
On the Complexity of Non-Segregated Routing
in Reconfigurable Data Center Architectures

Klaus-Tycho Foerster

University of Vienna, Austria

klaus-tycho.foerster@univie.ac.at

Maciej Pacut

University of Wroclaw, Poland

pct@cs.uni.wroc.pl

Stefan Schmid

University of Vienna, Austria

stefan_schmid@univie.ac.at

ABSTRACT
By enhancing the traditional static network (e.g., based on electric

switches) with a dynamic topology (e.g., based on reconfigurable

optical switches), emerging reconfigurable data centers introduce

unprecedented flexibilities in how networks can be optimized to-

ward the workload they serve. However, such hybrid data centers

are currently limited by a restrictive routing policy enforcing artifi-

cial segregation: each network flow can only use either the static or

the flexible topology, but not a combination of the two.

This paper explores the algorithmic problem of supporting more

general routing policies, which are not limited by segregation.

While the potential benefits of non-segregated routing have been

demonstrated in recent work, the underlying algorithmic complex-

ity is not well-understood.

We present a range of novel results on the algorithmic com-

plexity of non-segregated routing. In particular, we show that in

certain specific scenarios, optimal data center topologies with non-

segregated routing policies can be computed in polynomial-time. In

many variants of the problem, however, introducing a more flexible

routing comes at a price of complexity: we prove several important

variants to be NP-hard.

CCS CONCEPTS
• Networks → Network architectures; • Theory of computa-
tion → Design and analysis of algorithms;
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1 INTRODUCTION
With the increasing popularity of data-centric applications, the

design of efficient and cost-effective data center networks has re-

ceived much attention over the last years. While traditionally, data

center topologies are optimized to provide performance guarantees

under arbitrary workloads (e.g., [2, 17, 18, 25, 30, 38]), emerging

reconfigurable topologies (e.g., [8, 10, 13, 15, 19, 21, 28, 39, 45]) al-
low to dynamically adjust the topology, enabling demand-aware
(“workload-aware”), self-adjusting networks [7]. It has been shown

that demand-aware networks can achieve a performance similar to

demand-oblivious networks at lower cost [8, 15], depending on the

workload.

However, while reconfigurable topologies introduce a new di-

mension of flexibility to the data center design problem, it typically

impossible to fully exploit these flexibilities due to restrictive rout-

ing policies. Reconfigurable data center networks are typically hy-
brid and combine two types of topologies: a static topology which

consists of electric switches, and a flexible topology which consists

of optical (or wireless) switches providing the reconfigurable links.

But while the topology is hybrid, routing is not: routing policies

enforce an artificial segregation. In segregated routing, a network

flow can either only use the static topology (e.g., mice flows) or only

the flexible topology (e.g., elephant flows), but not a combination

of the two; this can lead to a suboptimal resource allocation [14].

This paper is motivated by the desire to unlock the full flexibility

of reconfigurable networks by supporting non-segregated routing.
In particular, we are interested in the algorithmic complexity of sup-

porting such general routing policies as in Fig. 1: essentially a joint
optimization problem, involving both topology design and routing.

v1 v2 v3 v4 v5

Reconfigurable Switch

Static Topology

Figure 1: Line topology with five nodes, where each node is connected to a
reconfigurable switch (dashed): the choice of the matching inside the switch
depends on the current communication demands. For example, if v1 wants
to speed up its connection to v5, one would create a matching link between
both nodes via the reconfigurable switch. However, a problem arises if there
is also a demand between e.g., v4 and v1, as v1 can only match to one other
node in this example. In the segregated case, one flow has to suffer from a
poor connection. However, in the non-segregrated case, v4 can significantly
improve the flow routing to v1, by first routing to v5, and then taking the
matching shortcut to v1 .

1.1 Contributions
We explore the algorithmic complexity of supporting more general

routing policies, which are not limited by segregation. We clas-

sify demand-aware routing in reconfigurable networks along two

dimensions, (1) the number of connections to the reconfigurable

switch per node and (2) the number of allowed alternations be-

tween the static reconfigurable network parts. We also investigate

the effect of allowing at most one reconfigurable hop per route. A

tabular overview of our results is presented in Table 1.

• Segregated routing: We first show that when each route is

limited to at most one reconfigurable link, then an optimal

routing can be found efficiently (§3). However, if we remove

this restriction, then already allowing b = 2 connections to

the reconfigurable switch turns the problem NP-hard (§4.1),

as well as for every larger b ∈ N.
• Non-segregated routing: When one can mix reconfigurable

and static links, routing ismore efficient, but computationally

harder to optimize. We show that already allowing k = 1

alternations between network parts is NP-hard (§4.3), even

if the reconfigurable degree is just b = 1. The same hardness

results also apply to any larger reconfigurable degree b ∈ N,
see §4.1 and §4.2.
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Reconfig. degree ∆R ∈ N h# ≤ 1, k = 0 Alternations k = 0 Alternations k = 1 ∀k > 1, k ∈ N

∆R = 1 P [14] P [14] NPC (§4.3) NPC [14]

∆R = 2 P (§3) NPC (§4.1) NPC (§4.2) NPC (§4.1)

∀∆R > 2 P (§3) NPC (§4.2) NPC (§4.2) NPC (§4.2)

Table 1: Overview of the complexity of demand-aware routing, depending on the reconfigurable degree b (how many connections to the reconfigurable switch)
and the number of allowed alternations k between the static and the reconfigurable topology. Most problem classes are NP-hard to optimize, except when adding
the restriction that at most h# = 1 reconfigurable linksmay be used on a route—a choice that simplifies calculating the routing, but at the cost of routing efficiency.

While these results are presented for the popular model of con-

necting one reconfigurable switch (e.g., an optical circuit switch) to

the nodes, as we point out in §6, many results transfer to the case of

multiple switches. Our results further apply to both unidirectional

and bidirectional reconfigurable links.

2 MODEL
We study the problem of computing a data center topology to opti-

mally serve a given communication pattern, where the topology

combines static (fixed) and reconfigurable links. Our notation fol-

lows the model of [14] for most parts.

Network model. Let N = (V , E,w) be a weighted hybrid network

[29, 41] connecting the nodes V = {v1, . . . ,vn } (e.g., top-of-the-
rack switches), using (1) static links E = {e1, . . . , em } and (2) re-

configurable links implemented through a reconfigurable (optical

circuit) switch. A reconfigurable switch connects the set of nodes

V by choosing a matchingM on V , where two matched nodes are

connected by a bidirectional link. For the sake of generality, we as-

sume each link, whether electrical or optical, comes with a positive

weightw (a cost, e.g., latency).

Traffic demands. The resulting network should serve a certain

communication pattern, represented as a |V | × |V | communication

matrix D (the demand matrix) with positive real-valued entries. An

entry (i, j) in D represents the communication frequency from the

node vi to the node vj .

Optimization objective. We say that the hybrid network N is

configured by the reconfigurable switch, where the links contained

in the matching M are referred to as the configuration of N . For

ease of notation, we will simply write N (M) to denote the concrete

topology resulting from configuration M and define distN (M)(i, j)
to be the shortest (weighted) distance from node vi to node vj on
the network N (M). Given a hybrid network N and a communi-

cation demand D, our goal is to compute a network N (M) which

minimizes the (weighted) average path length for serving D in N
by providing a set of matchings M accordingly. Succinctly stated:

min

∑
(i , j)∈D

D[i, j] · distN (M)(i, j) (1)

That is, we aim to minimize the sum of the weighted (i.e., by flow

size and link costs) path lengths: for each ordered pair of nodes

vi ,vj ∈ V , we multiply the (weighted) length of the shortest path

distN (M)(i, j) from vi to vj on N (M) with their entry (i, j) in D.
We denote this optical routing problem by ORP.

Problem dimensions. The work in [14] already showed a perfor-

mance gap between networks with segregated and non-segregated

routing, i.e., whether or not the routing may use a combination of

static and reconfigurable links. We analyze this distinction from a

more fine-grained perspective, namely:

• We introduce a parameter k that defines how often a route

may switch between static and reconfigurable links, with k =
0 and k = ∞ representing the extremes of (non-)segregation.

• We allow nodes to connect more than once to a reconfig-

urable switch. The number of connections is limited by a

hardware available to the node (i.e., the number of optical

transmitters and receivers). For a nodev , by δR (v)we denote
the maximum number of reconfigurable links that v may

utilize, and we set ∆R (N ) = maxu ∈V (N ) δR (u).
• We also study unidirectional reconfigurable links, where

each node v has δ inR (v) incoming and δoutR (v) outgoing re-

configurable links, setting δ inR (v) + δoutR (v) = δR (v).

3 OPTIMALITY FOR SEGREGATED ROUTING
We begin our study with the segregated case (i.e., k = 0) and study

the parameter ∆R that defines how often a node may be connected

to the reconfigurable switch at most. We can show this variant of

ORP to be efficiently solvable if h# = 1, i.e., the case where one must

choose to route each demand between either solely along the static

network or a single reconfigurable link (e.g., for elephant flows).
Our result will make use of weighted u-capacitated b-matching

algorithms [26], which compute a maximum weight matching for

the case where each node v may match bv ≤ n times, with each

link e being allowed to be used at most ue ≤ u times. b-matching

algorithms were already proposed for reconfigurable networks, e.g.,
in [39]: however, there the b-matching is used to assign elephant

flows to links, without regards to the static network or provid-

ing optimality proofs. Conceptually, our proof is inspired by [14,

Theorem 1], where the case of ∆R = b = 1 was considered.

Theorem 3.1. Let ∆R ∈ N. The resulting reconfigurable routing
problem ORP with k = 0 alternations and h# = 1 is in P .

Proof of Theorem 3.1. For each pair of demand entriesdi , j ,dj ,i
(possibly of size 0) we compute the non-negative gain дi , j obtained
by connecting the nodes i, j in the matching, i.e., the potential route
improvement which results from using the reconfigurable link from

i to j , multiplied by the combined size ofdi , j ,dj ,i . If a reconfigurable
link from i to j may not exist, we set дi , j as 0.

We next consider the complete graph G ′
for the node set V ,

where the link weights are defined by дi , j , and compute a maxi-

mum weighted 1-capacitated (each link may only be used once)

∆R -matching (with bv = δR (v)) on it in polynomial time [26],
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where we set the respective matching as the configurationM of N ,

ignoring links with дi , j = 0. Assume that a better configurationM ′

for N ,D were to exist: then, we could translateM ′
to an improved

solution for G ′
, a contradiction. �

Remarks on directed routing. We can extend Theorem 3.1 to

apply to unidirectional links as well. To this end, we split each

node v ∈ V into two nodes v in,vout, where v in takes care of all

outgoing demands and reconfigurable links of v , analogously for

vout. Matching links that may not exist are assigned a weight of 0,

i.e., they provide no benefit.

4 HARDNESS OF NON-SEGREGATION
We continue our study with the non-segregated case. It is known

from previous work [14] that ORP is NP-hard for a reconfigurable

degree of 1 and multiple alternations.
1
We will now show that for

any combination of 1) alternations k ≥ 1 and 2) reconfigurable

degree δR ≥ 1, the optical routing problem ORP remains NP-hard as

well. We start with δR = 2 in Section 4.1 and δR > 2 in Section 4.2,

followed by the more complicated case of δR = 1 in Section 4.3.

4.1 Reconfigurable Degree of Two
In this section, we start with the scenario where all nodes have

a reconfigurable degree of 2 and then extend it to higher degree

combinations in Section 4.2. As our construction will just consist of

reconfigurable links, the NP-hardness is independent of the number

of allowed alternations k. Still, if a connected static network is

desired, we can add it s.t. the problem nature is unchanged, by

setting the weights prohibitively high.

Theorem 4.1. For every number of allowed alternations k ∈ N
holds: the reconfigurable routing problem ORP with reconfigurable
degree of δR (v) = 2 at every node v ∈ V is NP-complete.

Proof. Our proof will by reduction from the NP-hard problem

Circular Arrangement [27, §2], which can be equivalently defined
as follows, adapted to our model setting: given a set of n nodes V
with a demand matrix D with non-negative entries, arrange the n
nodes in a graph cycle with unweighted edges, s.t. the weighted

average path length is minimized. If every entry in D is positive

in an instance I of Circular Arrangement, then the reduction

to ORP with δR (v) = 2 is immediate: we construct an instance of

ORP with the same set of nodes and demands. As any ORP solution

that does not form a single Hamiltonian cycle has infinite cost
2
,

only single cycle solutions are possible, where finding the optimal

one is equivalent to solving the Circular Arrangement problem
instance I . It remains to cover the case where D has entries of value

0, allowing ORP solutions that differ from forming just one cycle.

To this end, we augment those entries to be of size ε , where ε is
small enough s.t. it will not affect the optimal matching solution,

e.g., by setting it to be the smallest positive entry of D divided by

100n3. Lastly, note that for the case of all entries in D being 0, any

solution is optimal, and that the corresponding decision problem is

clearly in NP. �

1
A careful analysis of [14, §3.2] reveals that ORP is NP-hard for k = 2 (or more)

alternations with δR = 1, even though it is only stated for k = ∞ in [14].

2
Note that it would also be possible to form a Hamiltonian path, but the only option

for the last remaining link is to close the cycle, omitting it does not improve solutions.

Unidirectional links. As Directed Circular Arrangement is

also NP-hard [27, §3], the above proof can be directly modified to

hold for the unidirectional case with δ inR (v) = δoutR (v) = 1,∀v ∈ V .

4.2 Beyond a Reconfigurable Degree of Two
We now introduce multiple techniques that allow us to extend the

proofs from Section 4.1 to higher reconfigurable degrees. We believe

these techniques also to be of independent interest for future work.

Link enforcement. If we want to force two nodes v,v ′
to match

with each other, we can create an arbitrarily high fake demand

between them, s.t. any optimal solution must match v and v ′
. With

respect to optimal solutions, the link (v,v ′) must be created, for

both the uni- and bidirectional case.

Cloning technique.We next consider the case whereb = 1, where

we want to either 1) connect some v with δR (v) = 0 to the recon-

figurable switch (without changing the matching in the optimal

solutions), or 2) make the reconfigurable connection of v useless.

To this end, we create (“clone”) a node v ′
, connected to the re-

configurable switch once, and set arbitrarily high demand between

v and v ′
, i.e., we enforce the reconfigurable link. Observe that both

v,v ′
have a reconfigurable degree of δR (v) = δR (v

′) = 1. As v ′
is

not connected to any other nodes, this created (v,v ′)-link is useless

for the original demands, for both uni- and bidirectional links.

2-Extension technique. Consider a network where every node

has identical reconfigurable degree of at exactly two, i.e., ∀v ∈

V : δR (v) = ∆R = 2. We will now show, first for the bidirectional

case, that if ORP is, e.g., NP-hard in such a specific setting, then it is

also NP-hard when the reconfigurable degree is increased to some

larger b ∈ N. Similarly, we can also use this extension technique to

extend the reconfigurable degree of some subset of nodes from 2

to b for algorithmic purposes, i.e., that it leaves the matching of an

optimal solution untouched and all newly created nodes will have

a reconfigurable degree of b. To increase the reconfigurable degree

from 2 to 3, we create a complete binary tree of depth 3 by enforcing

links, where we enforce to connect the root to a node v with a

connectivity deficit of one, and two links between the leaves of

this treeT 1

v s.t. all 7 nodes v1
1
,v1

2
, . . .v1

7
inT 1

v have a reconfigurable

degree of 3. For the unidirectional case, we orient the link (v,v1
1
)

towards respectively away from v , analogously for the other links,

the reconfigurable degree sum δR remains unchanged.

We now show how to directly jump from 2 to b: we create b − 2

trees T3, . . . ,Tb , where we enforce 7 cliques, one for each of the

seven node groups vi
1
, . . . ,vi

7
—each of them thus having a recon-

figurable degree of 3 + b − 3 = b, except for the vi
1
s, which have

2 + b − 3 = b − 1. We then enforce to connect those b − 2 vi
1
s to v .

Again, for the unidirectional case, we orient those links arbitrarily.

By applying the 2-extension technique, Theorem 4.1 can be ex-

tended to any fixed reconfigurable degree in N.

Corollary 4.2. For every number of allowed alternations k ∈ N
and for every reconfigurable degree δR (v) = b,b ∈ N,b ≥ 2,∀v ∈ V
holds: the reconfigurable routing problem ORP is NP-complete.

Furthermore, as the 2-extension technique only increased the

number of nodes by a factor of O(b), the reconfigurable degree b
can be raised even higher as a function of n, i.e., b = ⌈f (n)⌉ ≥ 2. As

long as this function f remains polynomial, NP-hardness holds.

ACM SIGCOMM Computer Communication Review Volume 49 Issue 2, April 2019



4.3 Reconfigurable Degree of One
In this section, we show that ORP is NP-complete even in the re-

stricted variant, where all nodes have a reconfigurable degree of 1,

and with at most 1 alternation for routing of any demand. Our

construction unfolds in two stages. First, we introduce an auxilary

variant of ORP problem called ℓ-ORP: for any integer ℓ, by ℓ-ORP we

denote the variant of ORP, where the reconfigurable network M

consists of at most ℓ edges. In Lemma 4.3, we present a polynomial

time reduction from ORP to ℓ-ORP. Then, in Lemma 4.4, we reduce

the classic Vertex Cover problem to ℓ-ORP. By A ≺P B we denote

the existence of a polynomial-time reduction from the problem A
to the problem B.

Lemma 4.3. For any positive integer ℓ, we have ℓ-ORP ≺P ORP.

Proof. Consider any ℓ-ORP instance I with the static networkG .
We assume thatG is normalized, i.e. the minimumweight of an edge

is 1. We construct an instance I ′ of ORP that simulates I . Precisely,
we prove that I has a solution of cost at mostThr iff I ′ has a solution
of cost at most

Thr ′ := Thr + (2 · (⌊n/2⌋ − ℓ)) · ((n − 1) · (D + 1)+D) · (Thr + 1) ,

where D is the maximum weight of the shortest weighted path

between any two nodes in G.
We preserve the static links weights, the reconfigurable links

weights, and the demands between every pair of nodes fromG . We

introduce an additional set of nodes A of size 2 · (⌊n/2⌋ − ℓ). We

connect every node from A with every node fromG by a static link

with weight D + 1. Every reconfigurable link between A andG has

weight D. We produce additional demands of volumeThr + 1 from
every node from A to every node from G.

Consider a demand between a pair of nodes a ∈ A b ∈ V (G). The
optimal routing of a demand from a to b costsD if a reconfigurable

link (a,b) is present, and costs D + 1 otherwise. If a reconfigurable

link is not present, every non-direct route costs at least D + 1: the

cost at least D is incurred between a and any node c ∈ V (G), and
the cost at least 1 is incurred between b and c (the static network is

normalized). Complementary, the optimal route between a and b
costs at most D + 1, as a direct static link of such weight exists.

Note that providing A with less than |A| reconfigurable links
results in surpassing the threshold Thr ′. As at most one reconfig-

urable link can be adjacent to any node, each node from A incurs

the cost of at least ((n− 1) · (D + 1)+D) · (Thr + 1) for its demands.

Every node from A with no adjacent reconfigurable link incurs the

cost at least (n · (D + 1)) · (Thr + 1), which incurs additional cost at

least Thr + 1, which cannot be compensated by savings in routing

demands among nodes in G. As the maximum reconfigurable de-

gree (∆R ) is 1, in every solution to I ′ with cost at most Thr ′, every
node from A has a reconfigurable link to some node in G.

To reconstruct the solution to I , we take the reconfigurable links
among nodes from G from the solution to I ′. Now, we claim that

the reconstructed solution has exactly ℓ reconfigurable links. In any

graph with n vertices, the maximum size of any matching is ⌊n/2⌋.
To restrict it to ℓ edges, we need to remove ⌊n/2⌋ − ℓ matching

edges. To prevent one edge from appearing, we need to reduce the

number of matchable nodes by 2. Each node from A matches to

one node from G, and |A| = 2 · (⌊n/2⌋ − ℓ).

As every node of A has exactly one reconfigurable link to a node

from G, the cost of routing demands between A and G is exactly

|A| · ((n − 1) · (D + 1) + D) · (Thr + 1). By the definition of the

threshold Thr ′, the remaining budget for routing demands inside

G is Thr . Note that we preserve the shortest paths among nodes

from G: by the weight of static and reconfigurable links between

A and G, the routes through A weigh more than any path in the

original network. Hence, the cost of reconstructed solution to I is
at most Thr . �

Lemma 4.4. It holds that Vertex Cover ≺P

⋃
ℓ ℓ-ORP.

Proof. For an integer t , the decision version of a Vertex Cover
is a problem of determining an existence of a vertex cover of size at

most t . Consider any decision Vertex Cover instance ⟨G, t⟩, where
G = ⟨V , E⟩. We produce a ℓ-ORP instance (where ℓ = |E | + t ) that
has a feasible solution that satisfies a threshold Thr := 5 · |E | iff
there exist a vertex cover of G of size at most t .

The construction unfolds as follows. For each vertex v ∈ V we

produce a Vertex Gadget that consists of two nodes: av and bv .
For each edge e ∈ E we produce an Edge Gadget that consists of

three nodes: le ,me and re , and two edges of weight 3: (le ,me ) and

(re ,me ). For each edge e = (u,v) ∈ E we produce two edges of

weight 2: (me ,bu ) and (me ,bv ) and two edges of weight 1: (au , le )
and (av , re ). For each edge e ∈ E, reconfigurable links (le ,me )

and (re ,me ) have weight 1 and for each vertex v ∈ V , a reconfig-
urable link (av ,bv ) has weight 1. Remaining reconfigurable links

(x,y) ∈ V × V have weight equal to the shortest path (via static

links only) between x and y in graphG , and an appearance of such

a reconfigurable link does not improve routing of any demand.

For each edge e = (u,v) ∈ E we produce two unitary demands:

(me ,au ) and (me ,av ), and we call those the cover demands of e . The
construction is depicted in Figure 2.

bu

au le

me

re

bu

av

2 2

1 1

1 1

1 1

Figure 2: Construction for an edge e adjacent to vertices u and v . Static links
are drawn solid, with their weight denoted next to them. Only reconfigurable
links that can possibly improve the routing are shown (dashed). We omit the
other links and the reconfigurable switch in this figure for better visibility.

Consider a demand (me ,au ). We distinguish among three ways

of routing the demand: In presence of a reconfigurable link (me , le ),
the short route of weight 2 consists of nodesme → le → au . In
presence of a reconfigurable link (av ,bv ), the medium route of

weight 3 consists of nodesme → bu → au . We classify every other

route (of weight at least 4) as the long route. Symmetrically, for a

demand (me ,av ), analogous short routes through vertex re (instead
of le ) exist.

We say that a vertex v ∈ V is active if a reconfigurable link

(av ,bv ) appears. Now, we argue that at most t vertices are active.
Assume that more than t vertices are active. As we have at most

t + |E | reconfigurable links, there exists f ∈ E such that none of

reconfigurable links {(mf , lf ), (mf , rf )} exists. In this case, no short
route for the cover demands of f exists, and the cost incurred for
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them is at least 6. For the remaining cover demands e ∈ E \ { f }:
as ∆R = 1, at most one reconfigurable link from {(me , le ), (me , re )}
exists. Hence, at most one of the cover demands of e can be routed

by the short route of cost 2, and the minimum cost of routing

of both cover demands of e is 5. Summing up, the total cost is

6 + 5 · (|E | − 1) > Thr , a contradiction.
To reconstruct the solution to the Vertex Cover, we take active

vertices. Now, we argue that such solution covers all edges. Note

that any solution that routes any demand by a long route exceeds

the threshold. We stated previously that for each e = (u,v) ∈ E, at
most one of the cover demands of e is routed by the short route.

Hence, exactly one of the cover demands of e is routed by a path

of cost 3, and by construction the only path of such weight is the

medium route to either u or v . The existence of a medium path

implies that either u or v is active, and hence e is covered.
Finally, we show how to reconstruct the ℓ-ORP solution from

the vertex cover. Consider an edge e = (u,v) ∈ E, and assume that

it is covered by u. We route the demand (me ,au ) by the medium

route, and we route the demand (me ,av ) by the short route, placing
reconfigurable links to allow the existance of such routes. �

Remarks on directed routing. Note that we can modify Lem-

mas 4.3 and 4.4 to show hardness in the directed routing model.

Instead of setting ∆R = 1, we set δ inR = 1 and δoutR = 1 (note that

those values are minimal for any reconfigurable links to appear).

To show that we can reduce the number of reconfigurable links to

ℓ, we modify Lemma 4.3 in the following way: we direct the recon-

figurable and static links, and demands between A and G towards

nodes of A. As the maximum number of reconfigurable links in the

directed routing problem is n (rather than ⌊n/2⌋), we adjust the size
of set A to n − ℓ, and we adjust the threshold value accordingly:

Thr ′ := Thr + (n − ℓ)) · ((n − 1) · (D + 1) +D) · (Thr + 1). In any

solution of the cost at mostThr , each node fromA has an incoming

links, and the number of links inside G is n − (n − ℓ) = ℓ. Finally,

we modify Lemma 4.4 by directing every reconfigurable and static

link, and every demand fromme towards av . Note that although
the model allows for multiple hops through reconfigurable links,

in our construction we used paths with at most one reconfigurable

link.

Conclusions. By combining Lemma 4.3, Lemma 4.4, and the tran-

sitivity of relation ≺P , we obtain that ORP is NP-complete. The

problem remains NP-complete even if we allow at most one alter-

nation, and at most one hop through reconfigurable network in

routing of any demand.

5 RELATEDWORK
Most existing literature on data center network design deals with

demand-oblivious topologies, see [33] for a recent survey. In con-

trast, we in this paper are interested in demand-aware network

designs, which not only arise in data centers but also in wide area

networks, e.g., [21, 22, 37].

We are not the first to explore non-segregated routing in hybrid

networks. In particular, Xia et al. [44] leverage converter switches
to dynamically convert between a Clos network and approximate

random graphs of different sizes. Venkatakrishnan et al. [41] show
that routing policies restricted to direct or single-hop routing are

inefficient and present near optimal scheduling algorithms, how-

ever, only for the segregated case; the general case is stated as

an open problem. An orthogonal approach is taken by Mellette

et al. [31] who consider switches which rotate through a set of

pre-defined matchings, also leveraging Valiant-style [40] multi-hop

optical connections.

We in this paper are particularly interested in network design

and routing algorithms which come with formal (approximation
or optimality) guarantees. Most prior algorithmic works usually

assume segregated routing models and rely on heuristics based on

matchings [8, 13, 28, 29, 42], edge-coloring [11], or stable-marriage

algorithms [15], see [23, 43]. Avin et al. [5] presented a constant-

degree network design algorithm which achieves a constant ap-

proximation of the optimal expected route length, which is shown

to be proportional to the conditional entropy of the workload. Avin

et al. [4] also presented a resilient demand-aware network based

on coding, but with unbounded degree. However, the above re-

sults concern fully reconfigurable networks, where all links are

reconfigurable. Closer to our work (and reality) are the results by

Foerster et al. [14] who provide polynomial-time exact (i.e., optimal)

algorithms, for specific demands and models, and also derive first

hardness results. We in this paper extend [14] by investigating the

complexity of more general non-segregated routing.

The problem of enhancing a given static network with a re-

configurable topology is related to classic combinatorial problems

arising in graph theory. For example, Manos et al. [34] presented

algorithms to augment a given graph which “ghost edges” to pro-

vide small world properties and short path lengths, see also the

recent paper by Gozzard for a good overview of the state-of-the-

art [16]. The underlying problems are also related to the k-median
problem [32] and known to be hard, even to approximate, in gen-

eral [35]. Besides considering shortest paths, researchers have also

investigated algorithms to reduce the network diameter [9, 12]. In

contrast to these works, motivated by emerging optical switches, we

consider the problem of adding entire matchings, hence introducing

a new perspective on the b-matching literature [1, 24], typically

arising in market situations where, e.g., users need to be matched

to a cardinality-constrained set of items, e.g., matching children to

schools. We in this paper are only interested in the route length

between nodes which actually communicate.

Finally, we note that there also exist results on dynamic network

design algorithms which aim to strike a balance between reconfig-

uration costs and providing shorter routes [3, 6, 20, 36], as well as

for the case where links need to be removed for maintenance [46].

6 CONCLUSION
This paper showed that more flexible, non-segregated routing poli-

cies can introduce additional algorithmic complexities. In particular,

we presented algorithms and charted a detailed complexity land-

scape of non-segregated routing. We hence hope that our results

can be useful and provide a more complete picture of the benefits

and costs when moving beyond segregated routing.

Even though we focused on the popular model of one recon-

figurable switch in this paper [23, 43], the case of multiple such
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switches is also of importance [31, 44]. Our hardness results nat-

urally transfer to this extension, and in most non-segregated sce-

narios, there is not much difference between algorithms for one

or multiple switches, as multiple reconfigurable switches can be

emulated by one switch, combining 1) large weights for not per-

mitted reconfigurable links and 2) fake child nodes for each node

to enforce the inter-switch connectivity constraints.

There still remain several interesting open problems for future

research. In particular, it will be interesting to shed light on the com-

plexity of specific network topologies. Furthermore, while we have

focused on exact algorithms, it remains to explore the complexity

of (provably) approximate algorithms in more depth.
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