
CONFIDENTIAL AND PROPRIETARY
1

▪ The problem

▪ Our ML approach

▪ Challenges we encountered

▪ The NetSlicer algorithm

▪ Evaluation

▪ Use case

Agenda

2

The network is the sum of its applications

3

a (virtual/physical) machine

an instance at remote cloud

an internet host

The network is the sum of its applications

Grouping nodes is necessary for visibility
and policy creation

CRM

Website

Big data
cluster

E-commerce

Mobile back-end

4

Many definitions, many sources

▪ Orchestration (e.g., tags, names, desc.)

▪ Inventory (e.g., CMDB)

▪ DevOps (e.g., puppet recipes, ansible scripts)

Leveraging existing data to group nodes

5

Many definitions, many sources

▪ Orchestration (e.g., tags, names, desc.)

▪ Inventory (e.g., CMDB)

▪ DevOps (e.g., puppet recipes, ansible scripts)

Limited by

▪ Availability (not always defined)

▪ Relevance (may not be up to date)

▪ Consistency (may not be standardized)

Leveraging existing data to group nodes

6

Machine Learning Based Labeling

7

▪ Cluster nodes into tiers

Machine Learning Based Labeling

Tier := a set of nodes with similar connections

8

▪ Cluster nodes into tiers

▪ Cluster tiers into apps

Machine Learning Based Labeling

Tier := a set of nodes with similar connections
App := a set of tightly coupled tiers

9

▪ Cluster nodes into tiers

▪ Cluster tiers into apps

▪ Identify roles (Infras, services)

Machine Learning Based Labeling

DB:MongoDB DB:MongoDB

Infra: AD

Tier := a set of nodes with similar connections
App := a set of tightly coupled tiers
Role := a functionality type (may repeat across the network) 10

▪ Cluster nodes into tiers

▪ Cluster tiers into apps

▪ Identify roles (Infras, services)

▪ Generate (simple) labels

▪ Based on services

▪ Based on machine names

Machine Learning Based Labeling

DB:MongoDB DB:MongoDB

Infra: AD

App:Ecomm
App:DataProc

11

Example - ungrouped

12

Example - grouped by application

* Exclude: Infra

groups of nodes

13

Why is it challenging?

14

▪ Load balancing

▪ Same tier nodes are not “identical”

▪ Different servers may serve different clients

Why is it challenging?

15

Clients Servers

▪ Load balancing

▪ Infras and monitors

▪ Add “noisy” connections

▪ Over-connected network

Why is it challenging?

noisy

not noisy

16

▪ Load balancing

▪ Infras and monitors

▪ Non-standard ports

▪ Customized and random port numbers

▪ Harder to identify apps and filter noise

Why is it challenging?
Services

Certificate Services (CertSvc)
Distributed File System (Dfs)
Event Log
Exchange Server
Fax Service
File Replication
Local Security Authority (LSASS)
Netlogon
Remote Storage
Terminal Services
...

Protocols

DCOM
FTP
HADOOP
RPC
...

17

▪ Load balancing

▪ Infras and monitors

▪ Non-standard ports

▪ Uncovered nodes

▪ Missing connection / L7 data

Why is it challenging?

https://upload.wikimedia.org/wikipedia/commons/7/72/Ego_network.png

18

▪ Load balancing

▪ Infras and monitors

▪ Non-standard ports

▪ Uncovered nodes

▪ Missing connection / L7 data

Why is it challenging?

https://upload.wikimedia.org/wikipedia/commons/7/72/Ego_network.png

19

▪ Load balancing

▪ Infras and monitors

▪ Non-standard ports

▪ Uncovered nodes

▪ Big data

▪ Tens of thousands of nodes (and millions of links)

▪ (almost) unlimited external internet hosts

Why is it challenging?

20

Introducing the NetSlicer Algorithm

21

▪ Start with an annotated graph

▪ each link represents connections at a single port

Introducing the NetSlicer Algorithm

22

Merge nodes at 3 phases:

Introducing the NetSlicer Algorithm

23

Merge nodes at 3 phases:

▪ Detect “clusters”

▪ Strongly connected components

Introducing the NetSlicer Algorithm

24

Merge nodes at 3 phases:

▪ Detect “clusters”

▪ Strongly connected components

▪ Detect tiers

▪ based on neighborhood similarity

▪ Detect applications

▪ based on weighted connectivity

Introducing the NetSlicer Algorithm

25

▪

Detecting Tiers

26

backend

backend
web servers web servers

load bal. load bal.

domain
controller

Not directly
connected

▪ Endpoint definition (u,p,t)⋿ᵔ:

▪ u: a node id

▪ p: a service port number

▪ t: type (ⓒ:client / ⓢ:server)

A customized similarity measure

a

b

c

x

y

d

e

f

80 21

node id connected endpoints

x (a,80,ⓒ), (b,80,ⓒ), (d,21,ⓢ), (e,21,ⓢ)

y (c,23,ⓒ), (b,80,ⓒ), (f,21,ⓢ), (e,21,ⓢ)

b (x,80,ⓢ), (y,80,ⓢ)

23

27

▪ Endpoint definition (u,p,t)⋿ᵔ:

▪ u: a node id

▪ p: a service port number

▪ t: type (ⓒ:client / ⓢ:server)

▪ Weight function Wv:ᵔ→Ｒ+

▪ set weights to endpoint with respect to v

▪ E.g., Wv(ᶰ)=1 if ᶰ connected with v, o.w. 0

A customized similarity measure

a

b

c

x

y

d

e

f

80 21

node id connected endpoints

x (a,80,ⓒ), (b,80,ⓒ), (d,21,ⓢ), (e,21,ⓢ)

y (c,23,ⓒ), (b,80,ⓒ), (f,21,ⓢ), (e,21,ⓢ)

b (x,80,ⓢ), (y,80,ⓢ)

23

28

▪ Similarity by normalized dot product:

▪

▪

A customized similarity measure

a

b

c

x

y

d

e

f

80 21

node id connected endpoints

x (a,80,ⓒ), (b,80,ⓒ), (d,21,ⓢ), (e,21,ⓢ)

y (c,23,ⓒ), (b,80,ⓒ), (f,21,ⓢ), (e,21,ⓢ)

b (x,80,ⓢ), (y,80,ⓢ)

23

29

▪ Similarity by normalized dot product:

▪

▪

▪ Consider noisiness of endpoints

▪ noise(ᶰ) = max (1 - Sim(u,v))

▪ Wv(ᶰ) = (1-noise(ᶰ))⍺

A customized similarity measure

a

b

c

x

y

d

e

f

80 21

node id connected endpoints

x (a,80,ⓒ), (b,80,ⓒ), (d,21,ⓢ), (e,21,ⓢ)

y (c,23,ⓒ), (b,80,ⓒ), (f,21,ⓢ), (e,21,ⓢ)

b (x,80,ⓢ), (y,80,ⓢ)

23g

30

u,v
connected to ᶰ

▪ Similarity by normalized dot product:

▪

▪

▪ Consider noisiness of endpoints

▪ noise(ᶰ) = max (1 - Sim(u,v))

▪ Wv(ᶰ) = (1-noise(ᶰ))⍺

▪ Similarity and noise are computed in several rounds

A customized similarity measure

a

b

c

x

y

d

e

f

80 21

node id connected endpoints

x (a,80,ⓒ), (b,80,ⓒ), (d,21,ⓢ), (e,21,ⓢ)

y (c,23,ⓒ), (b,80,ⓒ), (f,21,ⓢ), (e,21,ⓢ)

b (x,80,ⓢ), (y,80,ⓢ)

23g

31

u,v
connected to ᶰ

An iterative process

▪ computes similarity and noise

▪ merges similar nodes

▪ stops when no similar pair found

Detecting Tiers

DC-01:389
is noisy

DataProc-db:27017
is not noisy

32

▪ From tiers to applications

Detecting Applications

33

▪ From tiers to applications

▪ Start from graph of tier nodes

Detecting Applications

Ecomm
App
db

Ecomm
App
app

Ecomm
App
lb

172.16.1
00.128

DC-01

Data
Proc
app

Data
Proc
db

Data
Proc

lb

389 389

80 80

8080 8080

27017

27017

34

▪ From tiers to applications

▪ Start from graph of tier nodes

▪ Assign weights to (merged) links

Detecting Applications

Ecomm
App
db

Ecomm
App
app

Ecomm
App
lb

172.16.1
00.128

DC-01

Data
Proc
app

Data
Proc
db

Data
Proc

lb

389 389

80 80

8080 8080

27017

27017

35

▪ From tiers to applications

▪ Start from graph of tier nodes

▪ Assign weights to (merged) links

▪ Ignore weak/infra links

Detecting Applications

Ecomm
App
db

Ecomm
App
app

Ecomm
App
lb

172.16.1
00.128

DC-01

Data
Proc
app

Data
Proc
db

Data
Proc

lb
8080 8080

27017

27017

36

▪ From tiers to applications

▪ Start from graph of tier nodes

▪ Assign weights to (merged) links

▪ Ignore weak/infra links

▪ Group connected components

Detecting Applications

Ecomm
App
db

Ecomm
App
app

Ecomm
App
lb

172.16.1
00.128

DC-01

Data
Proc
app

Data
Proc
db

Data
Proc

lb
8080 8080

27017

27017

37

▪ Programed in Python

▪ Parallel design

▪ Optional initial noise configuration

▪ for better and faster results

▪ e.g., super noisy ports and nodes

▪ Modular

▪ any clustering alg. for tiers and apps (given similarity values)

Implementation

38

▪ Datasets:
▪ 3 datacenter networks

▪ monitored at core VMs

▪ ground truth for monitored

▪ available online

Evaluation

Distribution of nodes to app sizes
39

https://www.guardicore.com/labs/datacenter-traces/

▪ Datasets:
▪ 3 datacenter networks

▪ monitored at core VMs

▪ ground truth for monitored

▪ available online

▪ Compared with:
▪ louvain modularity
▪ node2vec (+ HAC/HDBSCAN)
▪ and mixtures

▪ Scoring:
▪ Adjusted Random Index (ARI) from ground truth

Evaluation

Distribution of nodes to app sizes
40

https://www.guardicore.com/labs/datacenter-traces/

Results

41Analyst Compatible

Use case: Microsegmentation Workflow

42

Use case: Microsegmentation Workflow

NetSliceraggregated
connections

43

Use case: Microsegmentation Workflow

NetSlicer User reviews
labels

aggregated
connections

Label
suggestions

44

DB:MongoDB DB:MongoDB

Infra: AD

App:Ecomm App:DataProc

Use case: Microsegmentation Workflow

NetSlicer User reviews
labels

User defines
label based

security
policy

aggregated
connections

Label
suggestions Labels

45

DB:MongoDB DB:MongoDB

Infra: AD

App:Ecomm App:DataProc

Web: apache Web: apache

Use case: Microsegmentation Workflow

NetSlicer User reviews
labels

User defines
label based

security
policy

aggregated
connections

Label
suggestions Labels policy rules

46

DB:MongoDB DB:MongoDB

Infra: AD

App:Ecomm App:DataProc

Web: apache Web: apache

src dst action

Ecomm.apache Ecomm.Mongo:27018 allow

Ecomm AD:389 allow

Users DataProc:80 allow

...

The NetSlicer Algorithm

▪ Customized similarity

▪ Considers real life scenarios

▪ Promising initial results

▪ Parallel and modular design

47

▪ More datasets

▪ Clustering processes

▪ (multiple apps per server)

▪ Mixing with more clustering algs.

▪ Convergence time bounds

Future work

48

Questions?

49

datasets: https://www.guardicore.com/labs/datacenter-traces/
more works: https://www.guardicore.com/labs/research-academic/
me:

https://www.guardicore.com/labs/datacenter-traces/
https://www.guardicore.com/labs/research-academic/

50 // WWW.GUARDICORE.COM CONFIDENTIAL AND PROPRIETARY

Architecture

Aggregationsecurity policy

50

