v

Stefan Schmid (TU Berlin)

“We cannot direct the wind,
but we can adjust the sails.”

(Folklore)




Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.

Traffic
Growth

Source: Facebook



Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.
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Network equipment reaching

capacity limits
— Transistor density rates stalling
— “End of Moore‘s Law in networking

Hence: more equipment,
larger networks

Resource intensive and:
inefficient

»

Gbps/€

[1] Source: Microsoft, 2019




How to interconnect?
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Root Cause

Fixed and Demand-Oblivious Topology
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Many flavors,
but in common:
fixed and

oblivious to
actual demand.




Root Cause

Fixed and Demand-Oblivious Topology
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Many flavors,
but in common:
fixed and
oblivious to
actual demand.

Highway which ignores

actual traffic:

frustrating!
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A Vision

Flexible and Demand-Aware Topologies
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new
demand:

Self-Adjusting
Networks
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sources

Empirical studies:

traffic matrices sparse and skewed
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non-temporal complexity
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non-temporal complexity

“Entropy of
Demand Matrix”

“Entropy Rate”
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Traffic 1s also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Opportunity: exploit with little reconfigurations!

Forster et al., Analyzing the Communication Clusters

in Datacenters. WWW 2023 .



Sounds Crazy?
Emerging Enabling
Technology.

Photonics

H2020:
“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council:
“Photons are the new
Electrons.”



-> Spectrum of prototypes
— Different sizes, different reconfiguration times
— From our ACM SIGCOMM workshop OptSys

Prototype 1

Moving antenna (ms)

Prototype 2

Moving mirrors (mus)

Prototype 3

Changing lambdas (ns)




-» Optical Circuit Switch rapid adaption of physical layer

— Based on rotating mirrors

Fixed
Mirror

/

« X

Rotate Mirror 8§

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010
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Systems
Jupiter evolving: Reflecting on Google’s data
center network transformation
August 24, 2022

Yy B B8 ©

Amin Vahdat
VP & GM, Systems and Services Infrastructure
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Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency

12
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Everywhere, but mainly

Our focus in this talk:
in software

in hardware

Algorithmic trading

& . & -] @ -] L
Lt e
NETELIX Recommender systems ‘g@g zos| [zos [ges [zes o F@s F@s

Neural networks
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Diverse topology components:
— demand-oblivious and
demand-aware

Demand - Demand -
oblivious aware
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Dynamic

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand - Demand -
oblivious aware

Static
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Tech Diversity

Design Spectrum of (R)DCNs

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand -
oblivious

e.g., Helios
(SIGCOMM€10),
ProjecToR
(SIGCOMM‘16),
SplayNet (ToN€16)

Dynamic
(’Ve.g., RotorNet )
(SIGCOMM€17),
Sirius
(SIGCOMM“20),
Mars
\_ (SIGMETRICS23)
\
e.g., Clos
(SIGCOMM 08),
Slim Fly
(SC€14), Xpander
(SIGCOMM€17)
)

Static

24

Demand-
aware



Tech Diversit

Design Spectrum of (R)DCNs
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Diverse topology components:
— demand-oblivious and
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demand-aware
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Dynamic

Diverse topology components:
— demand-oblivious and

demand-aware « ) 4 )
— static vs dynamic Rotor Demand-
Aware
\_ O\ _J
Demand- Demand-
oblivious aware
a2 )
Static
\_ )
As always in CS: Static

It depends..

24



Diverse patterns:

— Shuffling/Hadoop:
all-to-all

— All-reduce/ML: ring or

tree traffic patterns
— Elephant flows

— Query traffic: skewed
— Mice flows

— Control traffic: does not evolve
but has non-temporal structure

Diverse requirements:

— ML is bandwidth hungry,
small flows are latency-
sensitive

ik
Shuffling
All-to-All

Large flows

Delay
sensitive

]
Telemetry

/ control

23
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Bad idea! Latency tax.

Topology
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Shuffling

]

Delay Telemetry
sensitive / control

Demand-
oblivious

Demand

Serving elephant flows on static?
Bad idea! Bandwidth tax.

Dynamic

Demand-
aware

Static

Topology
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Dynamic

ie?

Shuffling

Demand-
oblivious

Demand-
aware

)

Delay Telemetry
sensitive / control

Static

We have a first approach:
Cerberus* serves traffic on the “best topology”! (Optimality open)

* Griner et al., ACM SIGMETRICS 2022

33



-» So far: tip of the iceberg

-» Many more challenges
— Shock wave through Layers:
impact on routing and congestion control?
— Scalability of control in dynamic graphs:
Local algorithms? Greedy routing?

-» Complexity of demand-aware graphs
(pure vs hybrid, e.g., SplayNet)

— Application-specific self-adjusting networks:
e.g., for AI, or similar to active dynamic
networks (independent sets, consensus, ..)

- etc.

Thank you!



Online Video Course

I I
Invitation to ]

Self=Adjusting NetworKs

A short video course

We cannot direct the wind,
but we can adjust the sails.
(Folklore)
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SELF-ADJUSTING NETWORKS
RESEARCH ON SELF.ADJUSTING DEMAND-AWARE NETWORKS Project Overidew Te B Micing Confact Us

AdjustNet

Breaking new ground with demand-aware self-adjusting networks

R TR RE N I SN RN

Download Slides

http://self-adjusting.net/
Project website

fgcouﬁcngy Publication  Team  Download Traces

The following table lists the traces used in the publication: On the Complexity of Traffic Traces and Implications

To reference this website, please use: bibtex

File Name

exact_Boal b MILGrd_C Large 1024 esv High Performance Tces 17947300 1513MB  Download
Computing Traces.

exact, B, CNS. NoSpec, Large. 1024 05 High Performance Tisces 1108063 93MB  Download
Computing Traces

cosar_Nekbona_ 1024 cav High Performance Toces 21745229 1840MB  Downlosd
Computing Traces

Contact Us

https://trace-collection.net/
Trace collection website




Questions?
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Golden Gate Zipper



On the Complexity of Traffic Traces and Implications
Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.
ACM SIGMETRICS, Boston, Massachusetts, USA, June 2020.

Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid.
SIGACT News, June 2019.

Analyzing the Communication Clusters in Datacenters

Klaus-Tycho Foerster, Thibault Marette, Stefan Neumann, Claudia Plant, Y1li Sadikaj, Stefan Schmid, and Yllka Velaj.

The Web Conference (WWW), Austin, Texas, USA, April 2023.

Duo: A High-Throughput Reconfigurable Datacenter Network Using Local Routing and Control
Johannes Zerwas, Csaba Gyorgyi, Andreas Blenk, Stefan Schmid, and Chen Avin.

ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions

Vamsi Addanki, Maciej Pacut, and Stefan Schmid.

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), Santa Clara, California, USA, April 2024.
Cerberus: The Power of Choices in Datacenter Topology Design (A Throughput Perspective)

Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen Avin.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Mumbai, India, June 2022.



Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)
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Similar benefits? >
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Traditional BST Demand-aware BST Self-adjusting BST

(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST;
O

BSTy+1
©)]

Reduced expected route lengths! >

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

First result:
Demand-aware networks
of asymptotically
optimal route lengths.

13



Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions

Vamsi Addanki Maciej Pacut Stefan Schmid
TU Berlin TU Berlin TU Berlin
Abstract S

Packet buffers in datacenter switches are shared across all the
switch ports in order to improve the overall throughput. The
trend of shrinking buffer sizes in datacenter switches makes
buffer sharing extremely challenging and a critical perfor-
mance issue. Literature suggests that push-out buffer sharing
algorithms have significantly better performance guarantees
compared to drop-tail algorithms. Unfortunately, switches are
unable to benefit from these algorithms due to lack of support
for push-out operations in hardware. Our key observation is
that drop-tail buffers can emulate push-out buffers if the future
packet arrivals are known ahead of time. This suggests that aug-
menting drop-tail algorithms with predictions about the future
arrivals has the potential to significantly improve performance.

This paper is the first research attempt in this direction. We
propose CREDENCE, a drop-tail buffer sharing algorithm aug-

Pred |chun¢
/ Credence

Drop-tail Buffer Sharing with ML Predictions

i Dynamic Complate
LQD :  Harmonic Thresholds Sharing

@ ¢ ¢ 9

1 Competitive Ratio

Optimal peiive Lower
Throughput Throughput

Figure 1: Augmenting drop-tail buffer sharing with ML
predictions has the potential to significantly improve
throughput compared to the best possible drop-tail algorithm
(without predictions), and unlock the performance that was



