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Dear EATCS members,

First of all, let me wish you a very happy
2024. I hope that this will be a healthy
and fantastic year for all of us, full of
great research advances, exciting
conferences and workshops. I look forward
to working together with all of you in
order to continue promoting the development
of theoretical computer science.

I am especially looking forward to
attending the 51st EATCS International
Colloquium on Automata, Languages, and
Programming (ICALP 2024), the EATCS
flagship conference that will be held in
Tallinn, Estonia, July 8–12, 2024
(https://compose.ioc.ee/icalp2024/). The PC
chairs are Karl Bringmann, Ola Svensson
(track A), and Martin Grohe (track B), and
the conference chair is Pawel Sobocinski.
ICALP 2024 will feature three fantastic
invited speakers: Anuj Dawar (University
of Cambridge), Danupon Nanongkai (MPI
Saarbrücken), and Merav Parter (Weizmann
Institute), and further two joint (with
LICS and FSCD) invited speakers Edith
Elkind (University of Oxford) and Stephanie
Weirich (University of Pennsylvania). I
hope that many of you have submitted your
very best work to ICALP 2024 and I expect
to see a great scientific program, to be
selected by the PC in mid April. As usual,
ICALP will be preceded by a series of
workshops, which will take place on July 7.
ICALP 2024 will be collocated with LICS
(39th Annual ACM/IEEE Symposium on Logic in
Computer Science) and FSCD (9th
International Conference on Formal
Structures for Computation and Deduction).
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Please pencil these dates in your diary and
I hope to see many of you attending the
next ICALP in Tallinn.

Also, please allow me to remind you about
three EATCS affiliated conferences that
will take place later in summer and fall
this year: the 49th International
Symposium on Mathematical Foundations of
Computer Science (MFCS 2024,
http://www.mfcs.sk/) in Bratislava, Slovakia,
August 26–30, the 32nd Annual European
Symposium on Algorithms (ESA 2024,
https://algo-conference.org/2024/esa/) at
Royal Holloway, University of London in
Egham, United Kingdom, September 2–4, and
the 37th International Symposium on
Distributed Computing (DISC 2024,
http://www.disc-conference.org/wp/disc2024/)
in Madrid, Spain, October 28–November 1.

But there will be some more exciting theory
conferences taking place in the summer,
where I hope to see strong in-person
attendance stimulating fantastic research
advances in theory.

As usual, let me close this letter by
reminding you that you are always most
welcome to send me your comments,
criticisms and suggestions for improving
the impact of the EATCS on the Theoretical
Computer Science community at
president@eatcs.org. We will consider all
your suggestions and criticisms carefully.

I look forward to seeing many of you
around, at ICALP in Tallinn, or during
other conferences or workshops that I hope
to attend this spring and summer and fall,
or maybe only online, and to discussing
ways of improving the impact of the EATCS
within the theoretical computer science
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community.

Artur Czumaj
University of Warwick, UK

President of EATCS
president@eatcs.org

February 2024
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Dear EATCS member!

The first edition of the Bulletin this year
includes two interviews: Laura Kovacs and
Moshe Vardi tell us which papers motivated
them to become researchers in their
respective fields, give advice on how to
deal with failures, and share with us many
interesting anecdotes and perspectives
about their daily work and about the
directions they believe our community may
evolve.

The Distributed Computing Column features
Siddhartha Jayanti, the winner of the 2023
Principles of Distributed Computing
Doctoral Dissertation Award. His thesis
presents several important concurrent
algorithms, and raises exciting
opportunities for simple machine-verified
proofs for concurrent data structures.

In the Education Column, Marko
Schmellenkamp, Fabian Vehlken, and Thomas
Zeume discuss the challenges involved in
teaching introductory courses on formal
foundations of computer science, including
the large class sizes with students with
different backgrounds. They report on
their positive experiences with
supplementing traditional teaching with
web-based, interactive exercises, and in
particular, the teaching support system
Iltis.

The Bulletin further includes conference
reports from the International Workshop on
Non-Classical Models of Automata and
Applications (NCMA) and from the 27th
International Conference on Implementation
and Application of Automata (CIAA).
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I wish you a happy Spring time and I hope
you enjoy the new Bulletin!

Stefan Schmid, Berlin
February 2024



Institutional
Sponsors
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CTI, Computer Technology Institute & Press "Diophantus"
Patras, Greece

CWI, Centum Wiskunde & Informatica
Amsterdam, The Netherlands

MADALGO, Center for Massive Data Algorithmics
Aarhus, Denmark

Microsoft Research Cambridge
Cambridge, United Kingdom

Springer-Verlag
Heidelberg, Germany
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The Interview Column
by

Chen Avin and Stefan Schmid

Ben Gurion University, Israel and TU Berlin, Germany
{chenavin,schmiste}@gmail.com
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Know the Person behind the Papers

Today: Laura Kovács

Bio: Laura Kovács is a full professor of computer science at the TU Wien, lead-
ing the automated program reasoning (APRe) group of the Formal Methods in
Systems Engineering division. Her research focuses on the design and develop-
ment of new theories, technologies, and tools for program analysis, with a par-
ticular focus on automated assertion generation, symbolic summation, computer
algebra, and automated theorem proving. She is the co-developer of the Vampire
theorem prover and a Wallenberg Academy Fellow of Sweden. Her research has
also been awarded with a ERC Starting Grant 2014, an ERC Proof of Concept
Grant 2018, an ERC Consolidator Grant 2020, and an Amazon Research Award
2020. Recently, she received financial support from Let’s Empower Austria - LEA
Frauenfonds to disseminate computer science to elementary schools.

EATCS: We ask all interviewees to share a photo with us. Can you please tell us
a little bit more about the photo you shared?
LK: The picture is taken in one of my very recent and dearest activities at the
TU Wien: introducing elementary school children to the art and fun of computer
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science. I do various puzzle solving activities with kids and develop algorithms
together with them. It is energizing to see how creative and fast kids can be -
either in sorting, path finding or instructing small robots. We all have a lot of fun
and I hope most of the kids will stick to STEM education - at least they say so
with excitement when they leave our workshops!

EATCS: Can you please tell us something about you that probably most of the
readers of your papers don’t know?
LK: I did my bachelor studies in image processing. I was working on optical mu-
sic recognition and reconstructed music sounds from printed music sheets. It was
a fun project where I did a lot of coding and used many linear algebra algorithms.
I was fascinated by the topic for almost two years, before I entered the field of
symbolic computation.

EATCS: Is there a paper which influenced you particularly, and which you rec-
ommend other community members to read?
LK: I cannot really name one single research paper that influenced me the most.
However, the paper that pushed me to start work in formal verification is the mas-
ter thesis “Program Verification with the Mathematical Software System Theo-
rema" by Martin Kirchner, RISC-Linz, Austria, 1999 (Technical Report 99-16). I
read this thesis while being a master student at RISC-Linz and I liked the combi-
nation of logic, math and software engineering. Thanks to this thesis, I read the
seminal works of Edgar Dijkstra, Robert Floyd, and Tony Hoare - as well as many
other related papers and works.

EATCS: Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?
LK: I particularly like my TACAS 2008 paper “Reasoning Algebraically About
P-Solvable Loops". This paper summarizes my PhD thesis and it was written in a
quite stressful situation. I actually wanted to prove a stronger result than the one
presented in the paper: essentially, my goal was to prove that the strongest induc-
tive invariants of so-called polynomial-solvable loops are computable. However, I
could only prove this under additional restrictions on the loop semantics and was
quite disappointed that time that I could not get stronger theoretical results. It was
a tricky situation: I could not complete the proof of the general case, but I also
did not succeed in finding a counterexample. As such, in my TACAS 2008 paper
I posed the general case as an open challenge for the future. I am glad I have
done so because since then quite many undecidable and/or hardness results have
been established upon algebraic invariant synthesis. Notably, in our POPL 2024
on “Strong Invariants Are Hard", we have just proved that generalizing my PhD
thesis results is not trivial, hitting the computational limits of the famous Skolem
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problem from number theory. Even more than 15 years after my PhD, the open
challenge of my TACAS 2008 paper brings in new research directions to further
explore.

EATCS: When (or where) is your most productive working time (or place)?

LK: Even though I dislike waking up early, early morning hours are the best for
me. After dropping my kids at school, I usually have 8-10am as the two hours in
which I am free to do what I want, on a daily basis. I actually enjoy working late,
but this I can only do for limited periods, triggered by deadlines. In addition, I
have one day a week where I have no meetings, lectures or other events. I enjoy
this day usually in my office.

EATCS: What do you do when you get stuck with a research problem? How do
you deal with failures?

LK: I try to read up more on related work and find a colleague to discuss and
brainstorm. Failure is relative and is part of research. I would therefore not really
say that I/we failed on a research topic, but consider that the chosen methodology
did not work as expected. In such cases, I try to understand what and why was
different; if I manage to do so, then I failed “well" and have a very good learning
outcome.

EATCS: Is there a nice anecdote from your career you would like to share with
our readers?

LK: I come from the Hungarian minority of Transylvania, Romania. I manage to
confuse people all the time when I stress that I have double citizenship (Romanian
and Hungarian) but only one nationality (Hungarian). Quite many administrative
forms do not distinguish between citizenship and nationality, so I end up writing
a short explanatory text on a form where most likely only one word is needed.

Funnily, when I mention Transylvania, many people associate my background
with vampires and Dracula. When I then tell them that I work on a research project
called Vampire, they just believe this has been my destiny. It was however quite a
coincidence that I started working on the Vampire theorem prover in 2009.

EATCS: Do you have any advice for young researchers? In what should they
invest time, what should they avoid?

LK: There are many advices one gets and one should filter out among these ad-
vices. Actually, it is impossible to follow all advices. The one that I follow (and
tell my students) is rightfully generic: Do what you are the best at! One should not
just follow hypes, rather be persistent on own interests. Positioning these interests
within trendy research topics is beneficial, but should not be your driving wheel.
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EATCS: What are the most important features you look for when searching for
graduate students?
LK: Curiosity and flexibility. One should be passionate about curiosity-driven
research and be open to new challenges and collaborations. Most research in
computer science is collaborative and one should be respectful to colleagues.

It can be hard for students to assess whether they are “ready" for research.
I therefore actively approach some of my best students from my lectures at the
TU Wien. I talk to them, invite them to group meetings, and try to initiate joint
research topics of mutual interest.

EATCS: Do you see a main challenge or opportunity for theoretical computer
scientists for the near future?
LK: I see the opportunity of a continuously evolving, hard research field. There
are always new problems that need new solutions; once a problem is solved, we
are happy to take up new, harder problems. It is like an endless loop: if one is
passionate about research, one never gets bored but remains eternally happy in
solving problems. Theoretical computer science is a safe place to be in, it will
always exist and will always be challenged by new computer science applications
and practices.
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Please complete the following sentences?

• Being a researcher is what I enjoy and am good at.
When solving a research problem, the community will be interested in
your solution. Research is rewarding, but you need to be persistent.

• My first research discovery was different than the rest of all my other
research results. It was on image processing, although it already used
some kind of automated reasoning based on linear algebra.

• Being curious is key to being a happy academic.

• Theoretical computer science in 100 years from now will be even more
important than today, solving even harder problems than the ones we face
now.
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Know the Person behind the Papers

Today: Moshe Vardi

Bio: Moshe Y. Vardi is University Professor and the Karen Ostrum George Dis-
tinguished Service Professor in Computational Engineering at Rice University,
where he is leading an Initiative on Technology, Culture, and Society. His inter-
ests focus on automated reasoning, a branch of Artificial Intelligence with broad
applications to computer science, including machine learning, database theory,
computational-complexity theory, knowledge in multi-agent systems, computer-
aided verification, and teaching logic across the curriculum. He is also a Faculty
Scholar at the Baker Institute for Public Policy at Rice University.

EATCS: Nice to meet you, Moshe! This is actually the first live interview we
conduct, usually the EATCS interviews are done offline.
MV: I very much prefer it live and interactive! This gives us more flexibility and
you can ask additional questions spontaneously. This is also the reason why I
don’t teach with slides but on the board, “old school”. This allows me to react
to students better and also slows me down – a good control mechanism for my
teaching speed.
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EATCS: We ask all interviewees to share a photo with us.

MV: Most photos of me are made when the Rice University photographer shows
up because he noticed that ‘you look older than the picture on your website!’ I
share two pictures. The first one was created by my son, for a poster for my lecture
on robots and jobs. The second picture shows me with my wife, Pam, feeding a
llama in Machu Pichu in 2018.

EATCS: Can you please tell us something about you that probably most of the
readers of your papers don’t know?

MV: I am a second-generation Holocaust survivor. I served 5 years in the military
and was an artillery officer. This was a typical trajectory for people with a physics
background like me.

EATCS: Is there a paper which influenced you particularly, and which you rec-
ommend other community members to read?

MV: One of my all-time favorite papers has a shortest possible title: Alternation,
by Chandra, Kozen, and Stockmeyer. It is a very beautiful paper. I first read it as
a paper on complexity theory but later it turned out that the concept of alternating
automata (which were also introduced in that paper) became an important tool
in my work on program verification. Alternation is really another way of game
play, where players take turns: a major theme of my research. What was new in
this paper is the idea to make games a computational construct. This idea is now
also used intensively for synthesis. Alternation is also powerful because it is very
close to logic. For example, the initial translation from LTL to Büchi automata
is significantly simplified if taught or implemented via the concept of alternating
automata.

EATCS: Is there a paper of your own you like to recommend the readers to study?
What is the story behind this paper?

MV: My second most-cited paper is on the complexity of relational queries. I pub-
lished this paper right after my PhD, but most of the research I conducted during
my PhD, as a side project. It started with me being puzzled that there are seem-
ingly contradictory complexity results for relational queries in the literature. One
result claimed that the complexity of first-order queries is PSPACE complete, and
another result claimed that the complexity of existential second-order queries is
NP, which seemed strange as NP contains PSPACE but second-order logic is more
expressive than first-order logic. So I realized that there are different ways to mea-
sure the complexity of queries, related to the expression complexity or the data
complexity. Looking back, this was the first paper on what we call today multi-
variate complexity theory or parameterized complexity, studying how the different
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input variables impact the complexity. I I sometimes also call it logical algorith-
mics, which I see as an attractive alternative way of developing algorithms, which
fits database queries very well: rather than devising problem-specific algorithms
one-by-one, there is a meta-algorithm and a to-be-studied property; the problem-
specific algorithm is then obtained by compilation of this meta-algorithm. This
idea came from relational database theory, which was the first topic of my re-
search.

EATCS: Are there still open research challenges in this area today?

MV: Yes, for example in the context of constrained satisfaction problems. I am
very interested to understand how we can use tree decompositions to evaluate
queries faster. 20 years ago researchers were sceptic about this idea, as computing
tree decompositions itself is a hard problem. However, now we not only have
approximation algorithms but also good tools, and it is time to revisit these ideas,
which may become tractable.

In general, I believe we need to revisit our definitions of tractability and com-
plexity theory in general. Every year, tools like SAT solvers are getting signifi-
cantly better. Problems that we thought are intractable, are now tractable in prac-
tice. We are now able to solve very large SAT instances that come from real-life
applications.

What we thought is hard, is not hard. At the same time, what we thought is
easy is not always easy: for several polynomial-time problems, we currently only
have high-degree polynomial algorithms with huge constants.

We start to realize that complexity theory, one of the most beautiful theories we
currently have, offers us only limited insights into the actual hardness of problems
in practice. Ariel Rubinstein, the famous Israeli economist, wrote in his book
on Economic Fables that our fundamental economical models can only inform
economic decision making in the real world; the latter often comes with additional



BEATCS no 142

24

constraints and ultimately is also about values, politics, etc.
This is similar with complexity theory, which can provide us with guidelines

and explanations, but not accurate predictions of practical run times.

EATCS: You are very productive and active on many fronts. Can you share with
us how you manage your time? And when is your most productive working time?
MV: I am not a good time manager. I often juggle many balls, at any point of time
several balls are on the floor. I just hope that the important balls on the floor will
scream and catch my attention!

One has to learn to say no. At least I try to start with an empty inbox every
year.

I am not a night owl, and I think sleep is very important, trying to be disci-
plined. One has to realize that a career is a marathon, not a sprint. I tried once, 30
years ago, to do an all-nighter to finish a paper, but I realized at midnight that my
writing gets bad. So I never tried it again.

EATCS: Is there a nice anecdote from your career you like to share with our
readers?
MV: When I was a postdoc, I had a single-author FOCS paper. At the reception
of the conference, before my presentation, a colleague came to me and said that
he really liked the paper. However, he got stuck in one of the proofs. I went to
my room and noted a bug. I tried to fix it but I could not do it. So I had to give
my presentation the next morning and say that a proof was wrong. Not a nice
experience for a young postdoc! Fortunately, it turned out a few years later that
my theorem was correct, but a new proof idea was necessary.

EATCS: Do you have any advice for young researchers? In what should they
invest time, what should they avoid?
MV: People are different, and everyone has to figure out themselves what works
for them. Also my students are very different, and I am not a good predictor
of their success. I mainly judge students on their technical capabilities, which,
however, are not necessary or sufficient for success. There are people who are
technically not so strong but really good at managing their careers; and there are
technically very strong researchers that don’t act wisely. We are working within
a social context, within a community, and we have to be aware of this. Think of
Sheldon Cooper of Big Bang Theory, who is very smart but whose view of how
the world works is very imperfect.

I have also seen very smart young researchers who take the dangerous strategy
of focusing on solving a single very hard open problem. I always recommend to
diversify the research. It is often difficult to guess upfront how hard a problem is
going to be.
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Generally, it is important to be able to create a vision and tell a story. I always
ask my students to give a dry run for their talks, and try to deliver a story. All
cultures love stories, and there is a universal 3-Act structure: introduce the char-
acters, create a crisis for the characters, and resolve the crisis. I suggest to also
use this structure for presenting your research.

EATCS: What are the most important features you look for when searching for
graduate students?

MV: I don’t search for students, they usually come to me. They typically took my
class and I never declined an interested student. In contrast to Europe, in the U.S.,
the department selects the students and I usually try to work with my students as
long as I can, and at least bring them to a masters degree.

EATCS: Do you see a main challenge or opportunity for theoretical computer
scientists for the near future?

MV: The computer science field is still very young and evolving. For example,
complexity theory is far from perfect and in a crisis. We need a new theory that
lowers the discrepancy to the real world. I see the current situation as a huge op-
portunity: now we can become inventive again! We also had this big successes
around machine learning, generative AI, and deep learning, which we don’t under-
stand well fundamentally. We need more theory to shed light on these approaches
and why/when they work.

There are many success stories about theories which became very relevant
in practice. One of my most successful research results, related to automata-
theoretic model checking, actually built upon fundamental results that were orig-
inally derived in purely theoretical studies, without specific applications in mind.
The elegant theories developed in the context of decision procedures for monadic
structures or fixpoints, turned out to have very practical applications and gave rise
to industrial tools.

There is also this debate about beauty. For example, physicists consider string
theory beautiful, but some believe that it led us astray. Beauty does not always
lead to usefulness. But in case of automata-theoretic model checking, the sim-
plicity and beauty was actually important to make it practically relevant, as it is
easy to understand and implement. I believe that it is not about beauty but about
simplicity, for implementation.

I believe that good theory has huge potential. One of the success stories in
computer science, relational databases, relies on query languages based on first-
order logic theory. Initially, systems researchers were very concerned that this
approach will never perform well and hence not be practical. In fact, there were
big controversies at that time, for example inside IBM. And now declarative query
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languages are the foundations of our Western Civilization. It was one of the re-
search contributions that received the Turing Award the fastest.

EATCS: Can you recommend some source of information that you enjoy (e.g., a
specific blog, podcast, youtube channel, book, show, ...)?
MV: One of the books that I like very much is The Universal Computer: The Road
from Leibniz to Turing, by Martin Davis. It tells the story how computing arose,
going back all the way to Leibniz. Usually we teach the students mainly how the
algorithms and theories work, but not much about the history how these concepts
were developed. I think it is a mistake not to include the historical dimension. All
these great ideas were created by human beings, and students should understand
also this dimensions.

Actually I also gave a similar talk, From Aristotle to the iPhone (https:
//www.youtube.com/watch?v=iWWqUIzDIeQ), in which I try to tell this story
in one hour. I gave this talk in different versions. Once I was asked to give it at
UCLA, in a more lively version. So I added one line to the abstract: this is a story
where the protagonists usually die young, miserably, or both. And this attracted a
big audience, and I realized how much people are interested in the human dimen-
sion. I also gave this talk at the UNESCO Logic Day. The interest was so large
that our Zoom licence had to be extended multiple times to accommodate about
one thousand listeners.
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Please complete the following sentences?

• Being a researcher... I tell you a story. When I was in the army, we had
to practice parachute jumps. Once I was last to get onto the plane, and
so I had to be first at the door from where the jump takes place. Standing
there for minutes in front of the open air, engines roaring, ready to jump.
These moments between plane and the “nothingness”, is a most alive
and exciting feeling. This is a beautiful metaphor for research: we are
standing at the edge of the unknown, and all we have to do is jump, into
an exciting space. I want my students to feel the same.

• My first research discovery... was actually accidental. I was a master
student and did not know what to explore. I attended some seminar and
I got to present a paper, which at the end raised an open question. This
problem intrigued me and this became my master thesis. And then this
topic even evolved into my PhD thesis.

• Being resilient ... is key to being a happy academic. Being professor
is not an easy job. People get their PhDs at the end of their 20ties, and
then need to be productive researchers for 40 years. Topics evolve sig-
nificantly over these time frames, and even if you have an excellent rep-
utation, it stays competitive and your papers still get rejected. In fact,
sometimes the expectations on you are even higher if you are more suc-
cessful. You also need to be able to cope with the freedom that one has.

• Theoretical computer science in 100 years from now... It is hard to give
predictions, as the field is still young, compared to other disciplines. It
still needs to mature. For example I am very curious how complexity
theory will evolve. Will it be a different theory? Or will the current one
be refined? My hope is that we will have theories that give better answers.
I think the best is yet to come!
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Abstract

Introductory courses on formal foundations of computer science are often
attended by large numbers of students with diverse backgrounds. In this paper
we outline how we address this challenge in our courses by supplementing
traditional teaching with web-based, interactive exercises. The web-based
exercises are provided by Iltis, a modern teaching support system covering
the foundations of computer science logic, formal languages, and (parts
of) complexity theory. We give a gentle introduction to Iltis, describe its
technical integration into our courses, and outline research challenges and
opportunities coming up when developing such a system.

1 Introduction and Motivation
Formal foundations are at the core of many modern applications of computer sci-
ence and are therefore an integral part in recommendations for Bachelor computer
science curricula [8, 6]. Typical study programs implement these recommendations
by offering, among others, courses on Logics for Computer Scientists — covering
the reasoning pipeline for propositional logic and first-order logic — and on Theo-
retical Foundations of Computer Science — covering formal languages as well as
basics of complexity and computability theory; see Figure 1(a) for an overview of
standard topics.

Teaching these formal foundations is a challenge for most instructors as it
is one of the harder topics for students. Also, increasing numbers of students
enrolled in computer science courses with diverse backgrounds are difficult to
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Foundations of logic

• Basics: Propositional, modal, and
first-order logic

• Advanced: Logics for verification,
description logics, etc.

• Methods: Modelling, reasoning
pipeline (modelling, transforma-
tion, inference), algorithms for eval-
uation & satisfiability

Foundations of formal languages

• Basics: Regular and context-free
languages

• Advanced: Regular tree languages,
timed languages etc.

• Methods: Modelling, closure prop-
erties, constructions & algorithms,
pumping lemmata

Basics of complexity theory

• Basics: P, NP, completeness

• Advanced: Space-based classes,
fine-grained complexity, etc.

• Methods: Classifications, closure
properties, reductions, . . .

Basics of computability theory

• Basics: (Semi-)decidability, unde-
cidability, computability

• Methods: Classifications, closure
properties, reductions, . . .

(a) (b)

Exercise: From modelling to inference

Julia has identified the following dependen-
cies between program libraries and system li-
braries:

• No software package is both a program li-
brary and a system library.

• System libraries depend only on system li-
braries.

• Every software package that must be explic-
itly installed by the user depends on at least
one program library directly.

She concludes that there is no system library
that must be explicitly installed by the user.

Can you confirm her conclusion using meth-
ods you learned for first-order logic?

Figure 1: (a) Topics typically covered by courses on formal foundations of computer science. (b)
A typical exercise for a workflow covering modelling, transformation, and inference in first-order
logic.

handle with traditional lecture- and tutorial-based courses. In particular, providing
individual human tutoring for such a large number of students with diverse needs
exceeds the resources of most CS departments. A general approach for tackling this
challenge and increasing learning outcomes across STEM disciplines is provided
by the National Research Council of the US which advocates, among others, to
“Leverage technologies to make the most effective use of students’ time, shifting
from information delivery to sense-making and practice in class” [9, 2]. For formal
foundations, technological teaching support in particular may help to make room
for theory and in-depth problem solving in lectures and tutorials by outsourcing
some basics.

From our perspective, to be useful in large, mandatory courses, teaching support
technologies for formal foundations of computer science need to offer:

• Coverage of a wide range of topics in formal foundations of computer
science;

• Advanced feedback and support provided immediately, extensively, and
individually;

• Flexibility in how to use and combine educational tasks;

• Easy integration into courses; and

• Extensibility of topical range and feedback mechanisms.

Many teaching support systems for topics typically taught in introductory
formal foundations courses have been developed over the years. Most of these
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systems were developed ad-hoc by instructors for helping their students. A common
theme is that only a small set of topics (typically only one) is covered; systems are
abandoned and/or become technologically outdated rather quickly; and in most of
them only very basic feedback is provided.

In this article we report on our experiences and progress in building the teaching
support system Iltis.1 In short, Iltis offers a wide range of interactive, web-based
exercises on formal foundations of computer science. It is designed for flexibility
and extensibility, and offers easy integration into common learning management
systems. Within this article we address

• the scope of Iltis – which topics are covered and how content can be com-
posed for different needs (see Section 2);

• how we set up large introductory courses on Logic for Computer Science and
on Foundations of Theoretical Computer Science with integrated web-based
exercises in Iltis (see Section 3);

• what research challenges and opportunities arise – theoretical, practical, and
didactical – when building teaching support systems for formal foundations
of computer science (see Section 4).

This article updates, adapts, and condenses a report from 2021 by a superset of
the current authors [5].

2 An Introduction to Iltis
In Iltis, instructors can design educational content flexibly by using a broad
portfolio of educational tasks in foundations of logic, formal languages, and
complexity theory (see Section 2.3). A compositional task model allows to combine
tasks flexibly into multi-step exercises (see Section 2.1). A compositional feedback
model allows for providing feedback according to the progress of students in
curricula (see Section 2.2).

2.1 Compositional Task Model
Exercises in Iltis are built from small, easily composable, educational tasks. Each
educational task is configurable by inputs — either given explicitly or as the output
of prior tasks — and provides objects created by students within this task as outputs.
The outputs can then be used by subsequent educational tasks. For instance, a

1Iltis [’IltIs] is the German word for polecat and the Swiss animal of the year 2024 [1]. We
invite all readers to try out Iltis: https://iltis.cs.tu-dortmund.de/
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Table 1: A summary of educational tasks in the logic domain that are supported by Iltis.
Task Propositional logic Modal logic First-order logic

Evaluating formulas ✓ ✓ –

Constructing models ✓ ✓ ✓

Creating signatures ✓ ✓ (✓)

Constructing formulas ✓ ✓ ✓

Transforming ✓ ✓ ✓

Testing satisfiability ✓ ✓ ✓

Task variants
& further tasks

Satisfiability tests with
• truth tables
• HornSat algorithm
• tableau calculus
• resolution

Satisfiability test with
tableau calculus

Calculating bisimulations

Proving non-bisimilarity
of worlds

Satisfiability test with
resolution

Proving non-equivalence
of formulas

Table 2: A summary of educational tasks that are supported for formal languages, computability
and complexity theory.

Regular languages Context-free languages Computability & complexity the-
ory

Modeling with
• deterministic automata
• non-deterministic automata
• regular expressions

Specifying words
Specifying Myhill-Nerode-classes
Proving non-equivalence of languages

Modeling with
• push-down automata
• deterministic push-down automata
• context-free grammars (CFGs)

Specifying words
Specifying derivations in CFGs
Proving non-equivalence of languages

Interacting with graphs:
• constructing graphs
• colouring nodes and edges

satisfying multiple conditions

Specifying graph reductions

task for transforming a formula into conjunctive normal form (CNF) receives a
formula as input and provides the student-constructed, equivalent formula in CNF
as output.

Typical workflows used in formal foundations of computer science can be
covered by multi-step exercises composed of different educational tasks. For
instance, Figure 2 illustrates a workflow in which students first model a scenario
with propositional formulas φ1 and φ2, and then infer another propositional formula
ψ by first deciding what to do, then transforming φ1∧φ2∧¬ψ into CNF, and finally
showing unsatisfiability of the set of clauses via the satisfiability algorithm for Horn
formulas (instead of the latter, also propositional resolution or the propositional
tableau calculus could be used). Throughout this workflow, the formulas entered
by the students are used for subsequent tasks.

Two further multi-step exercises are illustrated in Figures 2, 3 and 5.
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Input: –

Assignment
Output: –

Input: –

Step 1: Constructing formulas
Model the scenario

Output: Formulas ψ1, . . . , ψm

Input: –

Step 2: Constructing formulas
Model the consequence

Output: Formula ψ

Input: –

Step 3: Multiple choice
What to do now?

Output: –

Input: ψ1 ∧ . . . ∧ ψm ∧ ¬ψ

Step 4: Transforming formulas
Transform into implication form

Output: Formula φ in implication form

Input: Formula φ in implication form

Step 5: HornSat algorithm
Apply algorithm

Output: –

Input: –

Step 6: Multiple choice
Determine unsatisfiability

Output: –

Debugging a chat system:
Archie sends some test messages to his three co-
developers Sophie, Luke, and Maja. He makes the
following observations: [. . . ] Archie assumes that
Maja was able to receive his message, but is he right?
Verify Archie’s assumption!

Imprint Privacy Policy
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 2022-01-27 14:58:47 +0100

Iltis: Progress report 2022

Step 1: Modeling the scenario

✓

×

For each of the statements, devise a propositional formula.

Sophie and Luke received Archie's message.

Only if Maja received Archie's message, both Sophie and Luke

did as well.

Your formula is not correct.

The implication operator is used for translating

conditional statements into propositional

formulas. For example, a statement of the form

"If φ then ψ" can be written as "φ → ψ".

Caution: Statements of the form "φ only if ψ" are

expressed by "φ → ψ" even though "if" occurs in

front of ψ.

You might have mixed up "If ... then ..." and "...

only if ...".

Check out the highlighted parts of your formula

again: M → (S∧L)

Show more...

Finish Task

S ∧ L

M → (S ∧ L)

 devs

S: Sophie received Archie's message.

L: Luke received Archie's message.

M: Maja received Archie's message.

Propositional variables

Iltis: Progress report 2022
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Step 5: Applying the HornSat algorithm

Apply the HornSat algorithm to the formula in implication

form constructed above.

For this, click on the variable that will be marked next by the

algorithm. Variables you select are highlighted in red. All

occurrences of these variables are automatically

highlighted in blue.

( ( S∧ L )→ M )∧ S∧ L∧ ( M→ ⊥ )

Finish task: All variables possible are marked

 devs

Back to top

Iltis: Progress report 2022
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Step 5: Applying the HornSat algorithm

Apply the HornSat algorithm to the formula in implication

form constructed above.

For this, click on the variable that will be marked next by the

algorithm. Variables you select are highlighted in red. All

occurrences of these variables are automatically

highlighted in blue.

( ( S∧ L )→ M )∧ S∧ L∧ ( M→ ⊥ )

Finish task: All variables possible are marked

 devs

Back to top

Iltis: Progress report 2022

Figure 2: An exercise for the propositional reasoning workflow, composed of smaller educational
tasks. For this sample scenario, the instructor chose the HornSat satisfiability test as Horn formulas
are sufficiently expressive. For general propositional formulas, also truth tables, propositional
resolution, and the propositional tableau calculus can be used. In Step 1, the student chose to reveal
the first three feedbacks.
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Input: –

Assignment
Output: –

Input: Formula φ (specified by instructor)

Step 1: Transforming formulas
Transform into NNF

Output: Formula ψ in NNF

Input: Formula ψ in NNF

Step 2: Tableau Calculus
Construct a tableau

Output: –

Input: –

Step 3: Multiple choice
Is ψ satisfiable?

Output: –

Input: Formula ψ

4b: Specify structure
Construct a model for ψ

Output: –

Input: –

4a: Multiple choice
Why is ψ unsatisfiable?

Output: –

ψ satisfiableψ unsatisfiable

Testing for satisfiability
Test whether the modal formula

φ = ¬□(¬A ∨ ¬^B) ∧ (^B ∨ ¬^A)

is satisfiable. If so, also construct a model.
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Step 1: Transformation

First transform the formula step by step into negation

normal form.

 Copy

 Check

⊤ ⊥ ∧ ∨ ¬ → ↔ ( )  ☐ ◇

A B 

Finish task: negation normal form reached

¬☐(¬A∨¬◇B)∧(◇B∨¬◇A)

◇¬(¬A∨¬◇B)∧(◇B∨¬◇A)
◇(A∧◇B)∧(◇B∨¬◇A)
◇(A∧◇B)∧(◇B∨☐¬A)

 devs

Iltis: Progress report 2022
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Step 2: Applying the tableau calculus

Construct a saturated modal tableau for your formula in

negation normal form. Also mark all contradictory leaves.

∧-rule ∨-rule ☐-rule ◇-rule

s ₁ ,  ◇ ( A∧◇B )∧ (◇B∨☐¬ A )s ₁ ,  ◇ ( A∧◇B )∧ (◇B∨☐¬ A )

s ₁ ,  ◇ ( A∧◇B )s ₁ ,  ◇ ( A∧◇B )

s ₁ ,  ◇B∨☐¬ As ₁ ,  ◇B∨☐¬ A

( s ₁ ,  s ₂ )  ∈  E( s ₁ ,  s ₂ )  ∈  E

s ₂ ,  A∧◇Bs ₂ ,  A∧◇B

s ₂ ,  As ₂ ,  A

s ₂ ,  ◇Bs ₂ ,  ◇B

( s ₂ ,  s ₃ )  ∈  E( s ₂ ,  s ₃ )  ∈  E

s ₃ ,  Bs ₃ ,  B

s ₁ ,  ◇Bs ₁ ,  ◇B

( s ₁ ,  s ₄ )  ∈  E( s ₁ ,  s ₄ )  ∈  E

s ₄ ,  Bs ₄ ,  B

s ₁ ,  ☐¬ As ₁ ,  ☐¬ A

s ₂ ,  ¬ As ₂ ,  ¬ A

Step 1 ∧-rule applied on (s ,  ◇(A∧◇B)∧(◇B∨☐¬A)).

Step 2 ◇-rule applied on (s ,  ◇(A∧◇B)).

Step 3 ∧-rule applied on (s ,  A∧◇B).

Step 4 ◇-rule applied on (s ,  ◇B).

Step 5 ∨-rule applied on (s ,  ◇B∨☐¬A).

Step 6 ☐-rule applied on (s ,  ☐¬A).

Step 7 ◇-rule applied on (s ,  ◇B).

Finish Task

Protocol

1

1

2

2

1

1

1

 devs

Iltis: Progress report 2022
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Step 4b: Model construction

Construct a model of the formula. For this, read a Kripke

structure  with a world  from your tableau such that

holds.

s1s1

s2s2

A

s3s3

B

s4s4

B

Finish Task

K s

1

(K, s

1

) ⊨ ¬□(¬A ∨ ¬◊B) ∧ (◊B ∨ ¬◊A)

 devs

Iltis: Progress report 2022
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Figure 3: An exercise for solving the satisfiability problem for modal formulas, composed of
smaller educational tasks. For satisfiable and unsatisfiable formulas, different workflows can be
used.
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Input: –

Assignment
Output: –

Input: –

Step 1: Specifying words
Get to know the language

Output: Words w1, . . . ,wm

Input: –

Step 2: Multiple choice
Determine the level in the Chomsky hierarchy

Output: –

Input: –

Step 3: Constructing grammars
Design a grammar for the language

Output: Grammar G

Input: Word w, Grammar G

Step 4: Deriving words
Derive a word from the student’s grammar

Output: –

Modelling a language
First, decide the level of the Chomsky hierarchy of the
language

L = {w ∈ Σ∗ | #a(w) = #b(w)},

then model it in a suitable representation.
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Step 1: Finding words in  L

×

✓

For each requirement, find a word over the alphabet

 that is contained in

and meets the respective requirement.

A word in  that contains all symbols of .

Your input is not correct.

The following conditions are not met:

• Your word has to be contained in .

• Your word has to contain all symbols of .

A word in  with a minimum length of 6 that contains no .

Finish Task

Σ = {a, b, c}

L = {w ∈ Σ∗ ∣ #a(w) = #b(w)}

L Σ

aab

L

Σ

L c

ababab

 devs

Iltis https://iltis-public.cs.tu-dortmund.de/gadget-reducti...

1 of 1 2/21/24, 13:15

Imprint Privacy Policy

 2024-01-28 15:18 +0100

Iltis

Step 3: Constructing a grammar for  L

In the last step, you decided that

is a context-free language.

Now construct a context-free grammar that describes .

S → | ε  ↵ 

a b c

A B C D E F G H S

Finish Task

L = {w ∈ Σ∗ ∣ #a(w) = #b(w)}

L

S → aSb | bSa | c

 devs

Your grammar is incorrect. Consider the following

counterexample: the word ε is contained in the given

language, but it cannot be derived from your

grammar.

Iltis https://iltis-public.cs.tu-dortmund.de/gadget-reducti...

1 of 1 2/21/24, 13:31
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Step 4: Deriving a word

Now, let's come back to the second word you specified in

the first step,

and the grammar  you entered in the last step:

To prove, that  can actually be derived in your grammar,

specify a derivation of  in . Make one step at a time.

 Check

 Copy

Finish Task

w = ababab,

G

S → aSb ∣ bSa ∣ SS ∣ c ∣ ε

w

w G

S

⇒ aSb

⇒ abS

 devs

Your last derivation step is not possible in the given

grammar.

Back to top

Figure 4: An exercise for constructing a representation of a formal language. As preparatory
step, students explore the formal language by identifying some elements and deciding its level
in the Chomsky hierarchy. For constructing a representation of a context-free languages Iltis
supports context-free grammars and push-down automata; for regular languages, it supports (non-
)deterministic finite state automata and regular expressions.
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Assignment

Get to know the algorithmic problems
via positive and negative instances

Explore a negative reduction candidate
from VertexCover to DominatingSet

Get to know the reduction candidate

Find a counterexample

Explore a positive reduction candidate
from VertexCover to DominatingSet

Get to know the reduction candidate

Transfer a vertex cover to a dominating set

Construct a reduction
from VertexCover to FeedbackVertexSet

Finding a reduction
(a) Explore a reduction from

VertexCover to Dominatingset
(b) Design a similar reduction from

VertexCover to FeedbackVertexSet
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Proving that nodes are no vertex cover

Select an edge that proves that the three red-coloured

nodes do not form a 3-vertex cover.



Finish Task

 devs

Back to top
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Specifying a counterexample

Construct a graph  that contains a 1-vertex cover, but for

which  is a negative D���������S��

instance, for the function  above.

Finish Task

G

(G⋆, 2) = g(G, 1)

g

G:



 devs
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Transferring a solution candidate

Select a 2-vertex cover in the graph . Then select the

corresponding 2-dominating set in the graph , where

 for the function  above.

Finish Task

G

G⋆

(G⋆, 2) = f(G, 2) f

G:



G⋆:



 devs
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Constructing a reduction

Define a reduction  from

V�����C���� to F�������V�����S��.

It turns out that this reduction is very similar to the

reduction from V�����C���� to D���������S�� we

explored earlier. In particular, we can chose  and

also transfer all nodes from  to .

Now, specify how  is constructed from  by stating

which additional nodes and edges  is supposed to

contain.

Finish Task

h : (G, k) ↦ (G⋆, k⋆)

k⋆ = k

G G⋆

G⋆ G

G⋆

For each (undirected) edge  in , specify which nodes

and edges should  contain in its place:

u v

u v

uv

{u, v} G

G⋆

↦



 devs

Iltis https://iltis-public.cs.tu-dortmund.de/gadget-reducti...

1 of 1 2/22/24, 13:03

Figure 5: A series of tasks for helping students to find a computational reduction between two
problems. As a preparatory step, students can explore (a) the involved algorithmic problems and (b)
reduction candidates similar to the reduction to be found (one incorrect and one correct candidate).
The actual workflow is only depicted partially in this illustration.
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2.2 Compositional Feedback Model
One of the core objectives of Iltis is to provide immediate and comprehensive feed-
back, as this is one of the most important factors for learning success. Educational
task types in Iltis come with multiple feedback generators, each one responsible
for one kind of feedback. Individual feedback generators can be composed to
feedback strategies by simple rule-based programs. Such programs are executed
upon student input and determine the order of feedback, with the execution of rules
possibly depending on the result of previous rules.

When specifying interactive exercises, instructors can state which feedback
strategy to use (or they can define a custom one). In this way, the progress of
students can be taken into account, e.g., a strategy that provides a lot of feedback
can be used for beginners, while a strategy that provides almost no feedback can
be used for exam preparation. By gradually uncovering the feedback from the
different generators, students can choose how much of the feedback provided they
want to use.

Designing feedback strategies and generators is a subtle and challenging task
as algorithmic feasibility as well as didactical aspects have to be taken into account.
We sketch a sample strategy and its feedback generators for providing feedback
for the construction of propositional formulas (see Figure 2, Step 1, for a partial
illustration):

(1) Correctness: Is the constructed formula correct or not correct?

(2) Misconceptions: Typical misconceptions (e.g., mixing up premise and con-
clusion of an implication, especially when modelling “only if”-statements)
are identified using an abstract rule framework [4]. They are the basis for
several feedback generators:

(a) Hint at the misconception (e.g., “Do you remember how ‘if’- and ‘only
if’-statements can be expressed in propositional logic?”)

(b) State the misconception explicitly (e.g., “You might have mixed up ‘if’
and ‘only if’.”)

(c) Point out the precise position of the mistake

(3) Distinguishing model: A valuation that distinguishes the constructed formula
from a correct formula.

2.3 Educational Tasks
Iltis supports a variety of educational tasks for foundations of computer science
logic, formal languages, and (parts of) complexity theory. In addition to content-
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specific tasks, there are also tasks to smooth out multi-step exercises, such as
multiple-choice tasks.

Foundations of logic. Educational tasks for foundations of logic cover proposi-
tional logic, modal logic, and first-order logic content (see Table 1 for an overview).
A broad spectrum of typical tasks is covered, including:

• Evaluating formulas: Students can evaluate formulas for a given interpre-
tation by constructing truth tables for propositional formulas or evaluation
tables for a given modal formula and Kripke structure, respectively.

• Constructing models: Students can construct models (i.e., satisfying inter-
pretations) for formulas. For propositional logic, models are specified by
valuations for all variables, for modal logic by Kripke structures; and for
first-order logic, students can construct structures.

• Creating signatures: Students can specify a suitable logical language for
describing a scenario. For propositional and modal logic, students can specify
which propositional variables they want to use and describe their meaning in
natural language (see Figure 7). For first-order logic, this is currently being
implemented. A prototype for describing first-order signatures in natural
language is available.

• Constructing formulas: Students can construct formulas for natural-language
descriptions of scenarios provided by the instructor. For first-order logic,
there is a second variant where teachers can provide a textual description
of a unary graph query as well as a sample graph, and students are asked to
provide a first-order formula that selects the same nodes as the graph query
on this sample graph (see Figure 6 for both variants).

• Applying equivalence transformations: Students can transform propositional,
modal, and first-order formulas step-by-step either into an equivalent target
formula or into an equivalent formula in a given normal form.

• Testing satisfiability: Students can test formulas for satisfiability using sev-
eral methods such as resolution or the tableau calculus.

Foundations of formal languages. Educational tasks for foundations of formal
languages cover regular languages and context-free languages (see Table 2 for an
overview):
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 2024-02-19 14:44 +0100

Iltis

Modelling a graph property

×

Consider the following directed graph:

X

?

Construct a first-order formula  with a free variable 

which selects exactly those nodes which have an incoming

edge if they also have an outgoing edge.

Your formula is not correct.

Your formula selects nodes incorrectly.

• Some nodes (?) are not selected, but they

match the description.

• Some nodes (X) are selected, but they do not

match the description.

Finish Task

φ(x) x

φ(x) = ∃y E(y,x) → ∃z E(x,z)

 devs

Iltis https://iltis.cs.tu-dortmund.de/educational-column/#...

1 of 1 2/19/24, 15:17
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Modelling with arbitrary signatures

×

At the web company Millisoft, all employees are either

computer scientists or mathematicians. The employees

work together in teams, with one of the employees acting

as team leader. Each employee works in exactly one team.

We represent Millisoft as a structure over the signature

below, whose universe consists of all employees of the

company. Model the given statement by a first-order

formula over said signature.

No team with at least two computer scientists has a

mathematician as team leader.

Your formula is not correct.

Your formula does not express the intended

property. The structure (A, C, M, T, f) with

• Universe A={Beth, Alice},

• Relation C={},

• Relation M={Beth, Alice},

• Relation T={(Alice, Alice), (Alice, Beth), (Beth,

Beth), (Beth, Alice)} and

• Function f={Beth↦Alice, Alice↦Alice}

is a counterexample because it has the intended

property but does not satisfy your formula.

Finish Task

∀x∀y[C(x) ∧ C(y) ∧ T(x,y) ∧ ¬M(f(x))]

 devs

:  is a computer scientist

:  is a mathematician

:  and  work in the same team

:  is the team leader of 's team

Signature

C(x) x

M(x) x

T (x, y) x y

f(x) = y y x

Iltis https://iltis.cs.tu-dortmund.de/educational-column/#...

1 of 1 2/21/24, 12:14

Figure 6: Educational tasks for constructing first-order formulas over graph signatures (left) and
general signatures (right).
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Choose suitable propositional variables

Tim and his friends plan a film night. They still have to agree

on which films they want to watch. The choices are the four

films: The Godfather, Airplane! and The Dark Knight.

Among other things, they have agreed to watch at least one,

but not all, of the three films. Help Tim and his friends make

their choice of films to watch by first selecting propositional

variables and their intended meanings, in order to model

their requirements later in propositional logic.

G : ✓

B :  Check

Unfortunately, it is not entirely clear what

you mean.

Did you mean: "The group watches The

Dark Knight."?

Yes No

Add another variable

Finish Task

The group watches The Godfather.

The group watches Batman

i

 devs

Iltis https://iltis.cs.tu-dortmund.de/educational-column/...

1 of 1 2/21/24, 11:07

Figure 7: Educational task for specifying propo-
sitional variables and their intended meaning.
The intended meaning is verified via natural lan-
guage processing models (currently fine-tuned
for German exercises). Imprint Privacy Policy
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Determine Myhill-Nerode classes

Determine the equivalence classes of the Myhill-Nerode

relation for the language  with

For each equivalence class, provide a regular expression

that describes it.

Add new equivalence class

Abschließen

L(α)

α = abb
∗.

ε

ab*

 devs

Your regular expressions do not describe the

equivalence classes of the given language.

The word b is not described by any of your regular

expressions. However, the languages of your regular

expressions have to form a partition of all words over

the given alphabet.

Iltis https://iltis-public.cs.tu-dortmund.de/gadget-reducti...

1 of 1 2/21/24, 11:15

Figure 8: Educational task for identifying the
Myhill-Nerode classes of a language.
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• Modelling: Students can model languages with a variety of representations.
For regular languages, (non-)deterministic automata and regular expressions
can be used. For context-free languages, deterministic and general push-
down automata and context-free grammars can be used.

• Specifying Myhill-Nerode classes: Students can specify regular expressions
for the equivalence classes of the Myhill-Nerode relation.

• Specifying derivations: Students can derive a given word from a given
context-free grammar step-by-step. For each step, Iltis checks whether it is
valid.

• Specifying words: Students can specify words over a given alphabet. Then,
Iltis checks whether they are contained in given (combinations of) regular
or context-free languages. In this way, students can also prove the non-
equivalence of languages.

Foundations of complexity theory. Educational tasks for foundations of com-
plexity theory and computability theory are currently under development. In
complexity theory, educational tasks for understanding algorithmic problems and
computational reductions are already covered:

• Interacting with graphs: For understanding graph problems, students can
select and colour nodes and edges in given graphs and build new graphs
from scratch. The user input can be tested for a variety of conditions. This
educational task can be used very flexibly.

• Specifying graph reductions: Students can specify certain graph reductions
by specifying in a modular way how to map nodes and edges from an instance
of the source problem to an instance of the target problem.

3 Instructor’s Perspective: A Course Set-Up
We integrated web-based exercises provided by Iltis into our courses Logic in
Computer Science (Bachelor, mandatory, 2 + 1 contact hours)2 and Foundations
of Theoretical Computer Science (Bachelor, mandatory, 4 + 2 contact hours)3 at
Ruhr University Bochum, each with > 200 students. The exercises are also used in
similar courses at TU Dortmund University with > 400 students.

2The web-based exercises for Logic in Computer Science can be found at https://iltis.cs.
tu-dortmund.de/Logic-external/de/

3The web-based exercises for Foundations of Theoretical Computer Science can be found at
https://iltis.cs.tu-dortmund.de/TCS-external/de/
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Course organisation. The set-up of the courses differs slightly, we focus on the
Foundations of Theoretical Computer Science course covering regular languages,
context-free languages, an introduction to computability theory, and an introduction
to complexity theory. Organisation-wise, the course consists of:

• Lectures: Two traditional 90-minute lectures per week with all students,
interrupted by few questions testing understanding via a student classroom
response system.

• Tutorials: One 90-minute tutorial per week in groups of 20–30 students.
First half spent on active problem solving in small groups and discussion.
Second half spent on discussing solutions to assignments.

• Assignments: Consisting of (a) interactive web-based exercises provided by
Iltis, some graded and some ungraded; (b) traditional assignments graded by
tutors. The interactive web-based exercises are typically easier and students
can try as often as they want, receiving feedback from Iltis for each attempt.

Our objective for the integration of interactive, web-based exercises was two-
fold. First, to offer students the opportunity to train basics and receive feedback
very early on. Having understood the basics, they then go on to tutorials and
to the more complex traditional assignments. Second, outsourcing the basics to
Iltis helps to save valuable time of teaching assistants, which then can be used to
discuss more difficult topics and for in-depth problem solving in tutorials. The
web-based exercises are provided at the time of the lecture and our recommendation
for students is to do the web-based exercises before going to tutorials and starting
with the analog exercises.

Technical organisation. The assignments – web-based and analog – are managed
through our universities learning management platform Moodle. Both web-based
and analog exercises have a digital twin in Moodle. The grading of the web-based
exercises is handled by Iltis; the grading of the analog exercises by teaching
assistants. The accounting of points is handled by Moodle.

Iltis exercises are integrated into the learning management platform via the
LTI standard [10], which is supported by many modern teaching management
platforms. They are stored in easily configurable XML files which are managed
via Git repositories. Content for new courses can be created by starting from a
clone of an existing course, selecting from a portfolio of existing exercises and
adapting them according to the requirements.
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4 Research Challenges & Opportunities
Building teaching support systems for formal foundations of computer science
comes with a multitude of challenges and research opportunities. We sketch some
of them.

A theory challenge
Providing teaching support for formal foundations of computer science – in-
cluding feedback and advice for students and learning analytics for instructors –
requires to solve algorithmic problems that are in most cases provably algorith-
mically hard or even unsolvable.

The main road block for teaching support systems for formal foundations
is that many of the algorithmic tasks that need to be solved are inherently hard
or even algorithmically unsolvable in general. For instance, deciding whether a
scenario has been correctly modelled by a first-order formula is algorithmically
impossible in general, due to the undecidability of testing whether two first-order
formulas have the same meaning. While this is possible for propositional logic,
no efficient algorithm is known so far. The same algorithmic hardness holds for
many educational tasks for the foundations of logics, formal languages, complexity
theory, and computability theory. Providing feedback beyond the mere fact whether
a solution is correct – i.e., feedback that hints at the students’ misconceptions or
gently guides students to correct solutions – is potentially even harder.4

Attacking this challenge requires to find creative approaches for circumventing
algorithmic hardnesses and often leads to interesting theoretical research questions.
Hope for successfully tackling this challenge is provided by the fact that human
tutors manage to provide feedback and advice.

We sketch two concrete examples, where methods from theoretical computer
science helped us to come up with approaches for providing meaningful feedback
and advice for students:

• Explaining mistakes in context-free grammars. In ongoing work on pro-
viding explanations for mistakes in modelling with context-free formalisms,
we aim for feedback along the lines of the following interaction.

Assignment: Design a context-free grammar for L = {anbn+2 | n ∈ N}.

Student: S → aS b | abb

Feedback (provided in customizable stages):

(1) Correctness: Your grammar is not correct.

4The web-based teaching support system AutomataTutor provides advanced, high-level feedback
for finite automata constructed by students [3].
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(2) Pinpointing mistakes:

(a) Hinting at a wrong language: Your grammar describes the language

L = {anbn+1 | n ∈ N}.

(b) Hinting at a wrong rule: It might help to have a look at the rule

S → abb.

(c) Provide a counterexample: The language described by your grammar
contains the word abb, which is not in L.

Even though testing correctness of student-provided solutions is undecidable
in general, the above explanations can be provided efficiently by combining
theory for bounded context-free languages [7], canonization of grammars,
and grammar transformations.

• Designing computational reductions. For teaching reductions, instructors
often design tasks for (i) understanding the computational problems involved,
(ii) exploring existing reductions via examples, and (iii) designing reductions
between computational problems. Task (iii) is a challenge for most students
as the design of reductions usually does not follow a straightforward path
but requires some creativity by students. When looking for a reduction,
one approach by a typical expert is to sequentially try a number of building
blocks that they have encountered in the context of other reductions before.
An example is provided by the standard reduction from the problem of
finding a directed Hamilton path to finding an undirected Hamilton path that
transforms a directed graph to an undirected graph by mapping each node

v
to a small gadget

vin v vout
. Constructing such gadgets is one of the

typical building blocks when designing reductions.

One possible approach for supporting instructors in teaching how to design
reductions, is to (a) identify and formalize typical building blocks of re-
ductions, (b) develop a simple descriptional language for reductions that
allows for combining the building blocks in a simple, modular manner, to (c)
study the expressive power of such a language as well as the computational
problems arising in finding reductions in such languages, and finally (d) for
designing suitable feedback mechanisms for student attempts on construct-
ing reductions. The exploration of (a)–(d) lead to interesting theoretical
problems and has already been prototypically implemented (see Figure 5).
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An engineering challenge
Building a flexible, extensible, usable, and maintainable teaching support system
for formal foundations of computer science is a complex engineering effort
which requires, among others, to transfer theoretical results to practice, and to
integrate state-of-the-art solutions from a diverse set of domains.

Building a teaching support system is inherently complex and requires the im-
plementation and integration of, among others, modules for providing educational
tasks, feedback and advice to students, learning analytics to teachers, interacting
with learning management platforms, etc.

There are also challenges specific to teaching support systems for formal
foundations, we sketch two of them:

• Algorithms for providing feedback may be known in theory, but may be
inefficient in practice and in particular not scale to thousands of users. In our
experience, this can often be addressed by employing dedicated SAT solvers
and by building custom solutions, e.g., for handling symmetries.

• Helping students to learn how to translate between natural language and
formal language — typically a first step when attacking real world problems
with formal methods — has been avoided so far in most teaching support
systems as it requires to integrate natural language processing. While modern
large language models are powerful enough for educational tasks for bridging
this natural-formal language gap, a lot of data, engineering, and fine-tuning
is required. The main challenge is that a teaching support system should
provide correct feedback with very high probability. Figure 7 shows a
prototype for an educational task where students can specify propositional
variables and their meaning in natural language.

A CS education research challenge
Helping students with a teaching support system requires to understand (among
others) students’ learning behaviour and motivation, as well as common miscon-
ceptions and difficulty-generating factors for formal foundations of computer
science.

Didactical aspects of advanced teaching support systems for formal foundations
of computer science have mostly been ignored in research. For most concepts
taught at university level courses, few didactic foundations have been laid and
almost no quantitative and qualitative studies have been done. As a result, there
are few guidelines – for example, what common misconceptions students have and
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how to overcome them, or which factors determine the difficulty of exercises – that
can be given to designers of teaching support systems.

Example research questions that have not been addressed for formal foundations
of computer science in higher-education contexts are:

(i) How do teaching support systems affect students’ learning behaviour and
motivation?

(ii) How can teaching support systems be set up to be most effective for hetero-
geneous groups of students?

(iii) What misconceptions and difficulty-generating factors hinder student success
in formal foundations of CS?

(iv) Do (personalized) interventions increase the impact and use of the teaching
support system?

Answering these and similar research questions requires a tight integration of
expertise in CS education research, educational psychology, formal foundations
of computer science, and in building teaching support systems. Data provided by
teaching support systems such as Iltis is essential.
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This month, the Distributed Computing Column is featuring Siddhartha Jayanti,
winner of the 2023 Principles of Distributed Computing Doctoral Dissertation
Award. His thesis presented a multitude of important concurrent algorithms, in-
cluding the first scalable algorithm for concurrent union-find, algorithms for con-
current fast arrays, new abortable queue locks and recoverable queue locks, and
many more. He defined a new fundamental problem known as “generalized wake-
up,” whose hardness yields new insights on the work needed for a variety of basic
objects. And the thesis contains many more results than can be easily summarized
in this short paragraph!

This column focuses on one specific part of his thesis: verifying linearizability
in concurrent systems. It is a well-known fact that designing correct concurrent
algoroithms is incredibly di�cult and bugs are rampant. The standard technique
for proving that a concurrent data structure is correct is showing that it is lineariz-
able. Unfortunately, that too can be quite challenging! In this article, Siddhartha
Jayanti develops a new technique for proving linearizability using only “forward
reasoning” techniques: there is no need to reason about the future when analyz-
ing the data structure. This technique yields machine-verifiable proofs, and has
been applied to a variety of complex wait-free data structures, including snapshot
objects and union-find objects.

Overall, then, this column raises the exciting possibility of simple machine-
verified proofs for concurrent data structures, and a future containing more correct
concurrent data structures!

The Distributed Computing Column is particularly interested in contributions that summarize re-
cent exciting results, propose interesting new directions, or summarize important open problems
in areas of interest. If you would like to write such a column, please contact me.
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Possibility Tracking:
A Simple Technique forMachine-verifying

Lock-free Data Structures

Siddhartha Jayanti
Google Research, USA

1 Introduction
The multicore revolution has ushered in an era of multiprocessor dominance in
computing, however, designing e�cient concurrent algorithms with iron-clad guar-
antees of correctness has remained notoriously hard. While a deterministic single-
process algorithm has exactly one possible run, due to asynchrony, even a t step
concurrent algorithm with just two processes has 2t possible runs depending on
how the steps of the processes interleave. When we consider algorithms with an
infinite horizon, even a deterministic concurrent algorithm has uncountably many
possible infinite runs. Designing algorithms that are correct in all of these execu-
tions is a grueling task, and programmers often fail to account for some of these
executions, leading to subtle and dangerous bugs, known as races. Races are per-
nicious, since they can easily be missed in testing but have harsh consequences
when deployed in practice. For example:

• Mars Rover: a priority inversion bug in its concurrent code crashed the
Pathfinder Rover days after its deployment on Mars and jeopardized the
entire multi-million dollar NASA space mission Jones [2013].

• Northeast Blackout of 2003: a race in the power grid’s energy manage-
ment system stalled the alarm system for an hour, by which time it was
too late to stop a cascading electrical outage that a↵ected an estimated 55
million people across eight states of the USA and the province of Ontario,
Canada Poulsen [2004].

• Therac-25: the software of the radiation therapy machine, Therac-25, suf-
fered from races that caused it to administer radiation doses that were over

0Author information: Google Research, Cambridge, MA, USA. Email: sjayanti@google.com
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a hundred times as potent as the intended dose, which caused the deaths of
at least three people and several more injuries Leveson and Turner [1993];
Lim [1998].

Examples of errors in published concurrent data structures are also not left
wanting Colvin and Groves [2005]; Doherty [2003]. These illustrations show just
how fatal the consequences can be when multiprocessor code is incorrect, and
point to the critical need for concurrent algorithms to be furnished with rigorous,
machine-verified guarantees of correctness.

1.1 Which algorithms require rigorous, machine-verified guar-
antees of correctness?

Two foremost guiding principles in the design of software technology are modu-
larity and top-down design. Together, these principles state that larger applications
should be broken down into smaller well-specified components, i.e., methods, data
structures, and simpler algorithms, and that these modular components should be
developed independently and made e�cient so they can in-turn be called and used
in several high-level applications. A strength of this prevalent design strategy is
that each core modular component can be built and developed in just one place,
and the same well-built component can be used freely in a range of applications
today and even the unforeseen applications of tomorrow.

The flip-side of this advantage is a corresponding failure mode, which I term
error proliferation. Namely, if a core component, such as a data structure, has
an uncaught error, it runs the risk of being used in innumerable applications and
ultimately crashing critical systems. Even if the component was developed with a
low-risk application in mind, the principles of software design make it very easy
for the same component to later be integrated into a critical application. Thus,
all fundamental data structures and algorithms should be considered critical, and
rigorous proofs of correctness are indispensable. Since, concurrent data struc-
tures and algorithms are particularly hard to reason about, and important execu-
tion schedules and subtle races are often missed in pen-and-paper proofs about
them, machine-verified guarantees of correctness are critical for them.

In summary, emphasizing machine-certified correctness of low-level modular
components, such as data structures, enhances the reliability of several critical
high-level applications.
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1.2 Concurrent data structures, linearizability, and future de-
pendence

In this column, I focus on machine-verifiable proofs of correctness for concurrent
data structures; particularly, on proving linearizability. Linearizability Herlihy
and Wing [1990] is the long-standing gold standard for concurrent data structure
correctness, and it states that data structure operations must appear to take place
atomically, i.e., instantaneously, at some point between their invocation and re-
turn, even in the face of adversarial asynchronous scheduling. The instant in time
at which an operation appears to take e↵ect is called its linearization point, and
the process is said to have linearized its operation after that point in time.

Linearizability is a powerful abstraction, since it allows for e�cient software
implementations which appear atomic even in the face of tremendous concurrency
without requiring global data structure locks—solutions include intricate imple-
mentations that use fine-grained locking and lightening-fast implementations that
are lock-free or even wait-free Herlihy [1991]. Linearizability also facilitates com-
posability: its horizontal composability property (known as locality), allows al-
gorithmists to prove individual implementations correct without worrying about
their interactions with other objects; its vertical composability property allows
implementors to replace atomic objects with linearizable implementations.

The most intuitive approach for proving linearizability is via forward reason-
ing methods, where the prover reasons about a concurrent data structure by re-
lating its behavior to that of an atomic reference object as time moves forward.
In particular, in a forward simulation proof Jonsson [1991], the prover keeps a
copy of an atomic reference object and performs an induction over the steps of
an arbitrary run of an algorithm using the implemented object, and shows that its
behavior is identical to that of the algorithm run with the atomic reference object
if the reference object performs operations at the linearization points of imple-
mented object. Forward simulation is easiest when each operation linearizes at a
particular line in the operation’s code, but this proof technique can work even if
an operation’s linearizes at di↵erent lines of code for di↵erent calls, or even if a
process’s operation can linearize at a step of another process executing a di↵erent
operation. However, forward simulation proofs are only possible when lineariza-
tion points can be determined only by looking at the past and present, i.e., for the
subclass of so called strongly linearizable objects Golab et al. [2011].

There are innumerable examples of linearizable objects however, whose lin-
earization points are future-dependent. These implementations have the surprising
characteristic that every run can be linearized, but the linearization points of oper-
ations can depend on what happens in the future. Such linearizable algorithms are
traditionally thought of as notoriously hard to machine-verify, since the intuitive
forward simulation proof technique cannot be employed on them Jayanti et al.
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[2024]. In particular, as the prover inducts over the run, he cannot know when the
linearization points occur (since they are future dependent), and therefore cannot
simulate the atomic reference object transitions at the time of the linearization
points.

Over the past few decades, researchers have furnished some of these future-
dependent algorithms with machine-verified proofs using techniques including
backward simulation Jonsson [1989], prophecy variables Abadi and Lamport [1991],
partial-order maintenance Khyzha et al. [2017], and aspect-oriented proofs Hen-
zinger et al. [2013]. However, each of these techniques is either well known for
being complex and unintuitive for algorithmists, or is incomplete and thus requires
ad hoc use. Backward simulation is di�cult for algorithmists since it requires rea-
soning backwards in time Vafeiadis [2008]. Prophecy variables require predicting
the future, and are often cited as being “di�cult to use in practice” Lamport and
Merz [2022]. Partial-order maintenance is known to be incomplete Oliveira Vale
et al. [2023]; Jayanti et al. [2024]. Finally, aspect-oriented proofs require new the-
ory to develop the aspects of each data type, and thus only a handful of data types
are known to be amenable to such proofs Henzinger et al. [2013]; Dodds et al.
[2015]; Öhman and Nanevski [2022]. In particular, a simple, sound and complete
technique for proving linearizability has eluded researchers until recently.

1.3 A simple, forward reasoning proof technique for lineariz-
ability

In the remainder of this column, I describe the possibility tracking (a.k.a. track-
ing) technique for proving the linearizability of concurrent data structures Jayanti
[2022]; Jayanti et al. [2024]. This technique was originally described in my doc-
toral dissertation Jayanti [2022] and subsequently published at this year’s ACM
Symposium on Principles of Programming Languages (ACM POPL) Jayanti et al.
[2024].

Possibility tracking is universal, sound, and complete. Universality means that
tracking can be applied to any data type; soundness means that a data structure
implementation can be proved correct by tracking only if it is linearizable, and
completeness means that any linearizable implementation can be proved so using
tracking. In addition, tracking is simple and intuitive for algorithmists, since it
relies only on forward reasoning, and has been used to produce machine-verified
proofs of linearizability for future-dependent and widely-used data structures.

The foundation of our idea lies in replacing the single atomic reference object
in the forward simulation technique with a set of such atomic reference objects.
In particular, we observe that a run of an algorithm exercising a linearizable ob-
ject may have several possible linearizations. Each of these linearizations may
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correspond to a di↵erent set of linearization points. While forward simulation
maintains just a single atomic reference object, which corresponds to a single pos-
sible linearization (i.e., a single possible set of linearization points); our strategy
maintains an atomic reference object corresponding to every possible lineariza-
tion. Since each atomic reference object corresponds to a possible linearization,
we call the maintained reference objects possibilities. Our proof technique tracks
these possibilites over the length of a run, so we call it possibility tracking.

Tracking has been used to give machine-verified proofs of e�cient wait-free
data structures, including Jayanti’s single-writer single-scanner snapshot Jayanti
[2005] and the Jayanti-Tarjan union-find objects Jayanti and Tarjan [2016]; Jayanti
et al. [2019]; Jayanti and Tarjan [2021], which are used in Google’s open-source
graph-mining library to enable “parallel clustering algorithms which scale to graphs
with tens of billions of edges” Google-Graph-Mining-Team [2023], are the fastest
algorithms for computing connected components of large graphs on CPUs Dhuli-
pala et al. [2020] and GPUs Hong et al. [2020], and are employed in several other
applications in machine learning Yu et al. [2023]; Wang et al. [2020]; Tseng et al.
[2021], graph analysis Shi et al. [2023]; Dhulipala et al. [2020], and program
analysis Bloemen et al. [2016].

1.4 Overview
In the remainder of this column, I will describe the tracking method, demonstrate
its use in generating a machine-verified proof with a case study of the Herlihy-
Wing queue Herlihy and Wing [1987, 1990]—which is notorious in the verifi-
cation community for its nuanced, future-dependent linearization structure Jung
et al. [2019]—and end with some concluding remarks and directions of interest.

A note on proving strong linearizability A variant of our technique, known as
Partial Possibility Tracking, is a universal, sound, and complete proof technique
for strong linearizability. In fact, our machine-verified proof of the Jayanti-Tarjan
union-find objects shows that they are not just linearizable, but strongly lineariz-
able. While I will not say more about strong linearizability in this column, I refer
the interested reader to the following reference Jayanti et al. [2024].

2 The Possibility Tracking Proof Technique for Lin-
earizability

To explain how our method works, let T be any data type, and O be an imple-
mentation of type T for a set ⇧ of processes. To verify that O is linearizable, we
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augment O with an auxiliary variable P, which helps track all possible lineariza-
tions of O. In this augmented implementation, which we shall refer to as O⇤, P
is a set of possibilities. Each possibility p 2 P is a pair (�, f ). In particular, we
define O⇤ such that a possibility (�, f ) is in P, if and only if, there is a lineariza-
tion of the run until now which corresponds to O’s state being �, and ⇡’s state
being f (⇡), for each process ⇡ 2 ⇧. That is, for each process ⇡ 2 ⇧, f (⇡) states
whether ⇡ has an ongoing operation on O and if it does, whether that operation has
linearized and if it has, what the associated response is. More specifically, f (⇡)
holds one of three types of values—(?,?,?), (op, arg,?), or (op, arg, res)—with
the following meaning. If f (⇡) = (?,?,?), ⇡ has no ongoing operation on the
implementation O. In the other two cases, ⇡ has an ongoing operation op on O
with argument arg, i.e., ⇡ invoked op⇡(arg), but the operation has not returned
yet. Furthermore, if f (⇡) = (op, arg,?), ⇡’s operation has not yet linearized and
if f (⇡) = (op, arg, res), ⇡’s operation has linearized (i.e., has taken e↵ect) with a
response of res (but the operation has not yet returned to the caller).

We initialize P to the singleton set {(�0, f0)}, where �0 is the initial state of O
and, for all ⇡ 2 ⇧, f0(⇡) = (?,?,?), to reflect that there are no ongoing operations
on O, initially. Whenever any process ⇡ executes a step, the set P is updated using
the following simple rules:

1. Update on operation invocation: If ⇡ calls a method on O to invoke an oper-
ation op(arg), each possibility (�, f ) 2 P is updated from f (⇡) = (?,?,?)
to f (⇡) = (op, arg,?), to reflect that op(arg) is invoked, but has not yet
linearized.

Notationally, we denote this transformation to the set of possibilities by
Invoke(P, ⇡, op, arg).

2. Update on operation return: If ⇡ returns from a method by executing a ‘re-
turn r’ statement, for each possibility (�, f ) 2 P, if f (⇡) = (op, arg,?) or
if f (⇡) = (op, arg, res) and res , r, then (�, f ) is removed from P; on the
other hand, if f (⇡) = (op, arg, res) and res = r, then f (⇡) is updated to
(?,?,?). The removal in the former case ensures that those atomic config-
urations that do not reflect what happens in the actual execution are filtered
out. The update to (?,?,?) in the latter case reflects that ⇡ no longer has
an ongoing operation.

Notationally, we denote this transformation to the set of possibilities by
Filter(P, ⇡, r).

3. Update on any step: When ⇡ executes any step of a method, P is updated
to reflect the possibility that any subset of unlinearized ongoing operations
may now linearize in any order. Accordingly, suppose that (�, f ) 2 P before
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⇡ takes the step, k is any non-negative integer, ⇡1, ⇡2, . . . , ⇡k are distinct
processes, f (⇡1), f (⇡2), . . . , f (⇡k) = (op1, arg1,?), (op2, arg2,?),
. . . , (opk, argk,?). Furthermore, suppose that, by the specification of the
data type T of O, r1, r2, . . . , rk are the responses if the operations

op1(arg1), op2(arg2), . . . , opk(argk)

are applied in that order, starting from state �, and �0 is the state after all
operations are applied. Then, after the step, (�0, f 0) appears in P, where f 0

is the same as f except that

f 0(⇡1), f 0(⇡2), . . . , f 0(⇡k) = (op1, arg1, r1), (op2, arg2, r2), . . . , (opk, argk, rk) .

Notationally, we denote this transformation to the set of possibilities by
Evolve(P).

A key observation is that at any time t, the set P contains an atomic config-
uration (�, f ) if and only if (�, f ) is consistent with some legal linearization up
to time t. Intuitively, the “only-if” part of the observation is ensured by the sec-
ond rule which removes a possibility from P as soon as there is evidence that
the atomic configuration is not consistent with a legal linearization of the history.
The “if” part is ensured by the third rule which adds to P all possibilities that are
consistent with legal linearizations of the history.

Our main theorem is an immediate consequence of the above observation, and
it states that any algorithm run on implementation O⇤ satisfies the invariant P , ?
if and only if the implementation O is linearizable. Equivalently, since the gen-
erator algorithmA (see Figure 1) exercises an object implementation to produce
all of its possible behaviors by repeatedly making idle processes call arbitrary
operations, we see that O is linearizable if and only if P , ? is an invariant of
A(O⇤).

Each process ⇡ 2 ⇧ is assigned the program main⇡().

program main⇡()
a: while (true):
b: choose (op, arg) 2 {(o, a) | o 2 T .OP, a 2 T .ARGo}

and execute O.op⇡(arg)

Figure 1: Generator algorithm A(O) for a set of processes ⇧, which generates
all behaviors of an implemented object O of type T .

Theorem 2.1. Let O be an implementation of an object of type T initialized to
state �0 for a set of processes ⇧, O is linearizable if and only if P , ? is an
invariant ofA(O⇤).
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The theorem gives rise to the possibility tracking verification technique: to
verify that an implementation O is linearizable, augment it with the auxiliary vari-
able P to derive O⇤ as described, and verify that P , ? is an invariant of A(O⇤).
If P , ? is an invariant of A(O⇤), then the theorem implies O is a linearizable
implementation of T and, conversely, if O is a linearizable implementation of T ,
then the theorem implies that P , ? is an invariant ofA(O⇤). Hence, the method
is sound and complete. Since the method applies regardless of the data type of the
implemented object, it is universal.

3 Case Study: proving the Herlihy-Wing queue
To demonstrate the proof process, I describe our case study of proving the Herlihy-
Wing queue Herlihy and Wing [1987, 1990]. I will present the queue implementa-
tion in the next subsection, and then explain how we obtained a machine-verified
proof of its correctness using possibility tracking.

I chose the Herlihy-Wing queue as the case study, since the algorithm is both
short and well known, yet it is notorious in the verification community for being
di�cult to prove because of its nuanced, future-dependent linearization structure
Jung et al. [2019].

Since the Herlihy-Wing queue is nuanced, it is intellectually challenging for a
prover to wrap his head around why the algorithm is linearizable. Developing intu-
ition for why the algorithm is linearizable is an inherent part of the proof process,
and no proof technique, including possibility tracking can help fully overcome
that. Once a prover has understood the intuition for why the queue is lineariz-
able however, possibility tracking makes it easy to translate the intuition into a
linearizability proof—even a machine-verified proof; all the prover needs to do is
to encode his understanding as a simple algorithmic invariant. That is what I hope
to demonstrate to the reader through this case study.

3.1 The Herlihy-Wing Queue Implementation
The Herlihy-Wing queue (see Figure 2) maintains an infinite array of slots, i.e.,
A[0, 1, 2, . . .], which are initially all empty, containing the value ?. The shared
counter X stores the value of the next empty slot in A, initially 0. To Enqueue an
element v⇡, process ⇡ atomically fetches and increments X (Line 1) to claim the
next available slot i⇡ for its enqueue, and simply places its element in the claimed
slot, thereby filling that slot with its element (Line 2) and returns ack (Line 3). To
Dequeue, process ⇡ reads the value `⇡ of the counter X (Line 4), which stores the
number of claimed slots, and loops through each index j⇡ of the array A from 0 to
l⇡ � 1, checking each slot A[ j⇡] and grabbing the element in the slot if the slot is
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non-empty (Line 5). If ⇡ successfully grabs an element, then it returns it (Line 6).
Otherwise, if it reaches the end of the loop, ⇡ simply tries again.

Note that a dequeue operation only ever returns with an element; that is, it
keeps running indefinitely if the queue is empty.

Base Objects:
• X is a read/F&Inc register initialized to 0.
• A[0, 1, 2, . . .] is an infinite array, where for each i 2 N, A[i] is initialized

to ?.

procedure O.Enqueue⇡(v⇡)
1: i⇡  F&Inc(X)
2: A[i⇡] v⇡
3: return ack

procedure O.Dequeue⇡()
4: `⇡  X
5: if `⇡ = 0 then goto 4 else j⇡  0

x⇡  Swap(A[ j⇡],?)
if x⇡ = ? then

if j⇡ = `⇡ � 1 then goto 4
else { j⇡  j⇡ + 1; goto 5}

6: return x⇡

Figure 2: Herlihy-Wing queue implementation Herlihy and Wing [1990]. Each
numbered line in this implementation O has at most one shared memory instruc-
tion, and is performed atomically. The operation F&Inc(var) is the atomic fetch-
and-increment operation, which returns the current value of var and increments
it by one. The operation S wap(var, new) is the atomic swap operation, which
returns the current value of var and updates its value to new.

Since each enqueue claims a unique slot, and the slots are claimed in order,
at first glance, it is tempting to think that the abstract state of the queue will be
a tuple of elements order as in the array A. However, this is not the case, since
there can be an arbitrary delay between the time an enqueue claims its slot on
Line 1 to the time that it actually fills the slot with its element at Line 2. In
particular, dequeuers that are looping through the array will go past slots that have
been claimed but have not yet been filled, so elements in slots with higher indices
can be grabbed before those in lower indices. Furthermore, since dequeuers can
be poised at various di↵erent parts of the array (i.e, can have di↵erent j values),
having looped past slots that had been claimed but not yet filled, the order in which
elements are dequeued depends heavily on the order in which processes take steps,
thus making the linearization of enqueues highly future-dependent. This future-
dependence makes the Herlihy-Wing queue notoriously di�cult to prove.
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3.2 Proving the linearizability of the Herlihy-Wing queue
To show that the implementationO is linearizable via the possibility tracking tech-
nique, we must show that the statement IL ⌘ (P , ?) is an invariant of A(O⇤),
where O⇤ is the possibility tracker presented in Figure 3. We will prove IL’s in-
variance by induction over the length of an arbitrary run. IL holds in the initial
configuration by the tracker definition, so the base case is straightforward. IL’s
validity in subsequent configurations however, relies not only on its validity in the
current configuration, but also on the design of the algorithm, i.e., other invariants
of the algorithm that capture the states of the various program variables. Thus,
in order to go through with the induction, we must strengthen IL to a stronger
invariant I that meets two conditions: (a) I is inductive and (b) I implies IL.

For most proofs, identifying the strengthened inductive invariant I is the real
intellectual challenge. Once the correct I is identified, its actual proof by induc-
tion tends to be elementary. The statement of the inductive I for the Herlihy-Wing
queue is presented in Figure 4. Since IL is a conjunct of I, proving I’s invari-
ance immediately implies IL’s invariance, and thus that the Herlihy-Wing queue
is linearizable.

Understanding the Inductive Invariant

The invariant may appear long, but a closer examination reveals that almost all of
the conjuncts—all but IP—are fairly elementary. IT states that slots that are yet
to be claimed remain empty. IU states that di↵erent enqueuing processes claim
di↵erent slots in the array. I2 states that a claimed slot remains empty before the
process that claims it fills it. I2,3 states that an enqueuer’s claimed slot will have
an index between 0 and X. Finally, I5 states that the loop-index j⇡ will always lie
in the loop-interval [0, `⇡) and that the upper loop boundary `⇡ will never exceed
X.

Our core insight about the algorithm is IP, which identifies a set of possibili-
ties P that must be in the set of tracked possibilities P. The identification of this
subset P of “interesting” possibilities is thus the key to understanding why the
Herlihy-Wing queue is linearizable. To elucidate this core insight, I explain the
definition of P below. Before explaining P, I will explain some preliminaries.

A key insight about the linearization structure of the Herlihy-Wing queue is
that while Enqueue operations can linearize at several places in the interval of time
between when they grab their slot to when they fill it, a Dequeue operation can
always be thought of as linearizing at the moment that it successfully grabs the
element that it will return.

Helpful to defining the set of interesting possibilities P, is the function val,
which maps array indices in N to their corresponding values. Formally, given an
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Base Objects:
• X is a read/F&Inc register initialized to 1.
• A[0, 1, 2, . . .] is an infinite read/write/Swap array, where each A[i] is ini-

tialized to ?.
• P initialized to {(�0, f0)} is a meta-configuration, where �0 is the empty

sequence, and f0 maps each process ⇡ 2 ⇧ to (?,?,?).

procedure O⇤.Enqueue⇡(v⇡)
P Invoke(P, ⇡,Enqueue, v⇡)

1: i⇡  F&Inc(X)
P Evolve(P)

2: A[i⇡] v⇡
P Evolve(P)

3: return ack
P Filter(P, ⇡, ack)

procedure O⇤.Dequeue⇡()
P Invoke(P, ⇡,Dequeue,?)

4: `⇡  X
P Evolve(P)

5: if `⇡ = 0 then goto 4 else j⇡  0
x⇡  Swap(A[ j⇡],?)
if x⇡ = ? then

if j⇡ = `⇡ � 1 then goto 4
else { j⇡  j⇡ + 1; goto 5}

P Evolve(P)
6: return x⇡

P Filter(P, ⇡, x⇡)

Figure 3: Tracker O⇤ for the queue implementation O for processes ⇧ presented
in Figure 2

index i, val(i) is defined as: the value of A[i] if A[i] is non-empty, the value of v⇡
if ⇡ has claimed index i, but is yet to fill it, and ? otherwise.

To understand the definition of P, we ask ourselves the question: What are the
possible states of the queue at any point in time? We break this question into two
parts: understanding which elements are in the queue, and understanding what
order they are in.

Firstly, it is clear that the elements in the queue must be of the form val(i)
for some indices i. Thus, the set of elements in the queue must be {val(i) | i 2
I, val(i) , ?} for some subset of indices I 2 [0, X). Since Enqueue operations
linearize by the time they fill their claimed slot, elements that have been placed in
the array but have not yet been grabbed must be in the queue, thus A[i] , ? =)
i 2 I. Elements corresponding to slots that have been claimed but not yet filled
may or may not be in the queue, since the corresponding Enqueue operation may
or may not have linearized.

After choosing a possible subset of indices I, we get to the what order ↵ 2
Perm(I) the corresponding elements val(i)i2I occupy in the queue state. This is
where we make the most incisive insight. We observe that for a given permutation
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↵, there is a possibility p with state p.� = val(↵1), . . . , val(↵|↵|) if ↵ is a Justi f ied
permutation. Here, we define the predicate Justi f ied(↵) to hold if and only if:
for every two indices ↵m,↵n 2 I that appear at the mth and nth position of the
permutation ↵, where m < n: either ↵m < ↵n—i.e., the indices are not inverted in
the permutation order—or if they are inverted and the former slot A[↵n] is filled,
then there must be a dequeing process ⇡ that has checked past the smaller index ↵n

(i.e., ↵n < j⇡) in its checking-loop whose upper index `⇡ exceeds the larger index
↵m. In mathematical notation:

Justi f ied(↵) , 8m, n 2 [1, |↵|] : (↵m < ↵n) _ (A[↵n] , ?
=)

9⇡ 2 ⇧ : pc⇡ = 5 ^ ↵n < j⇡ ^ ↵m < `⇡)

Finally, since I is the set of indices corresponding to Enqueue operations that
have linearized, we know that any pending enequeuers that have linearized are
exactly those whose claimed location’s indices appear in I. Likewise, since we
know that all Dequeue operations linearize at the last iteration of Line 5, we know
that a pending dequeuer ⇡ has linearized if and only if pc⇡ = 6. Putting all of
these insights together yields the definition of the set of interesting possibilities P,
as defined in Figure 4.

The invariant IP simply states that this set of interesting possibilities P is non-
empty and indeed contained in the set of possibilities P.

Machine-verified proof

With the strengthened invariant I in hand, the actual induction proof is quite me-
chanical, making it a perfect fit to be checked and certified by a machine. The
proof of the induction step has six cases, one for each line of the implementation,
and it comprehensively justifies why each of the invariant conjuncts holds after an
arbitrary process ⇡whose program counter currently points to a line l executes that
line of code. Our inductive proof of I is an invariant of A(O⇤) has been checked
by the TLA+ Proof System (TLAPS) Jayanti et al. [2023b].

4 Related Work
The Linearizability correctness condition for concurrent shared-memory data struc-
tures was introduced in a landmark paper by Herlihy and Wing in 1990 Herlihy
and Wing [1990]. In the ensuing three decades, a tremendous amount of research
has focused on proving linearizability, using various di↵erent methods, includ-
ing: refinements Lamport [1983], forward simulation Jonsson [1991], backward
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I ⌘ IL ^ IP ^ IT ^ IU ^ I2 ^ I2,3 ^ I5

In this expression, the various conjuncts on the right hand side are defined below.

• IL ⌘ P , ?

• IP ⌘ P ✓ P ^ P , ?

• IT ⌘ 8i 2 N : i � X =) A[i] = ?

• IU ⌘ 8⇡, ⇡0 2 ⇧ : ⇡ , ⇡0 ^ pc⇡, pc⇡0 2 {2, 3} =) i⇡ , i⇡0

• I2 ⌘ 8⇡ 2 ⇧ : pc⇡ = 2 =) A[i⇡] = ?

• I2,3 ⌘ 8⇡ 2 ⇧ : pc⇡ 2 {2, 3} =) 0  i⇡ < X

• I5 ⌘ 8⇡ 2 ⇧ : pc⇡ = 5 =) 0  j⇡ < `⇡  X

• 8i 2 N : val(i) ,

8>>>>><
>>>>>:

A[i], if A[i] , ?
v⇡, if 9⇡ 2 ⇧ : pc⇡ = 2 ^ i⇡ = i
? otherwise

• Justi f ied(↵) ,
8m, n 2 [1, |↵|] : (↵m < ↵n) _ (A[↵n] , ?
=)

9⇡ 2 ⇧ : pc⇡ = 5 ^ ↵n < j⇡ ^ ↵m < `⇡)

• P ,

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

p

�������������������������������

9I ✓ [0, X),9↵ 2 Perm(I) :
8i 2 I : val(i) , ? ^
8i 2 [0, X), A[i] , ? =) i 2 I ^
Justi f ied(↵) ^
p.� = val(↵1), . . . , val(↵|↵|) ^
8⇡ 2 ⇧ :

pc⇡ 2 {1, 2, 3} =) p. f (⇡).op = Enqueue ^ p. f (⇡).arg = v⇡
pc⇡ 2 {4, 5, 6} =) p. f (⇡).op = Dequeue ^ p. f (⇡).arg = ?
pc⇡ = 3 _ (pc⇡ = 2 ^ i⇡ 2 I) =) p. f (⇡).res = ack ^
pc⇡ = 6 =) p. f (⇡).res = v⇡ ^
pc⇡ < {3, 6} =) p. f (⇡).res = ?

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

Figure 4: Invariant I of A(O⇤), where O⇤ is the implementation of the queue
tracker in Figure 3.
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simulation Jonsson [1989], forward-backward simulation Lynch and Vaandrager
[1995], history and prophecy variables Owicki and Gries [1976]; Abadi and Lam-
port [1991], aspect-oriented proofs Henzinger et al. [2013], partial-order mainte-
nance Khyzha et al. [2017], and the use of several proof-logics such as interval
temporal logic Schellhorn et al. [2011], separation logic Jung et al. [2019], and
category theory based methods Oliveira Vale et al. [2023]. The various techniques
di↵er in range of applicability, mechanization, simplicity of use, scope for modu-
larity and several other quantitative and qualitative metrics. The full body of work
is too large to cover in a related work section like this one, but I make an attempt
to cover some central ideas here. Several of the well-established techniques are
mentioned in Dongol and Derrick’s survey paper Dongol and Derrick [2014].

A significant portion of linearizability proofs are simulation proofs. A simula-
tion proof incrementally relates the behavior of an implementation to the behavior
of an abstract specification: a forward simulation does so in the natural direction
of execution, while a backward simulation does so in the reverse direction. For-
ward simulation involves only forward reasoning and is thereby among the most
intuitive methods for proving linearizability. Traditionally, forward simulation
has been used to prove the linearizability of data structures with fixed lineariza-
tion points Abdulla et al. [2017]; Vafeiadis [2009]; Amit et al. [2007]. Schell-
horn et al. proved that backward simulation is a universal, sound, and complete
proof technique for linearizability verification Schellhorn et al. [2014], and gave a
mechanized proof in KIV Reif et al. [1998] of the correctness of the Herlihy-Wing
queue, which is notorious for its future-dependent linearization points. Backward
simulation, however, is not a silver bullet. Backward simulation proofs are fa-
mously complex and are generally unintuitive to algorithm designers since they
require reasoning about the execution of the algorithm in reverse Vafeiadis [2008];
Dongol and Derrick [2014]; Khyzha et al. [2017]. The simulation techniques
can also be combined in a forward-backward simulation Lynch and Vaandrager
[1995]; Colvin et al. proved the linearizability of Heller et al.’s concurrent list-
based set implementation using this technique Colvin et al. [2006]; Heller et al.
[2006]; their proof is verified by the PVS proof system.

Some recent works extend forward simulation like techniques to produce pen-
and-paper proofs of linearizability of more complex data structures through the
use of “commitment points”. In particular, Khyzha et al. give a proof technique
that maintains a partial order over operations, such that all total orders that respect
the partial order are valid linearizations Khyzha et al. [2017]. This maintenance
of a partial order allows them to be more tolerant to future-dependence than tra-
ditional forward simulation methods which maintain a single total order. In par-
ticular, as the future unfolds, the technique makes the partial order stricter at com-
mitment points to eliminate total orders that are no longer linearizable. Khyzha et
al. give pen-and-paper proofs for the Herlihy-Wing queue, time-stamped queue,
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and an optimistic set. Bouajjani et al. similarly extend forward simulation tech-
niques to show some queues with fixed linearization points for dequeue and some
stack data structures can be proved using forward simulation like methods using
commitment points and partial orders Bouajjani et al. [2017]. These authors pro-
vide pen-and-paper proofs for the Herlihy-Wing queue and a time-stamped stack
data structure. Both these works extend the scope of forward reasoning methods
beyond data structures with fixed linearization points. However, the commitment
points method with a partial order is not complete Oliveira Vale et al. [2023];
Jayanti et al. [2024].

An alternative to simulation based proofs are proofs using history and prophecy
variables. History variables, a.k.a. auxiliary variables, remember the past Owicki
and Gries [1976], while prophecy variables foresee/predict the future Abadi and
Lamport [1991]. Lynch notes that arguments using history variables alone are akin
to forward simulation arguments, while those using prophecy variables alone are
akin to backward simulation arguments, and those using a combination of history
and prophecy variables are akin to forward-backward simulation arguments Lynch
and Vaandrager [1995]. Similarly to backward simulation, prophecy variables also
su↵er from being “di�cult to use in practice” Lamport and Merz [2022]. In the
context of our paper, the most related work that uses these variables is the Ph.D.
thesis of Vafeiadis Vafeiadis [2008]. In particular, he presents a technique that
annotates algorithms with single assignment variables, and stores linearization in-
formation into the single-assignment variables with the aid of prophecy variables
to help in resolve future-dependent linearization points. He uses the technique to
obtain machine-verified proofs of a stack, list, RDCSS (restricted double-compare
single-swap Harris et al. [2002]), and MCAS (multiword compare-and-swap).
This technique however, is restricted to a class of lock-free algorithms that lin-
earize at CAS operations and another class of read-only methods.

Introduced by Henzinger et al. in 2013, aspect-oriented proofs are non-simulation
based techniques that exploit the semantics of particular data types in order to re-
duce proofs of linearizability to proofs of simpler properties called aspects Hen-
zinger et al. [2013]. The technique is inherently non-universal however, requiring
new theory to be developed about the aspects that need to be proved about each
data type. Henzinger et al.’s original paper develops the theory for queues, and
Chakraborty et al. produced a machine-verified proof of the Herlihy-Wing queue
using this method Chakraborty et al. [2015]. The technique was later extended for
stacks by Dodds et al. [2015]. Recently, the technique has been extended to snap-
shot objects by Öhman et al. who have also used it to prove several of Jayanti’s
snapshot algorithms Jayanti [2005]; Öhman and Nanevski [2022].

Researchers have also explored several specific-purpose program logics for
proving linearizability Vafeiadis et al. [2006]; Schellhorn et al. [2011]; Jung et al.
[2019]; Oliveira Vale et al. [2023]. Jung et al., in particular, have machine-verified
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the linearizability of the Herlihy-Wing queue using the Iris framework for sepa-
ration logic in Coq Jung et al. [2018]. None of these techniques are known to be
complete.

In context, our tracking technique is, to our knowledge, the only forward rea-
soning method to achieve universality, soundness, and completeness.

5 Conclusion and Remarks
In this ongoing era of the multicore revolution, concurrent algorithms are playing
a pivotal role in critical systems. The human mind struggles to tackle the com-
plexities of asynchrony, so traditional pen-and-paper proofs—which often gloss
over cases or try to capture the high-level at the cost of missing fine details—are
often insu�cient to fully convince ourselves that key concurrent algorithms are
race-free. The lack of rigorous correctness guarantees of concurrent code have
often contributed to the failures of consequential systems, such as the Mars Rover
failure, the Northeast Blackout of 2003, and the Therac-2 tragedies. All of this ev-
idence points to the importance of machine-verifying concurrent data structures,
the key building blocks of concurrent and parallel algorithms.

While a simple, universal, and complete technique for proving the correctness
of concurrent data structures has eluded researchers for decades, recent work has
broken this barrier. In this column, I explained the possibility tracking technique
for proving the linearizability of concurrent data structures, and have demon-
strated the technique’s e�cacy by presenting the machine-verified proof of the
notriously challenging Herlihy-Wing queue. The technique has also been used
to machine-verify e�cient and widely used data structures, including Jayanti’s
single-writer single-scanner snapshot object, and the Jayanti-Tarjan union-find ob-
jects. Collectively, these verified algorithms are noted for their complexity, speed,
and wide-spread use.

My principle motivation in writing this column is to share my excitement
for machine-verification and attaining reliable guarantees of correctness for dis-
tributed algorithms. I look forward to machine-verifiying many more algorithms
myself, but am also hoping to see machine-verification of algorithms become
more mainstream across the distributed computing community.

Due to the inherent complexity of concurrent algorithms, I believe that ma-
chine verification can play an even wider role in providing robust, trusted guar-
antees. My collaborators and I are extending the possibility tracking technique
to incorporate other variants of linearizability, such as strict linearizability Aguil-
era and Frølund [2003], durable linearizability Izraelevitz et al. [2016], and re-
coverable linearizability Berryhill et al. [2015]; Jayanti et al. [2023a]. We are
also designing techniques to verify liveness properties, such as lock- and wait-
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freedom, and properties of mutual exclusion locks, such as starvation-freedom
and first-come-first-served fairness. Finally, we are developing techniques to pro-
duce machine-verified proofs of time complexity guarantees of multiprocess al-
gorithms.

While linearizability and its variants have become the gold standard for data
structure correctness, there are several algorithms both in the literature and in
applications that satisfy weaker consistency guarantees, such as sequential and
causal consistency. To my knowledge, universal and complete techniques for
these data structures are still wanting, and it would be great to see progress on
these important directions.
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Report on AFL 2023:
16th International Conference on Automata and Formal Languages

Eger, Hungary, September 5–7, 2023

Bianca Truthe
Justus Liebig University Giessen, Germany

The conference series AFL was initiated in 1980. In the first years, it took place
every second year, later every third year. It was always organized by a university in
Hungary. The most recent conferences of the series were organized in Dobogókő
(2005), Balatonfüred (2008), Debrecen (2011), Szeged (2014), and again Debre-
cen (2017).

This year, the conference was organized by the Institute of Informatics of the
University of Szeged and the Faculty of Informatics of the Eszterházy Károly
Catholic University of Eger and took place in Eger.

Eger

The invited speakers were

• Galina Jirásková (Slovak Academy of Sciences, Košice, Slovakia) who spoke
about ‘Operations on Boolean and Alternating Finite Automata’,

• Andreas Maletti (University of Leipzig, Germany) who spoke about ‘Com-
positions of Weighted Extended Top-down Tree Transducers’, and

• Victor Mitrana (Polytechnic University of Madrid, Spain, and National In-
stitute of R&D for Biological Sciences, Bucharest, Romania) with a talk
‘On the Degree of Extension of Some Models Defining Non-Regular Lan-
guages’.
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Besides the talks by the invited speakers, 18 talks on peer reviewed research
papers were presented. They covered many topics in the area of automata and
formal languages (fuzzy finite automata, weighted automata, freezing 1-tag sys-
tems, 1-limited automata, Horner automata, quantum finite automata, reversible
computations, pumping lemmata, tree-controlled grammars, and many more).

On the conference website of the recent edition, you can find a list of all ac-
cepted papers:

https://afl2023.uni-eszterhazy.hu/

The proceedings were edited by Zsolt Gazdag, Szabolcs Iván, and Gergely
Kovásznai and published in the EPTCS series (Electronic Proceedings in Theoret-
ical Computer Science, https://eptcs.org/), Volume 386. Extended versions
of selected papers will be published in a special issue of the International Journal
of Foundations of Computer Science (IJFCS).

On top of the Observatory Tower

Besides the scientific sessions, the conference program contained also a social
part. It consisted of a visit of the Observatory Tower including an exhibition
related to Astronomy and visitors terrasse with a nice view over Eger, a guided
tour through the city and into its underworld (caves which were used as wine
storage), and a conference dinner in a wine cellary.

Many thanks go to the organizers, program committee members, external re-
viewers, and participants for the pleasant and successful event. The next edition
will probably take place in three years.
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Report on CIAA 2023:
27th International Conference on Implementation and

Application of Automata
Famagusta, North Cyprus, September 19–22, 2023

Bianca Truthe
Justus Liebig University Giessen, Germany

Recently, the 27th edition of the Conference on Implementation and Applica-
tion of Automata was held in Famagusta (North Cyprus) from September 19
to 22, 2023. The first Workshop on Implementing Automata (WIA’96) was held
in London, Ontario, Canada, in 1996. In the year 2000, the workshop WIA be-
came the CIAA conference. The CIAA conference series covers all aspects of
implementation, application, and theory of automata and related structures. It
aims to attract contributions from both classical automata theory and applications.
This year’s conference was organized by Benedek Nagy and his colleagues from
the Eastern Mediterranean University in Famagusta. It was co-located with the
workshop on Non-Classical Models of Automata and Applications (NCMA).

View over Famagusta

The invited speakers were

• Viliam Geffert (University of Košice, Slovakia) who spoke about ‘Binary
coded unary regular languages’,

• Friedrich Otto (University of Kassel, Germany) who gave ‘A Survey on
Automata with Translucent Letters’, and

• Cem Say (University of Istanbul, Turkey) with a talk on ‘Finite automata as
verifiers’.
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Besides the talks by the invited speakers, 20 talks on peer reviewed research
papers were presented. They covered many topics in the area of automata theory
and beyond (finite automata, push-down automata, transducers, tree automata,
hedge automata, verification, Parikh’s theorem, pumping lemma, and many more).

On the conference website of the recent edition, you can find the program with
all talks:

https://ciaa.emu.edu.tr/en

The proceedings were edited by Benedek Nagy and published in the LNCS se-
ries by Springer (Lecture Notes in Computer Science), Volume 14151. Extended
versions of selected papers will be published in a special issue of the International
Journal of Foundations of Computer Science (IJFCS).

During the conference trip, in Bellapais

Besides the scientific sessions, the conference provided also a social program.
It consisted of a guided tour through the city of Famagusta and the Ghost Town
Varosha, a bus trip to Bellapais, and a conference dinner at a restaurant with a
beautiful view over the northern coast line and a large variety of delicious meals.

At the end of the conference, Szilárd Zsolt Fazekas invited with a presenta-
tion to the next edition of CIAA which is planned to be held next September in
Akita (Japan).

Many thanks to the organizers, program committee members, external review-
ers, and participants for the pleasant and successful event. We invite all readers of
this report to submit papers to CIAA 2024 and to attend the conference.
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Report on DCFS 2023:

25th International Conference on Descriptional Complexity of Formal
Systems

Potsdam, July 4–6, 2023

Bianca Truthe
Justus Liebig University Giessen, Germany

The 25th DCFS took place in Potsdam, Germany, from July 4 to 6, 2023.
It was organized jointly by the IFIP Working Group 1.02 on Descriptional
Complexity and by the Institute of Computer Science at the University of
Potsdam.

Group Photo of Participants in Park ‘Sanssouci’

At the conference, 16 scientific talks were given, 3 of them by invited
speakers, namely

• Pascal Caron (University of Rouen, France) who spoke about ‘Oper-
ational state complexity revisited: The contribution of monsters and
modifiers’,

• Friedrich Otto (University of Kassel, Germany) who gave a talk ‘On
the influence of the various parameters of the Restarting Automaton
on its expressive capacity and descriptional complexity’,

• Rogério Reis (University of Porto, Portugal) with a talk titled ‘Size
matters, but let’s have it on average’.

The other contributions (all peer reviewed) were written by 35 authors.
All papers are contained in the proceedings, edited by Henning Bordihn,
Nicholas Tran, and György Vaszil, and published by Springer as volume 13918
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in the series Lecture Notes in Computer Science. Full versions of selected
papers will be published in a special issue of the journal Information and
Computation.

On the conference website, you can find the program with all talks:

https://www.cs.uni-potsdam.de/dcfs2023/

Besides the scientific sessions, there were two more: the Business Meeting
of the IFIP Working Group 1.02 and a Special Session on the occasion of the
25th edition of DCFS where JÃ¼rgen Dassow (Otto-von-Guericke University
of Magdeburg, Germany), one of the co-founders of the DCFS conference
series, gave a ceremonial address. In the Business Meeting, Martin Kutrib
(Justus-Liebig-UniversitÃ¤t Giessen) as the chair of the working group gave
an overview about activities of the group as well as the past and future of
the conference series DCFS. He also announced that Rogério Reis will soon
take over the chair.

The history of the conference series DCFS and other information can be
found at the homepage:

http://www.informatik.uni-giessen.de/dcfs/

As social events, we had a tour through Sanssouci Park very well pre-
pared and guided by students of the University Potsdam as well as a great
conference dinner.

We thank everybody, in particular Henning Bordihn and the local orga-
nizers, who made the conference a successful event. The next DCFS will
take place in Santa Clara, California, USA, organized by Nicholas Tran. We
invite all readers of this report to submit papers to DCFS 2024 and to take
part in the conference.



85

Report on NCMA 2023:
13th International Workshop on Non-Classical Models of

Automata and Applications
Famagusta, North Cyprus, September 18–19, 2023

Bianca Truthe
Justus Liebig University Giessen, Germany

The conference venue

The workshop series on Non-Classical
Models of Automata and Applications
(NCMA) was founded in the year 2009;
up to the year 2019, it took place ev-
ery year. After a pandemic caused
pause, there was a restart with a new
edition last year where also the organi-
zation of this year’s event was settled.
Now, the 13th edition was held in Fam-
agusta (North Cyprus) on September 18
and 19, 2023. The workshop was orga-
nized by Benedek Nagy and his colleagues from the Eastern Mediterranean Uni-
versity in Famagusta. It was co-located with the Conference on Implementation
and Application of Automata (CIAA).

The history and other information about the conference series can be found at
the homepage which is available here:

https://www.cs.uni-potsdam.de/NCMA/

On the workshop website of the recent edition, you can find the program with
all talks:

https://ncma.emu.edu.tr/en

The invited speakers were

• Friedrich Otto (University of Kassel, Germany) who gave ‘A survey on au-
tomata with translucent letters’ and

• György Vaszil (University of Debrecen, Hungary) with a talk on ‘Membrane
computing and Petri nets’.

Besides the talks by the invited speakers, 14 talks on peer reviewed research
papers were presented. The 11 regular papers and 3 short papers covered many
topics in the area of automata theory and beyond (tree-walking-storage automata,
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forgetting automata, sweeping permutation automata, quantum finite state au-
tomata, graph grammars, ordered grammars, signed grammars, contextual gram-
mars, sticker systems, stream cipher and pseudorandom number generators, and
many more).

The proceedings were edited by Rudolf Freund and Benedek Nagy and pub-
lished in the EPTCS series (Electronic Proceedings in Theoretical Computer Sci-
ence, https://eptcs.org/), Volume 388. Extended versions of selected papers
will be published in a special issue of Acta Informatica.

Besides the scientific sessions, there was one more: A joint session with the
workshop on Theoretical Informatics dedicated Victor Mitrana on the occasion
of his 65th birthday held at the Faculty of Mathematics and Informatics of the
University of Bucharest, organized by Marius Dumitran, Radu Gramatovici, and
Florin Manea. During this session, in which both venues were connected via a
video conference system, several participants of the NCMA who had been invited
to contribute also to the workshop honoured Victor in very personal presentations
full of memories of joint research.

This special session was followed by the social program. It consisted of a
guided tour to the ancient city of Salamis, a visit of the Monastery St. Barnabas
with Icon Museum and a guided tour through the city of Famagusta. Afterwards,
a splendid dinner with a huge variety of delicious meals was awaiting us in a
restaurant situated directly at the Mediterranean Sea.

Sightseeing in Salamis

Many thanks to the organizers, program committee members, external review-
ers, and participants for the pleasant and successful event. The next issue of
NCMA is planned to be held next year in Göttingen (Germany), co-located with
DLT, organized by Florin Manea. We invite all readers of this report to submit
papers to NCMA 2024 and to come to the conference next August.
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EATCS

HISTORY AND ORGANIZATION

EATCS is an international organization founded in 1972. Its aim is to facilitate the exchange of
ideas and results among theoretical computer scientists as well as to stimulate cooperation between
the theoretical and the practical community in computer science.
Its activities are coordinated by the Council of EATCS, which elects a President, Vice Presidents,
and a Treasurer. Policy guidelines are determined by the Council and the General Assembly of
EATCS. This assembly is scheduled to take place during the annual International Colloquium on
Automata, Languages and Programming (ICALP), the conference of EATCS.

MAJOR ACTIVITIES OF EATCS

- Organization of ICALP;
- Publication of the “Bulletin of the EATCS;”
- Award of research and academic career prizes, including the EATCS Award, the Gödel Prize
(with SIGACT), the Presburger Award, the EATCS Distinguished Dissertation Award, the Nerode
Prize (joint with IPEC) and best papers awards at several top conferences;
- Active involvement in publications generally within theoretical computer science.
Other activities of EATCS include the sponsorship or the cooperation in the organization of vari-
ous more specialized meetings in theoretical computer science. Among such meetings are: CIAC
(Conference of Algorithms and Complexity), CiE (Conference of Computer Science Models of
Computation in Context), DISC (International Symposium on Distributed Computing), DLT (In-
ternational Conference on Developments in Language Theory), ESA (European Symposium on
Algorithms), ETAPS (The European Joint Conferences on Theory and Practice of Software), LICS
(Logic in Computer Science), MFCS (Mathematical Foundations of Computer Science), WADS
(Algorithms and Data Structures Symposium), WoLLIC (Workshop on Logic, Language, Infor-
mation and Computation), WORDS (International Conference on Words).

Benefits offered by EATCS include:
- Subscription to the “Bulletin of the EATCS;”
- Access to the Springer Reading Room;
- Reduced registration fees at various conferences;
- Reciprocity agreements with other organizations;
- 25% discount when purchasing ICALP proceedings;
- 25% discount in purchasing books from “EATCS Monographs” and “EATCS Texts;”
- Discount (about 70%) per individual annual subscription to “Theoretical Computer Science;”
- Discount (about 70%) per individual annual subscription to “Fundamenta Informaticae.”

Benefits offered by EATCS to Young Researchers also include:
- Database for Phd/MSc thesis
- Job search/announcements at Young Researchers area
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(1) THE ICALP CONFERENCE

ICALP is an international conference covering all aspects of theoretical computer science and
now customarily taking place during the second or third week of July. Typical topics discussed
during recent ICALP conferences are: computability, automata theory, formal language theory,
analysis of algorithms, computational complexity, mathematical aspects of programming language
definition, logic and semantics of programming languages, foundations of logic programming,
theorem proving, software specification, computational geometry, data types and data structures,
theory of data bases and knowledge based systems, data security, cryptography, VLSI structures,
parallel and distributed computing, models of concurrency and robotics.

Sites of ICALP meetings:

- Paris, France 1972
- Saarbrücken, Germany 1974
- Edinburgh, UK 1976
- Turku, Finland 1977
- Udine, Italy 1978
- Graz, Austria 1979
- Noordwijkerhout, The Netherlands 1980
- Haifa, Israel 1981
- Aarhus, Denmark 1982
- Barcelona, Spain 1983
- Antwerp, Belgium 1984
- Nafplion, Greece 1985
- Rennes, France 1986
- Karlsruhe, Germany 1987
- Tampere, Finland 1988
- Stresa, Italy 1989
- Warwick, UK 1990
- Madrid, Spain 1991
- Wien, Austria 1992
- Lund, Sweden 1993
- Jerusalem, Israel 1994
- Szeged, Hungary 1995
- Paderborn, Germany 1996
- Bologne, Italy 1997
- Aalborg, Denmark 1998

- Prague, Czech Republic 1999
- Genève, Switzerland 2000
- Heraklion, Greece 2001
- Malaga, Spain 2002
- Eindhoven, The Netherlands 2003
- Turku, Finland 2004
- Lisabon, Portugal 2005
- Venezia, Italy 2006
- Wrocław, Poland 2007
- Reykjavik, Iceland 2008
- Rhodes, Greece 2009
- Bordeaux, France 2010
- Zürich, Switzerland 2011
- Warwick, UK 2012
- Riga, Latvia 2013
- Copenhagen, Denmark 2014
- Kyoto, Japan 2015
- Rome, Italy 2016
- Warsaw, Poland 2017
- Prague, Czech Republic 2018
- Patras, Greece 2019
- Saarbrücken, Germany (virtual conference) 2020
- Glasgow, UK (virtual conference) 2021
- Paris, France 2022
- Paderborn, Germany 2023

(2) THE BULLETIN OF THE EATCS

Three issues of the Bulletin are published annually, in February, June and October respectively.
The Bulletin is a medium for rapid publication and wide distribution of material such as:

- EATCS matters;
- Technical contributions;
- Columns;
- Surveys and tutorials;
- Reports on conferences;

- Information about the current ICALP;
- Reports on computer science departments and institutes;
- Open problems and solutions;
- Abstracts of Ph.D. theses;
- Entertainments and pictures related to computer science.
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Contributions to any of the above areas are solicited, in electronic form only according to for-
mats, deadlines and submissions procedures illustrated at http://www.eatcs.org/bulletin.
Questions and proposals can be addressed to the Editor by email at bulletin@eatcs.org.

(3) OTHER PUBLICATIONS

EATCS has played a major role in establishing what today are some of the most prestigious pub-
lication within theoretical computer science.
These include the EATCS Texts and the EATCS Monographs published by Springer-Verlag and
launched during ICALP in 1984. The Springer series include monographs covering all areas of
theoretical computer science, and aimed at the research community and graduate students, as well
as texts intended mostly for the graduate level, where an undergraduate background in computer
science is typically assumed.
Updated information about the series can be obtained from the publisher.
The editors of the EATCS Monographs and Texts are now M. Henzinger (Vienna), J. Hromkovič
(Zürich), M. Nielsen (Aarhus), G. Rozenberg (Leiden), A. Salomaa (Turku). Potential authors
should contact one of the editors.
EATCS members can purchase books from the series with 25% discount. Order should be sent to:

Prof.Dr. G. Rozenberg, LIACS, University of Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands

who acknowledges EATCS membership and forwards the order to Springer-Verlag.

The journal Theoretical Computer Science, founded in 1975 on the initiative of EATCS, is pub-
lished by Elsevier Science Publishers. Its contents are mathematical and abstract in spirit, but it
derives its motivation from practical and everyday computation. Its aim is to understand the nature
of computation and, as a consequence of this understanding, provide more efficient methodologies.
The Editor-in-Chief of the journal currently are D. Sannella (Edinburgh), L. Kari and P.G. Spirakis
(Patras).

ADDITIONAL EATCS INFORMATION

For further information please visit http://www.eatcs.org, or contact the President of EATCS:
Prof. Artur Czumaj,
Email: president@eatcs.org

EATCS MEMBERSHIP

DUES

The dues are e 40 for a period of one year (two years for students / Young Researchers ). Young
Researchers, after paying, have to contact secretary@eatcs.org, in order to get additional
years. A new membership starts upon registration of the payment. Memberships can always be
prolonged for one or more years.
In order to encourage double registration, we are offering a discount for SIGACT members, who
can join EATCS for e 35 per year. We also offer a five-euro discount on the EATCS membership
fee to those who register both to the EATCS and to one of its chapters. Additional e 35 fee is
required for ensuring the air mail delivery of the EATCS Bulletin outside Europe.
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HOW TO JOIN EATCS

You are strongly encouraged to join (or prolong your membership) directly from the EATCS web-
site www.eatcs.org, where you will find an online registration form and the possibility of secure
online payment. Alternatively, contact the Secretary Office of EATCS:

Mrs. Efi Chita,
Computer Technology Institute & Press (CTI)
1 N. Kazantzaki Str., University of Patras campus,
26504, Rio, Greece
Email: secretary@eatcs.org,

Tel: +30 2610 960333, Fax: +30 2610 960490
If you are an EATCS member and you wish to prolong your membership or renew the subscription
you have to use the Renew Subscription form. The dues can be paid via paypal and all major credit
cards are accepted.
For adittional information please contact the Secretary of EATCS:

Dmitry Chistikov
Computer Science
University of Warwick
Coventry
CV4 7AL
United Kingdom
Email: secretary@eatcs.org,


