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Abstract—Offchain networks provide a promising solution to
overcome the scalability challenges of cryptocurrencies. How-
ever, design tradeoffs of offchain networks are still not well-
understood today. In particular, offchain networks typically
rely on fees-based incentives and hence require mechanisms
for the efficient discovery of “good routes”: routes with low
fees (cost efficiency) and a high success rate of the transaction
routing (effectiveness). Furthermore the route discovery should
be confidential (privacy), and e.g., not reveal information about
who transacts with whom or about the transaction value. This
paper provides an analysis of the “search friction” of route
discovery, i.e., the costs and tradeoffs of route discovery in large-
scale offchain networks in which nodes behave strategically. As
a case study, we consider the Lightning network and the route
discovery service provided by the trampoline nodes, evaluating
the tradeoff in different scenarios also empirically. Finally,
we initiate the discussion of alternative charging schemes for
offchain networks.

I. INTRODUCTION

Despite the high popularity of cryptocurrencies, it remains
a challenge to make fast payments at scale. This is mainly
due to the inefficiency of the underlying consensus protocol:
it can take several minutes until a transaction went through
a full consensus and can be confirmed. A promising solution
are emerging payment channel networks such as the Lightning
network, which allow to perform transactions off-chain and
in a peer-to-peer fashion: without requiring consensus on the
blockchain. In a nutshell, a payment channel is a cryptocur-
rency transaction which escrows or dedicates money on the
blockchain for exchange with a given user and duration. Users
can also interact if they do not share a direct payment channel:
they can route transactions through intermediaries.

However, the design of secure and scalable offchain net-
works is challenging and still not well-understood. In particu-
lar, these networks must not only be scalable but also account
for strategic (i.e., selfish) user behavior; it must further be
ensured that these networks do not introduce new security
issues. A common approach to incentivize network nodes (the
intermediaries) to contribute to the transaction routing is to
use a fee-based mechanism: intermediaries can charge nodes
which route through them a nominal fee. This is also the
approach taken in the Lightning network which serves us as
a case study in this paper.

This raises the question of how nodes can discover routes
through intermediaries. One aspect here is cost efficiency:
since different routes come at different fees, nodes require
scalable mechanisms to find “short” (i.e., low-cost) routes.
However, routes do not only have to be cheap but also

provide sufficient liquidity to route the transaction: the route
discovery mechanism should ensure a high success rate of the
transaction routing; this property is known as effectiveness
in the literature. Effectiveness is not only a performance
concern: a lengthy discovery process may also jeopardize
privacy, potentially leaking information about who aims to
transact (i.e., find a route) with whom. Last but not least, the
route discovery should be incentive-compatible, e.g., account
that nodes are only willing to distribute routes from which
they can benefit (e.g., which go through themselves).

Providing an effective and scalable route discovery is
particularly challenging as large-scale off-chain networks are
expected to be highly dynamic, e.g., due to the frequent
changes of channels and fees. This renders solutions requiring
wallets to keep up-to-date state information about the net-
works impractical. An interesting recent solution to reduce
the burden on wallets, is the deployment of route discovery
servers, such as the trampoline nodes in Lightning: these
servers (which have more resources) maintain routes so that a
wallet just needs to know how to reach the route server nodes
in its neighborhood and can then request the desired route.

This paper provides an analysis of the efficiency-privacy
tradeoff of off-chain route discovery, considering the Light-
ning network as a case study. In particular, we investigate to
which extent route discovery can be efficient and effective,
incentive compatible and confidential. Here, confidentiality is
about more than just the actual data that is communicated in
the discovery process, e.g., the source, the destination, or the
transaction size; it is also about the possible metadata that is
communicated implicitly, e.g., about the rate or time at which
transactions occur. In fact, existing cryptographic techniques
such as private search on key-value stores [7] can be used to
provide data confidentiality, however, as we will show in this
paper, nodes may still leak information about the frequency of
transactions, i.e., about their transaction rate, to other nodes
which are not on the transaction route.

We quantify the “search friction”, i.e., the cost of the
route discovery process, both analytically, deriving cost lower
bounds, as well as empirically, exploring evaluations of these
tradeoffs in real payment channel networks. Our results mo-
tivate research into alternative economic models to provide
routing incentives which come at lower search friction costs,
which we also start to discuss in this paper.

The remainder of this paper is organized as follows, see
also Figure 1. We introduce a model for route discovery and
provide a formal analysis in Section II. We report on our
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empirical results in Section III. After reviewing related work
in Section IV, we conclude our contribution and discuss future
research directions in Section V.

II. TRADEOFF ANALYSIS OF ROUTE DISCOVERY

In order to analyze the search friction and tradeoffs of route
discovery, we consider the following simplified model. We
model the offchain network as a graph of channels: two nodes
can create (and may later delete) a payment channel between
each other, to perform offchain transactions. This channel may
also be used by other nodes for routing their transactions
indirectly, i.e., using multi-hop routing. In this paper, we are
primarily interested in two properties of a channel: the fee
other nodes are charged to use this channel, and the channel
capacity (resp. liquidity), which determines the size of the
transactions it can support. This is a simplification of actual
systems such as Lightning, but captures their essence.1

Definition 1 (Offchain Network). The offchain network is a
weighted, directed graph G(V; E), where V are the nodes in
the network and E are the channels. A channel in the network
e 2 E is characterized by a weight we 2 R+ and capacity
wcap 2 R+.

The weight we is kept general here but typically is a func-
tion of the fee that the source node pays for an intermediate
channel, the channels’ age (older channels may be assumed
to be more reliable), or previous knowledge (e.g., channels
which failed in the past), among other.

The network is dynamic, i.e., channels may be added
and removed over time, fees updated, etc., and hence nodes
require mechanisms to discover the topology and learn about
updates to be able to route their transactions through the
offchain network, either explicitly or implicitly. For example,
Lightning includes gossiping and active probing mechanisms
to allow nodes to learn about routing fees. It is however more
challenging to learn about the capacity wcap; such information

1E.g., nodes can set min/max values for channels, create non-public
channels which cannot be used for multihop routing, etc.

is typically not distributed for privacy reasons and hence,
finding a path with sufficient capacity may require trial and
error [20].

More formally, a route on a topology G(V; E) from s 2 V
to t 2 V is a list of channels e1: � � � ; en 2 E such that the
source node of e1 is s, and the target node of en is t and for
every i, the target of ei is the source of ei+1. A transaction
in the network is a payment from a source to a target along a
“valid route”: A route can serve a transaction of size l if every
channel e along the route has enough capacity, i.e. ecap � l.
We assume that the weight of a route is simply the sum of
the weights of its channels.

Inspired by existing offchain networks such as Lightning,
in the following definition we will distinguish between types
of nodes in the network

Definition 2 (Wallets and Trampoline Nodes). There are two
types of nodes in the network: Wallets are simple nodes that
do not have the resources to store and maintain information
about the entire network. Trampoline nodes are nodes with
more resources, that know the current network and provide
information upon request.

We are interested in exactly this discovery process, where
wallets rely on the interaction with one or multiple trampoline
nodes to find routes for their later transactions.

This route discovery process however introduces the fol-
lowing challenges:

� Strategic behavior and efficiency: Trampoline nodes may
act selfishly and may only have an incentive to share
routes which include themselves, such that they can
charge the fee. As a consequence, a wallet may not
learn about the most efficient (i.e., lowest cost) route.
We assume that the TNs are honest (i.e. participate in
the protocol) and can only manipulate their responses to
routing queries.

� Effectiveness: Also related to the above, wallets may
have to invest more resources into the discovery of effi-
cient routes, exploring additional alternative trampoline
nodes. The effectiveness of this route discovery process
is further affected by the fact that not all the discovered
routes may provide sufficient liquidity (i.e., capacity) for
a large transaction which needs to be routed.

� Privacy: Through the repeated interactions with multiple
trampoline nodes, querying for specific routes, a wallet
may reveal confidential information about its transac-
tions.

We are interested in the following family of route discovery
algorithms:

Definition 3 (Routing Discovery Algorithm (RDA)). A q-
route discovery algorithm (q-RDA) is an algorithm that given
a pair s; t 2 V , performs at most q queries, issued to q
trampoline nodes, and either returns a valid route or decides
that this is not possible.

We measure the quality, i.e., the efficiency, of a route found
by the RDA, by comparing it to the optimal route with respect



to the weight function on the topology.

Definition 4 (Efficiency). The efficiency of a route R from
s to t is defined by the stretch, i.e., w(Rsrc;dst)

w(Osrc;dst) , where w(�)
is the weight of the route, and Osrc;dst is the route with the
minimal weight between s and t. The weight of a route is the
sum of its link weights.

As discussed above, some routes in off-chain networks
may be temporarily unavailable (e.g., due to offline nodes or
lack of liquidity) and thus invalidate the result of the RDA.
Another important metric to evaluate RDA hence concerns
the number of queries it needs to issue until a valid route
is discovered. For example, in the Lightning network, an
available route is searched as part of the route initialization
procedure. This process locks the channels along the route (a
designated amount) and the channel commits to participate in
the transaction.

Definition 5 (Effectiveness). The effectiveness of an RDA is
the number of queries which have to be issued to successfully
execute a given transaction.

Furthermore, as transactions are privacy critical, the RDA
should not leak any confidential information. Naturally, a first
concern regards the information provided by the query di-
rectly, including e.g., source and destination nodes, potentially
the transaction size, the resulting routes, etc. As discussed
above, today we understand fairly well how to protect such
information, e.g., using homomorphic encryption schemes
and private information retrieval [13], [9], [6], [7]. However,
there is another concern, related to the meta-data revealed
from the query, e.g., the timestamp or even the existence of the
route discovery query itself. While there also exist solutions to
metadata private messaging systems, e.g., [11], [12], [19], we
will show in the following that there is an inherent limitation
what can be achieved in terms of an efficient and confidential
route discovery. To this end, we introduce the notion of leak
rate: to what extent can a node learn about the number of
transactions in the network in a given time unit? That is,
the leak rate is defined as the number of transactions in a
single time unit that a node can learn about for a given set
of transactions T under a given route discovery algorithm A.

Definition 6 (Leak Rate). An RDA A leaks at rate k if in
order to route a transaction, k times more nodes will learn
about the existence of this transaction compared to a scenario
where the transaction is simply routed along the shortest path
(e.g., using source routing).

To clarify and motivate this notion, we give an example
in Figure 2. In this simple network, a node learns about a
transaction it should in principle have no idea about.

Efficiency. With these concepts in mind, we now first an-
alyze the efficiency achievable by general route discovery
algorithms. The following lemma shows an inherent cost of
the route discovery process in the off-chain model

Fig. 2. Nodes can learn about a transaction although the request itself does
not hold any information. In this simple topology, the red node learns that s
performed a transaction with t just because of the query itself.

Fig. 3. Example with high cost: If there are q + 1 direct neighbors, then
any q-RDA struggles to find an efficient route.

Lemma 1. For every q-RDA and every M 2 R�1 there exists
a topology in which an RDA will return a route with weight
M times higher than the optimal route, or it will not return
a route at all.

Proof. Consider the topology in Figure 3. Given a q-RDA
A, we build a topology in which A will return a route with
weight larger than M although there exists a route with weight
1. In our topology, the source node, s, is in the center, and
is connected to q + 1 TNs with channel weight 0. Each TN
is connected to one unique node with a channel of weight 1,
and all these nodes form a clique (i.e., are connected to one
another) by channels of weight M . We will choose the target
from one of these nodes. The RDA A queries q TNs in an
order that is independent on target node (because s does not
know the topology). But there are q + 1 possibilities to the
target, therefore there exists a node in the outer circle, t, that
A does not query its direct TN neighbor. Choose this t to
be our target. As the TNs are selfish, they will tell A only
about routes that go through themselves, and none of them is
directly connected to t; thus all the weights that A sees are at
least of size M + 1. Finally, A will return either a route with
weight M + 1 or no route at all, although the actual shortest
route is of weight 1.

In general, the efficiency will depend on the specific
topology. To give an example, consider the complete network.



Example 1. In a clique where all the weights are equal, the
efficiency, in terms of the stretch, is upper bounded by 2.

To see this, assume r is the weight of each channel. The
optimal route is the direct channel, which weighs r. On the
other hand, the route to each TN and the route from the TN
to each target are also of weight r (in a clique there exists a
direct channel), which gives 2r in total.

Effectiveness. We next consider the effectiveness a route
discovery algorithm can achieve. Also here, we first derive
a negative result for the general scenario.

Lemma 2. For every q-RDA and every M 2 N, there exists a
topology in which the first M routes from the algorithm will
be unsuccessful.

Proof. As in Lemma 1, we will build a topology in which the
effectiveness of the RDA A will be as needed. The topology
is composed from M + 2 nodes: M nodes form a clique, one
of the nodes in the clique is a TN, to which the source is
connected, and the target is connected to the other nodes in
the clique. There are

∑M�2
k=0

(
M�2

k

)
k! unique routes in the

clique. A is not aware to the availability to the channels in
the topology, therefore it offers the routes in an order which is
independent to it. Now, define the channels to be unavailable
in any of the first M routes. Therefore the first M routes that
A will offer will be unavailable.

Again, more specific networks can provide better guaran-
tees.

Example 2. In a scale-free network with n nodes, where all
the channels are bi-directional, and where p is the probability
that a channel has sufficient capacity, an q-RDA that queries
the highest-degree nodes succeeds with a probability of at
least 1� (1� p

2·log(n)
log log(n) )n�(1�2−q). For example, if a channel

accepts a route independently with probability p = 0:2, for
a network of size n = 4000 (e.g., Lightning), when the RDA
queries only q = 5 TNs, then the probability to get at least
one effective route is � 0:999.

To see this, note that the diameter of this network is
log(n)

log log(n) on average (following [4]), therefore the length of
the path from every source to every TN, and then from the TN
to the target is bounded by 2 � log(n)

log log(n) . Therefore, the prob-
ability for each TN’s suggestion to route the transaction is at
least p2� log(n)

log log(n) . Moreover, the number of paths from TN to a
target is at least its degree, and the total degrees of the q nodes
with the largest degree is n �( 1

2 + 1
4 + � � �+ 1

2q ) = n �(1�2�q).

Confidentially. To which extent can we avoid rate leakage of
the route discovery algorithm? The following lemma shows
that if nodes behave strategically, we cannot upper bound the
leaking rate of a route discovery algorithm.

Lemma 3. For every q-RDA, and every M 2 R there exists
a topology in which the algorithm leaks at rate minfM; qg.

Proof. The proof is similar to the proof of Lemma 1, however,
rather than worrying about the weight of the discovered route,

we only worry about the existence of a valid route. Therefore,
we will define our topology with a set of disconnected nodes,
among the nodes in the outer circle (instead of clique). More
specifically, our topology is simply a star topology, where the
source is in the center, its neighbors are M TNs, and their
neighbors are the possible targets (and they are all sinks, i.e.
without outgoing channels). Clearly, if the RDA A will query
a TN which is not the direct neighbor of the target, then it
will return nothing (because there is no route). Let us choose
our target to be the node that is connected to the M ’th TN
that A queries. If M < q then the A will query M TNs until
it will find a valid route; otherwise it will stop after querying
q nodes unsuccessfully. In either way, A queries minfM; qg
TNs.

Example 3. In scale free networks, the number of queries
that we need to perform in order to find a “good” route is
small.

For example, in terms of betweenness, in a scale free
network the betweeness centrality is distributed according to
a power-law and relatively to the node’s degree [3]. Therefore
if the highest degree nodes are TN, and we ask the top k, then
the TN will be on the optimal route to the target with high
probability. Therefore the number of queries that we need to
do in order to find an optimal route is exponentially small
compared to the number of nodes in the topology.

III. EMPIRICAL EVALUATION

In order to complement our theoretical results and in
order to study the efficiency, effectiveness and confidentiality
tradeoff in real networks, we consider the Lightning network
as a case study for our experiments in the following.

A. Methodology

Following the Lightning network RFC regarding trampoline
nodes2, we assume that a wallet node stores its local knowl-
edge on close trampoline nodes (TN) in the network, and can
search for them within a close neighborhood. The wallet then
queries some of the TNs for a route to the desired target, and
will finally use the route with the lowest weight.
Collected data. We collected data about the Lightning net-
work using a live Lightning node (lnd) which is connected to
the mainnet through bitcoind. To extract the network structure
(currently, the whole topology is stored by all nodes) we
use the command lncli describegraph. The data used for
this paper was retrieved on March 24th 2020, and provides
information about the public channels.
Topologies. We consider two topologies in our experiments:
The first is the Lightning network snapshot (which was
studied e.g. in [16]), and the second is a synthetic sparse
topology that was built using the following algorithm: create
1000 nodes in a circle, add one outgoing channel from each
node to the node next to it, and another channel to other
random node (total of 2 outgoing channels). The fee is the

2see https://github.com/lightningnetwork/lightning-rfc/pull/654
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Fig. 4. Percentage of nodes as a function of the neighborhood size in the
sparse topology.
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Fig. 5. Percentage of nodes as a function of the neighborhood size in the
Lightning network’s topology.

same for all the channels and equals 1. We choose this as
the generative method because we want to follow Lightning’s
average out-degree while maintaining a strongly connected
graph. Figures 4 and 5 show the number of nodes as a
function of the neighborhood size in the two topologies. This
comparison between the two topologies will later explain the
key differences in the evaluations.
Graph weights. The weights of the edges in the Lightning
network’s graph are determined by the transaction size. Each
channel determines base and proportional fee, and the final
fee is base fee + transaction size � proportional fee.
Moreover, the fees are calculated backward from the target
to the source, because the nodes should pay the fee for
transferring the fees to the later intermediate nodes. We
decided to neglect this backward computation due to the fact
that practically it does not change the routes (as our additional
experiments show). We further determined the transactions’
size to be 106 milisatoshis. We finally determine the weight
of each channel to be base fee + 106 � proportional fee.
Transactions distribution. In the following, we assume that
transactions follow two possible distributions: (i) one where
all pairs of nodes in the network attempt to create a transaction
and (ii) one where there are nodes with higher probability to
execute a transaction (higher “activity level”). In the latter
case, we determine a power-law distribution and grant it
uniformly to the nodes. In particular, we uniformly partition
the nodes to groups of size 100, and give the i’th group
an activity level of 2�i. Note that we need to model the
transactions because transactions in the Lightning network
are private by design. It is hard to infer the real distribution
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Fig. 6. Probability of not finding a route.

of the transactions since (i) information about transactions is
hidden in the private state of channels and since (ii) routes
are obscured by onion encryption.
Implementation details. We use the Floyd–Warshall all
pairs shortest path algorithm to compute the optimal routes.
Moreover, in order to keep shortest paths by limiting the
number of neighborhood sizes (for example to search for
the weight to the trampoline nodes in a neighborhood with
a certain size), we use the “min-plus matrix multiplication”
(or “distance product”) algorithm, and stored the weights
matrices for each number of hops. Finally, to find all the
paths between specific source to target, we use the python
module networkx.

B. Tradeoff Evaluation

Efficiency-confidentiality tradeoff. We first evaluate the
efficiency of the routes, depending on the neighborhoods in
which trampoline nodes are searched. We already know from
Lemma 1 that the efficiency can be low in the worst case, and
we are now interested the efficiency in our specific examined
topologies. The efficiency-confidentiality tradeoff can help a
wallet to decide on the neighborhood size that it should query
in order to find an efficient route.

We first consider our synthetic sparse topology: Figure 6
shows that the efficiency in small neighborhoods is better
only because we cannot find many routes in this scenario. In
the sparse topology this makes sense: there are less edges,
therefore if there is a TN in a close neighborhood, then the
optimal route goes through it with higher probability. For the
Lightning network topology, in Figure 7, we can see that
nodes find more TNs in their close neighborhoods, but the
weights are far from optimal. One possible reason is that
the topology is scale-free, therefore close neighborhoods are
crowded, and the routes and the TN that the node finds are not
on the optimal route (thus the resulting routes have “detours”).

Effectiveness-confidentiality tradeoff. We next examine the
RDA’s effectiveness, i.e., the case in which the routes may be
unavailable. As we showed in Lemma 2, highly ineffective
queries may result when TNs offer unavailable routes, in
which case the wallet will have to query many TNs and lose
confidentiality. The next experiment explores this tradeoff,
parametrized by the neighborhood size from which the wallet


