
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)

Self-Driving Networks: Use Cases, 

Approaches, and Research Challenges
Stefan Schmid
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Fast growing traffic also in… 

… wireless and mobile
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1G-4G Sector antenna

Fixed radiation pattern

Fortunate user

Unfortunate user

5G: Adaptive multi-user beamforming
6G: Control objects in the environment?

?

From generation to generation more… 

Exciting Flexibilities

credit: Emil Björnson, Christos Liaskos
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Wall penetration: 

− 20 dB or more

Reflection

Base station

Traditionally limited by

Line of Sight Only

credit: Emil Björnson
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Reconfigurable 

intelligent surface (RIS)

Base station

Reconfigurable: Properties can be changed

Intelligent: Real-time programmable/controllable

Surface: Two-dimensional array of elements

Reconfigurable Intelligent Surfaces: Extend to

Virtual Line of Sight

credit: Emil Björnson
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Reconfigurable 

intelligent surface (RIS)

Base station

Reconfigurable: Properties can be changed

Intelligent: Real-time programmable/controllable

Surface: Two-dimensional array of elements

Reconfigurable Intelligent Surfaces: Extend to

Virtual Line of Sight

Literature: Software-Defined Reconfigurable Intelligent Surfaces: From Theory to End-to-End 
Implementation. Liaskos et al. Proceedings IEEE, 2022.



Great opportunities but come with…

Challenges

⇢ With growing demand for networks, also increasing dependability

⇢ Important step toward dependable networks: modelling…

⇢ … and automated design (also using formal methods)!

⇢ Contributions from IEEE CAMAD community critical!
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Countries disconnected Passengers stranded Even 911 affected

Even tech-savvy companies struggle:

Today, dependability requirements stand in contrast with reality:

Credits: Laurent Vanbever, Nate Foster 3

It’s high time for computer-aided designs!

Reality vs Requirements
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Countries disconnected Passengers stranded Even 911 affected

Even tech-savvy companies struggle:

Today, dependability requirements stand in contrast with reality:

Mainly: 

human 

errors!

3

It’s high time for computer-aided designs!

Reality vs Requirements

Wireless particularly 

challenging to model!



Roadmap

⇢ Performance: Self-adjusting datacenter networks

⇢ Modelling: How to model workloads, such as ML workloads?

⇢ Dependability: Self-correcting MPLS networks

⇢ More Use cases for self-driving networks



Datacenters Today
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking” 

⇢ Hence: more equipment, 

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers!
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Root Cause
Fixed and Demand-Oblivious Topology

3

How to interconnect?
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Root Cause
Fixed and Demand-Oblivious Topology

Highway which ignores 

actual traffic: 

frustrating!

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.

3
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A Vision
Flexible and Demand-Aware Topologies

4

1 2 3 4 5 6 7 8

Self-Adjusting

Networks

new

demand:

e.g., 

mirrors

new flexible

interconnect



The Motivation
Much Structure in the Demand
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The hypothesis: can 

be exploited.

Empirical studies: 
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Microsoft

traffic bursty over time
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Facebook

Time (seconds)

traffic matrices sparse and skewed



Sounds Crazy? 
Emerging Enabling
Technology.

8

H2020: 

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council: 

“Photons are the new

Electrons.”
Photonics



Enabler
Novel Reconfigurable Optical Switches

9

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 

⇀ From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)



Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror

10



First Deployments
E.g., Google

11



The Big Picture

12
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Self-Adjusting
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The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!
Missing: Theoretical 

foundations of demand-

aware, self-adjusting 

networks.

12



Unique Position
Demand-Aware, Self-Adjusting Systems

Everywhere, but mainly 
in software

Our focus in this talk: 
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems

14



First basic question:

How to measure and model 
structure in workloads?

A first insight: related to entropy.

15
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⇢ Traffic matrices of two different distributed 

ML applications

⇀ GPU-to-GPU

More uniform More structure

vs
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Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Difference in size 
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size 
(entropy)?

Can be used to define 
2-dimensional 

complexity map! 



bursty uniform
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Complexity Map
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Our approach: iterative 

randomization and 

compression of trace to 
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CNS ML

DB
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HadMulti 
Grid

temporal complexity

Potential 

gain!

bursty & skewed
skewed

bursty uniform

NN

Avin et al. (Sigmetrics’2020)

Complexity Map

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.

demand 

oblivious

demand 

aware

Literature: On the Complexity of Traffic Traces and Implications. Avin et al., ACM SIGMETRICS, 2020.
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bursty & skewed
skewed

bursty uniform

NN

Avin et al. (Sigmetrics’2020)

Complexity Map

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.

How to generate such 

synthetic traffic?!

Literature: On the Complexity of Traffic Traces and Implications. Avin et al., ACM SIGMETRICS, 2020.



⇢ Complexity map is just 2-dimensional: many

ways to synthesize any point on map

⇢ Most simple (“Occam’s razor”):
⇢ Spatial distribution: empirical traffic matrix M 

(or synthetic distribution, e.g. Zipf)

⇢ Temporal distribution: repeat with probability p 

(can be computed analytically from data)

⇢ Resulting Markov process generates 

corresponding disk on complexity map
⇢ Stationary distribution corresponds to M

⇢ Temporary pattern matches entropy rate

From Analysis to

Synthesis
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Traffic is also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Opportunity: exploit with little reconfigurations!

Literature: Analyzing the Communication Clusters in Datacenters. Foerster et al. WWW Conference, 2023.



Further Reading
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On the Complexity of Traffic Traces and Implications
Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Boston, 
Massachusetts, USA, June 2020.

Analyzing the Communication Clusters in Datacenters
Klaus-Tycho Foerster, Thibault Marette, Stefan Neumann, Claudia 
Plant, Ylli Sadikaj, Stefan Schmid, and Yllka Velaj.
The Web Conference (WWW), Austin, Texas, USA, April 2023.

Network Traffic Characteristics of Machine Learning Frameworks Under
the Microscope
Johannes Zerwas, Kaan Aykurt, Stefan Schmid, and Andreas Blenk. 17th 
International Conference on Network and Service Management (CNSM), 
Izmir, Turkey, October 2021.

Website: trace-collection.net 

https://schmiste.github.io/sigmetrics20complexity.pdf
https://schmiste.github.io/www23.pdf
https://schmiste.github.io/cnsm21.pdf


The Natural Question:

Given This Structure, 
What Can Be Achieved? 
Metrics and Algorithms?

Also depends on entropy of the demand!

15
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Insight:

Connection to 
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding) More than 

an analogy!

Reduced expected route lengths!

entropy
rate?

entropylog n

entropy
rate?

entropylog n

Generalize methodology:

... and transfer 

entropy bounds and 

algorithms of data-

structures to networks. 

First result: 

Demand-aware networks 

of asymptotically 

optimal route lengths. 

20
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6 hops 1 hop
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⇀ Self-adjusting networks may be really useful to serve large 

flows (elephant flows): avoiding multi-hop routing

⇀ However, requires optimization and adaption, which takes time

Reality more complicated

vs

6 hops 1 hop

bandwidth 

tax!

latency 

tax!

65
22



Diverse patterns:

⇀ Shuffling/Hadoop: 

all-to-all

⇀ All-reduce/ML: ring or  

tree traffic patterns 
⇀ Elephant flows

⇀ Query traffic: skewed
⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure 

Diverse requirements:

⇀ ML is bandwidth hungry, 

small flows are latency-

sensitive

Indeed, it is more complicated than that…

Challenge: Traffic Diversity

Shuffling 

All-to-All

ML

Large flows

Delay 
sensitive

Telemetry 
/ control

66
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Opportunity: Tech Diversity

Demand-
oblivious

Demand-
aware

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic
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Static

Demand-
oblivious

Demand-
aware

Dynamic

e.g., RotorNet
(SIGCOMM‘17),
Sirius
(SIGCOMM‘20), 
Mars 
(SIGMETRICS‘23) 

e.g., Helios 
(SIGCOMM‘10), 
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN‘16)

e.g., Clos
(SIGCOMM‘08),
Slim Fly
(SC‘14), Xpander
(SIGCOMM‘17)

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic
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Static

Demand-
oblivious

Demand-
aware

Dynamic

Which approach 

is best?

As always in CS: 

It depends…

Rotor
Demand-
Aware

Static

Diverse topology components:

⇀ demand-oblivious and 

demand-aware

⇀ static vs dynamic

Opportunity: Tech Diversity

72
24



Examples: 

Match or Mismatch?

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology 73
32



Examples: 

Match or Mismatch?

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving mice flows on demand-aware?

?

74
32



Examples: 

Match or Mismatch?

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving mice flows on demand-aware?

Bad idea! Latency tax.  

?

75
32



Examples: 

Match or Mismatch?

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving elephant flows on static?

?

76
32



Examples: 

Match or Mismatch?

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Rotor
Demand-
Aware

Static

Topology

Serving elephant flows on static? 

Bad idea! Bandwidth tax.  

?

77
32



Examples: 

Match or Mismatch?

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Demand

Static

Demand-
oblivious

Demand-
aware

Dynamic

Topology

Serving elephant flows on static? 

Bad idea! Bandwidth tax.  
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Optimal Solution:

Shuffling ML

Delay 
sensitive

Telemetry 
/ control

Static

Demand-
oblivious

Demand-
aware

Dynamic

We have a first approach: 

Cerberus* serves traffic on the “best topology”! (Optimality open)

* Cerberus: The Power of Choices in Datacenter Topology Design. Griner et al. ACM SIGMETRICS, 2022.



Flow Size Matters
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On what should topology type depend? We argue: flow size.

⇢ Observation 2: The transmission time of a flow depends on its size.

⇢ Observation 3: For small flows, flow completion time suffers if 

network needs to be reconfigured first.

⇢ Observation 4: For large flows, reconfiguration time may amortize. 
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Cerberus

1 2 3 4 5 6 7 8

Optical Switches
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: Small flows go via static switches…
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches
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Cerberus

1 2 3 4 5 6 7 8

Ks
static 

switches

Kr
rotor 

switches

Kd
demand-aware 

switches

Scheduling: … and large flows via demand-aware switches

(if one available, otherwise via rotor). 89
35



Roadmap

⇢ Performance: Self-adjusting datacenter networks

⇢ Modelling: How to model workloads, such as ML workloads?

⇢ Dependability: Self-correcting MPLS networks

⇢ More Use cases for self-driving networks
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Challenge: Complexity
Especially Under Failures (Policy Compliance)
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⇢ Formal methods good for verifying networks! E.g., P-Rex for MPLS 

(Jensen et al. CoNEXT’19)

Dependable Networks with

Automated Whatif Analysis

Router configurations
(Cisco, Juniper, etc.)

Compilation

Interpretation

Many alternatives: 
automata theory, 
binary decision
diagrams (BDDs), 
games (e.g., 

Stackelberg, Petri 
nets), SMTs, ILPs …

What if?!

7



⇢ Formal methods good for verifying networks! E.g., P-Rex for MPLS 

(Jensen et al. CoNEXT’19)

Even more automation:
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Router configurations
(Cisco, Juniper, etc.)

Compilation

Synthesis!

Where configuration
not compliant?

What if?!
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⇢ Formal methods good for verifying networks! E.g., P-Rex for MPLS 

(Jensen et al. CoNEXT’19)

Even more automation:

Synthesis

Router configurations
(Cisco, Juniper, etc.)

Compilation

Synthesis!

Where configuration
not compliant?

All will be fine!

Literature: P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures. Jensen et al. ACM CoNEXT, 2018.



P-Rex / AalWiNes Tool

Tool: https://demo.aalwines.cs.aau.dk/
Youtube: https://www.youtube.com/watch?v=mvXAn9i7_Q0

17

https://demo.aalwines.cs.aau.dk/
https://www.youtube.com/watch?v=mvXAn9i7_Q0


⇢ Formal synthesis slower than verification

⇢ An opportunity for using ML!

⇢ Ideally ML+FM: guarantees from formal 

methods, performance from ML

⇢ For example: synthesize with ML then

verify with formal methods

⇢ Examples: DeepMPLS, DeepBGP, …

9

AI FM

Efficient Synthesis?

ML+FM!



Roadmap

⇢ Performance: Self-adjusting datacenter networks

⇢ Modelling: How to model workloads, such as ML workloads?

⇢ Dependability: Self-correcting MPLS networks

⇢ More Use cases for self-driving networks



Great Opportunities

⇢ Self-driving switches

⇢ Self-driving congestion control

⇢ Let’s discuss! ☺



17

Addanki et al. (NSDI 2024)

Smart Switches
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⇢ What if switches become smart? 

Addanki et al. (NSDI 2024)

Smart Switches
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Scenario 2

⇢ What if switches become smart? Assume: shared memory size 3.
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Scenario 2

⇢ What if switches become smart? Assume: shared memory size 3.

⇢ Suboptimal: drop to leave space but no space needed!
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⇢ Traffic at switch can be predicted fairly well

⇢ AI/ML could significantly improve buffer management…

⇢ … and hence admission control and throughput!

Further reading:

Addanki et al. (NSDI 2024)

Credence

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions

Vamsi Addanki, Maciej Pacut, and Stefan Schmid.

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2024.

https://schmiste.github.io/nsdi24credence.pdf


Congestion Control

⇢ One of the big success stories 

stories of the Internet!

⇢ Thanks to Internet protocol TCP: 

no congestion collapse since 

1990s

⇢ Same mechanism since 30+ years, 

while traffic increased by factor 

1 billion!

⇢ Still much innovation (and  

research, e.g., on fairness)

Google’s BBR, QUIC, ECN, etc.

state?

feedback: 

packet loss, delays, 

ACKs, ECNs…

sending 

rate?



Modeling BBR



Summary

⇢ Opportunity: adaptable networks and structure in demand

⇢ Opportunity: AI/ML for performance and formal methods 

for dependability

⇢ Enables self-driving networks

⇢ Requires: models and automated, computer-driven designs

⇢ Great research opportunities ahead!

124
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