
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)
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Countries disconnected Passengers stranded Even 911 affected

Even tech-savvy companies struggle:

Today, dependability requirements stand in contrast with reality:

Mainly: 

human 

errors!

Credits: Laurent Vanbever, Nate Foster 3

It’s High Time!

Reality vs Requirements
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What can 

go wrong?
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Admin’s Responsibilities
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Forwarding and
failover rules ⇢ Reachability: Can traffic 

from ingress port A reach B?

⇢ Loop-freedom: Do forwarding 

rules imply loop-free routes?

⇢ Policy: Does traffic from A to 

B never go via C?

⇢ Waypoint enforcement: Is 

traffic from A to B always routed 

via a node C (e.g., an IDS)?
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Policy ok?
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via Iceland (expensive!).
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⇢ Policy: Does traffic from A to 

B never go via C?

⇢ Waypoint enforcement: Is 

traffic from A to B always routed 

via a node C (e.g., an IDS)?

k failures = 

(
𝑛
𝑘
) possibilities

… and everything even under failures?!
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A Modern Approach:

Automated Whatif Analysis

Router configurations
(Cisco, Juniper, etc.)

Formal language 
which supports
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What if?!
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For specific networks such as MPLS: feasible and fast!

Tools such as P-Rex or AalWiNes do it in secs for MPLS:

reduction to automata theory, polynomial-time.

But general networks more challenging.
Formal 

methods!



Fixing&Synthesis: Harder

⇢ Approaches: Petri games, Stackelberg

games, UPPAAL Stratego…

⇢ But synthesis slower than verification

⇢ An opportunity for using AI!

⇢ Ideally AI+FM: guarantees from formal 

methods, performance from AI
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⇢ Examples: DeepMPLS, DeepBGP, …
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AI FM

… and what about quantitative properties?



Online demo: https://demo.aalwines.cs.aau.dk/

Source code: https://github.com/DEIS-Tools/AalWiNes

Paper: https://schmiste.github.io/conext20.pdf

Query: 
regular 

expression

Witness Dozens of 
networks

10

A Possible Starting Point:

The AalWiNes Tool

https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes
https://schmiste.github.io/conext20.pdf


Passau, Germany

Agenda

Three Use Cases



Passau, Germany

Agenda

Three Use Cases

On lower 

layers!



⇢ Recall: explosive growth of demand

⇢ Problem: network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking” 

⇢ Hence: more equipment, 

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers

[
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Let’s go back to datacenter use case:

Moore’s Law of Datacenters



Root Cause
Fixed and Demand-Oblivious Topology

How to interconnect?
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Root Cause
Fixed and Demand-Oblivious Topology
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actual traffic: 

frustrating!

Many flavors, 

but in common: 

fixed and 

oblivious to 

actual demand.
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A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

Demand-Aware

Networks

new

demand:

e.g., 

mirrors

new flexible
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The Motivation
Much Structure in the Demand

Hypothesis: this can 

be exploited.

Empirical studies: 

s
o
u
r
c
e
s

destinations

Facebook

s
o
u
r
c
e
s

destinations

Microsoft

traffic bursty over time

M
b
p
s

Facebook

Time (seconds)

traffic matrices sparse and skewed
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Sounds Crazy? 
Emerging Enabling
Technology.

H2020: 

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council: 

“Photons are the new

Electrons.”
Photonics

19



Enabler
Novel Reconfigurable Optical Switches

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 

⇀ From our last years’ ACM SIGCOMM workshop OptSys

Prototype 1

Prototype 2

Prototype 3

20



Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror

21



The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

22



Unique Position
Demand-Aware, Self-Adjusting Systems

Everywhere, but mainly 
in software

Our focus: 
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems

23



Question 1:

How to Quantify 
such “Structure” 
in the Demand?



bursty uniform
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An Information-Theoretic Approach

Complexity Map

No structure

bursty & skewed
skewed

Our approach: iterative 

randomization and 

compression of trace to 

identify dimensions of 

structure.
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Sigmetrics 2020



Question 2:

Given This Structure, 
What Can Be Achieved? 
Metrics and Algorithms?

A first insight: entropy of the demand.
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Connection to 
Datastructures
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More structure: improved access cost
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Avin et al., SIGCOMM CCR 2018.
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Another Benefit of Automation:

More Adaptive Operation

⇢ Automation and programmability: enables 

more adaptable networks

⇢ Attractive for: 

⇢ Fine-grained traffic engineering (e.g., at Google)

⇢ Accounting for changes in the demand (spatio-temporal structure)

⇢ Security policy changes

⇢ Service relocation

⇢ Maintenance work

⇢ Link/node failures

11



Another Benefit of Automation:

More Adaptive Operation

untrusted

hosts
trusted

hosts

SDN Controller Platform

In NFV: Not necessarily deployed at edge!

Enabled by SDN, it has become „easy“ 

to quickly change route to blue route.
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Survey:

100s of 

algorithms

But still need clever algorithms! Updates are
asynchronous, may lead to temporal inconsistencies. 



Again: Formal Methods for

Self-Adjusting Updates

untrusted

hosts
trusted

hosts

SDN Controller Platform

In NFV: Not necessarily deployed at edge!

Vision: self-adjusting networks could synthesize

even their algorithms! „Ex machina“: e.g., parametrized.

Asynchronous: 
loop!



Examples: NetSynth, Latte

⇢ Already “in the making”!

⇢ NetSynth (PLDI’15): supports any LTL property and hence 

operator preferences. Then: standard framework to synthesize 

schedule. 

⇢ Latte (PER’20): fast Petri net model and synthesis

⇢ Example: Gadget to model switches:

If token down here: switch 
updated to new path

If token up here: 
packets go old path
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Examples: NetSynth, Latte

⇢ Already “in the making”!

⇢ NetSynth (PLDI’15): supports any LTL property and hence 

operator preferences. Then: standard framework to synthesize 

schedule. 

⇢ Latte (PER’20): fast Petri net model and synthesis

⇢ Example: Gadget to model switches:

If token down here: switch 
updated to new path

If token up here: 
packets go old path

Formal 

methods!

May be enhanced with AI.



Challenges of Self-Adjusting Networks



Challenges

⇢ Performance of formal methods? Opportunity: algorithm engineering!

⇢ Use of AI: to speed up synthesis and deal with complexity?

⇢ Limitations of automation: can networks detect themselves, 

when the need “help from the operator”?

⇢ Data: How to learn about and/or predict demand? Telemetry?

⇢ Programmability vs security? 

28



Example: Security

SDN Controller

Clever at edge: virtualized 
and programmable.

Simple in core: 
hardware switches.

⇢ Enabling technology like SDN often deployed “in software”

⇢ E.g., virtual switches in datacenters

29



Virtual Switches
V
i
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t
u
a
l
i
z
a
t
i
o
n

L
a
y
e
r

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Virtual switches reside in the server’s
virtualization layer (e.g., Xen’s Dom0). 
Goal: provide connectivity and isolation.

30



Complexity: Parsing

User

Kernel

VM VM VM

N
I
C

Virtual SwitchL2,L2.5
,L3,L4

Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN
PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP

Parser directly faces attacker and vSwitch
runs with high security privileges.

30



Credits: 

Marco Chiesa

Parsing must be fast!

Unified packet parser is fast, but complex.



Bears Risks!

User

Kernel

VM VM VM

Virtual 
Switch
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Bears Risks!

User

Kernel

Ctrl

Virtual

Switch

User

Kernel

VM VM VM

Virtual 
Switch

Malformed packet: 

crashes virtual switch
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Bears Risks!

User

Kernel

Ctrl

Virtual

Switch

User

Kernel

VM VM VM

Virtual 
Switch

User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
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Conclusion

⇢ A vision: self-adjusting networks

⇢ Example 1: policy-compliant networks

⇀ self-verifying

⇀ self-repairing

⇢ Example 2: demand-aware topologies

⇢ On both fronts: tip of the iceberg!

⇀ E.g., self-adjusting networks further

supported by telemetry (data) and AI 

(e.g., prediction)  
Thank you!
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Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?
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Trace Complexity
Information-Theoretic Approach 

“Shuffle&Compress”

Difference in size 
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Randomize rows UniformOriginal
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Difference in size 
(entropy)?

Can be used to define 
2-dimensional 

complexity map! 
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