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ABSTRACT several interesting use cases for programmable dataplanes have

Throughput and latency critical applications could often benefit
of performing computations close to the client. To enable this,
distributed computing paradigms such as edge computing have
recently emerged. However, with the advent of programmable data
planes, computations cannot only be performed by servers but
they can be offloaded to network switches. Languages like P4 en-
able to flexibly reprogram the entire packet processing pipeline.
Though these devices promise high throughput and ultra-low re-
sponse times, implementing application-layer tasks in the data
plane programming language P4 is still challenging for an applica-
tion developer who is not familiar with networking domain. In this
paper, we first identify and examine obstacles and pain points one
can experience when offloading server-based computations to the
network. Then we present P4RROT, a code generator (in form of a
library) which allows to overcome these limitations by providing a
user-friendly API to describe computations to be offloaded. After
discussing the design choices behind P4rRrOT, we introduce our
proof-of-concept implementation for two P4 targets: Netronome
SmartNIC and BMv2.
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1 INTRODUCTION

The compute infrastructure is becoming increasingly distributed, of-
fering multiple locations to serve requests and execute applications.
This introduces interesting opportunities for spatial optimization:
by bringing computation and data storage closer to the requester
(or client), response times and bandwidth can often be greatly im-
proved.

Early examples of this paradigm are the distributed domain name
system and the content distributed networks created in the late
1990s [4]. More recent examples include the edge computing para-
digm as well as the trend towards in-network computing.

This paper is motivated by a novel offloading opportunity in-
troduced by software-defined networks [9], and in particular pro-
grammable dataplanes [11]. Programmable networks have recently
received much attention both in academia and industry, for their
support of fast networking innovations: while developing new
semiconductors is a time-consuming and expensive process, a pro-
grammable data plane provides an efficient and flexible way to
support new protocols and new requirements. The dataplane pro-
gramming language P4 (Programming Protocol-Independent Packet
Processors) is independent of the forwarding hardware design, and
relies on a compiler specific to the hardware (e.g., SmartNICs, NetF-
PGAs, programmable ASICs), thus allowing the fast implementation
of new protocols and networking algorithms. Over the last years,

been demonstrated that are related to resilience, security, resource
allocation, among others [11]. Like how people started using GPUs
for non-graphics-related use cases (e.g., crypto mining and deep
learning), many research projects focus on how programmable dat-
aplanes could be used for executing application layer tasks (e.g.,
emergency stops, robot control, or even key-value stores [3, 7, 10]).

P4 has proven useful for implementing application-layer tasks,
but even simple functionalities can quickly result in complex soft-
ware projects. This is due to the limitations of the underlying de-
vices and the fact that P4 was not designed to support this kind of
computations. For example, consider the following scenario which
highlights some of the challenges that developers can face when
implementing L7 logic. Suppose that in order to precalculate an
aggregated value to reduce the CPU load, a programmer wants
to calculate and insert an additional integer at the beginning of
the UDP payload. This seemingly simple task requires to parse the
usual headers, adjust the total length field in the IPv4 and UDP
headers, recalculate the checksum, and implement a simple static
forwarding. Even if the programmer already wrote similar and rel-
evant code in the past (e.g., a ring buffer made of registers), it is
hard to reuse this implementation since P4 does not easily support
to encapsulate such a high-level abstraction. Along the way, the
programmer might further need to use workarounds and different
tricks to avoid resource limitations and compiler bugs. Whether
calculations are peformed with a table or if-else statements may
appear to be an implementation detail, but is actually a design de-
cision from a P4 point of view, requiring additional effort. If the
programmer then wants to further extend the functionality, e.g., by
inserting a second integer, she must modify the existing code in
multiple different places. Also testing is complex, and may require
a complete pipeline with whole packets, as there is typically no
good way to unit test implementation parts.

We argue that automatic code generation can greatly simplify
implementing application-layer tasks if we narrow down the scope
of target features. By application-layer tasks, we mean functional-
ities concerned about the payload rather than other networking
layers. Against this backdrop, our main contribution in this pa-
per is P4RROT, a code generator (in form of a library) for P4, to
support and speed up the offloading process. With P4RroT, the de-
veloper can describe the application layer logic using our (Python3)
library [1] and generate the equivalent P4 code. P4rRROT does not
require a new programming language, which also simplifies the
adoption of new P4 features. In this paper, we discuss the differ-
ent design aspects and report on an example implementation of
P4rroT for the BMv2 (Behavioral Model v2) [13] and Netronome
NFP (Netronme Flow Processor) [12] targets, written in Python3.
We chose the BMv2 and Netronome NFP targets because they both
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Figure 1: The high-level overview of the use of P4RROT.

use the V1Model architecture. The BMv2 makes our implementa-
tion easy to run, while the NFP smartNIC is a sensible target, it
seems better suited for server offloading than rigid ASICs.

Fig. 1 illustrates the architecture of our proposed solution.

2 GOALS AND REQUIREMENTS FOR P4RROT

This section lists the main principles the design and implemen-
tation of P4rroT follows, divided into two categories. First, we
highlight the features that overcome the previously described pain
points. Second, we describe additional requirements improving the
adaptability of our solution.

2.1 Painkillers

An important decision underlying P4RROT’s design is that we limit
our target programs to the set of offloaded application layer logic,
thus making the design simpler in many ways. Having to deal only
with a limited amount of commands and data types (e.g., a 3-bit
long field does not make much sense in this context), we can make
powerful assumptions and automate many tasks. Simplicity and
structure allow the developers to keep their work compact and
prevent code fragmentation. Furthermore, we require that imple-
mentation details should remain implementation details, preferably
in the form of “hints”. For example, checking the equality with an
if-else statement or using a table can be simply an optional param-
eter. Our solution should further be able to encapsulate complex,
often used logic, and hide data structures and algorithms (like a
ring buffer made of registers) behind a straightforward API. Adding
similar extensions should also be easy. Last but not least, once we
fully or partially described the business logic, we want to simulate
the behaviour of the application layer without even generating the
P4 code. Being able to account for overflows and other low-level
details is crucial.

2.2 Adaptability

The code generator should leverage an existing and well-known
language in an easy-to-understand way, so programmers can work
with a familiar syntax and are productive quickly. Generally, the
generated P4 code should be human-readable and reasonably easy
to understand. The programmer should still have the opportunity to
override the code generator’s decision, e.g., for further performance
optimizations. The generator only performs simple semantic checks,
and for instance, does not override constant values. By avoiding
complex verifications, the implementation of possible extensions is
simplified. We also note that target-specific checks (e.g. resource
constraints) might be even impossible to implement because of

legal restrictions. Also error messages should be easy to understand
and point to the line where the programmer made the mistake.
Since P4RROT is essentially a library that allows programmers to
describe the abstract syntax tree (AST) of the offloaded solution by
defining a complex object, the semantic checks are run after adding
each and every node. By doing so, the generator library can raise
an exception at any line as early as possible.

3 ARCHITECTURE AND DESIGN

This section describes the internal working of P4RROT’s code gen-
erator through the main components of an offloading project. For
a better understanding, we provide a simple example first. Then
we explain the main design decisions and architectural elements
behind the scenes.

3.1 A simple example

To illustrate the various features and the style of an offloading
project, let us consider a simple example. Fig. 2 shows the imple-
mentation of a simple number guessing game. Although it is not
particularly useful, it provides an easy-to-understand task that does
not require any background knowledge. The client has to figure
out a randomly generated number. After each guess, there are three
possible outcomes: the solution is lower than the provided number,
the solution is greater than the provided number, or the client wins
(and a new number is generated).

First, we create a FlowProcessor in a declarative input-output
style. The input is a single byte representing the client’s guess, and
the output is two bytes (treated as characters in the later stages).
Additionally, we use some local variables and a shared variable to
store the correct solution. After that, we populate the processing
steps with various commands to define our application-level algo-
rithm. We assume that the client has the correct answer, and then
we change it if the guess is less or greater than the right solution in
the SharedVariable. In the end, we send back the packet where it
came from with a single Command. Using a FlowSelector, we also
need to define which packets should be processed by the previously
described FlowProcessor. In the end, we assemble the parts on a
single object and generate the P4 code using the provided template.

3.2 Processors

FlowProcessor objects are the essence of the offloaded solution
describing the application-layer calculations. During the instanti-
ation, the programmer defines the input and the optional output
structures. By default, the code generator sets the input header
invalid and the output header valid, thus leaving room for mod-
ifying the packet structure. Moreover, if the truncate extern or
similar functionality is available, the remaining payload can also
be removed. If the output structure is not defined, the original in-
put header is not invalidated. Fig. 3 depicts the different ways the
user can transform a packet. The use of local variables, temporary
headers and, stateful elements are also possible.

A FlowProcessor contains a Block object which encapsulates
a sequence of Commands. Commands are responsible for describing
different operations performed on the packets. They can vary from



fp = FlowProcessor (
istruct = [('guess',uint8_t)],
locals = [('l',bool_t),('good',bool_t),('solution',uint8_t)],
ostruct = [('r1',uint8_t),('r2',uint8_t)],
state = [ sSharedvariable('shared_solution',uint8_t) ]

fp\
.add(Comment('init variables'))\
.add (ReadFromShared('solution', 'shared_solution'))\
.add(AssignConst('good', True))\
.add(AssignConst('r1',ord(':"')))\
.add(AssignConst('r2',ord(')")))\
.add(Comment('check whether solution<guess'))\
.add(LessThan('l', 'solution', 'guess'))\
cadd(If('1"))\
.add(AssignConst('r1',ord('x"')))\
.add(AssignConst('r2',ord('<"')))\
.add(AssignConst('good',False))\
LEndIf()\
.add(Comment('check whether solution>guess'))\
.add(GreaterThan('l', 'solution', 'guess'))\
cadd(IF(' 1))\
.add(AssignConst('r1',ord('x")))\
.add(AssignConst('r2',ord('>"')))\
.add(AssignConst('good',False))\
LEndIf()N
.add(Comment('generate a new number if required'))\
.add(If('good') )\
.add(AssignRandomvValue('solution',®,255))\
.add(WriteToShared('shared_solution', 'solution'))\
LEndIf()\
.add(Comment('send back the result'))\
.add(SendBack())

Defining inputs and
outputs and other
variables for the
FlowProcessor

Populating
processing steps

Channeling the
proper packets to the
FlowProcessor with
the FlowSelector

fs = FlowSelector(
'IPV4_UDP',
[(udpDstPort,5555)],
fp

)

Composing the parts

solution = Solution() of the solution.

solution.add_flow_processor(fp)
solution.add_flow_selector(fs)
solution.get_generated_code().dump('test.p4app')

Figure 2: Sample usage of PARROT implementing a number
guessing game
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Figure 3: The different ways the user can transform a packet.

low-level casting to high-level data structure manipulations. Be-
sides the necessary input and output variables, they might provide
different implementation hints using optional variables.

When a new Command is added to a Block, it returns itself or
another Block. Thanks to this design, it is possible to describe algo-
rithms reasonably intuitively, similar to the JavaScript Promises or
the LINQ library in C#. Comfortably defining if-else statements is
also possible. Once we add an If command, we return a ThenBlock
(which inherits from the Block class). The ThenBlock instance can
return an El1seBlock using its E1se method. Finally, the E1seBlock’s
EndIf returns the original parent Block. Fig. 4 depicts a simple ex-
ample. We define Switch statements and Atomic blocks similarly.

Leveraging this design, the code generator library can provide
simple semantic checks upon adding Commands and simulate the
behavior of a FlowProcessor.

blockA.\
.add( ConstAssign('x',5) )\
.add( If('b') )\ <-retuns anew ThenBlock

.add( ConstAssign('y',5) )\I<retums the same ThenBlock
.Else()\ [ <retums anew EiseBlock |
.add( ConstAssign('y',5) )\[<retums the same ElseBlock|

. EndIf( )\ <- returns blockA
.add( ConstAssign() )

<- returns blockA

<- returns blockA

Figure 4: An example explaining the internal workings of
the if-else statement’s implementation.

UDP hec m hec
parse parse pérse
A B C

Figure 5: A simple parser-chain.

3.3 Selectors

To define what kind of packets are processed in the offloaded solu-
tion, the user script can create FlowSelectors: simple objects using
the code generator library. First, the FlowSelector defines the un-
derlying standard protocols with a single constant (e.g. IPV4_UDP).
Since one might have different selectors for the same underlying
protocols, the code generator organizes the P4 parser states in a
chain-like structure (see Fig. 5). If the condition of the selector
is met, then we extract the application-layer data, otherwise we
check the next selector in a different state. If there is no next se-
lector, we proceed to the next desired state, e.g. accept. To deal
with unused, empty chains, one can use #define pragmas. The P4
template always expects an empty chain unless a particular macro
is defined. The generator can easily insert this #define pragma
into the generated parser code.

The programmer can define the selection criteria using a list of
pairs. Each pair consists of a field name and a required value. The
used field can be a standard field of a standard header (e.g., UDP
destination port) or the member of a user-defined struct describing
the beginning of the application data. The latter one leverages the
lookahead capabilities of the P4 parser.

3.4 Templates

Templates serve as a static starting P4 code for an offloading project.
It can be used to describe the parsing of standard headers or im-
plement basic forwarding rules. The template only references the
generated code parts using the #include preprocessor pragma.
Theoretically, the developer can use as many extra generated files
as she wishes. However, at least one include pragma in the cus-
tom headers, parsing, header-struct body, ingress declarations, and
ingress apply block seem necessary. A template must also provide
an interface for the code generator by defining certain metadata
variables and macros. For example, we maintain the number of
added and removed bytes using metadata variables and provide



workarounds for the atomic block using macros. One might use
macros for every purpose, thus making the template codes more
flexible and more complex at the same time.

4 ADDITIONAL RELATED WORK

Generating lower-level code for a specific use case from a high-level
language is a common theme for simplifying application develop-
ment and used in many contexts. For example, TensorFlow [2]
allows Python users to create computation graphs and run them on
GPU, and Keras [8] allows to define and use neural networks using
a simple AP A similar networking related example is MoonGen/[5]
which facilitates performance measurements using DPDK and Lua.
However, these do not focus on P4.

We are also not the first to present a code generator which
outputs P4 code. For example, Graph-To-P4 [16] is a boilerplate
code generator for parser graphs. Also different packet filtering
solutions convert logical expressions (concerning application data)
to P4 code, such as CAMUS [6] and FastReact [15]. LUCID [14]
is an entirely new language meant to implement control plane
functionality in P4 data planes. However, these examples do not
focus on offloading arbitrarily defined application tasks. To best
of our knowledge, we are the first to provide an interface that is
capable of describing general application-layer features.

5 DISCUSSION AND FUTURE WORK

We presented a code generator, P4RrOT, which allows to provide a
familiar and straightforward interface to the P4 programmer, hence
simplifying application offloading. P4rRrROT’s simple interface is
possible by narrowing down the scope to offloading application
functionalities. We note that our approach is not limited to the
Python language and the same design can be used for other high-
level languages, e.g. Java, C#.

While P4RROT can already be useful in its current form, our
project is still in an early stage. Due to the limited number of imple-
mented commands and stateful elements, P4RROT’s expressiveness
is narrow at the moment. P4RROT is open source and we can imag-
ine even complex behaviors defined in tens of lines of code, using
bloom-filters, heaps, floating-point operations and other high-level
abstractions. We also plan to add extra functionalities to the exist-
ing system, including a built-in way for the interaction between
the data plane and the non offloaded server components.

Furthermore, although we so far considered only the Netronome
NFP and BMv2 as a target, our approach is not architecture-specific.
From our experiences, TNA developers can greatly benefit from
quickly switching implementation alternatives with optional pa-
rameters (hints).

P4RROT may also open a business opportunity for companies. We
can imagine scenarios in which the templates and some additional

extensions are proprietary and in which the end-users write python
scripts. After the code generation, the P4 code is automatically
compiled and loaded to the company’s device.
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