
Algorithmic and Security Challenges in
Programmable and Virtualized Networks

Stefan Schmid

Aalborg University, DK & TU Berlin, DE

❏ Computer networks (datacenter networks, enterprise networks,
Internet) have become a critical infrastructure of the information
society

❏ The Internet is very successful so far: hardly any outages…

❏ … despite a huge shift in scale and applications

Computer Networks

Goal: connectivity between researchers

Applications: file transfer, email
Goal: QoS, security, …

Applications: live streaming, IoT, etc.

❏ Computer networks (datacenter networks, enterprise networks,
Internet) have become a critical infrastructure of the information
society

❏ The Internet is very successful so far: hardly any outages…

❏ … despite a huge shift in scale and applications

Computer Networks

Goal: connectivity between researchers

Applications: file transfer, email
Goal: QoS, security, …

Applications: live streaming, IoT, etc.

Danny Hillis, TED* talk, Feb. 2013,

about trust in the Internet in the 80s:

“There were two Dannys. I knew both.

Not everyone knew everyone, but

there was an atmosphere of trust.”

❏ Computer networks (datacenter networks, enterprise networks,
Internet) have become a critical infrastructure of the
information society

❏ The Internet is very successful so far: hardly any outages…

❏ … despite a huge shift in scale and applications

Computer Networks

Goal: connectivity between researchers

Applications: file transfer, email
Goal: QoS, security, …

Applications: live streaming, IoT, etc.

The underlying technologies have

hardly changed over all these years!

❏ However: do computer networks
still meet the dependability
requirements in the future?

❏ Example Internet-of-Things:

❏ IPv4: ~4.3 billion addresses

❏ Gartner study: 20+ billion “smart
things” by 2020

❏ Recent DDoS attack based on IoT
(almost 1TB/s, coming from
webcames, babyphones, etc.)

Ready for the Future?

Innovation!

Innovation?

Innovation!

Problem 1: Security in the Internet

Source: Slide by Adrian Perrig

The Internet on first sight:
- Monumental
- Passed the “Test-of-Time”
- Should not and cannot be changed

The Internet on second sight:
- Antique
- Britle
- Successful attacks more and

more frequent

Problem 2: Reliability
Even techsavvy companies struggle to provide reliable operations

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed
incorrectly […] more “stuck” volumes and
added more requests to the re-mirroring
storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

Source: Talk by Nate Foster at DSDN Workshop

Problem 3: Troubleshooting
The Wall Street Bank Anecdote

❏ Outage of a data center of a Wall Street investment bank

❏ Lost revenue measured in USD 106 / min!

❏ Quickly, an emergency team was assembled with experts in
compute, storage and networking:

❏ The compute team: came armed with reams of logs, showing how
and when the applications failed, and had already written
experiments to reproduce and isolate the error, along with
candidate prototype programs to workaround the failure.

❏ The storage team: similarly equipped, showing which file system
logs were affected, and already progressing with workaround
programs.

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

❏ And the network team?

“All the networking team had were two tools invented over
twenty years ago [ping and traceroute] to merely test end-to-end
connectivity. Neither tool could reveal problems with the
switches, the congestion experienced by individual packets, or
provide any means to create experiments to identify, quarantine
and resolve the problem. Whether or not the problem was in the
network, the network team would be blamed since they were
unable to demonstrate otherwise.”

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

Problem 3: Troubleshooting
The Wall Street Bank Anecdote

❏ And the network team?

“All the networking team had were two tools invented over
twenty years ago [ping and traceroute] to merely test end-to-end
connectivity. Neither tool could reveal problems with the
switches, the congestion experienced by individual packets, or
provide any means to create experiments to identify, quarantine
and resolve the problem. Whether or not the problem was in the
network, the network team would be blamed since they were
unable to demonstrate otherwise.”

Problem 3: Troubleshooting
The Wall Street Bank Anecdote

The case for two new paradigms:
Software-defined networks and network virtualization.

❏ And the network team?

“All the networking team had were two tools invented over
twenty years ago [ping and traceroute] to merely test end-to-end
connectivity. Neither tool could reveal problems with the
switches, the congestion experienced by individual packets, or
provide any means to create experiments to identify, quarantine
and resolve the problem. Whether or not the problem was in the
network, the network team would be blamed since they were
unable to demonstrate otherwise.”

Problem 3: Troubleshooting
The Wall Street Bank Anecdote

The case for two new paradigms:
Software-defined networks and network virtualization.

Decoupling and consolidating the
control plane and making the network
programmable: enables innovations
(design your own routing algorithm!) as
well as automatic, formal verification.

Provide isolation: logical isolation
(e.g., between different tenants)
and in terms of performance. Allow
different network stacks to co-exist.

Agenda Today:
Challenges in software-defined and

virtualized networks

However, these new paradigms also come with new challenges:

❏ Challenge 1: Correctly operating software-defined networks is
non-trivial and poses interesting algorithmic problems

❏ Challenge 2: Software-defined and virtualized networks do not
only offer interesting new security solutions, but also introduce
new security issues. In particular, we discuss a new threat
vector: the insecure data plane.

Ctrl

Control

Programs

Control

Programs

A Mental Model for SDNs

In a nutshell:

SDN outsources and
consolidates control
over multiple
devices to (logically)
centralized software
controller

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs
e.g., arbitrary

(not shortest, not
destination-

based) routing
paths, service

chaining through
middleboxes,

design of
distributed

control plane.

Today: how to
update route(r)s

consistently?

e.g., local fast
failover (based
on preinstalled
conditional and

local backup
rules).

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs
e.g., arbitrary

(not shortest, not
destination-

based) routing
paths, service

chaining through
middleboxes,

design of
distributed

control plane.

Today: how to
update route(r)s

consistently?

e.g., local fast
failover (based
on preinstalled
conditional and

local backup
rules).

Problem 1: How to

interconnect and manage

in a self-stabilizing

manner?

Ctrl

Control

Programs

Control

Programs
Applications and

Control Plane

… and regarding
decoupling / inter-

connect!

Data Plane

Algorithmic Problems in SDNs

e.g., local fast
failover (based
on preinstalled
conditional and

local backup
rules).

Today: how to
update route(r)s

consistently?

Problem 2:

asynchronous. How

to update correctly?

He et al., ACM SOSR 2015:

without network latency

e.g., arbitrary
(not shortest, not

destination-
based) routing
paths, service

chaining through
middleboxes,

design of
distributed

control plane.

untrusted

hosts
trusted

hosts

Controller Platform

What can possibly go wrong?

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

Example 1: Bypassed Waypoint

insecure

Internet
secure

zone

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

Example 2: Transient Loop

insecure

Internet
secure

zone

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Cost of extra rules!

Where to tag?
Header space?
Overhead!

Time till new link
becomes available!

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Cost of extra rules!

Where to tag?
Header space?
Overhead!

Time till new link
becomes available!

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Can we do without tagging, and at least
preserve weaker consistency properties?

Idea: Schedule Subsets of Nodes!

Idea: Schedule safe update subsets in multiple rounds!

Packet may take a mix of old and new path, as long as,
e.g., Loop-Freedom (LF) and Waypoint Enforcement
(WPE) are fulfilled

Controller Platform

Controller Platform

Round 1

Round 2

…

Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Going Back to Our Examples: LF Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:
LF ok! But: WPE violated in Round 1!

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Going Back to Our Examples: WPE Update

insecure

Internet

secure

zone

Going Back to Our Examples: WPE Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Don’t cross the
waypoint: safe!

Going Back to Our Examples: WPE Update

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:
… ok but may violate LF in Round 1!

Don’t cross the
waypoint: safe!

Going Back to Our Examples: Both WPE+LF?

insecure

Internet

secure

zone

Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:

Going Back to Our Examples: WPE+LF!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:
Is there always a WPE+LF schedule?

What about this one?

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!

Resort to tagging…

What about this one?

What about this one?

1

❏ Forward edge after the waypoint: safe!

❏ No loop, no WPE violation

What about this one?

2

❏ Now this backward is safe too!

❏ No loop because exit through 1

1

What about this one?

1

2

3

❏ Now this is safe: ready back to WP!

❏ No waypoint violation

2

What about this one?

1

2

3

4

4

❏ Ok: loop-free and also not on the path (exit via)1

What about this one?

1

2

3

❏ Ok: loop-free and also not on the path (exit via)

4

4

1

What about this one?

1

2

3

4

4

5

Back to the start: What if….

1

Back to the start: What if…. also this one?!

1

1

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF 

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF 

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF 

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF 

❏ Update any of the 2 other forward edges? WPE 

❏ What about a combination? No…

Back to the start: What if…. also this one?!

1

1

Back to the start: What if…. also this one?!

1

1

To update or not to update in the first round?

That is the question… leading to NP-hardness!

Also an example that greedy can be bad.

Back to the start: What if…. also this one?!

1

1

Bad news: Even decidability hard: cannot quickly test feasibility and if
infeasible resort to say, tagging solution!

Open question: very artificial? Under which circumstances poly-time?

To update or not to update in the first round?

That is the question… leading to NP-hardness!

Also an example that greedy can be bad.

Let us focus on loop-freedom only:
always possible in n rounds! How?

Let us focus on loop-freedom only:
always possible in n rounds! How?

1

From the destination! Invariant: path suffix updated!

Let us focus on loop-freedom only:
always possible in n rounds! How?

12

From the destination! Invariant: path suffix updated!

Let us focus on loop-freedom only:
always possible in n rounds! How?

12

3

From the destination! Invariant: path suffix updated!

Let us focus on loop-freedom only:
always possible in n rounds! How?

1

From the destination! Invariant: path suffix updated!

2

3
4

5

6

Let us focus on loop-freedom only:
always possible in n rounds! How?

1

From the destination! Invariant: path suffix updated!

2

3
4

5

6

But how to minimize # rounds?

Round 1 (R1): Clearly, I can
only update „forward“ links
(wrt to old route)!

Round 2 (R2) (or last round in general): By
a symmetry argument, I can only update
the „forward“ links with respect to the new
route: an update schedule read backward
(i.e., updating from new to old policy), must
also be legal!

Example: Optimal 2-Round Update Schedules

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path? F F F B B B

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path? F F F B B B

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

Old policy from left to right!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backward wrt
(dashed) new path?

New policy from left to right!

F F F B B B

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

Old policy from left to right!

 F  B  B  F  B F

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
read backward is a valid
schedule for new to old!

Optimal Algorithm for 2-Round Instances:
Leveraging Symmetry!

❏ Classify nodes/edges with 2-letter code:

❏ F, B: Does (dashed)
new edge point forward
or backward wrt (solid)
old path?

❏ F, B: Does the (solid)
old edge point forward
or backwart wrt
(dashed) new path?

Insight 1: In the 1st round,
I can safely update all

forwarding (F) edges!
For sure loopfree.

Insight 3: Hence in the last
round, I can safely update
all forwarding (F) edges!

For sure loopfree.

2-Round Schedule: If and only if
there are no BB edges! Then I can

update F edges in first round
and F edges in second round!

Insight 2: Valid schedules
are reversible! A valid

schedule from old to new
read backward is a valid
schedule for new to old!

That is, FB must be in
first round, BF must be
in second round, and FF
are flexible!

3 Rounds Are Hard: Intuition Why

❏ Structure of a 3-round schedule:

Round 1 Round 2 Round 3

F edges:

FF,FB

F edges:

FF,BF

all edges:

FF,FB,BF,BB

Round 1 Round 2 Round 3

FB BFBB

WLOG

Boils
down to: FF

??

W.l.o.g., can do FB
in R1 and BF in R3.

A hard decision problem: when to update FF?

BB

3 Rounds Are Hard: Intuition Why

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to enable update BB in R2?

FFFF

A hard decision problem: when to update FF?
Exit from loop

BB

3 Rounds Are Hard: Intuition Why

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

FFFF

A hard decision problem: when to update FF?
No exit from loop!

BB

3 Rounds Are Hard: Intuition Why

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

❏ But only if FF-node v3 is not updated as well in R1: potential
loop

FFFF

A hard decision problem: when to update FF?
No exit from loop!

BB

3 Rounds Are Hard: Intuition Why

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

❏ But only if FF-node v3 is not updated as well in R1: potential
loop

A hard decision problem: when to update FF?

BB

3 Rounds Are Hard: Intuition Why

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

❏ But only if FF-node v3 is not updated as well in R1: potential
loop

❏ Looks like a gadget: which FF nodes to update when is hard!

FFFF

❏ We know: BB node v6 can only be updated in R2

❏ When to update FF nodes to enable update BB in R2

❏ E.g, updating FF-node v4 in R1 allows to update BB v6 in R2

❏ But only if FF-node v3 is not updated as well in R1: potential
loop

❏ Looks like a gadget: which FF nodes to update when is hard!

A hard decision problem: when to update FF?

BB

3 Rounds Are Hard: Intuition Why

Being greedy is bad!
Don‘t update all FF!

FFFF

Loop-Freedom: Summary of Results or the Lack Thereof 

❏ Minimizing the number of rounds

❏ For 2-round instances: polynomial time

❏ For 3-round instances: NP-hard, no approximation known

❏ Relaxed notion of loop-freedom: O(log n) rounds

❏ No approximation known

❏ Maximizing the number of updated edges per round: NP-hard (dual feedback arc set)
and bad (large number of rounds)

❏ dFASP on simple graphs (out-degree 2 and originates from paths!)

❏ Even hard on bounded treewidth?

❏ Resulting number of rounds up to (n) although O(1) possible

❏ Multiple policies: aggregate updates to given switch!

❏ Related to Shortest Common Supersequence Problem

What about capacity constraints?

1

2

2

1 1

1

1

w

s t

u v

What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

w

s t

u v

What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

Flow 2Can you find an update schedule?

w

s t

u v

e.g., cannot update
red: congestion!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

Round 1: prepare

No flow! No flow!

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

Round 2

flow! No flow!

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 3

Capacity 2: ok!

3

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

Capacity 2: ok!

3

4

4. blue@w

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

3

4

4. blue@w

Note: this (non-trivial)
example was just a DAG,

without loops!

Block Decomposition of DAGs

1

2

2

1 1

1

1

Flow 1

Flow 2

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Just one red block: r1

r1

Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Two blue blocks: b1 and b2

b1 b2

Block Decomposition of DAGs

1

2

2

1 1

1

1

Block for a given flow:
subgraph between two

consecutive nodes where
old and new route meet. w

s t

u v

Dependencies: update b2 after r1 after b1.

b1 b2
r1

Congestion-Free Rerouting: Summary of Results

❏ Congestion-free rerouting: a fundamental problem, but
not much known!

Often hard:

❏ NP-hard already for 2 flows in general flow networks

❏ NP-hard already on DAGs for general k flows

But not always:

❏ For k=2 flows, poly-time algorithm on DAGs exists

❏ Algorithm based on block decomposition of flow graph =
dependency graph

❏ Optimal number of rounds

❏ For k=const flows, poly-time algorithm on DAGs exists

❏ Weaker notion of dependency graph

❏ Feasibility (but not optimality?) in time 2O(k log k) O(n), k = # flows

From Consistency to Security

❏ Software-defined networks
and network virtualization
also introduce new security
challenges

❏ In general, much research on
control plane security (e.g.,
secure BGP)

Ctrl

Control

Programs

Control

Programs

Our recent research: the insecure
data plane, a new threat vector!

The Insecure Data Plane

A tough problem: how to build a
secure computer network if you
don’t trust the hardware??

(Building your own is expensive!)

Ctrl

Control

Programs

Control

Programs

The case for insecure data
planes: many incidents

❏ Attackers have compromised
routers

❏ Compromised routers are
traded underground

❏ Vendors have left backdoors
open

❏ National security agencies
can bug network equipment

Attack vector 1:

❏ DoS on controller

❏ Harms availability

❏ E.g., force other
switches into default
behavior

Ctrl

Control

Programs

Control

Programs

The Insecure Data Plane

Ctrl

Control

Programs

Control

Programs
Attack vector 2:

❏ «Teleportation» or covert
communication

❏ Controller reacts to switch
events (packet-ins) by
sending flowmods/packet-
outs/… etc.: can be
exploited to transmit
information (e.g., src MAC
0xBADDAD)

❏ Can also modulate
information implicitly (e.g.,
frequency of packetins)

The Insecure Data Plane

Ctrl

Control

Programs

Control

Programs
Attack vector 2:

❏ «Teleportation» or covert
communication

❏ Controller reacts to switch
events (packet-ins) by
sending flowmods/packet-
outs/… etc.: can be
exploited to transmit
information (e.g., src MAC
0xBADDAD)

❏ Can also modulate
information implicitly (e.g.,
frequency of packetins)

The Insecure Data Plane

Hard to detect by security
middleboxes in the data
plane! Also hard to detect as
OpenFlow channel is
encrypted.

The Insecure Data Plane

Ctrl

Control

Programs

Control

Programs

Attack vector 3:

❏ The virtualized data plane

Background:

❏ Packet processing and other
network functions are more
and more virtualized

❏ E.g., they run on servers at
the edge of the datacenter

❏ Example: OVS

Advantage:

❏ Cheap and performance ok!

❏ Fast and easy deployment

The Insecure Data Plane

Ctrl

Control

Programs

Control

Programs

Attack vector 3:

❏ The virtualized data plane

Background:

❏ Packet processing and other
network functions are more
and more virtualized

❏ E.g., they run on servers at
the edge of the datacenter

❏ Example: OVS

Advantage:

❏ Cheap and performance ok!

❏ Fast and easy deployment

Disadvantage:

❏ New vulnerabilities, e.g.,
collocation!

The Insecure Data Plane

Ctrl

Control

Programs

Control

Programs

Attack vector 3:

❏ The virtualized data plane

Background:

❏ Packet processing and other
network functions are more
and more virtualized

❏ E.g., they run on servers at
the edge of the datacenter

❏ Example: OVS

Advantage:

❏ Cheap and performance ok!

❏ Fast and easy deployment

Disadvantage:

❏ New vulnerabilities, e.g.,
collocation!

e.g., controllers, hypervisors, guest
VMs, image management (the
images VMs use for boot-up), data
storage, network management,
identity management (of the
adminstrators and tenants), etc.

A Case Study: OVS

❏ OVS: a production quality switch, widely deployed in the Cloud

❏ After fuzzing just 2% of the code, we found major
vulnerabilities:

❏ E.g., two stack overflows when malformed MPLS packets are parsed

❏ These vulnerabilities can easily be weaponized:

❏ Can be exploited for arbitrary remote code execution

❏ E.g., our «reign worm» compromised cloud setups within 100s

❏ Significance

❏ It is often believed that only state-level attackers (with, e.g., control over
the vendor’s supply chain) can compromise the data plane

❏ Virtualized data planes can be exploited by very simple, low-budget
attackers: e.g., by renting a VM in the cloud and sending a single
malformed MPLS packet

The Reign Worm

Exploits 4 problems:

1. Security assumptions: Virtual switches often run with elevated
(root) priviledges by design.

2. Collocation: virtual switchs reside in virtualized servers (Dom0), and
are hence collocated with other and possibly critical cloud software,
including controller software

3. Logical centralization: the control of data plane elements is often
outsourced to a centralized software. The corresponding
bidirectional communication channels can be exploited to spread
the worm further.

4. Support for extended protocol parsers: Virtual switches provide
functionality which goes beyond basic protocol locations of normal
switches (e.g., handling MPLS in non-standard manner)

The Reign Worm: Step 1

Attacker VM sends a malicious packet that compromises its
server, giving the remote attacker control of the server.

The Reign Worm: Step 2

Attacker controlled server compromises the controllers’
server, giving the remote attacker control of the controllers’ server.

Bidirectional
communication channel

The Reign Worm: Step 3

The compromised controllers’ server propagates
the worm to the remaining uncompromised server.

The Reign Worm: Step 4

All the servers are controlled by the remote attacker.

Conclusion

❏ SDN promises innovation
and correct and verifiable
networking, but also
introduces new algorithmic
challenges…

❏ Example: route updates

❏ … as well as security
challenges

❏ Example: covert channels and
vulnerable data plane

Ctrl

Control

Programs

Control

Programs

asynchronous

Algorithms for flow rerouting:

Can't Touch This: Consistent Network Updates for Multiple Policies

Szymon Dudycz, Arne Ludwig, and Stefan Schmid.

46th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, June 2016.

Transiently Secure Network Updates

Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid.

42nd ACM SIGMETRICS, Antibes Juan-les-Pins, France, June 2016.

Scheduling Loop-free Network Updates: It's Good to Relax!

Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.

ACM Symposium on Principles of Distributed Computing (PODC), Donostia-San Sebastian, Spain, July 2015.

Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los Angeles, California, USA, October 2014.

Congestion-Free Rerouting of Flows on DAGs

Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht.

ArXiv Technical Report, November 2016.

Survey of Consistent Network Updates

Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio.

ArXiv Technical Report, September 2016.

Security of the data plane:

Outsmarting Network Security with SDN Teleportation

Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.

2nd IEEE European Symposium on Security and Privacy (EuroS&P), Paris, France, April 2017.

See also CVE-2015-7516.

Reigns to the Cloud: Compromising Cloud Systems via the Data Plane

Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.

ArXiv Technical Report, October 2016.

teleportation

attacking the cloud

survey

loop-freedom

multiple policies

waypointing

loop-freedom

waypointing

capacity constraints

https://net.t-labs.tu-berlin.de/~stefan/dsn16.pdf
https://net.t-labs.tu-berlin.de/~stefan/sigmetrics16.pdf
http://net.t-labs.tu-berlin.de/~stefan/podc15.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf
https://net.t-labs.tu-berlin.de/~stefan/netup-dag-arxiv.pdf
https://net.t-labs.tu-berlin.de/~stefan/survey-network-update-sdn.pdf
https://net.t-labs.tu-berlin.de/~stefan/eurosp16.pdf
https://wiki.onosproject.org/display/ONOS/Security+advisories
https://net.t-labs.tu-berlin.de/~stefan/vswitch-security-implications.pdf

Backup Slides

Jennifer Rexford’s Example:
SDN MAC Learning Done Wrong

❏ MAC learning: The «Hello World»

❏ a bug in early controller versions

h1

h2
h3

1

2
3

Controller

❏ In legacy networks simple

❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets (source address!)

❏ Pitfalls in SDN: learn sender => miss response

❏ Assume: low priority rule * (no match): send to controller

❏ h1->h2: Add rule h1@port1 (location learned)

❏ Controller misses h2->h1 (as h1 known, h2 stay unknown!)

❏ When h3->h2: flooding forever (learns h3, never learns h2)

OpenFlow

switch

Thanks to Jen Rexford for example!

Jennifer Rexford’s Example:
SDN MAC Learning Done Wrong

❏ MAC learning: The «Hello World»

❏ a bug in early controller versions

h1

h2
h3

1

2
3

Controller

❏ In legacy networks simple

❏ Flood packets sent to unknown destinations

❏ Learn host’s location when it sends packets (source address!)

❏ Pitfalls in SDN: learn sender => miss response

❏ Assume: low priority rule * (no match): send to controller

❏ h1->h2: Add rule h1@port1 (location learned)

❏ Controller misses h2->h1 (as h1 known, h2 stay unknown!)

❏ When h3->h2: flooding forever (learns h3, never learns h2)

OpenFlow

switch

Thanks to Jen Rexford for example!

Controller never sees source h2:
switch already knows all
destinations h1 and h3, so for h2
it keeps flooding.

Complex Service Chains

It‘s Good to Relax: How to update LF?

…

s dv2 v3 vn-1
vn-2v4

LF Updates Can Take Many Rounds!

…

s dv2 v3 vn-1
vn-2

Invariant: need to update v2 before v3!

v4

LF Updates Can Take Many Rounds!

…

s dv2 v3 vn-1
vn-2

Invariant: need to update v3 before v4!

v4

LF Updates Can Take Many Rounds!

…

s dv2 v3 vn-1
vn-2v4

Induction: need to update vi-1 before vi (before vi+1 etc.)!

(n) rounds?! In principle, yes…:
Need a path back out before
updating backward edge!

1 1

2 3 n-3 n-2

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1 1

But: If s has been
updated, nodes not on
(s,d)-path!

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1 1

2 2 2

Could be updated
simultaneously!
Could be updated
simultaneously!
Could be updated
simultaneously!

But: If s has been
updated, nodes not on
(s,d)-path!

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1

2 2 2 3

1

Finally put back
on path!

Could be updated
simultaneously!
Could be updated
simultaneously!
Could be updated
simultaneously!

But: If s has been
updated, nodes not on
(s,d)-path!

It is good to relax!

…

s dv2 v3 vn-1
vn-2v4

1

2 2 2 3

1

Finally put back
on path!

Could be updated
simultaneously!
Could be updated
simultaneously!
Could be updated
simultaneously!

But: If s has been
updated, nodes not on
(s,d)-path!

3 rounds only!

A log(n)-time Algorithm: Peacock in Action

119

Shortcut Prune PruneShortcut

A log(n)-time Algorithm: Peacock in Action

120

Shortcut Prune PruneShortcut

Greedily choose
far-reaching
(independent)
forward edges.

update

A log(n)-time Algorithm: Peacock in Action

121

Shortcut Prune PruneShortcut
R1 generated
many nodes in
branches which
can be updated
simultaneously!

update

A log(n)-time Algorithm: Peacock in Action

122

Shortcut Prune PruneShortcut

Line re-established!
(all merged with a
node on the s-d-path)

A log(n)-time Algorithm: Peacock in Action

123

Shortcut Prune PruneShortcutPeacock orders nodes wrt to distance: edge
of length x can block at most 2 edges of

length x, so distance 2x.

A log(n)-time Algorithm: Peacock in Action

124

Shortcut Prune PruneShortcut

At least 1/3 of nodes merged in each round
pair (shorter s-d path): logarithmic runtime!

A log(n)-time Algorithm: Peacock in Action

125

Shortcut Prune PruneShortcut

