (3) 2000 2012 JALC 17 (2–4) 2012
2000 JALC 6 (4) 2001 2013 IJFCS 25 (7) 2014
2001 JALC 7 (4) 2002 2014 TCS 610(A) 2016
2002 JALC 9 (2–3) 2004 2015 IC 259 (2) 2018
2003 TCS 330 (2) 2005 2016 JALC 22 (1–3) 2017
2004 IJFCS 16 (5) 2005 2017 IJFCS 30 (6–7) 2019
2005 JALC 12 (1–2) 2007 2018 TCS 798 2019
2006 TCS 387 (2) 2007 2019 IC 284 2022
2007 IJFCS 19 (4) 2008 2020 JALC 28 (1–3) 2023
2008 TCS 410 (35) 2009 2021 IJFCS in progress
2009 JALC 15 (1–2) 2010 2022 TCS in progress
2010 IJFCS 23 (1) 2012 2023 IC planned
2011 TCS 449 2012

Figure 3: Journal publication of selected papers.

The Bulletin of the EATCS

141

one can find many full versions of a certain DCFS on a fixed place and not dis-
tributed over a lot of journals. For the first editions, the full versions appeared in
Journal of Automata, Languages, and Combinatorics (JALC), a journal edited by
the University of Magdeburg with persons in the editing staff, which also were
involved in the program and organizing committees. Later the journals Theoret-
ical Computer Science (TCS) from Elsevier B.V., International Journal of Foun-
dations of Computer Science (IJFCS) from World Scientific Publishing Co., and
Information and Computation (IC) from Elsevier B.V. were involved. The list in
Figure 3 gives the journal in relation to the year of the conference.

The development of the number of accepted papers is shown in Figure 4. It is
worth mentioning that the invited contributions are not included in the statistics.
In most years there were additionally 4 invited presentations and papers. How-
ever, since in the early years the spirit of DCAGRS/DCFS was that of an intense
workshop, at that times the number of invited speakers was higher, with a maxi-
mum of 8 speakers in 2004. Though from the very beginning all submitted papers
were peer reviewed by at least three reviewers, respectively, the PCs had to work
in the classical way without the support of a more or less professional conference
managing system. Due to this fact, the information about the number of submitted
and, thus, the number of rejected submissions is not available before 2011. The
situation changed in 2011 when EasyChair came into play.

A pleasing fact is that the number of authors and their countries of affiliations
has been at a good level from the beginning. This also shows that the interest
in the topic has been maintained over the years and emphasizes once more that
topics of descriptional complexity have a strong continuity and are not following
short-lived directions. The development is shown in Figure 5.

Further information on the DCFS series (for instance programs, contents of
the proceedings, special issues etc.) can be found on the web page

http://www.informatik.uni-giessen.de/dcfs

3 Impressions From 25 Editions of the Conference
The contents of this section consists of personal (not scientific) impressions of
the first author (who did not attend all conferences such that his reflections are
limited).

Mostly, the conference took place in universities or near to the universities in
the towns. The exceptions were

• 2005 Como – in a theater,

BEATCS no 141

142

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
0

5

10

15

20

25

13

20
17 17

21

15

23 22

12

17 16
19

#
P
ap

er
s

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
0

5

10

15

20

25

30

35

40

45

0

0.2

0.4

0.6

0.8

1

3

13

4

7

6

8

6
5 7

12

5

3
2

21 20
22

27

23

13

20 19 18 19
16

14 13

#
P
ap

er
s

0.88

0.61

0.85
0.79 0.79

0.62

0.77 0.79
0.72

0.61

0.76
0.82

0.86

A
cc
ep

ta
n
ce

R
a
te

Number of accepted papers

Number of rejected papers, no information available before 2011

Acceptance rate

Figure 4: Development of the number of papers. Invited contributions are not
included in the statistics.

The Bulletin of the EATCS

143

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
0

10

20

30

40

50

60

70

30 30
33 34

41

34

49
51

27

43

38

47

53

47

41

72

54

39

51

37

41

35

25

34

38

13 14 13
10

14

10

15 15

11 12
14

12
15

13
11

17 17

13

20

13
15

11
9

12 11

Number of different authors of all presented papers

Number of different countries of all presented papers

Figure 5: Development of the number of different authors and the number of
different countries of all presentations. Invited contributions are included in the
statistics.

• 2007 Nový Smokovec – in a hotel in the High Tatras,
• 2011 Limburg – in a hotel,
• 2012 Braga – in a museum.

If I should give the sites which impressed me most, then two places come to
my remembering:

• Sala Bianca of Teatro Sociale in Como: It was a large room with wonderful
baroque design which amazed me as I entered it for the first time as well as
the rest of the workshop.

• Art in the University of Saskatoon: It seemed to me that the whole univer-
sity was an exhibition of different arts and science. All buildings were full
of sculptures, artistic installations and other works of arts, but also some
terrariums. Moreover, already on the way from the hotel to the university, I
saw a lot of sculptures, etc.

In connection with conferences, workshops etc., I visited a lot of places of
interest. However, I remember especially the excursions of the DCFS conferences.
There are two reasons for that: I have seen many sites which also contributed to
my knowledge and were not only nice places to see, and I visited landscapes of
extraordinary importance. Let me mention here:

BEATCS no 141

144

Sala Bianca, Teatro Sociale, Como University of Saskatoon

• The sites of UNESCO World Heritage
DCFS 2012 – visit of Guimarães, where Portugal was born,
DCFS 2017 – excursion to Bergamo (with the wall around the upper town),
DCFS 2018 – visit of the harbour of Lunenburg,
DCFS 2023 – excursions to the castles and gardens of Sanssouci,
DCFS 2010 – visit of Wanuskewin, an important place for the first nations
in Canada (this is not really a UNESCO site but it belongs to the Canadian
proposals)

• DCFS 2006 – excursion to the desert White Sands National Park,
DCFS 2007 – hiking tours in the High Tatras, a UNESCO Biosphere Reser-
vat: one tour only a short walk, one tour to the mountain hut Zamkovskeho
Chata (duration appr. 2 hours), and a long tour of five hours to the Téryho
Chata,
DCFS 2008 - excursion to Green Gables, a National Historic Site of Canada
(it shows places related to the book Anne of Green Gables by L.M. Montgo-
mery, which tells a story on a farmer girl in the 19th century and is popular
in Japan, too).

Finally, some miscellaneous reminds:
In 2002, the reception took place as a barbecue in some park near London. As

we reached the place, H. Jürgensen and some of his students started to encircle
it with a red net used as a fence. Since there were enough place, their handling
was surprising. The reason was that it is forbidden in Ontario to take alcoholic
drinks at public places. However, if you have a fence and a special permission, it
is allowed. Thus they ensured wine and beer for the barbecue reception.

In 2007, the long hiking tour through the High Tatras ended at the station for
a funicular. Some participants took another way of return; they used scooters.

The Bulletin of the EATCS

145

Guimarães:
first capital of Portugal

Bergamo:
wall around the upper town

However, the way was very curvy and steep in some parts such that it was a little
bit dangerous to take this way. Some of the participants arrived the base station
without problems, some of them had a fall of one’s scooter and a painful night.

In 2010, there were a choice in the meal of the reception, lobster or something
else. Because lobster is very typical for Prince Edward Island, almost all par-
ticipants chose lobster. However, almost nobody had some experience in eating
lobster. Therefore anybody got a bib to protect the clothes. Then everyone did his
best and mostly it was done successfully.

Helmut Jürgensen and his students
inside the fence

Markus Holzer, Martin Kutrib,
Bianca Truthe, Jürgen Dassow,

and lobsters

BEATCS no 141

146

4 Basic Concepts of Descriptional Complexity
In order to give a deeper inside in the field of descriptional complexity, we present
some of its very basics from a general abstract perspective.

We denote the set of nonnegative integers by N. Let Σ∗ denote the set of all
words over a finite alphabet Σ. For the length of a word we write |w|. We use ⊆
for inclusions and ⊂ for strict inclusions. In general, the family of all languages
accepted by a device of some type X is denoted by L (X).

In order to be general, we first formalize the intuitive notion of a representa-
tion or description of a family of languages. A descriptional system is a collection
of encodings of items where each item represents or describes a formal language.
In the following, we call the items descriptors, and identify the encodings of some
language representation with the representation itself. More precisely, a descrip-
tional system S is a set of finite descriptors such that each D ∈ S describes a
formal language L(D). The family of languages represented (or described) by S
is L (S) = { L(D) | D ∈ S }.

A complexity measure for a descriptional systemS is a total recursive mapping
c : S → N. From the viewpoint that a descriptional system is a collection of
encoding strings, the length of the strings is a natural measure for the size. We
denote it by length.

For example, nondeterministic finite automata can be encoded over some fixed
alphabet. The set of these encodings is a descriptional system S, and L (S) is the
family of regular languages.

Apart from length, examples for complexity measures for nondeterministic
finite automata are the number of states and the number of transition.

Let S1 and S2 be descriptional systems with complexity measures c1 and c2,
respectively. A total function f : N → N, is said to be a lower bound for the
increase in complexity when changing from a descriptor in S1 to an equivalent
descriptor in S2, if for infinitely many D1 ∈ S1 with L(D1) ∈ L (S2) there exists
a minimal D2 ∈ S2(L(D1)) such that c2(D2) ≥ f (c1(D1)).

A total function f : N → N is an upper bound for the increase in complex-
ity when changing from a descriptor in S1 to an equivalent descriptor in S2, if
for all D1 ∈ S1 with L(D1) ∈ L (S2), there exists a D2 ∈ S2(L(D1)) such that
c2(D2) ≤ f (c1(D1)).

It may happen that the upper bound is not effectively computable. If there
is no recursive upper bound, then the trade-off for changing from a description
in S1 to an equivalent description in S2 is said to be non-recursive. Non-recursive
trade-offs are independent of particular measures. That is, whenever the trade-
off from one descriptional system to another is non-recursive, one can choose
an arbitrarily large recursive function f but the gain in economy of description
eventually exceeds f when changing from the former system to the latter. As an

The Bulletin of the EATCS

147

example, we consider nondeterministic pushdown automata that are used to accept
regular languages. Clearly, for any such automaton there exists an equivalent finite
automaton. However, the trade-off for the conversion of the pushdown automaton
into the finite automaton is non-recursive.

5 Outstanding Topics

5.1 Computational Completeness with Small Resources
In the 25 edition of DCFS, there were more than 50 papers on extensions of
context-free grammars (as matrix and programmed grammars etc.), insertion-
deletion systems, contextual grammars, systems of grammars and automata (as
Lindenmayer systems, cooperating distributed grammar systems, parallel com-
municating grammar systems, etc.) The problem which is mostly discussed is the
following: Let a device and a numerical parameter, which describes (partly) the
size of the device, be given. Let L be the family of languages generated by such
devices. Is there a constant c such that, for each L ∈ L , there is a device D which
computes L and the parameter of D is at most c? Moreover, if c exists, find the
minimal one.

In the sixties and seventies, a lot of variants of context-free grammars were
introduced, where the sequence of the applied rules is controlled by some mecha-
nism. We mention very informally three mechanisms and refer to [19] for details.
In a matrix grammar, sequences of rules called matrices are given, and the gener-
ation process consists of applications of matrices, i. e., rules in the order given by
the matrices; in a programmed grammar, with each rule, sets of successor rules
are associated; in a graph-controlled grammar, the rules are associated to nodes
of a graph and the successor rule has to be taken from the successor nodes in the
graph. If one allows appearance checking, i. e., there is a set F of distinguished
rules, and rules of F can be overpassed if they cannot be applied, and erasing rules,
all these mentioned grammars generate all recursively enumerable languages.

As numerical parameter we take the number of nonterminals.
The first result in this direction was given by Gh. Păun in [111]. He showed

that each recursively enumerable language can be generated by a matrix grammars
with at most six nonterminals. An improvement was only given in 2001 in [23]
and [21], where it was proved that each recursively enumerable language can be
generated by a programmed grammar or a graph controlled grammar with only
three nonterminals. The best known bounds where given by H. Fernau, R. Freund,
M. Oswald and K. Reinhardt at DCFS’05:

BEATCS no 141

148

Theorem 1. (DCFS’05, [22])
i) For each recursively enumerable language L, there is a matrix grammar

with at most three nonterminals which generates L.
ii) For each recursively enumerable language L, there is a programmed gram-

mar G with at most three nonterminals which generates L. Moreover, only two of
the nonterminals are used in appearance checking mode.

iii) For each recursively enumerable language L, there is a graph controlled
grammar with at most two nonterminals, both used in appearance checking mode,
which generates L.

iv) The family of languages generated by graph controlled grammar with only
one nonterminal used in the appearance checking mode is a proper subset of the
family of all recursively enumerable languages.

We note that the results given in i) and iii) are optimal.

The operations of insertion and deletion of words are fundamental in formal
language theory. They are motivated from linguistics (see contextual grammars)
as well as – especially in the last 25 years – by the modeling of biological phe-
nomena. Mostly, the insertions and deletion can only be done in a certain context,
i. e., given a triple (α,w, β) of words, we can only insert w in a word x to obtain y if
x = uαβv and y = uαwβv (and analogous for deletions). In context-free insertion-
deletion systems, the contexts α and β are always empty. Then w can be inserted
at any place in x.

A context-free insertion-deletion system G can be described as a 5-tuple G =
(V,T, I,D, A), where V and T are two alphabets with T ⊆ V , and I ⊆ V∗, D ⊆ V∗,
and A ⊆ V∗ are three finite sets. The language generated by a context-free
insertion-deletion system consists of all words from T ∗ which can be obtained
from A by iterated applications of insertions of words from I and deletions of
words of D.

Surprisingly, M. Margenstern, Gh. Păun, J. Rogozhin, and S. Verlan proved
that already context-free insertion-deletion systems, where the length of the in-
serted and deleted words are short, are very powerful:

Theorem 2. (DCFS’03, [88]) For each recursively enumerable language L, there
is a context-free insertion-deletion system G where all words in I have a length at
most three and all words in D have a length at most two such that G generates L.

Two years later, S. Verlan showed that this result is optimal:

Theorem 3. (DCFS’05, [117])
i) A context-free insertion-deletion system, where all words of I and D have a

length at most two, generates a context-free language.
ii) A context-free insertion-deletion system, where the sets I or D contain only

letters, generates a context-free language.

The Bulletin of the EATCS

149

Parallel communicating grammar systems (for short PCGSs) were introduced
by Gh. Păun and L. Santean (now L. Kari) in 1989 in [112]. We only give an infor-
mal description of PCGSs. A non-returning PCGS is specified as an (n + 3)-tuple
G = (N,K,T,G1,G2, . . . ,Gn), where V and T are alphabets, K = {Q1,Q2, . . . ,Qn}

is a set of n query symbols, and, for 1 ≤ i ≤ n, Gi = (N ∪K,T, Pi, S i) is a context-
free grammar with an axiom S i ∈ N. A configuration of G is an n-tuple of words
over N ∪ T ∪ K. We say that (x1, x2, . . . , xn) derives in one step (y1, y2, . . . , yn) if
and only if

a) no xi, 1 ≤ i ≤ n, contains a query symbol, and xi =⇒Gi yi for 1 ≤ i ≤ n, or
b) if xi = z0Qi1z1Qi2z2 . . .Qikzk with z j ∈ (N∪T)∗ for 0 ≤ j ≤ k and xi j contains

no query symbol for 1 ≤ j ≤ k, then yi = z0xi1z1xi2z2 . . . xikzk (i. e., query symbols
are replaced by the corresponding sentential form); otherwise yi = xi.

The generated language consists of all word x1 ∈ T ∗ such that there is a con-
figuration (x1, x2, . . . , xn) which can be obtained from (S 1, S 2, . . . , S n) by some
derivation steps.

The generative power of non-returning PCGSs was open for more than 10
years. In 2000, N. Mandache proved that any recursively enumerable language
can be generated by some non-returning PCGS. However, the proof allows no
limitation of the number of grammars (see [87]). The first bound for the number
of grammars, to generate all recursively enumerable languages was presented at
DCFS’05 by Gy. Vaszil, who show that eighth grammars are sufficient. An im-
provement was given at DCFS’09 by E. Csuhaj-Varjú and Gy. Vaszil. Hitherto,
their bound is the best known one.

Theorem 4. (DCFS’09, [18]) For any recursively enumerable language L, there
is a non-returning PCGS with n grammars which generates L.

5.2 State Complexity of Operations
One of the most studied topics at DCFS is operational state complexity. The topic
was presented during the first DCAGRS by Sheng Yu in this invited talk State
Complexity of Regular Languages [120]. Dozens of papers deal with various as-
pects of this field. Before we start our short tour through this topic we present its
basic idea.

Let ◦ be a fixed binary operation on languages from a family L that is closed
under the operation. Then the ◦-operation problem can be stated as follows:

• Given a language descriptor A of size m and a language descriptor B of
size n such that L(A) ∈ L and L(B) ∈ L .

• Which size is sufficient and necessary in the worst-case (in terms of n and m)
for a language descriptor to describe the language L(A) ◦ L(B)?

BEATCS no 141

150

Obviously, this problem generalizes as well to kary language operations like,
for example, complementation. In particular, if language descriptors are consid-
ered that are finite automata whose size is measured by their number of states, the
notion operational state complexity is used.

Operations on (non)deterministic finite automata

First observations concerning basic operation problems of DFAs can be found
in [90], where tight bounds for some operations are stated without proof. In [76]
the tight bound of 2n states for the DFA reversal was obtained in connection with
Boolean automata. After the dawn the research direction on DFAs was revital-
ized in [121]. The systematic study of nondeterministic finite automata originates
in [38].

In general, a method to obtain upper bounds for some ◦-operation problem
is to provide an effective procedure that constructs a finite automaton accepting
the result of the operation applied to some given finite automata. The number of
states of the automaton constructed is an upper bound for the problem. To show
that an upper bound is tight for all input automata to the procedure, a family of
minimal automata must be given such that the resulting automata achieve that
bound. These families are called witnesses. Naturally, a witness can also be given
by a family of languages.

In [8] an automaton-independent approach, called quotient complexity, that
is based on derivatives of languages is presented, which turned out to be a very
useful technique for proving upper bounds for DFA operations (cf. [10, 11, 12]).

To give an impression of basic types of results, we provide the bounds for
some basic operations on DFAs and NFAs accepting infinite general and unary
regular languages in Table 1.

Subregular languages

Table 1 also reflects the distinctions between general and unary regular languages
that have been made from the early beginnings. At first glance the differences
between general and unary languages are not that big for NFAs while it can be ex-
ponential for DFAs. However, even if nondeterminism is available, the limitation
to unary languages can have a big impact to the operational state complexity.

It turned out, that for many state complexity issues of unary languages Lan-
dau’s function

F(n) = max{ lcm(x1, . . . , xk) | x1, . . . , xk ≥ 1 and x1 + · · · + xk = n }

which gives the maximal order of the cyclic subgroups of the symmetric group
on n elements, plays a crucial role. Here, lcm denotes the least common multiple.

The Bulletin of the EATCS

151

Infinite Languages
NFA DFA

general unary general unary

∪ m + n + 1 m + n + 1 mn mn

∼ 2n 2Θ(
√

n·log n) n n
∩ mn mn mn mn
R n + 1 n 2n n
· m + n m + n − 1 ≤ · ≤ m + n m2n − t2n−1 mn
∗ n + 1 n + 1 3 · 2n−2 (n − 1)2 + 1
+ n n
\ 2n − 1 n
/ n n

Table 1: [31] NFA and DFA state complexities for operations on infinite lan-
guages, where t is the number of accepting states of the “left” automaton, \ de-
notes the left and / the right quotient by an arbitrary language. The tight lower
bounds for union, intersection, and concatenation of unary DFAs require m and n
to be relatively prime.

Since F depends on the irregular distribution of the prime numbers, we cannot
expect to express F(n) as a simple function of n. In [73, 74] the asymptotic growth
rate

lim
n→∞

(ln F(n)/
√

n · ln n) = 1

was determined, which implies the (for our purposes sufficient) rough estimate
F(n) ∈ 2Θ(

√
n·log n). The connection with the complementation operation on unary

languages represented by NFAs becomes evident from Table 1. This complemen-
tation is closely related to the unary NFA by DFA simulation, which causes also a
state blow-up of order F(n) ∈ 2Θ(

√
n·log n). The proofs rely on a a normal form for

unary NFAs introduced in [15]. It reads as follows.
Each n-state NFA over a unary alphabet can effectively be converted into an

equivalent O(n2)-state NFA consisting of an initial deterministic tail and some
disjoint deterministic loops, where the automaton makes only a single nondeter-
ministic decision after passing through the initial tail, which chooses one of the
loops.

Apart from unary and finite languages, many other subregular language fami-
lies have been considered from the viewpoint of operational state complexity. The
systematic investigation of the descriptional complexity of such families origi-

BEATCS no 141

152

nates in [5], where the state costs of determinizations are considered. The number
of papers at DCFS dealing with this topic is quite huge and cannot be covered
here. A comprehensive survey with valuable and detailed references is [24].

Universal witnesses

We mentioned above that the tightness of upper bounds is often shown by pro-
viding suitable witness languages. Interestingly, in [9] a witness over a ternary
alphabet is obtained that shows the tightness of the DFA upper bounds for the
operations union, intersection, concatenation, Kleene star, and reversal simulta-
neously. Therefore, it is called a universal witness. The universal witness is not
always optimal with respect to the underlying alphabet size. However, from the
state complexity view it can be seen as the most complex regular language. In
particular, it can be used for even more. It is a witness for the maximal bounds on
the number of atoms, the quotient complexity of atoms, the size of the syntactic
semigroup, and about two dozen combined operations, where only a few require
slightly modified versions of the universal witness. Further applications can be
found in [13, 14].

Magic numbers

In connection with the well-known subset construction, a fundamental question
was raised in [45]: Does there always exists a minimal n-state NFA whose equiv-
alent minimal DFA has α states, for all n and α satisfying n ≤ α ≤ 2n. A number α
not satisfying this condition is called a magic number (for n).

It was shown in [51] that no magic numbers exist for general regular languages
over a ternary alphabet. For NFAs over a two-letter alphabet it was shown that
α = 2n − 2k or 2n − 2k − 1, for 0 ≤ k ≤ n/2 − 2 [45], and α = 2n − k, for
5 ≤ k ≤ 2n − 2 and some coprimality condition for k [46], are non-magic. In [53]
it was proven that the integer α is non-magic, if n ≤ α ≤ 2

3√n. Further non-magic
numbers for a two-letter input alphabet were identified in [25] and [91].

Magic numbers for unary NFAs were studied in [26] by revising the Chrobak
normal-form for NFAs. In the same paper also a brief historical summary of the
magic number problem can be found. More general, magic numbers for sev-
eral subregular language families were investigated in [37]. Further results on
the magic number problem (in particular in relation to the operation problem on
regular languages) can be found, for example, in [53, 50].

The Bulletin of the EATCS

153

Further important sub-topics

As implied by the definition, so far, here we deal with the language operation
problem in terms of worst-case complexity. However, the magic number problem
can be seen as generalization. As opposed to the worst case, the range of state
complexities that may result from an operation is considered. So, it is natural to
look at the average case as well. In his invited talk Size matters, but let’s have it
on average at DCFS 2023, Rogério Reis considered various facets of this exciting
field (see also [7, 98]).

Turning to another sub-topic, we recall that two words over a common alpha-
bet are said to be Parikh-equivalent if and only if they are equal up to a permuta-
tion of their symbols or, equivalently, for each letter the number of its occurrences
in the two words is the same. This notion extends in a natural way to languages,
where two languages are Parikh-equivalent when for each word in the one lan-
guage there is a Parikh-equivalent word in the other and vice versa. Inspired by
the famous result of Parikh that each context-free language is Parikh-equivalent to
some regular language [105], Parikh-equivalence has been connected to descrip-
tional complexity issues. For example, in [75] the operational state complexity has
been considered under parikh equivalence. That is, the resulting finite automaton
must accept a language that is Parikh-equivalent to the precise language only.

Finally, the operation problems have been investigated not only for the de-
vices DFA and NFA. A bunch of further devices have been considered. We
mention only a few of them exemplarily. In her invited talk Self-Verifying Finite
Automata and Descriptional Complexity at DCFS 2016, Galina Jirásková pre-
sented various aspects of descriptional complexity, including operation problems,
on self-verifying finite automata [54]. See also [47] in this respect. The operation
problems for two-way DFA were investigated in [56]. Alternating and Boolean
automata are the devices considered, for example, in [43, 44, 52, 55, 76, 77].
The state complexity of operations on unambiguous finite automata and their lan-
guages is the main topic in [48].

5.3 Computational Models and Descriptional Complexity

A lot of work related to computation models, their descriptional complexity and
other related properties has been done. More than 150 papers presented at DCFS
investigate some kind of machines. It is impossible to briefly summarize and
present in a complete way all the results obtained in this context. We just give
some relevant examples and pointers to the literature.

While studying a computational model, the first question concerns its compu-
tational power. In the case of devices recognizing languages, this leads to inves-
tigate the class of accepted languages. The second natural question concerns the

BEATCS no 141

154

succinctness. In particular, when a computational model can be simulated by an-
other one, it is quite natural to investigate the cost of such a simulation in terms of
the size of the descriptions. In the Introduction we already mentioned the classical
example that can used to introduce descriptional complexity, namely the simula-
tion of NFAs automata by DFAs, given by the subset construction: each one-way
nondeterministic automaton with n states can be simulated by an equivalent deter-
ministic finite automaton with 2n states. Furthermore, it is well-known that in the
worst case such a cost cannot be reduced [95].

During the DCFS conferences a lot of results have been presented concerning
the costs of the relative succinctness of computational models.

Finite automata

We just mentioned the exponential cost of the simulation of NFAs by DFAs. In a
paper presented at DCAGRS 1999, M. Kappes proved this cost cannot be reduced
even when simulating deterministic finite automata with multiple initial states,
i.e., if the only nondeterministic choice can be taken at the beginning of the com-
putation, to choose the initial state in a given set [59]. This research was refined
in [42] by giving an exact bound that keeps into account the cardinality of the set
of possible initial states, besides the cardinality of the set of states of the simulated
automaton.

Even for many non-trivial subclasses of regular languages (e.g., star-free lan-
guages, strictly locally testable languages) the cost of the elimination on nonde-
terminism remains exponential [5].

In the above mentioned results, the focus is on one-way finite automata, i.e.,
automata that scans the input tape from left to right. It is well-known that the com-
putational power does not increase if the head can be moved in both directions, so
obtaining two-way finite automata. A long-standing open problem related to these
devices is the cost of the elimination of nondeterminism using two-way motion.
This problem was formulated in 1978 by Sakoda and Sipser, who asked the costs,
in terms of states, of the conversions of one-way and two-way NFAs into equiva-
lent two-way DFAs, and it is still open [114]. For both questions the best-known
upper bounds are exponential, while the lower bounds are polynomial. Several
contributions related to this problem and, more in general, to two-way finite au-
tomata have been presented in DCFS conferences. We point out just few of them.

In his invited lecture at DCFS 2012, Ch. Kapoutsis presented Minicomplex-
ity [58], a complexity theory for two-way automata which brings together several
seemingly detached concepts and results.

V. Geffert and L. Isonová presented a translation of the Sakoda and Sipser
question on two-way automata, to an analogous question on pebble automata [27].

The Bulletin of the EATCS

155

The maximum length of the shortest string accepted by an n-state two-way
finite automaton is known to be exponential in n. However, its exact value is not
yet known. Recent contributions towards the solution of this problem have been
presented at DCFS 2020 and 2023 [64, 89].

Extension of two-way automata, with restricted rewriting capabilities, have
been also considered and they will be mentioned later.

Pushdown automata

As we just discussed, a lot of contributions related to regular languages and finite
automata have been given. To represent a regular language, we could use a device
from a more powerful class of machines. For instance, we could use a push-
down automaton. So the question of comparing the relative succinctness of finite
automata and equivalent pushdown automata arises. This question was solved
longtime ago by Meyer and Fischer by proving nonrecursive trade-offs [95].

One could ask what happens if pushdown automata in some restricted form
are considered. One possible restriction is to require that the height of the push-
down store is bounded by a constant. This leads to the definition of constant
height pushdown automata, introduced and firstly studied by Z. Bednárová, V.
Geffert, C. Mereghetti, and B. Palano [29, 3]. Under this restriction, the trade-
off to finite automata is recursive. In particular, the size cost of the conversion
of nondeterministic constant height pushdown automata into equivalent one-way
deterministic finite automata is double exponential. So, constant height pushdown
automata are very interesting for their succinctness. This line of research has been
recently deepened. It is well-known that it cannot be decided whether the lan-
guage accepted by a pushdown automaton is regular [95]. Notice that there exists
pushdown automata that accept regular languages using a non-constant amount of
pushdown store. This leads to the different question of deciding for a pushdown
automaton whether there exists a constant h such that each string in the accepted
language has an accepting computation using height at most h. In [110] it has
been proved that also this property is undecidable. It remains undecidable when
the pushdown alphabet is unary, i.e, when the machine is a one-counter automa-
ton [109].

More in general, computations of pushdown automata have been analyzed
in [6], introducing and studying pushdown information (roughly the properties of
strings written on the pushdown store during computations of stateless pushdown
automata), and in [28, 85], where the descriptional complexity of the pushdown
store language, i.e., the set of strings that appears of the pushdown during an
accepting computation, is studied. We point out that this language is regular.

A. Malcher considered finite-turn pushdown automata, namely pushdown au-

BEATCS no 141

156

tomata that can switch from push to pop operations a number of time bounded
by a fixed constant k, proving a series of interesting non-recursive trade-offs (e.g.,
from k-turns to k + 1 turns, for each k ≥ 1) [84].

While in the case of finite automata, having a two-way input tape does not in-
crease the computational power, in the case of pushdown automata the situation is
different. In fact, two-way pushdown automata can recognize even non-context-
free languages. At the moment is still unknown if these devices are able to rec-
ognize all context-sensitive languages. In [86] the authors started an investigation
on these devices in the case of a constant number of head reversals.

Questions related to input driven pushdown automata (also known as nested
word or visibly pushdown automata) have been investigated in [106, 100, 36].

In [40] the authors consider one-time nondeterministic finite and pushdown
automata. In these devices, whenever a guess is performed, it remains fixed for
the rest of the computation. In the case of finite automata, the state increase to
equivalent deterministic devices is bounded by an exponential function, while in
the case of pushdown automata nonrecursive size trade-offs have been proved.

Turing machines and their variants, Cellular automata

The model of restarting automata has been the subject of many papers presented
at DCFS and in other related conferences. This is a formal model for the analysis
by reduction, which is used in linguistic to analyze sentences of natural languages.
Roughly, this technique consists in a stepwise simplification of a given sentence
in such a way that the syntactical correctness or incorrectness of the sentence is
not affected. Such a process can be modeled by machines having a flexible tape
where, at some point, such a simplification is performed and then the computation
is restarted.

In his invited lecture On Restarting Automata with Window Size One at DCFS
2011, F. Otto presented a general overview of the most important variants of
restarting automata, together with new results on restarting automata with win-
dow size one [101]. Several other contributions in this area have been presented
in DCFS conferences. Among them, we address the reader to [41, 72, 102, 103].

Turing machines with restricted rewriting capabilities have been considered
in several papers. At DCFS 2005, B. Durak presented worm automata. These
devices are two-way finite automata equipped with a write-once track. In spite of
this possibility, they still recognize only regular languages [20].

More recently, several results on limited automata have been presented. These
devices are single-tape Turing machines in which the content of each tape cell can
be rewritten only in the first d visits, for a fixed integer d ≥ 0. In case d ≤ 1

The Bulletin of the EATCS

157

these devices accept only regular languages, while for each fixed d > 1, they
characterize the class of context-free languages. The conversion from nondeter-
ministic 1-limited automata into equivalent one-way deterministic finite automata
costs, in the worst case, double exponential in size. So these devices can be ex-
tremely succinct [108]. Other results on the descriptional complexity of limited
automata have presented in [71, 34]. A survey on limited automata has been given
in the invited lecture Limited Automata: Properties, Complexity and Variants by
G. Pighizzini at DCFS 2019 [107].

In his invited lecture The Descriptional Power of Sublogarithmic Resource
Bounded Turing Machines at DCFS 2007, C. Mereghetti presented a complete pic-
ture of lower bounds on space and input head reversals for deterministic, nonde-
terministic, and alternating Turing machines accepting nonregular languages [92].

In [66], M. Kutrib investigated multitape Turing machines having a restricted
number of nondeterministic steps, proving the existence of a nondeterministic
language hierarchy between real time and linear time.

Among other computational models, it is also suitable to mention cellular au-
tomata. They have been the subject of invited lectures Cellular Automata and
Descriptional Complexity by A. Malcher at DCFS 2006 [83] and Linear Alge-
bra Based Bounds for One-Dimensional Cellular Automat by J. Kari at DCFS
2011 [60]. The descriptional complexity and the properties of several variants of
cellular automata (e.g., one-way and two-way) have been the subject of various
talks (e.g [80, 81, 82, 68]).

Non classical computation modes: probabilistic and quantum

Besides classical modes of computations, mainly based on determinism, nonde-
terminism, and alternation, several contributions of other modes have been pre-
sented.

At DCFS 2009, Ch. Baier gave the invited talk Probabilistic Automata over In-
finite Words: Expressiveness, Efficiency, and Decidability [2]. Probabilistic mod-
els have been also considered in [96, 49].

Quantum automata and quantum computations have been the subject of in-
vited talks Descriptional complexity issues in quantum computing and Succinct-
ness in quantum information processing by J. Gruska at DCAGRS 1999 and
DCFS 2003 [32, 33], Some formal tools for analyzing quantum automata by
A. Bertoni at DCFS 2005 [4], and Recent Developments in Quantum Algorithms
and Complexity A. Ambainis at DCFS 2014 [1]. Several contributions to this area
have been presented [93, 118, 119]. In [94] the authors compare the succinctness
of deterministic, nondeterministic, probabilistic and quantum finite automata.

BEATCS no 141

158

Non-recursive trade-offs

A general survey on non-recursive trade-offs, with a unifying approach to the
proof of them, has been given by M. Kutrib in his invited talk The phenomenon
of non-recursive trade-offs at DCFS 2004 [67]. Further developments on this
phenomenon have been obtained in [30].

In [57], Ch. Kapoutsis presented non-recursive trade-offs for multi-head two-
way finite automata and multi-counter automata. We already mentioned the paper
by A. Malcher with non-recursive trade-offs for related to finite-turn pushdown
automata [84]. In many other papers (e.g. related to pushdown automata [86, 40,
109]) results presenting non-recursive trade-offs have been given.

Ambiguity and measures of nondeterminism

In this invited talk Descriptional complexity of nfa of different ambiguity at DCFS
2004, H. Leung presented relationships between descriptional complexity and am-
biguity degree for nondeterministic finite automata [78]. Further results on this
topic are given in [65]. The case of Büchi automata was considered in [99],

Unambiguity in automata theory was the title of the invited lecture given by
Th. Colcombet at DCFS 2015 [17]: the concept of unambiguity, seen as a gener-
alization of determinism, has been explored not only in automata on finite words,
but in some extensions of them as, e.g., automata on infinite trees and tropical
automata.

In [104] various measure of nondeterminism for finite automata have been
investigated and compared. This idea was further explored in some subsequent
papers. Among them we mention [61, 63]. More recently, also measures for
alternating automata have been introduced and studied [62, 35]

References
[1] Ambainis, A.: Recent developments in quantum algorithms and complexity. In:

Descriptional Complexity of Formal Systems (DCFS 2014). LNCS, vol. 8614,
pp. 1–4. Springer (2014). https://doi.org/10.1007/978-3-319-09704-6_1

[2] Baier, C., Bertrand, N., Größer, M.: Probabilistic automata over infinite
words: Expressiveness, efficiency, and decidability. In: Descriptional Com-
plexity of Formal Systems (DCFS 2009). EPTCS, vol. 3, pp. 3–16 (2009).
https://doi.org/10.4204/EPTCS.3.1

[3] Bednárová, Z., Geffert, V., Mereghetti, C., Palano, B.: Removing nondetermin-
ism in constant height pushdown automata. Inf. Comput. 237, 257–267 (2014).
https://doi.org/10.1016/j.ic.2014.03.002

The Bulletin of the EATCS

159

[4] Bertoni, A., Mereghetti, C., Palano, B.: Some formal tools for an-
alyzing quantum automata. Theor. Comput. Sci. 356, 14–25 (2006).
https://doi.org/10.1016/j.tcs.2006.01.042

[5] Bordihn, H., Holzer, M., Kutrib, M.: Determinization of finite automata ac-
cepting subregular languages. Theor. Comput. Sci. 410, 3209–3222 (2009).
https://doi.org/10.1016/j.tcs.2009.05.019

[6] Bordihn, H., Jürgensen, H.: Pushdown information. In: Descriptional Complexity
of Formal Systems (DCFS 2004). pp. 111–120. Report No. 619, Department of
Computer Science, The University of Western Ontario, Canada (2004)

[7] Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Analytic combinatorics and de-
scriptional complexity of regular languages on average. SIGACT News 51, 38–56
(2020). https://doi.org/10.1145/3388392.3388401

[8] Brzozowski, J.A.: Quotient complexity of regular languages. J. Autom. Lang.
Comb. 15, 71–89 (2010). https://doi.org/10.25596/jalc-2010-071

[9] Brzozowski, J.A.: In search of the most complex regular language. Int. J. Found.
Comput. Sci. 24, 692–708 (2013). https://doi.org/10.1142/S0129054113400133

[10] Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
Theor. Comput. Sci. 470, 36–52 (2013). https://doi.org/10.1016/j.tcs.2012.10.055

[11] Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed lan-
guages. Theor. Comput. Sci. 54, 277–292 (2014). https://doi.org/10.1007/s00224-
013-9515-7

[12] Brzozowski, J.A., Liu, B.: Quotient complexity of star-free lan-
guages. Int. J. Found. Comput. Sci. 23, 1261–1276 (2012).
https://doi.org/10.1142/S0129054112400515

[13] Brzozowski, J.A., Liu, D.: Universal witnesses for state complexity of ba-
sic operations combined with reversal. In: Implementation and Application
of Automata (CIAA 2013). LNCS, vol. 7982, pp. 72–83. Springer (2013).
https://doi.org/10.1007/978-3-642-39274-0_8

[14] Brzozowski, J.A., Liu, D.: Universal witnesses for state complexity of Boolean
operations and concatenation combined with star. In: Descriptional Complexity
of Formal Systems (DCFS 2013). LNCS, vol. 8031, pp. 30–41. Springer (2013).
https://doi.org/10.1007/978-3-642-39310-5_5

[15] Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47, 149–
158 (1986). https://doi.org/10.1016/0304-3975(86)90142-8, errata: [16]

[16] Chrobak, M.: Errata to “finite automata and unary languages”. Theor. Comput. Sci.
302, 497–498 (2003). https://doi.org/10.1016/S0304-3975(03)00136-1

[17] Colcombet, T.: Unambiguity in automata theory. In: Descriptional Complexity
of Formal Systems (DCFS 2015). LNCS, vol. 9118, pp. 3–18. Springer (2015).
https://doi.org/10.1007/978-3-319-19225-3_1

BEATCS no 141

160

[18] Csuhaj-Varjú, E., Vaszil, G.: On the descriptional complexity of context-free
non-returning pc grammar systems. J. Autom. Lang. Comb. 15, 91–105 (2010).
https://doi.org/10.25596/jalc-2010-091

[19] Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer
(1989)

[20] Durak, B.: Two-way finite automata with a write-once track. J. Autom. Lang.
Comb. 12(1-2), 97–115 (2007). https://doi.org/10.25596/jalc-2007-097

[21] Fernau, H.: Nonterminal complexity of programmed grammars. In: Machines,
Computations, and Universality (MCU 2001). LNCS, vol. 2055, pp. 202–213.
Springer (2001). https://doi.org/10.1007/3-540-45132-3_13

[22] Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal com-
plexity of graph-controlled, programmed, and matrix grammars. J. Autom. Lang.
Comb. 12, 117–138 (2007). https://doi.org/10.25596/jalc-2007-117

[23] Freund, R., Păun, G.: On the number of nonterminal symbols in graph-
controlled, programmed, and matrix grammars. In: Machines, Computations,
and Universality (MCU 2001). LNCS, vol. 2055, pp. 214–225. Springer (2001).
https://doi.org/10.1007/3-540-45132-3_14

[24] Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J.
Autom. Lang. Comb. 21, 251–310 (2016). https://doi.org/10.25596/jalc-2016-251

[25] Geffert, V.: (Non)determinism and the size of one-way finite automata. In: Descrip-
tional Complexity of Formal Systems (DCFS 2005). pp. 23–37. Rapporto Tecnico
06-05, Università degli Studi di Milano (2005)

[26] Geffert, V.: Magic numbers in the state hierarchy of finite automata. Inform. Com-
put. 205, 1652–1670 (2007). https://doi.org/10.1016/j.ic.2007.07.001

[27] Geffert, V., Istonová, L.: Translation from classical two-way automata to peb-
ble two-way automata. RAIRO Theor. Informatics Appl. 44, 507–523 (2010).
https://doi.org/10.1051/ita/2011001

[28] Geffert, V., Malcher, A., Meckel, K., Mereghetti, C., Palano, B.: A direct construc-
tion of finite state automata for pushdown store languages. In: Descriptional Com-
plexity of Formal Systems (DCFS 2013). LNCS, vol. 8031, pp. 90–101. Springer
(2013). https://doi.org/10.1007/978-3-642-39310-5_10

[29] Geffert, V., Mereghetti, C., Palano, B.: More concise representation of regular
languages by automata and regular expressions. Inf. Comput. 208, 385–394 (2010).
https://doi.org/10.1016/j.ic.2010.01.002

[30] Gruber, H., Holzer, M., Kutrib, M.: On measuring non-recursive trade-offs. J. Au-
tom. Lang. Comb. 15, 107–120 (2010). https://doi.org/10.25596/jalc-2010-107

[31] Gruber, H., Holzer, M., Kutrib, M.: Descriptional complexity of regular languages.
In: Handbook of Automata Theory, pp. 411–457. European Mathematical Society
Publishing House (2021). https://doi.org/10.4171/Automata-1/12

The Bulletin of the EATCS

161

[32] Gruska, J.: Descriptional complexity issues in quantum computing. J. Autom.
Lang. Comb. 5, 191–218 (2000). https://doi.org/10.25596/jalc-2000-191

[33] Gruska, J.: Succinctness in quantum information processing. In: Descriptional
Complexity of Formal Systems (DCFS 2003). pp. 15–25. MTA SZTAKI, Hun-
garian Academy of Sciences (2003)

[34] Guillon, B., Prigioniero, L.: Linear-time limited automata. Theor. Comput. Sci.
798, 95–108 (2019). https://doi.org/10.1016/j.tcs.2019.03.037

[35] Han, Y., Kim, S., Ko, S., Salomaa, K.: Existential and universal width of alternating
finite automata. In: Descriptional Complexity of Formal Systems (DCFS 2023).
LNCS, vol. 13918, pp. 51–64. Springer (2023). https://doi.org/10.1007/978-3-031-
34326-1_4

[36] Han, Y., Ko, S., Salomaa, K.: Limited nondeterminism of input-driven push-
down automata: Decidability and complexity. In: Descriptional Complexity of
Formal Systems (DCFS 2019). LNCS, vol. 11612, pp. 158–170. Springer (2019).
https://doi.org/10.1007/978-3-030-23247-4_12

[37] Holzer, M., Jakobi, S., Kutrib, M.: The magic number problem for sub-
regular language families. Int. J. Found. Comput. Sci. 23, 115–131 (2012).
https://doi.org/10.1142/S0129054112400084

[38] Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of
regular languages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003).
https://doi.org/10.1142/S0129054103002199

[39] Holzer, M., Kutrib, M.: Descriptional complexity – An introductory survey. In:
Scientific Applications of Language Methods, pp. 1–58. Imperial College Press
(2010)

[40] Holzer, M., Kutrib, M.: One-time nondeterministic computations. Int. J. Found.
Comput. Sci. 30, 1069–1089 (2019). https://doi.org/10.1142/S012905411940029X

[41] Holzer, M., Kutrib, M., Reimann, J.: Non-recursive trade-offs for deter-
ministic restarting automata. J. Autom. Lang. Comb. 12, 195–213 (2007).
https://doi.org/10.25596/jalc-2007-195

[42] Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry
deterministic finite automata. J. Autom. Lang. Comb. 6, 453–466 (2001).
https://doi.org/10.25596/jalc-2001-453

[43] Hospodár, M., Jirásková, G.: The complexity of concatenation on determinis-
tic and alternating finite automata. RAIRO Inform. Théor. 52, 153–168 (2018).
https://doi.org/10.1051/ita/2018011

[44] Hospodár, M., Jirásková, G., Krajnáková, I.: Operations on Boolean and alter-
nating finite automata. In: Computer Science Symposium in Russia (CSR 2018).
LNCS, vol. 10846, pp. 181–193. Springer (2018). https://doi.org/10.1007/978-3-
319-90530-3_16

BEATCS no 141

162

[45] Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states
of DFAs that are equivalent to n-state NFAs. Theor. Comput. Sci. 237, 485–494
(2000). https://doi.org/10.1016/S0304-3975(00)00029-3

[46] Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need
2n − α deterministic states. Theor. Comput. Sci. 301, 451–462 (2003).
https://doi.org/10.1016/S0304-3975(02)00891-5

[47] Jirásek, J.S., Jirásková, G., Szabari, A.: Operations on self-verifying finite
automata. In: Computer Science Symposium in Russia (CSR 2015). LNCS,
vol. 9139, pp. 231–261. Springer (2015). https://doi.org/10.1007/978-3-319-
20297-6_16

[48] Jirásek Jr., J., Jirásková, G., Sebej, J.: Operations on unambigu-
ous finite automata. Int. J. Found. Comput. Sci. 29, 861–876 (2018).
https://doi.org/10.1142/S012905411842008X

[49] Jirásková, G.: Note on the complexity of Las Vegas automata problems. RAIRO
Theor. Informatics Appl. 40, 501–510 (2006). https://doi.org/10.1051/ita:2006033

[50] Jirásková, G.: Concatenation of regular languages and descriptional complex-
ity. Theor. Comput. Sci. 49, 306–318 (2011). https://doi.org/10.1007/s00224-011-
9318-7

[51] Jirásková, G.: Magic numbers and ternary alphabet. Int. J. Found. Comput. Sci. 22,
331–344 (2011). https://doi.org/10.1142/S0129054111008076

[52] Jirásková, G.: Descriptional complexity of operations on alternating and Boolean
automata. In: Computer Science Symposium in Russia (CSR 2012). LNCS,
vol. 7353, pp. 196–204. Springer (2012). https://doi.org/10.1007/978-3-642-
30642-6_19

[53] Jirásková, G.: The ranges of state complexities for complement, star, and
reversal of regular languages. Int. J. Found. Comput. Sci. 25, 101 (2014).
https://doi.org/10.1142/S0129054114500063

[54] Jirásková, G.: Self-verifying finite automata and descriptional complexity. In: De-
scriptional Complexity of Formal Systems (DCFS 2016). LNCS, vol. 9777, pp.
29–44. Springer (2016). https://doi.org/10.1007/978-3-319-41114-9_3

[55] Jirásková, G., Krajnáková, I.: Square on deterministic, alternating, and
Boolean finite automata. Int. J. Found. Comput. Sci. 30, 1117–1134 (2019).
https://doi.org/10.1142/S0129054119400318

[56] Jirásková, G., Okhotin, A.: On the state complexity of operations on two-way finite
automata. In: Developments in Language Theory (DLT 2008). LNCS, vol. 5257,
pp. 443–454. Springer (2008). https://doi.org/10.1007/978-3-540-85780-8_35

[57] Kapoutsis, C.A.: Non-recursive trade-offs for two-way machines. Int. J. Found.
Comput. Sci. 16, 943–956 (2005). https://doi.org/10.1142/S012905410500339X

[58] Kapoutsis, C.A.: Minicomplexity. J. Autom. Lang. Comb. 17, 205–224 (2012).
https://doi.org/10.25596/jalc-2012-205

The Bulletin of the EATCS

163

[59] Kappes, M.: Descriptional complexity of deterministic finite automata
with multiple initial states. J. Autom. Lang. Comb. 5, 269–278 (2000).
https://doi.org/10.25596/jalc-2000-269

[60] Kari, J.: Linear algebra based bounds for one-dimensional cellular automata. In:
Descriptional Complexity of Formal Systems (DCFS 2011). LNCS, vol. 6808,
pp. 1–7. Springer (2011). https://doi.org/10.1007/978-3-642-22600-7_1

[61] Keeler, C., Salomaa, K.: Branching measures and nearly acyclic
NFAs. Int. J. Found. Comput. Sci. 30, 1135–1155 (2019).
https://doi.org/10.1142/S012905411940032X

[62] Keeler, C., Salomaa, K.: Width measures of alternating finite automata. In: De-
scriptional Complexity of Formal Systems (DCFS 2021). LNCS, vol. 13037, pp.
88–99. Springer (2021). https://doi.org/10.1007/978-3-030-93489-7_8

[63] Keeler, C., Salomaa, K.: Structural properties of NFAs and growth
rates of nondeterminism measures. Inf. Comput. 284, 104690 (2022).
https://doi.org/10.1016/j.ic.2021.104690

[64] Krymski, S., Okhotin, A.: Longer shortest strings in two-way finite automata. In:
Descriptional Complexity of Formal Systems (DCFS 2020). LNCS, vol. 12442, pp.
104–116. Springer (2020). https://doi.org/10.1007/978-3-030-62536-8_9

[65] Kupke, J.: A powerful tool in lower-bounding constantly ambiguous automata.
In: Descriptional Complexity of Formal Systems (DCFS 2006). pp. 276–284. New
Mexico State University, Las Cruces, New Mexico, USA (2006)

[66] Kutrib, M.: Refining nondeterminism below linear time. J. Autom. Lang. Comb. 7,
533–547 (2002). https://doi.org/10.25596/jalc-2002-533

[67] Kutrib, M.: The phenomenon of non-recursive trade-offs. Int. J. Found. Comput.
Sci. 16, 957–973 (2005). https://doi.org/10.1142/S0129054105003406

[68] Kutrib, M., Malcher, A.: One-way cellular automata, bounded languages,
and minimal communication. J. Autom. Lang. Comb. 15, 135–153 (2010).
https://doi.org/10.25596/jalc-2010-135

[69] Kutrib, M., Moreira, N., Pighizzini, G., Reis, R.: Hot current topics of de-
scriptional complexity. In: Advancing Research in Information and Communi-
cation Technology – IFIP’s Exciting First 60+ Years, IFIP Advances in Infor-
mation and Communication Technology, vol. 600, pp. 3–28. Springer (2021).
https://doi.org/10.1007/978-3-030-81701-5_1

[70] Kutrib, M., Pighizzini, G.: Recent trends in descriptional complexity of formal
languages. Bull. EATCS 111 (2013)

[71] Kutrib, M., Pighizzini, G., Wendlandt, M.: Descriptional com-
plexity of limited automata. Inf. Comput. 259, 259–276 (2018).
https://doi.org/10.1016/j.ic.2017.09.005

BEATCS no 141

164

[72] Kutrib, M., Reimann, J.: Optimal simulations of weak restart-
ing automata. Int. J. Found. Comput. Sci. 19, 795–811 (2008).
https://doi.org/10.1142/S0129054108005966

[73] Landau, E.: Über die Maximalordnung der Permutationen gegebenen Grades.
Archiv der Math. und Phys. 3, 92–103 (1903)

[74] Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen. Teubner,
Leipzig (1909)

[75] Lavado, G.J., Pighizzini, G., Seki, S.: Operational state complexity under Parikh
equivalence. In: Descriptional Complexity of Formal Systems (DCFS 2014).
LNCS, vol. 8614, pp. 294–305. Springer (2014). https://doi.org/10.1007/978-3-
319-09704-6_26

[76] Leiss, E.L.: Succinct representation of regular languages by Boolean au-
tomata. Theor. Comput. Sci. 13, 323–330 (1981). https://doi.org/10.1016/S0304-
3975(81)80005-9

[77] Leiss, E.L.: Succinct representation of regular languages by Boolean au-
tomata. II. Theor. Comput. Sci. 38, 133–136 (1985). https://doi.org/10.1016/0304-
3975(85)90215-4

[78] Leung, H.: Descriptional complexity of nfa of different ambiguity. Int. J. Found.
Comput. Sci. 16, 975–984 (2005). https://doi.org/10.1142/S0129054105003418

[79] Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kybernetiki
9, 321–326 (1963), (in Russian), German translation: Über den Vergleich zweier
Typen endlicher Quellen. Probleme der Kybernetik 6 (1966), 328–335

[80] Malcher, A.: Descriptional complexity of cellular automata and decidability ques-
tions. J. Autom. Lang. Comb. 7, 549–560 (2002). https://doi.org/10.25596/jalc-
2002-549

[81] Malcher, A.: On one-way cellular automata with a fixed number of cells. Fundam.
Inform. 58, 355–368 (2003)

[82] Malcher, A.: On two-way communication in cellular automata with
a fixed number of cells. Theor. Comput. Sci. 330, 325–338 (2005).
https://doi.org/10.1016/j.tcs.2004.04.014

[83] Malcher, A.: Cellular automata and descriptional complexity. In: Descriptional
Complexity of Formal Systems (DCFS 2006). pp. 26–40. New Mexico State Uni-
versity, Las Cruces, New Mexico, USA (2006)

[84] Malcher, A.: On recursive and non-recursive trade-offs between finite-
turn pushdown automata. J. Autom. Lang. Comb. 12, 265–277 (2007).
https://doi.org/10.25596/jalc-2007-265

[85] Malcher, A., Meckel, K., Mereghetti, C., Palano, B.: Descriptional complex-
ity of pushdown store languages. J. Autom. Lang. Comb. 17, 225–244 (2012).
https://doi.org/10.25596/jalc-2012-225

The Bulletin of the EATCS

165

[86] Malcher, A., Mereghetti, C., Palano, B.: Descriptional complexity of two-way
pushdown automata with restricted head reversals. Theor. Comput. Sci. 449, 119–
133 (2012). https://doi.org/10.1016/j.tcs.2012.04.007

[87] Mandache, N.: On the computational power of context-free pc grammar sys-
tems. Theor. Comput. Sci. 237, 135–148 (2000). https://doi.org/10.1016/S0304-
3975(98)00159-5

[88] Margenstern, M., Păun, G., Rogozhin, Y., Verlan, S.: Context-free
insertion-deletion systems. Theor. Comput. Sci. 330, 317–328 (2005).
https://doi.org/10.1016/j.tcs.2004.06.031

[89] Martynova, O., Okhotin, A.: Shortest accepted strings for two-way finite au-
tomata: Approaching the 2n lower bound. In: Descriptional Complexity of For-
mal Systems (DCFS 2023). LNCS, vol. 13918, pp. 134–145. Springer (2023).
https://doi.org/10.1007/978-3-031-34326-1_10

[90] Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Dokl. 11, 1373–1375 (1970), (English translation), in Russian: Dokl. Akad. Nauk
SSSR 194 (1970), 1266–1268

[91] Matsuura, A., Saito, Y.: Equivalent transformation of minimal finite automata over
a two-letter alphabet. In: Descriptional Complexity of Formal Systems (DCFS
2008). pp. 224–232. University of Prince Edward Island, Canada (2008)

[92] Mereghetti, C.: Testing the descriptional power of small Turing machines on non-
regular language acceptance. Int. J. Found. Comput. Sci. 19, 827–843 (2008).
https://doi.org/10.1142/S012905410800598X

[93] Mereghetti, C., Palano, B.: Quantum automata for some mul-
tiperiodic languages. Theor. Comput. Sci. 387, 177–186 (2007).
https://doi.org/10.1016/j.tcs.2007.07.037

[94] Mereghetti, C., Palano, B., Pighizzini, G.: Note on the succinctness of determin-
istic, nondeterministic, probabilistic and quantum finite automata. RAIRO Theor.
Informatics Appl. 35, 477–490 (2001). https://doi.org/10.1051/ita:2001106

[95] Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Symposium on Switching and Automata Theory (SWAT 1971).
pp. 188–191. IEEE (1971). https://doi.org/10.1109/SWAT.1971.11

[96] Milani, M., Pighizzini, G.: Tight bounds on the simulation of unary probabilistic
automata by deterministic automata. J. Autom. Lang. Comb. 6, 481–492 (2001).
https://doi.org/10.25596/jalc-2001-481

[97] Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Com-
put. 20, 1211–1214 (1971). https://doi.org/10.1109/T-C.1971.223108

[98] Nicaud, C.: Average state complexity of operations on unary automata. In: Math-
ematical Foundations of Computer Science (MFCS 1999). LNCS, vol. 1672, pp.
231–240. Springer (1999). https://doi.org/10.1007/3-540-48340-3_21

BEATCS no 141

166

[99] Nießner, F.: Büchi automata and their degrees of nondeterminism and ambiguity.
J. Autom. Lang. Comb. 9, 347–363 (2004). https://doi.org/10.25596/jalc-2004-347

[100] Okhotin, A., Salomaa, K.: Further closure properties of input-
driven pushdown automata. Theor. Comput. Sci. 798, 65–77 (2019).
https://doi.org/10.1016/j.tcs.2019.04.006

[101] Otto, F.: On restarting automata with window size one. In: Descriptional Complex-
ity of Formal Systems (DCFS 2011). LNCS, vol. 6808, pp. 8–33. Springer (2011).
https://doi.org/10.1007/978-3-642-22600-7_2

[102] Otto, F.: On the descriptional complexity of deterministic ordered restart-
ing automata. In: Descriptional Complexity of Formal Systems (DCFS 2014).
LNCS, vol. 8614, pp. 318–329. Springer (2014). https://doi.org/10.1007/978-3-
319-09704-6_28

[103] Otto, F., Kwee, K.: On the descriptional complexity of stateless deter-
ministic ordered restarting automata. Inf. Comput. 259, 277–302 (2018).
https://doi.org/10.1016/j.ic.2017.09.006

[104] Palioudakis, A., Salomaa, K., Akl, S.G.: Comparisons between measures
of nondeterminism on finite automata. In: Descriptional Complexity of For-
mal Systems (DCFS 2013). LNCS, vol. 8031, pp. 217–228. Springer (2013).
https://doi.org/10.1007/978-3-642-39310-5_21

[105] Parikh, R.J.: On context-free languages. J. ACM 13, 570–581 (1966).
https://doi.org/10.1145/321356.321364

[106] Piao, X., Salomaa, K.: Operational state complexity of nested
word automata. Theor. Comput. Sci. 410, 3290–3302 (2009).
https://doi.org/10.1016/j.tcs.2009.05.002

[107] Pighizzini, G.: Limited automata: Properties, complexity and variants. In: De-
scriptional Complexity of Formal Systems (DCFS 2019). LNCS, vol. 11612, pp.
57–73. Springer (2019). https://doi.org/10.1007/978-3-030-23247-4_4

[108] Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25, 897–916 (2014). https://doi.org/10.1142/S0129054114400140

[109] Pighizzini, G., Prigioniero, L.: Pushdown and one-counter automata: Con-
stant and non-constant memory usage. In: Descriptional Complexity of For-
mal Systems (DCFS 2023). LNCS, vol. 13918, pp. 146–157. Springer (2023).
https://doi.org/10.1007/978-3-031-34326-1_11

[110] Pighizzini, G., Prigioniero, L.: Pushdown automata and constant
height: decidability and bounds. Acta Informatica 60, 123–144 (2023).
https://doi.org/10.1007/s00236-022-00434-0

[111] Păun, G.: Six nonterminals are enough for generating each r.e. lan-
guage by a matrix grammar. Internat. J. Comput. Math. 15, 23–37 (1984).
https://doi.org/10.1080/00207168408803399

The Bulletin of the EATCS

167

[112] Păun, G., Santean, L.: Parallel communicating grammar systems: the regular case.
Ann. Univ. Buc., Ser. Matem.-Inform. 38, 55–63 (1989)

[113] Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959). https://doi.org/10.1147/rd.32.0114

[114] Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite
automata. In: Proceedings of the Tenth Annual ACM Symposium on The-
ory of Computing (STOC 1978). pp. 275–286. ACM, ACM Press (1978).
https://doi.org/10.1145/800133.804357

[115] Stearns, R.E.: A regularity test for pushdown machines. Inform. Control 11, 323–
340 (1967). https://doi.org/10.1016/S0019-9958(67)90591-8

[116] Valiant, L.G.: Regularity and related problems for deterministic pushdown au-
tomata. J. ACM 22, 1–10 (1975). https://doi.org/10.1145/321864.321865

[117] Verlan, S.: On minimal context-free insertion-deletion systems. J. Autom. Lang.
Comb. 12, 317–328 (2007). https://doi.org/10.25596/jalc-2007-317

[118] Villagra, M., Yamakami, T.: Quantum state complexity of formal languages. In:
Descriptional Complexity of Formal Systems (DCFS 2015). LNCS, vol. 9118, pp.
280–291. Springer (2015). https://doi.org/10.1007/978-3-319-19225-3_24

[119] Yamakami, T.: How does adiabatic quantum computation fit into
quantum automata theory? Inf. Comput. 284, 104694 (2022).
https://doi.org/10.1016/j.ic.2021.104694

[120] Yu, S.: State complexity of regular languages. In: Dassow, J., Wotschke, D. (eds.)
International Workshop on Descriptional Complexity of Automata, Grammars and
Related Structures, Magdeburg, Germany, July 20 - 23, 1999. Preproceedings.
vol. Preprint Nr. 17, pp. 77–88. Fakultät für Informatik, Universität Magdeburg,
Magdeburg, Germany (1999)

[121] Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic
operations on regular languages. Theor. Comput. Sci. 125, 315–328 (1994).
https://doi.org/10.1016/0304-3975(92)00011-F

BEATCS no 141

168

News and Conference
Reports

The Bulletin of the EATCS

171

Report on ICALP 2023

50th EATCS International Colloquium on Automata, Languages and Programming

Anca Muscholl1

The 50th EATCS International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2023), the flagship conference and annual meeting of the Eu-
ropean Association for Theoretical Computer Science (EATCS), took place in
Paderborn, on July 10-14, 2023. The event was organized by the Computer Sci-
ence Department of Paderborn University.

The main conference was preceded by a series of workshops on July 10, 2023.
The following workshops were held as satellite events of ICALP 2023:

• Combinatorial Reconfiguration

• Graph Width Parameters: from Structure to Algorithms (GWP 2023)

• Algorithmic Aspects of Temporal Graphs VI

• Adjoint Homomorphism Counting Workshop (ad hoc)

• Congestion Games

• Workshop On Reachability, Recurrences, and Loops ’23 (WORReLL’23)

• Workshop on Recent Trends in Online Algorithms

• Quantum Computing with Qiskit, and why Classical Algorithms still mat-
ter!

• Algebraic Complexity Theory

The scientific programme of ICALP 2023 consisted of 2 unifying lectures and
3 invited lectures of the two tracks of ICALP, the presentation of 132 contributed
papers (which were selected by the Program Committees out of 443 submissions)
and award sessions with the lectures of the EATCS Award 2023, the Presburger
Award 2023 and the Alonzo Church Award 2023 recipients.

1LaBRI, Université Bordeaux. Email: anca.muscholl@u-bordeaux.fr.

BEATCS no 141

172

Organisation of ICALP 2023 and ICALP 50th special event. ICALP 2023
took place at the Heinz-Nixdorf MuseumsForum and the Heinz-Nixdorf Insti-
tut in Paderborn, Germany (same venue as for ICALP 1996). The conference
was primarily on-site, with 9 exceptions for remote presentations via Zoom (typ-
ically due to travel visa delays). Talks were 20 minutes in length, with 5 minutes
for questions and for switching rooms between tracks. The conference had a
SafeToC representative, Zahra Raissi. Early registration costs were 640 EUR for
ICALP and 75 EUR for workshops (440 EUR and 75 EUR for students, respec-
tively), and regular registration was 740 EUR and 100 EUR (540 EUR and 100
EUR, respectively). This was approximately 100 EUR higher than ICALP 2022
in Paris, but included all lunches and most evenings’ dining. A somewhat non-
conventional measure adopted this year was to require that each accepted paper
have at least one regular registration (as opposed to student registration) — this
ensured a lower bound on income through registration numbers, and minimized
financial risk during planning. The workshops and conference had 226 and 267
participants, respectively, with a total of 335 unique participants combined for
both events. The conference sponsors were DeepL (gold sponsor), SFB 901 On-
The-Fly Computing (gold), Reply (silver), Stiebel Eltron (silver), PC2 Paderborn
Center for Parallel Computing (silver), Google Research (bronze), Heinz-Nixdorf
Institut (bronze).

Special events. As this was the 50th occurrence of ICALP, various special events
were planned. All registrants had free access to the Heinz-Nixdorf Museum-
Forum’s 6000m2 Computer Science museum, spanning computing technologies
from 3000 BC to the present. A special “50th ICALP anniversary session” fea-
tured additional invited talks by Kurt Mehlhorn (MPI) and Thomas Henzinger
(ISTA). There was also a Colloquium in Honor of Friedhelm Meyer auf der Heide
immediately after ICALP, and informally tied to ICALP, featuring invited talks by
Artur Czumaj (Warwick), Kurt Mehlhorn (MPI), Christian Sohler (Cologne), and
Martin Dietzfelbinger (Ilmenau). Finally, special social events included: (1) A
Paderborn city tour and reception at the historical City Hall, (2) an outdoor Ger-
man BBQ extravaganza, and (3) the conference dinner at the 160-year old Strate
Brewery in Detmold, where brewery tours, a German brass band, and unlimited
craft beers of various flavors were on tap.

Organizing committee. The organizing committee consisted of Johannes Blömer,
Sevag Gharibian (chair), Friedhelm Meyer auf der Heide, Christian Scheideler,
and Ulf-Peter Schroeder. A particular thank-you is due to Ulf-Peter, who pulled
many of the strings behind the scenes.

On behalf of the entire community, we warmly thank all the organizers in

The Bulletin of the EATCS

173

2023 2022 2021 2020 2019 2018 2017 2016 2015 2014
Total 443 433 462 470 490 502 459 515 507 477
Track A 346 350 361 347 316 346 296 319 328 312
Track B 97 83 101 123 103 96 108 121 114 106
Track C — — — — 71 60 55 75 65 59

Table 1: Number of submitted papers at ICALP 2014–2023.

Paderborn for their fantastic efforts that helped to make ICALP 2023 and the 50th
anniversary of ICALP a very successful and pleasant event.

Paper selection and work of the Program Committee. Since 2020 ICALP
returned to the original two-track format. The ICALP 2023 program had the fol-
lowing two tracks:

• Track A: Algorithms, Complexity, and Games.

• Track B: Automata, Logic, Semantics, and Theory of Programming.

The PC chairs for the two tracks of ICALP 2023 were Uriel Feige (Track A) and
Kousha Etessami (Track B). The two Program Committees involved 65 members
(40 in track A and 25 in track B). In response to the call for papers, a total of 443
submissions were received: 346 for Track A and 97 for Track B. Each submis-
sion was assigned to at least three Program Committee members, aided by more
than 600 external subreviewers. The Program Committees decided to accept 132
papers for inclusion in the scientific program: 103 papers for Track A and 29 for
Track B. This gives the acceptance rate for the entire conference to be 29.7%.
The selection was made by the Program Committees based on originality, qual-
ity, and relevance to theoretical computer science. The quality of the submitted
manuscripts was very high, and unfortunately many strong papers could not be
selected. We take this opportunity of thanking both the Program Committees and
all the subreviewers for doing an exceptional selection job.

Statistical information about the number of papers submitted and accepted for
the last several editions of the ICALP conference, as well as acceptance rates, are
available in Tables 1–3.

Invited presentations. In addition to the contributed talks, ICALP 2023 fea-
tured five invited presentations, all available online at https://videos.uni-paderborn.
de/channel/ICALP-2023/94.

BEATCS no 141

174

2023 2022 2021 2020 2019 2018 2017 2016 2015 2014
Total 132 127 137 138 146 147 137 146 143 136
Track A 103 103 108 102 94 98 88 89 89 87
Track B 29 24 29 36 31 30 32 36 34 31
Track C — — — — 21 19 17 21 20 18

Table 2: Number of accepted papers at ICALP 2014–2023.

2022 2021 2020 2019 2018 2017 2016 2015 2014 2013
Total 29.7 29.3 29.6 29.4 29.8 29.3 29.8 28.3 28.2 28.5
Track A 29.7 29.4 29.9 29.4 29.7 28.3 29.7 27.9 27.1 27.9
Track B 29.8 28.9 28.7 29.3 30.1 31.3 29.6 29.8 29.8 29.2
Track C — — — — 29.6 31.7 30.9 28.0 30.8 30.5

Table 3: Acceptance rates (in %) for ICALP 2014–2023.

• Anna Karlin (University of Washington, USA), (Slightly) Improved Approx-
imation Algorithm for the Metric Traveling Salesperson Problem,

• Rasmus Kyng (ETH Zurich, Switzerland), An Almost-Linear Time Algo-
rithm for Maximum Flow and More,

• Rupak Majumdar (Max Planck Institute for Software Systems, Germany),
Context-Bounded Analysis of Concurrent Programs,

• Thomas Vidick (California Institute of Technology, USA, and Weizmann
Institute of Science, Israel), Quantum codes, local testability and interactive
proofs: state of the art and open questions,

• James Worrell (University of Oxford, UK), The Skolem Landscape.

The 50th ICALP anniversary session, chaired by Burkhard Monien (Univer-
sity of Paderborn, Germany), featured two invited talks:

• Kurt Mehlhorn (Max Planck Institute Saarbrücken, Germany), 50 Years of
ICALP, Personal Reminiscences,

• Thomas Henzinger (IST, Austria), From Formal Methods for Continuous
Systems to the Safety of Neural Network Controllers.

The Bulletin of the EATCS

175

ICALP Proceedings. As it has been the tradition since 2016, ICALP proceed-
ings were published with LIPIcs. LIPIcs – Leibniz International Proceedings in
Informatics is a series of high-quality conference proceedings across all fields
in informatics established in cooperation with Schloss Dagstuhl–Leibniz Center
for Informatics. All 132 ICALP 2023 contributed papers presented at the con-
ference, and papers or abstracts accompanying the invited talks, were published
according to the principle of Open Access in LIPIcs Proceedings volume 261,
and made available online and free of charge at https://drops.dagstuhl.de/
opus/volltexte/2023/18051/. The proceedings editors are Kousha Etessami,
Uriel Feige and Gabriele Puppis.

ICALP and EATCS Awards. The EATCS sponsors awards for both a best pa-
per and a best student paper in each of the two tracks at ICALP, as selected by the
Program Committees. During the general assembly, the ICALP Best Paper and
Best Student Paper Awards were presented to the authors of the following papers:

Best Papers in Track A: Tsun-Ming Cheung, Hamed Hatami, Pooya Hatami,
and Kaave Hosseini, Online Learning and Disambiguations of Partial Con-
cept Classes, and Miguel Bosch Calvo, Fabrizio Grandoni, and Afrouz Jabal
Ameli, A 4/3 Approximation for 2-Vertex-Connectivity.

Best Paper in Track B: Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry
Sinclair-Banks, and Karol Wegrzycki, Coverability in VASS Revisited: Im-
proving Rackoff’s Bound to Obtain Conditional Optimality.

Best Student Paper in Track A: Manuel Cáceres, Minimum Chain Cover in Al-
most Linear Time.

Best Student Paper in Track B: Ruiwen Dong, The Identity Problem in Z o Z is
decidable.

The program of ICALP 2023 included presentations of several prestigious sci-
entific awards sponsored or co-sponsored by EATCS:

• The EATCS Award 2023, the annual EATCS Distinguished Achievements
Award given to acknowledge extensive and widely recognized contribu-
tions to theoretical computer science over a life long scientific career, was
awarded to Amos Fiat (Tel Aviv University) for his fundamental work
within many areas of theoretical computer science and in particular for work
in cryptography, on-line algorithms, and algorithmic game theory.2

2The laudatio for the EATCS Award 2023 is available at https:
//eatcs.org/index.php/component/content/article/1-news/
2939-the-eatcs-award-2023-laudatio-for-amos-fiat.

BEATCS no 141

176

• The Presburger Award 2023 for Young Scientists was jointly awarded
to Aaron Bernstein (Rutgers University) for his breakthroughs in devis-
ing fast graph algorithm, and to Thatchaphol Saranurak (University of
Michigan) for his strong impact in developing new techniques for expander
decomposition.3

• The Alonzo Church Award 2023 for Outstanding Contributions to Logic
and Computation went to the following group of papers for the design and
implementation of Iris, a higher-order concurrent separation logic frame-
work:

– Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, Derek Dreyer: “Iris: Monoids and Invariants as
an Orthogonal Basis for Concurrent Reasoning”. POPL 2015.

– Ralf Jung, Robbert Krebbers, Lars Birkedal, Derek Dreyer: “Higher-
order ghost state”. ICFP 2016.

– Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan,
Derek Dreyer, Lars Birkedal: “The Essence of Higher-Order Concur-
rent Separation Logic”. ESOP 2017.

– Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak,
Lars Birkedal, Derek Dreyer: “Iris from the ground up: A modular
foundation for higher-order concurrent separation logic”. J. Funct.
Program. 28 (2018).

• The EATCS Distinguished Dissertation Awards 2023, to promote and
recognize outstanding dissertations in theoretical computer science were
awarded to three researchers:

– Kuikui Liu (University of Washington) for his dissertation Spectral
Independence: A New Tool to Analyze Markov Chains, supervised by
Shayan Oveis Gharan.

– Alex Lombardi (MIT, Department of Electrical Engineering and Com-
puter Science) for his dissertation Provable Instantiations of Correla-
tion Intractability and the Fiat-Shamir Heuristic, supervised by Vinod
Vaikuntanathan,

– Lijie Chen (MIT, Department of Electrical Engineering and Computer
Science) for his dissertation Better Hardness via Algorithms, and New
Forms of Hardness versus Randomness, supervised by Ryan Williams.

3The laudatio for the Presburger Award 2023 is available at https://eatcs.org/index.
php/component/content/article/1-news/2950-presburger-award-2023-laudatio.

The Bulletin of the EATCS

177

• The EATCS has recognized three of its members for their outstanding con-
tributions to theoretical computer science by naming them EATCS Fellows
class of 2023:

– Michael A. Bender (Stoney Brook University),

– Leslie Ann Goldberg (University of Oxford),

– Claire Mathieu (CNRS, IRIF, Université de Paris).

The recipients of the EATCS Award 2023 (Amos Fiat), of the Presburger
Award 2023 (Aaron Bernstein and Thatchaphol Saranurak), and of the Alonzo
Church Award 2023 (Ralf Jung, Derek Dreyer and Robbert Krebbers) gave pre-
sentations in the Award Sessions.

We congratulate all the winners and we hope their achievements will put the
highlights of research in theoretical computer science in the spotlight, and will
serve as inspirations to young researchers in the years to come.

We hope that this conference report gives you a glimpse of the rich scientific
and social programme that made the 50th ICALP an unforgettable conference. Ev-
eryone involved in the organization of ICALP 2023 deserves the warmest thanks
from the TCS community.

We wish to thank all authors who submitted extended abstracts for consider-
ation, the Program Committees for their effort, and all the referees who assisted
the Program Committees in the evaluation process. We are particularly grateful to
the Conference Chair Sevag Gharibian for the perfect organisation of the confer-
ence. We also acknowledge financial support from DeepL, SFB 901 On-The-Fly
Computing, Reply, Stiebel Eltron, PC2 Paderborn Center for Parallel Computing,
Google Research, and the Heinz-Nixdorf Institut.

The General Assembly of the EATCS was informed about the progress of
the organization of the 51st EATCS International Colloquium on Automata, Lan-
guages and Programming, ICALP 2024, that will take place in Tallinn, Estonia on
July 10–14, 2024, with Pawel Sobocinski as the general chair of the conference.
The ICALP 2024 Program Committee Chairs are Ola Svensson and Karl Bring-
mann (Track A) and Martin Grohe (Track B). ICALP 2024 will be co-located with
IEEE Logic in Computer Science (LiCS).

We hope that you will make plans to submit your best work to ICALP 2024
and be able to go to Tallinn for the conference. We look forward to seeing you
there.

BEATCS no 141

178

E u r o p e a n

A s s o c i a t i o n f o r

T h e o r e t i c a l

C omp u t e r

S c i e n c e

EA
T

C
S

E A T C S

The Bulletin of the EATCS

179

EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the EATCS Distinguished Dissertation Award, the Nerode
Prize (joint with IPEC) and best papers awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

Benefits offered by EATCS to Young Researchers also include:
- Database for Phd/MSc thesis
- Job search/announcements at Young Researchers area

BEATCS no 141

180

(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Jerusalem, Israel 1994
- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997
- Aalborg, Denmark 1998

- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013
- Copenhagen, Denmark 2014
- Kyoto, Japan 2015
- Rome, Italy 2016
- Warsaw, Poland 2017
- Prague, Czech Republic 2018
- Patras, Greece 2019
- Saarbrücken, Germany (virtual conference) 2020
- Glasgow, UK (virtual conference) 2021
- Paris, France 2022
- Paderborn, Germany 2023

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.

The Bulletin of the EATCS

181

Contributions to any of the above areas are solicited, in electronic form only according to for-
mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Vienna), J. Hromkovič
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are D. Sannella (Edinburgh), L. Kari and P.G. Spirakis
(Patras).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Artur Czumaj,
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues are e 40 for a period of one year (two years for students / Young Researchers). Young
Researchers, after paying, have to contact secretary@eatcs.org, in order to get additional
years. A new membership starts upon registration of the payment. Memberships can always be
prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 35 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 35 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.

BEATCS no 141

182

HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, contact the Secretary Office of EATCS:

Mrs. Efi Chita,
Computer Technology Institute & Press (CTI)
1 N. Kazantzaki Str., University of Patras campus,
26504, Rio, Greece
Email: secretary@eatcs.org,

Tel: +30 2610 960333, Fax: +30 2610 960490
If you are an EATCS member and you wish to prolong your membership or renew the subscription
you have to use the Renew Subscription form. The dues can be paid via paypal and all major credit
cards are accepted.
For adittional information please contact the Secretary of EATCS:

Dmitry Chistikov
Computer Science
University of Warwick
Coventry
CV4 7AL
United Kingdom
Email: secretary@eatcs.org,

