
Preprocessing
Preprocessing

.c, .cc,
.cpp files

.h.h

CPP

C++

AS

LD

other .o
object

.so
libraries.so

libraries

other .o
object

.s

.i

Executable
or library

.o

Preprocessing
Com

piling
Assem

bling
Linking

Preprocessing

Linking

Compiling client

Compiling

Assembling

Compiling client

Compiling

Assembling

Compiling client

Compiling

Assembling

The compiling process Parallelization of the compilation process
(as performed by distcc)

Performance test with SCRAM V1

Performance test with scram V0.20

Parallel compilation of CMS software

LHC experiments have large amounts of software to build. CMS has studied ways to shorten project build times using
parallel and distributed builds as well as improved ways to decide what to rebuild. We have experimented with making idle
desktop and server machines easily available as a virtual build cluster using distcc and zeroconf. We have also tested
variations of ccache and more traditional make dependency analysis. We report on our test results, with analysis of the
factors that most improve or limit build performance.

The source code and all the
headers included in to it are

retrieved and merged
together in single, self

consistent and software
installation indipendent .i file.
All the macros are substituted

as well with their value.

The compiler processes the
standalone .i file and produces
an assembly source-code .a
file targeted to the configured

platform

The assembly source in
compiled to binary

instructions and a .o object
file is produced

The object file is linked
against the requested

libraries and possibly against
other object files

Preprocessing has to be
performed on the master

node because development
environment could be

different on remote nodes

Since preprocessed
sources are self-contained

the compilation and
assembling phases can be

performed on remote
nodes.

Linking must occur on the master
nodes as it is dependent on

libraries and objects files and it's
intrinsically serial because its
product is singular (either one

excutable or one library)

The problem of improving
software building speed is
probably the second most
common problem in
software development
(second only to having the
source actually compiling).
For this reason there are
already a number of
projects that try to address
it by sharing the workload
to multiple machine in
various ways. Theory of Parallel Algorithms

speedup =

tsingle

tcluster

speedupmax =
1

f +
1−f
P

speedup∞ =
1

f

Naively thinking, one could
assume that by
parallelizing a job on n
different machines one
could get a n-fold
improvement in
performances.
This is not actually true
because every task has an
intrinsic serial component,
f, that cannot be
parallelized.
This results in having the
actual maximum speed up
being:

The performance gain
obtained by parallelizing a
job on a cluster of machine
is measured in terms of a
quantity called speed-up
which is defined as the
ratio between the time
required to perform the task
on a single machine and
the one obtained by doing it
on a cluster:

so that even considering an
infinite number of CPUs
the maximum speedup is
limited by the serial
component f.

Giulio Eulisse*, Stefan Schmid**, Lassi A. Tuura*

CMS uses a custom tool
called SCRAM for building
its software.
The current production
version of SCRAM V0.20
adds several bottlenecks
for parallelization besides
the intrinsic ones present
in the compilation task as
such.
For example because of
its recursive nature, Perl is
started over and over
again, adding overhead to
the process.

The picture above shows
the building time for
IGUANA 4.5.0 -- the
interactive framework
used by CMS -- also
separating the different
contributions to the
building time.
As it can be seen, only the
pure compilation can be
sped up, the remaining
components 'Linking' and
'Rest' --- consisting of
SCRAM, preprocessing,
and networking ---
contribute a significant
part to the whole
execution time and are not
sped up.

In contrast to IGUANA,
COBRA -- CMS
application framework --
has no inter-module
dependencies which
allows to compile different
modules in parallel.

 However, even if SCRAM
is wrapped, the speedup
with more then 2 hosts is
small.

Finally, we integrated also
the compiler cache
ccache which yields a very
good performance, see
Figure "Cobra 7.5.0
(ccache)"
(cache hits only).

Albeit often seen as a
single operation the
compiling process -- or,
better, the building process
-- is actually made up of

To overcome the
bottlenecks of the old
version of SCRAM a total
rewrite effort of it has been
started in late 2003 and it is
now entering into "prime
time".

The new version of
SCRAM -- dubbed V1 --
abandons the recursive
nature of the old one and
has only one makefile. This
reduces the serial
component due to SCRAM
time-stamping work and
uses different algorithms
for dependencies. The
overhead of a preliminary
version of SCRAM v.1
turned out to be less than
one second, which makes it
very appealing when
compared to the old V0.20
version.

In our test we built the
projects SEAL 1.3.3, POOL
1.5.0 and COBRA 7.6.2.
The result can be found in
the following table.

As it can be seen, the
speedups are very
different.
This is due to the dictionary
generation that occurs in
SEAL building process
which cannot be
parallelized using distcc.
COBRA, which does not
have such a problem
shows a good speedup.

After some investigation we
have chosen the
opensource tool distcc for
mainly two reasons:

1) it works and it is easy to
install.

2) it is opensource and big
corporations (like Apple)
are actually contributing to
it.

four different phases:
preprocessing, the actual
compilation, assembly and
linking.

*) Northeastern University, Boston (MA), U.S.A.
**) Eidgenössische Technische Hochschule (ETH), Zürich (ZH), Switzerland

As is, distcc works very
well in static environments
where the peers that share
the compilation workload
are well defined.
This is not always the case,
because it's not always
possible to afford a
separate building farm.
Moreover one would like to
take advantage of
occasional spare resources
that might appear under
certain circumstances and
he would like that this
happened in automatic
way.

For this reason we
developed a simple server
that, once installed on a
client machine, would notify
the network neighbourhood
about the availability of the
client once a certain policy-
specified condition is
satisfied.

This is similar to work
already done by Apple to its
private version of distcc but
since it is not available
under Linux we decided to
develop our own prototype.

Like Apple we based our
server on ZeroConf service
discovery mechanism.
ZeroConf (A.K.A.
Rendezvous) is an industry
standard protocol, mainly
developed by Apple
Computers Inc., for
advertising and discovering
of services over IP based
networks.

It works by using the well
defined DNS-SD protocol
and can be used in both
server-less environments
(via multicast DNS usage)
as well as in managed
ones.

Automatic compiling peers discovery

Some meeting
starts.

Some of the users
join it leaving their

computers idle.

IDLE

Not joining
the

meeting...
Still busy...

IDLE

IDLE

The idle nodes
signal their

availability via
ZeroConf

I'm not busy

I'm not busy

I'm not busy

The user starts
shipping compiling

jobs also to the
newly spotted

available machines.
Compiling

Compiling

Compiling

Preprocessing
and linking

Busy
doing

other stuff

User starts a
compilation job.

After prepocessing
the sources are

sent to compiling
farm for compilation

Busy
doing
other
stuff

Busy
doing
other
stuff

Busy
doing
other
stuff

Busy
doing

other stuff

The compiling farm
goes down for
maintenance

but the user still
has more CPU

power using
"casual" working

nodes

Going down!

Boss
desktop

User
machine

Openspace
desktop

Developer
desktop

Dedicated
Compiling

farm

Notebook of
a user in a
meeting

Compiling

References

Hennessy, J.: Computer
Architecture. A Quantitative
Approach. (2002); 3rd
Edition, San Francisco:
Morgan Kaufmann Publishers

Tanenbaum, A.S.: Moderne
Betriebssysteme (1995); 2nd
Edition, Munich, Vienna:
Hanser, p. 697ff.

Mark Lutz: Programming
Python (2001); 2nd Edition,
Sebastopol: O’Reilly.

Powers, S., Peerk, J.,
O’Reilly, T., Loukiedes, M.:
Unix Power Tools (2002); 3rd
Edition, O’Reilly.

http://iguana.web.cern.ch/
iguana/

http://cobra.web.cern.ch/
cobra/

http://cmsdoc.cern.ch/orca/

http://cmsdoc.cern.ch/oscar/

http://seal.web.cern.ch/seal/

http://pool.cern.ch

http://cmsdoc.cern.ch/
Releases/SCRAM/current/
doc/html/SCRAM.html

http://distcc.samba.org

http://www.zeroconf.org

http://dotlocal.org

http://ccache.samba.org

http://per.bothner.com/papers/
GccSummit03-slides/

http://www.mosix.org

Every machine in our
prototyped system runs
two processes and it can
actually serve as
compiling client as well as
it could share it
compilation workload with
others.
The "server daemon"
observes the status of its
underlying host.
Whenever the host is
idling, the daemon
advertises the machine as
available on the network
neighbourhood via
multicast.
The "client daemon"
notices the availability of
new machines and adds
them to the lists of
compiling hosts,
making sure that they
actually have a compatible
compiler.

Conclusions:
From the analysis made
above, we can draw the
following conclusions:

1. In most cases, one
additional host reduces the
execution time remarkably.
The utility of a third or forth
machine is less obvious.

2. It is crucial to reduce
serial components like
preprocessing, SCRAM,
networking, and so on to
get a good speed-up.

3. SCRAM V0.20 and the
generation of SEAL’s
dictionary are significant
bottlenecks for
parallelization.

4. The speed-up depends
on many parameters, which
are not only related to the
computer infrastructure
(number, latency,
bandwidth, ...) but also to
the project’s properties
(e.g. number and size of its
files). It is not possible to
give a formula for an
arbitrary project to calculate
lower bounds of
performance gains.

5. Pragmatic rules of thumb
have to be applied, as it is
difficult to predict which -j-
option is best or whether to
include local host or not.

6. Integration of ccache is
easy and very useful.

7. It is important to avoid
simultaneous writes to the
same AFS volume. For
example, temporary files
should not be written to the
home directory in a parallel
algorithm. With the present
technologies, the
distribution of compilation
jobs to idling hosts provides
only moderate speedups,
i.e. a factor of two can
hardly be achieved even
with dozens of desktops.

Other enhancements
and future directions

As it as been explained, when
dealing with parallelization, it is
fundamental to reduce the
intrinsic serial component of a
job.
In the case of compilation a
number of different additional
tricks could be used, for
example the usage of
precompiled headers to reduce
the preprocessing phase, using
a compiler server to eliminate
compiler startup time and the
usage of compilers caches such
as ccache to actually avoid
recompiling of sources that
have not changed across two
different versions of the
software.

