
The vAMP Attack:
Compromising Cloud Systems via the

Unified Packet Parser

Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt,
Jean-Pierre Seifert, Anja Feldmann and Stefan Schmid

CCSW'17, Dallas, Texas, USA
3 Nov. 2017

 2

Multi-tenant IaaS cloud providers

 3

Key enabler for multi-tenancy is virtualization

Compute

Full

Para

Network

?

Storage

Block

File

What is network virtualization?

Virtualization layer

V
irt

ua
l

N
et

w
or

k
P

hy
si

ca
l

N
et

w
or

k

 5

Key enabler for multi-tenancy is virtualization

Compute

Full

Para

Network

Virtual switches

Storage

Block

File

 6

Virtual switches: The network hypervisor

● Meant to provide network
isolation

● Centralized control
● Programmable

User

Kernel

Virtual
Switch

VM VM VM

N
I
C

V
irtuali zation

Layer

 7

Introducing (complex) network functionality
into the virtual switch

User

Kernel

Virtual
Switch

VM VM VM

N
I
C

V
irtuali zation

Layer

Middleboxes

 8

Results in a lot of packet parsing
in the virtual switch

User

Kernel

Virtual
Switch

VM VM VM

N
I
C

V
irtuali zation

Layer

Middleboxes

L2
L3

L4L5
L2.5

...

 9

The unified packet parser:
A new attack surface for virtual switches

● Centralized parsing in the
virtual switch, i.e., parse all
the headers of a packet in a
single pass

● Error prone as parsing logic is
implemented manually

● Dependent security
mechanisms and policies can
be bypassed if broken

Open vSwitch Protocols
Ethernet

LLC
VLAN
MPLS
IPv4

ICMPv4
TCP
UDP
ARP

SCTP
IPv6

ICMPv6
IPv6 ND

GRE
LISP

VXLAN
PBB

IPv6 EXT HDR
TUNNEL-ID

IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT

IPv6ESP
IPv6 AH
RARP
IGMP

 11

Supported protocols in
OvS and Cisco Nexus 1000V over time

 12

Let's look at threat/attacker models
for virtual switches

 13

Previous models (non-exhaustive)

● General, for the data plane
– Chasaki et al. [1]

– Keller et al. [2]

– Qubes OS [3]

– Dhawan et al. [4]

● Conservative, for network
virtualization
– Paladi et al. [5]

– Grobauer et al. [6]

● Underestimated, for virtual switches
– Jin et al. [7]

– Alhebaishi et al. [8]

– Gonzales et al. [9]

– Karmaker et al. [10]

● Strong adversary, for hardware
switches
– Yu et al. [11]

– Thimmaraju et al. [12]

 14

Attacker Model

● Attacker

– Limited resources/Lone wolf

– No vantage point access

– Avg. programming languages skills

– Controls a computer that is publicly
reachable

● Defender

– Uses virtual switches for network
virtualization

– Follows cloud security best
practises [13]

– Uses the same software stack
across all servers

Attack is successful if the attacker obtains full control of the cloud, i.e., perform
arbitrary computation, create/store arbitrary data, and send/receive arbitrary

data to all nodes

 15

Taking control of the cloud

 16

Attack setup

Virtual switch

Open vSwitch

Cloud management
system

OpenStack

Program analyzer

American Fuzzy Lop
(AFL)

Fig credits: Breadtk [15]

 17

Attack methodology: Fuzzing

● Targeted the unified packet
parser of Open vSwitch (~3%
of total execution paths in
ovs-vswitchd)

● Leveraged the test-flows test
case

● Tested ovs-2.3.2, ovs-2.4.0
and ovs-2.5.0

● Found several vulnerabilities
reported in 2 CVEs
– CVE-2016-2074

● Remote code execution
● Denial of service

– CVE-2016-10377
● ACL bypass

 18

CVE-2016-2074

● Problems in parsing the MPLS label
stack
– Extremely long label stack led to a

stack buffer overflow in ovs-2.3.*

– Early terminating label stack led to a
stack buffer overflow in ovs-2.3.* and
ovs-2.4.0

● RFC 3032 says: Pop top label and
then decide what do to

● Exploits unified packet parser:
extracts all labels

Figure credit: Lorenzo David, Luca Ghio.
MPLS header [14]

 19

Stack buffer overflow → ROP exploit

● ASLR did not help
– No PIE by default, else code segment

would have been randomized

– All gadgets were from the ovs-
vswitchd code segment as it's a fairly
large binary

● Default gcc compile does not place
a canary for the vulnerable function

● No sanity checks possible from the
kernel/device driver

0 633223 55

MPLS-Label MPLS-LabelS

ETH

14

Padding

S

ROP chain end: syscall
Place system call
number 0x3b in %rax
Place address of envp in
%rdx
Place address of argv in
%rsi
Place address of
command string in %rdi
Construct argument
vector argv: [cmd,
NULL]
ROP chain start: Setup
command string cmd in
memory

7)
6)

5)

4)

3)

2)

1)

 20

ROP exploit → Worm
V

ir
tu

a
liz

a
ti

o
n

La
y
e
r

User

Kernel

VM

Controller
VM

VM VM

1

Controller
VMVirtual

Switch
Virtual
Switch

Virtual
Switch

2

3

VM

VM VM

Virtual
Switch

Virtual
Switch

VM

● OvS had to be patched to
propagate

● The exploit from the compute
server to the controller server had
to be adjusted due to
VLAN/VXLAN encapsulation

● Required an external (to the cloud)
host for command-and-control

 22

Attack evaluation

● Used Mirantis 8.0 for setting-up OpenStack “Liberty” in
VirtualBox which ships the vulnerable ovs-2.3

● 1 Compute node (VirtualBox VM) hosting 1 VM (nested
virtualization!) for the attacker

● 1 Controller node (VirtualBox VM) hosting 1 VM to control the
setup, and also serves as the Network node (for routing)

● Hosted the exploit for compute → controller on a publicly
reachable webserver (only for testing)

 23

Attack result

● VM→Compute → Controller : < 20s
– 3s download, 12s sleep to restart ovs-vswitchd on compute

● Controller → other Computes : < 80s
– 3s download, 60s sleep to restart ovs-vswitchd on controller

● Total time to own the cloud: < 2min

 24

Conclusion

● Virtual switches implement unified packet parsers that increase
the attack surface of the cloud

● We introduced the virtual switch Attacker Model for Packet-
parsing (vAMP) which accounts for virtual switches in cloud
systems

● We demonstrated that an entire cloud setup can be
compromised in a matter of minutes by exploiting the virtual
switch

 25

Questions?

 26

References
1. Danai Chasaki and Tilman Wolf. “Attacks and Defenses in the Data Plane of Networks”. In: Proc. IEEE/IFIP Transactions on Dependable and Secure Computing (DSN) 9.6 (Nov. 2012).

2. Eric Keller, Ruby B. Lee, and Jennifer Rexford. “Accountability in Hosted Virtual Networks”. In: Proc. ACM Workshop on Virtualized Infrastructure Systems and Architectures. VISA ’09. 2009.

3. Joanna Rutkowska and Rafal Wojtczuk. “Qubes OS architecture”. In: Invisible Things Lab Tech Rep 54 (2010).

4. Mohan Dhawan et al. “SPHINX: Detecting Security Attacks in Software-Defined Networks.” In: Proc. Internet Society Symposium on Network and Distributed System Security (NDSS). 2015.

5. Nicolae Paladi and Christian Gehrmann. “Towards Secure Multi-tenant Virtualized Networks”. In: Proc. IEEE Trustcom/BigDataSE/ISPA. Vol. 1. Aug. 2015.

6. Bernd Grobauer, Tobias Walloschek, and Elmar Stöcker. “Understanding Cloud Computing Vulnerabilities”. In: IEEE Security & Privacy Magazine 9.2 (Mar. 2011).

7. Xin Jin, Eric Keller, and Jennifer Rexford. “Virtual Switching Without a Hypervisor for a More Secure Cloud”. In: Proc. USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks
and Services (HotICE).2012

8. Nawaf Alhebaishi et al. “Threat Modeling for Cloud Data Center Infrastructures”. In: Intl. Symposium on Foundations and Practice of Security. Springer. 2016.

9. Dan Gonzales et al. “Cloud-Trust - a Security Assessment Model for Infrastructure as a Service (IaaS) Clouds”. In: Proc. IEEE Conference on Cloud Computing PP.99 (2017).

10. Kallol Krishna Karmakar, Vijay Varadharajan, and Uday Tupakula. “Mitigating attacks in Software Defined Network (SDN)”. In: Proc. IEEE Software Defined Systems (SDS). May 2017.

11. Dongting Yu et al. Security: a Killer App for SDN? Tech. rep. Indiana Uni. At Bloomington, 2014.

12. Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid. “Outsmarting Network Security with SDN Teleportation”. In: Proc. IEEE European Security & Privacy (S&P). 2017.

13. OpenStack Security Guide. http://docs.openstack.org/security-guide. Accessed 27-01-2017.

14. https://commons.wikimedia.org/wiki/File:MPLS_header.svgAccessed on 26.10.2017

15. https://en.wikipedia.org/wiki/File:AFL_Fuzz_Logo.gif Accessed on 26.10.2017

16. Bhargava Shastry et al. “Static Exploration of Taint-Style Vulnerabilities Found by Fuzzing”. In Proc. USENIX Workshop on Offensive Technologies (WOOT). 2017.

 27

Backup slides

 28

Buggy mpls parsing function

1. /* Pulls the MPLS headers at '*datap' and returns the count of them. */

2. static inline int parse_mpls(void **datap, size_t *sizep)

3. {

4. const struct mpls_hdr *mh;

5. int count = 0;

6.

7. while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {

8. count++;

9. if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {

10. break;

11. }

12. }

13. return MAX(count, FLOW_MAX_MPLS_LABELS);

14.}

https://commons.wikimedia.org/wiki/File:MPLS_header.svg
https://en.wikipedia.org/wiki/File:AFL_Fuzz_Logo.gif

 29

The function that got smashed

1. void flow_extract(struct ofpbuf *packet, const struct pkt_metadata *md,

2. struct flow *flow)

3. {

4. struct {

5. struct miniflow mf;

6. uint32_t buf[FLOW_U32S];

7. } m;

8.

9. COVERAGE_INC(flow_extract);

10.

11. miniflow_initialize(&m.mf, m.buf);

12. miniflow_extract(packet, md, &m.mf);

13. miniflow_expand(&m.mf, flow);

14.}

 30

Call hierarchy for the RCE bug

flow_extract(struct ofpbuf *packet, const struct pkt_metadata *md, struct flow *flow)

 …

 miniflow_extract(packet, md, &m.mf)

 ...

 count = parse_mpls(&data, &size);

 miniflow_push_words(mf, mpls_lse, mpls, count);

 miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)

 MINIFLOW_ASSERT(MF.data + (N_WORDS) <= MF.end && (OFS) % 4 == 0 && !(MF.map & (UINT64_MAX << ofs32)));

 memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data);

 31

Ovs-2.4.0 bug: A crafted MPLS packet yields a
zero 'count'

1. miniflow_extract():

2. count = parse_mpls(&data, &size);

3. miniflow_push_words_32(mf, mpls_lse, mpls, count);

 32

Ovs-2.4.0 bug: miniflow_push_words_32()
updated mf.map as follows:

1. mf.map |= ((UINT64_MAX >> (64 - DIV_ROUND_UP(N_WORDS, 2))) << ofs64);

2. mf.map |= (UINT64_MAX >> 64) << ofs64;

Unforunately, C renders shifting a 64-bit constant by 64 bits undefined.

On common x86 platforms, 'n << 64' is equal to 'n', so this behaves as:

3. mf.map |= UINT64_MAX << ofs64;

 33

Ovs-2.4.0 bug: miniflow_push_words_32()
updated mf.map as follows:

In this particular case, ofs64 is 15, so this sets the most-significant 48 bits of
mf.map (a 63-bit bit-field) to 1. Only the least-significant 28 bits of mf.map
should ever be set to 1, so this sets 35 bits to 1 that should never be.
Because of the structure of the data structure that mf.map is embedded
within, this makes it possible later to overwrite 8*35 == 280 bytes of data in
the stack. However, there is no obvious way to control the data used in the
overwrite--it is memcpy'd from one place to another but the source data does
not come from the network. In the bug reporter's testing, this overwrite
caused a userspace crash if debug logging was enabled, but not otherwise.
This commit fixes the problem by avoiding the out-of-range shift.

 34

ACL bypass bug: Integer underflow

● code in miniflow_extract() verified these invariants:

● size >= 20 (minimum IP header length)
● ip_len >= 20 (ditto)
● ip_len <= size (to avoid reading past end of packet)
● tot_len <= size (ditto)
● size - tot_len <= 255 (because this is stored in a 1-byte variable internally and wouldn't normally be big)

● It failed to verify the following, which is not implied by the conjunction of the above:

● ip_len <= tot_len (e.g. that the IP header fits in the packet)

 35

More on fuzzing Open vSwitch

● Shastry et al.[16] conducted extensive fuzzing in OvS and
reported several other CVEs in their WOOT'17 paper.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

