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ABSTRACT
It is well-known that cloud application performance can crit-
ically depend on the network. Over the last years, several
systems have been developed which provide the application
with the illusion of a virtual cluster : a star-shaped virtual
network topology connecting virtual machines to a logical
switch with absolute bandwidth guarantees.

In this paper, we debunk some of the myths around the
virtual cluster embedding problem. First, we show that
the virtual cluster embedding problem is not NP-hard, and
present the fast and optimal embedding algorithm VC-ACE
for arbitrary datacenter topologies. Second, we argue that
resources may be wasted by enforcing star-topology em-
beddings, and alternatively promote a hose embedding ap-
proach. We discuss the computational complexity of hose
embeddings and derive the HVC-ACE algorithm. Using
simulations we substantiate the benefits of hose embeddings
in terms of acceptance ratio and the resource footprint.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.3 [Network Operations]: Network Man-
agement; G.1.6 [Optimization]: Linear Programming

Keywords
Network Virtualization, Datacenter, Resource Allocation,
Virtual Cluster, Hose Model

1. INTRODUCTION
Cloud applications such as MapReduce and scale-out

databases generate large amounts of network traffic, and
a considerable fraction of their runtime is due to network
activity. For example, traces of MapReduce jobs from a
Facebook cluster reveal that network transfers on average
account for 33% of the execution time. [5]

The application performance hence critically depends on
the underlying network, and without strict bandwidth reser-
vations, the execution can become unpredictable and subject
to a high variance. [13] Indeed, it has recently been shown
that the bandwidth available to an application can differ by
a factor of five or more [17], even within the same day.

Consequently, several systems have been proposed over
the last years which allow the application to specify net-
work requirements and construct an inter-connecting virtual
network with bandwidth guarantees. [3, 16]

A popular virtual network abstraction introduced by Bal-
lani et al. [3] is the virtual cluster : a Virtual Cluster

VC(N ,B, C) guarantees a specified minimal bandwidth B
between the N many virtual machines (VMs) of size C and a
non-oversubscribed logical switch, independently of the VM
locations in the datacenter topology. A virtual cluster is at-
tractive for its simplicity – it describes a simple star topology
– and its flexibility – it supports all communication patterns
in which the aggregate ingress and aggregate egress band-
width at each VM is at most B.

The question of how to embed a virtual cluster in a given
datacenter such that it consumes a minimal amount of re-
sources while providing its performance guarantees, is an in-
teresting algorithmic problem. However, so far, only heuris-
tic solutions are known for the virtual cluster embedding
problem. Moreover, existing algorithms are usually tailored
towards aggregated fat tree datacenter topologies: while
given today’s ECMP control planes, this may make sense,
such algorithms cannot exploit the full path diversity present
in the network, and also do not apply to modern hypercubic
topologies such as BCube [9], Jellyfish [14], MDCube [15].

In fact, sometimes it is even claimed that the prob-
lem of “allocating virtual cluster requests on graphs with
bandwidth-constrained edges is NP-hard” [3], and accord-
ingly, researchers have resorted to weaker quality measures,
such as spatial locality [16].

Contributions. We revisit the virtual cluster embed-
ding problem and offer two main contributions. First, we
present a polynomial-time algorithm VC-ACE1 to compute
resource-minimal virtual cluster embeddings on general (and
both uncapacitated and capacitated) substrate topologies,
including the frequently studied aggregated fat trees [3, 16],
but also non-aggregated fat trees [1] as well as modern hy-
percubic topologies such as the BCube [9]. This result also
implies that the virtual cluster embedding problem as stud-
ied in [3, 16] is not NP-hard. Indeed, existing literature on
the virtual cluster embedding problem often refers to more
general embedding problems (e.g., virtual network embed-
ding). Second, we argue that virtual clusters should be un-
derstood as abstractions, and their actual embeddings do not
necessarily have to be star-like: by using a hose mapping—
i.e., by replacing the logical switch of the virtual cluster by a
set of direct interconnections supporting all hose traffic ma-
trices [10]— both the embedding cost (resource footprint)
and the acceptance ratio can be significantly improved. We
will refer to this embedding variant as the hose virtual clus-
ter, short HVC. We study the computational complexity of
HVC embeddings, showing the NP-hardness and the impos-

1ACE stands for “All Centers Embedding”, as it iterates
through all center possibilities (see Section 3).
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Figure 1: The VC with N = 7, C = 2, B = 1 on the
left shall be embedded on the substrate on the right,
such that node and link capacities are respected.

siblity to approximate this type of embedding in capacitated
networks. In order to reap the benefits of HVC without sac-
rificing computational tractability, we propose the efficient
splittable algorithm HVC-ACE and report on our simula-
tions showing the benefits of the hose model.

2. MODEL
A Virtual Cluster VC(N ,B, C) provides the abstraction

of a virtual network connecting each of the N ∈ N virtual
machines (VMs) to a logical switch at a bandwidth of at
least B ∈ N. Each VM needs C ∈ N compute units (e.g.,
C CPU cores including memory). Formally, VC(N ,B, C)
is modelled as an undirected graph VC = (VVC, EVC) with
VVC = {1, 2, . . . ,N ,center} and EVC = {{i,center}|1 ≤
i ≤ N}, where center denotes the logical switch to which
the VMs are connected.

While the embedding of general virtual networks has been
studied intensively in the literature (e.g., [4]), the virtual
cluster embedding problem has only been considered for fat
trees, today’s predominant datacenter topology. [1]

This paper considers more general substrate topologies.
Formally, we model the substrate S as an undirected graph
S = (VS, ES,cap,cost) with (currently available) node and
link capacities cap : VS ∪ ES → N. Moreover, we consider a
general model where nodes and links may even have different
costs cost : VS ∪ ES → R≥0.

A virtual cluster embedding is a mapping of the virtual
cluster’s VMs and the logical switch to a physical server
in the substrate network together with the allocation of
bandwidth B from each VM to the logical switch. A valid
embedding does not oversubscribe server and network re-
sources; an optimal embedding minimizes the overall cost of
the allocated node and link resources (the “resource foot-
print”). Formally, a feasible embedding of a VC(N ,B, C)
on the substrate network S is a mapping mapV : VVC → VS

of each virtual cluster node onto a substrate node together
with a mapping of virtual cluster edges onto paths in the
substrate network mapE : EVC → P(ES), such that the
path mapE({u, v}) connects mapV (u) and mapV (v) in S for
{u, v} ∈ EVC and capacities are not violated, formally:∑

v
′ ∈VVC \ {center}
v = mapV (v

′
)

C ≤ cap(v) and
∑

e
′ ∈ EVC

e ∈ mapE(e
′
)

B ≤ cap(e) (1)

hold for v ∈ VS, e ∈ ES. The Virtual Cluster Embedding
Problem [3, 16] asks for an valid embedding of minimal cost :

C ·
∑

v∈VVC\{center}

cost(mapV (v)) + B ·
∑

e
′ ∈ EVC

e ∈ mapE(e
′
)

cost(e) . (2)

Algorithm 1: The VC-ACE Algorithm

Input: Substrate S = (VS, ES), request VC(N ,B, C)
Output: Optimal VC mapping mapV ,mapE if feasible

1 (f̂ , v̂)← (null, null)

2 VS′ = VS ∪ {s+} and ES′ = ES ∪ {(s+, u)|u ∈ VS}

3 capS′(e) =

{
bcap(e)/Bc , if e ∈ ES

bcap(u)/Cc , if e = (s+, u) ∈ ES′

4 costS′(e) =

{
cost(e) · B , if e ∈ ES

cost(u) · C , if e = (s+, u) ∈ ES′

5 for v ∈ VS do
6 f ← MinCostFlow(s+, v,N , VS′ , ES′ ,capS′ ,costS′)

7 if f is feasible and cost(f) < cost(f̂) then

8 (f̂ , v̂)← (f, v)

9 if f̂ = null then
10 return null

11 return DecomposeFlowIntoMapping(f̂ , v̂)

Figure 1 shows an example: the virtual cluster VC on
the left should be embedded on the physical substrate on
the right. In this example, each server has a capacity of 4
units (e.g., it has four cores) while VMs require 2 units each
(C = 2); some resources are already in use (e.g., by other
virtual clusters).

3. OPTIMAL VC EMBEDDINGS
This section presents the fast and optimal algorithm

VC-ACE for embedding virtual clusters on general topolo-
gies. At the heart of VC-ACE (see Algorithm 1) lies the
observation that the virtual embedding problem can be re-
duced to a series of flow problems on an extended substrate
graph (see Figure 2). We exploit the following facts:

1) The required bandwidth B and the respective compute
resources C of each VM in a virtual cluster is the same.
As connections between the VMs and center are embed-
ded as unsplittable paths, the substrate’s edge capacities
(and costs) can be normalized for the case B = 1.

2) Assuming that the VM mappings mapV as well as the
location of the center are fixed, the cost-optimal
link mapping can be computed in polynomial-
time. Concretely, the minimum-cost unsplittable
multi-commodity flow problem with commodities
{(mapV (i),mapV (center), 1)} can be transformed
into an integral minimum-cost single-commodity flow
problem by introducing a super source s+ together
along edges e+i = (s+,mapV (i)) with cap(e+i ) = 1
for 1 ≤ i ≤ N . It suffices then to ask for an in-
tegral minimum-cost flow of value N from s+ to
mapV (center). The equivalence of these problems
follows from construction, since B = 1 holds and edge
capacities are integral (cf. [12]).

3) Assume that the mapping of center is fixed. The map-
ping decision for the VMs {1, . . . ,N} can be incorpo-
rated into the integral minimum-cost flow problem in
the following way. The super source s+ is connected
to all substrate nodes u ∈ VS via e+u = (s+, u) with
cap(e+u ) = bcap(u)/Cc and cost(e+u ) = cost(u) · C. We
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Figure 2: The flow problem for the situation from
Figure 1, if center is mapped to the central switch.

now consider an integral minimum-cost flow from s+ to
the fixed location of the center, i.e. mapV (center).
If such a flow f : ES → N of value N exists, then∑
u∈VS

f(e+u ) = N holds and f(e+u ) can be identified with
the number of VMs that are placed on u. By construc-
tion, placing f(e+u ) ∈ N many VMs onto u cannot vi-
olate node capacities and costs are correctly accounted
for. Lastly, flows may only terminate at mapV (center)
and hence each node u ∈ VS establishes exactly f(e+u )
many unsplittable paths to mapV (center).

The above insights are instrumental for designing
VC-ACE (see Algorithm 1) and for understanding its cor-
rectness. Based on 3), if the virtual switch’s mapping is
fixed, then the optimal embedding can be computed by solv-
ing a single integral minimum-cost flow problem (see Line 7)
on a specifically constructed graph (see Lines 2-6). For each
possible location of center the optimal flow together with
the mapping of center is stored (see Lines 8,9). Lastly, if a

feasible flow existed, the cost optimal flow f̂ is decomposed
into paths P = 〈s+, u1, . . . , un,mapV (center)〉, yielding a
VM placement on node u1 together with the substrate path
〈u1, . . . , un,mapV (center)〉 towards mapV (center).

VC-ACE has a polynomial runtime, which is dominated
by solving exactly |VS| many minimum-cost flow problems.
By employing the Successive Shortest Paths Algorithm, we
obtain a runtime of O

(
N (n2 logn+ n ·m)

)
, where n = |VS|

and m = |ES|. On tree topologies like the fat tree, the
runtime of VC-ACE can be reduced to O(n · N ), which is
on par with the best known heuristic approaches [3, 16].

4. HOSE-BASED VC EMBEDDINGS
A virtual cluster essentially supports any communication

pattern between the VMs for which the aggregate ingress
and aggregate egress bandwidth at each VM is at most B.
If the only role of the logical switch in the VC abstraction is
to facilitate these communication patterns, it is wasteful to
enforce the explicit star embedding and the redirection via
the unique center. Thus, one may consider to remove the
switch and rather support the communication using direct
interconnections between VM pairs in a hose fashion [6].

In the following, we introduce the respective hose embed-
ding problem and study how to solve it. We define the
hose virtual cluster embedding problem and highlight its
potential benefits in Section 4.1. We however also show
that the unsplittable hose embedding is computationally
hard (in Section 4.2), and present an optimal Mixed-Integer
Programming (MIP) formulation in Section 4.3, which also
forms the basis of our proposed splittable-hose cluster em-
bedding algorithm HVC-ACE presented in Section 4.4.
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Figure 3: A hose-based virtual cluster HVC=(6,1,1)
(left) and a feasible embedding of the HVC on a 6-
node substrate ring (right) with 2 units of bandwidth
on each link and one compute unit on each server.

4.1 Problem Definition and Motivation
Henceforth, we denote by VC = {1, . . . ,N} the set of VMs

and by EC = {(i, j)|i, j ∈ VC , i < j} the set of interconnec-
tions. A feasible solution to the hose-based virtual cluster
embedding problem is characterized as follows:

1. The mapping of VMs must not violate node capacities
(cf. Equation 1).

2. Routes (i, j) ∈ EC are realized as simple paths
mapE({i, j}) ⊆ ES, connecting mapV (i) and mapV (j).

3. The (oblivious) routing according to mapE does not vi-
olate the substrate’s edge capacities under any commu-
nication pattern. Concretely, there exists an integral
bandwidth reservation lu,v ≤ cap(u, v) for {u, v} ∈
ES, such that for all feasible traffic matrices Mij , i.e.,
for i ∈ VC it holds

∑
(j,i)∈EC

Mji +Mij ≤ B, and the

bandwidth reservation is not exceeded:∑
{i,j}∈EC :{u,v}∈mapE({i,j})

Mij ≤ lu,v .

The cost of a hose-based virtual cluster embedding, given
bandwidth reservations lu,v is defined analogously to Equa-
tion 2:

C ·
∑
i∈VC

cost(mapV (i)) + B ·
∑
e∈ES

lu,v · cost(e).

In the following, we will refer to this virtual cluster in-
terpretation omitting the logical switch as the hose-based
virtual cluster, short HVC.

In order to clarify and highlight the difference between the
two virtual cluster interpretations, we consider the example
in Figure 3: a ring substrate with 6 nodes, where nodes have
a capacity of one unit and links have a capacity of two units,
and assume the virtual cluster with N = 6,B = 1, C = 1.

First we observe that it is impossible to map a logical
switch center in this scenario: each ring node must host
one VM and any placement of the center therefore re-
quires the establishment of N − 1 = 5 many independent
paths to the respective substrate node onto which center is
mapped. This is impossible, since each node’s accumulated
bandwidth is 4; no “classic” (star) VC embedding exists.

In the hose-based virtual cluster HVC however, a feasible
embedding (depicted in Figure 3) can be computed. To
see that this is indeed a feasible solution, consider e.g., the
substrate edge e connecting mapV (5) and mapV (6). The
edge e lies on the routing paths of the VM pairs R(e) =



{(1, 5), (2, 5), (3, 6), (4, 6), (5, 6)}. Despite e’s capacity being
2, this still is a feasible solution. The load on e amounts to∑

(i,j)∈R(e)Mij for a traffic matrix Mij . As Mij is required

to respect the cumulative bandwidth B, this load is bounded
by M1,5 + M2,5 ≤ 1 and M3,6 + M4,6 + M5,6 ≤ 1 and the
maximally achievable load le is indeed 2 ≤ cap(e).

This example highlights a qualitative disparity, in the
sense that only HVCs can be embedded. Analogously, it
is easy to construct examples where both VC and HVC can
be embedded, but the corresponding optimal embeddings
differ significantly in their costs. For instance, consider the
above ring network with an additional node u whose com-
pute capacity is 0, and which connects to all ring nodes with
edges of bandwidth 1 at some cost c > 0. While the HVC
solution still has the same cost, the cost of the unique VC
solution is N ·c which can be arbitrarily high. Our computa-
tional evaluation (see Section 5) shows that this qualitative
disparity also arises in other topologies, e.g. in fat trees.

4.2 Computational Complexity
The above example has shown the potential benefit of

using the hose model. But what is the computational com-
plexity of hose embeddings? In the following, we show that
an optimal hose embedding is actually a star embedding, if
edge capacities can be neglected. If edge capacities cannot
be neglected, the respective embedding problem is hard and
even inapproximable, unless P = NP holds.

Case I: Bandwidth Requirements Are Negligible.
We first present the perhaps surprising result, that VC

and HVC embeddings are the same, if enough bandwidth is
available, concretely if cap(e) ≥ N · B holds for all edges
e ∈ ES. This is a non-trivial result which follows from the
famous VPN conjecture (proven by Goyal et al. [7]). In a
nutshell, the VPN conjecture states that in uncapacitated
networks, hose embedding problems with symmetric band-
width bounds and no restrictions on routing (known as the
SymG model), can be reduced to hose problem instances in
which routing paths must form a tree (known as the SymT

model). Based on this result, any optimal HVC embedding
will have a central ‘hub’ (corresponding to the VC’s logi-
cal switch) in the network, such that all traffic passes this
node (cf. [7]).

Thus, when not considering link capacities any optimal
HVC embedding contains a central ‘hub’. Recall algo-
rithm VC-ACE presented in Section 3 explicitly computes
the minimum cost embedding towards such a node, called
center. By construction of the N flows towards the center
carrying exactly B much bandwidth, no VC solution will use
more than N ·B bandwidth and thus by the VPN conjecture,
the equality of VC and HVC solutions follows.

Case II: Bandwidth Requirements Are Not Negligible.
We will now show that the HVC embedding problem is

generally – on non-tree topologies – inapproximable unless
P = NP holds. This result again follows from the literature
on hose embedding problems, where terminals are fixed. In
particular, it was proven in [10] that the capacitated hose
model is NP-hard. Even deciding whether a solution exists
is NP-complete, implying that – unless P = NP holds – no
polynomial-time approximation algorithm exists.

A simple reduction shows that this result translates to
the HVC embedding problem: Given is a symmetric hose

problem on (VS, ES) with the set of terminals T ⊆ VS and
integral bandwidth bounds bt ∈ N for t ∈ T . By defining
cap(t) = bt and cost(t) = 0 for all t ∈ T , the original
hose problem is equivalent to the respective HVC problem
of embedding the virtual cluster VC(

∑
t∈T bt, 1, 1) onto the

substrate network with edge costs and capacities remaining
the same.

4.3 Exact Unsplittable Hose Algorithm
The above inapproximability result rules out any type of

efficient approximation algorithms. Hence we give the ex-
act Mixed-Integer Programming formulation HVC-OSPE
for obtaining Optimal Single-Path Embeddings.

Our formulation (see MIP 1) builds upon the compact
hose formulation by Altin et al. [2]. We employ the following
additional notation. We use E←→S = {(u, v), (v, u)|{u, v} ∈
ES} to denote the set of bi-directed substrate edges, and
we denote by δ−u = {(u, v) ∈ E←→S } and δ+u = {(v, u) ∈
E←→S } the incoming and outgoing (directed) edges of u ∈ VS

respectively. We generalize the δ+ notation also for sets
and use δ+(W ) = {(u, v)|u ∈ W, v /∈ W}. For breaking
symmetries, we assume some arbitrary numbering of the
VMs, given by the bijection σ : VS → {1, . . . , |VS|}.

We introduce node mapping variables xiu ∈ {0, 1}, with
xiu = 1 iff. i ∈ VC is mapped onto the substrate node u ∈ VS.
Given these mapping variables, the symmetric hose formula-
tion of [2] can be adapted: The routing variables yijuv ∈ {0, 1}
for (i, j) ∈ EC and (u, v) ∈ E←→S determine the simple path
between the substrate nodes onto which i and j have been
mapped (see Constraint 8). The cumulative load variable of
a substrate edge {u, v} is introduced as luv ∈ N. The load
variables are lower bounded according to the ‘dual’ variables
ωsuv ≥ 0 for all s ∈ VC , {u, v} ∈ ES (see Constraints 9 and
10, and [2] for an in-depth explanation).

With respect to the node mapping, Constraint 4 enforces
that each virtual cluster node is mapped onto exactly one
substrate node. Constraints 6 and 7 bound the resource al-
locations in the substrate by the respective node and edge
capacities. Lastly, we introduce Constraint 5 to break sym-
metries: as all nodes in VC have identical resource require-
ments, a feasible node mapping induces up to N ! equivalent
ones. Constraint 5 only allows for one of these permutations.

Mixed-Integer Program 1: HVC-OSPE

min
∑

i∈VC ,u∈VS

costu · xiu +
∑

{u,v}∈ES

costu,v · luv (3)∑
u∈VS

xiu= 1 ∀i ∈ VC . (4)∑
u∈VS

σu · (xiu − xi+1
u )≤ 0 ∀i ∈ VC \ {N}. (5)∑

i∈VC

C · xiu≤ capu ∀u ∈ VS. (6)

luv≤ capuv ∀{u, v} ∈ ES. (7)∑
(u,v)∈δ+u

yijuv −
∑

(v,u)∈δ−u

yijvu= xiu − xju ∀(i, j) ∈ EC , (8)∀u ∈ VS.∑
i∈VC

B · ωiuv≤ luv ∀{u, v} ∈ ES. (9)

yijuv + yijvu≤ ωiuv + ωjuv
∀(i, j) ∈ EC , (10)∀{u, v} ∈ ES.



Linear Program 2: HMPR

min
∑

{u,v}∈ES

costu,v · luv (11)

luv≤ capuv ∀{u, v} ∈ ES. (12)∑
i∈VC

B · ωiuv≤ luv ∀{u, v} ∈ ES. (13)

∑
(u,v)∈δ+(W )

(ωiuv + ωjuv)≥ 1
∀(i, j) ∈ EVC.∀W ⊂ VS :

(14)mapV (i) ∈W,
mapV (j) /∈W

Despite breaking symmetries the formulation
HVC-OSPE remains hardly solvable even for small
networks. Our initial computational experiments have
shown that the mean runtime of HVC-OSPE for optimally
embedding a 10-node VC onto a 20-node substrate already
exceeds 10 minutes. One reason for this runtime can
be found in the number of integral flow variables which
amounts to Θ(|ES| · N 2).

4.4 Heuristics for the Splittable Hose-Model
As discussed above finding HVC embeddings is strongly

NP-hard in the unsplittable path model. Furthermore, using
Mixed-Integer Program 1 to obtain (optimal) solutions in
reasonable time seems out of reach.

To compute hose-based embeddings more efficiently, we
have to drop (1) the flexible node mapping as well as (2) the
unsplittable path routing model. Accordingly, this section
presents the polynomial-time Linear Program 2 for comput-
ing optimal Hose Multi-Path Routings (HMPR) under fixed
node mappings. In contrast to HVC-OSPE, the formu-
lation HMPR can be solved within few minutes for much
larger problems.2 Together with an efficient node mapping
heuristic based on algorithm VC-ACE, we obtain the ef-
fective stand-alone heuristic HVC-ACE for the (splittable)
hose-based virtual cluster embedding.

Based on the Mixed-Integer Program 1 we obtain the
Linear Program 2. First, if all VMs are feasibly mapped,
i.e. without violating node capacities, via the function
mapV : VC → VS, Constraints 4-6 are not needed. However,
more importantly, the computation of correct link loads
can be significantly shortened, by actually discarding the
Θ(|ES| · N 2) many flow variables. Dropping the constraint
of unsplittable path routing, Constraints 8 and 10 can be
equivalently stated using the cut-set inequalities expressed
in Constraint 14 (cf. Altin et al. [2]): Given any substrate
node set W , to which VM i but not VM j has been mapped,
there must exist a ‘path’ leaving W with value 1 such that
the respective dual variables are bounded accordingly.

The exponential number of constraints can be separated
efficiently using maximum-flow computations (cf. [11]) al-
lowing to solve the formulation in polynomial-time [8].

2In our computational evaluation (see Section 5) with hun-
dreds of nodes and edges and up to 30 node requests, HMPR
computed more than 95% of the solutions in less than 3
minutes. Furthermore, our prototypical implementation of
the formulation HMPR uses the simple Edmonds-Karps
maximum-flow algorithm to separate the constraints 14 of
Linear Program 2 using |EVC| = Θ(|VVC|2) many flow com-
putations. The runtime can be reduced significantly by us-
ing Hao and Orlin’s algorithm requiring only |VVC| many
flow computations (see [11] for an explanation).

Algorithm 2: The HVC-ACE Embedding Algorithm

Input: Substrate S = (VS, ES), request VC(N ,B, C),
cost factor k ≥ 1

Output: Splittable HVC-Embedding mapV ,mapE
1 ES′ ← ∅
2 for e ∈ ES do
3 ES′ = ES′ t {e, e′}
4 capS′(e) = cap(e) and capS′(e

′) =∞
5 costS′(e) = cost(e) and costS′(e

′) = cost(e) · k
6 mapV ,mapE ← VC-ACE(VS, ES′ ,VC(N ,B, C))
7 if mapV 6= null then
8 mapE ← HMPR(VC(N ,B, C),mapV )
9 if mapE 6= null then

10 return mapV ,mapE
11 return null

Lastly, the splittable routing for (i, j) ∈ EVC can be recov-
ered from the dual variables by computing a minimum-cost
flow of value 1 from mapV (i) to mapV (j) with edge capac-
ities ωiuv + ωjuv for (u, v) ∈ ES. Such a flow always exists
as Constraint 14 enforces that any cut must have at least
capacity 1 (cf. Constraint 10 of MIP 1).

The Linear Program 2 therefore allows us to compute op-
timal splittable hose-routings in polynomial-time for fixed
node mappings. In the following we describe a heuristic to
find a corresponding node mapping to obtain the embedding
algorithm HVC-ACE. Since optimal VC and HVC solutions
coincide in uncapacitated networks (see Section 4.2), we em-
ploy an adaption of the VC mapping algorithm VC-ACE
(see Algorithm 1). For each edge in the original graph, a
copy of infinite capacity is added, having k times the origi-
nal cost. Clearly, on this adapted graph (VS, ES′) a feasible
solution – given the existence of a feasible node mapping –
always exists. By varying the factor k, the cost of using an
infinite-capacity edge can be controlled. Setting k = 1, the
cost structure of the original graph is not changed, while
by setting k = ∞ the number of non-existent edges can be
minimized. Thus, for k = ∞, the node mapping equals the
one found by algorithm VC-ACE, if one existed.

5. EVALUATION
This section compares the performance of the optimal

VC embedding and our heuristic hose-based embeddings.
In particular we show that by using Algorithm HVC-ACE,
the chances of being able to accept a single request can be
up to 60% higher than in the classic VC model. We fur-
thermore show that the hose-abstraction may reduce the
resource footprint by up to 25% on fat tree topologies.

Our evaluation setup is as follows. We consider the fat tree
(12-port switches, 432 servers) and the MDCube (4 BCubes
with n = 12 and k = 1) datacenter topologies. We assume
uniform edge capacities and each server offers 2 VM slots.
Requests are embedded over time in an online fashion with
exponentially distributed inter-arrival times and duration.
The mean of the inter-arrival time is chosen to impose a
system load of 75% (w.r.t. node utilization if all requests
can be accepted). The size N of the virtual clusters is cho-
sen uniformly at random from the set {10, . . . , 30}. B is
chosen uniformly at random between 20% to 100% of the
available bandwidth of a single (unused) substrate link. To
impose an initial system load, requests are embedded within
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Figure 4: Experiments on a 432 server fat tree.
Acceptance ratio of VC-ACE and HVC-ACE (left)
and footprint benefits of HVC-ACE compared to
VC-ACE (right).
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Figure 5: Experiments on a 576 server MDCube.
Acceptance ratio of VC-ACE and HVC-ACE (left)
and footprint benefits of HVC-ACE compared to
VC-ACE (right).

the first 45 time units (three generations of requests) using
VC-ACE if possible. Then, a single data point is gener-
ated by embedding the next given request, using VC-ACE
and HVC-ACE. Here HVC-ACE denotes the best solution
found for the cost parameter k ∈ {1, 5, 10,∞}.

We evaluate two metrics: the acceptance ratio and the
relative resource footprint. The acceptance ratio captures
the ratio of requests that can be successfully embedded.
The relative resource footprint is the quotient of the em-
bedding costs of the solutions of HVC-ACE and VC-ACE,
if VC-ACE found a solution. As we consider unit node and
edge costs, the cost is proportional to the edge usage.

Figure 4 (left) shows a significant advantage of HVC-ACE
in terms of acceptance ratio: starting from 13 nodes,
VC-ACE can only embed roughly 40% of the requests. At
25 nodes, the acceptance ratio drops, to roughly 20%. The
acceptance ratio of HVC-ACE remains close to 100% for
up to 23 nodes. The drops of the acceptance ratio are
related to the number of ports of the switches (12 port
switches in the fat tree). Figure 4 (right) shows the impact
of using HVC-ACE instead of VC-ACE on the footprint
(when VC-ACE found a solution). The x-axis plots the rel-
ative footprint of HVC-ACE normalized by the footprint
of VC-ACE. By adopting the hose model (i.e. when us-
ing HVC-ACE) the footprint can be reduced for roughly a
quarter of all requests by up to 30%. Note that for 20% of
the requests, the footprint was reduced by at least 10%.

The advantages of the HVC interpretation on hypercubic
topologies are depicted in Figure 5: although HVC-ACE
does not yield lower footprints than VC-ACE (if a solu-
tion was found), HVC-ACE can still provide an average
improvement of 30% in the acceptance ratio, for N ≥ 14.

6. CONCLUSION
In this paper, we revisited the virtual cluster embedding

problem which has recently been studied intensively on fat
trees. We showed that the problem is not NP-hard, but can

be solved in polynomial-time on arbitrary substrate topolo-
gies using our algorithm VC-ACE. We have introduced
the hose-based interpretation of virtual clusters and pro-
posed the efficient embedding algorithm HVC-ACE. Our
evaluation shows that the hose abstraction can significantly
improve the acceptance ratio by up to 60% and may yield
better solutions in terms of resource utilization on fat trees.
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