
“We cannot direct the wind,
but we can adjust the sails.”
(Folklore)

Self-Adjusting Networks:

Vision, Solutions, Challenges
Stefan Schmid

Acknowledgements:

It`s a Great Time to Be a

Networking Researcher!

Innovation

1
Credits: George Varghese

It`s a Great Time to Be a

Networking Researcher!

Innovation

Credits: George Varghese

Enables and motivates

self-adjusting networks!

1

Datacenters (“hyper-scale”)

Traffic
Growth

Interconnecting networks:

a critical infrastructure

of our digital society.

+network

It’s High Time!

Explosive Traffic

Datacenters (“hyper-scale”)

Traffic
Growth

Interconnecting networks:

a critical infrastructure

of our digital society.

+network

Credits: Marco Chiesa

It’s High Time!

Explosive Traffic

6

Countries disconnected Passengers stranded Even 911 affected

Even tech-savvy companies struggle:

Today, dependability requirements stand in contrast with reality:

Credits: Laurent Vanbever, Nate Foster 3

It’s High Time!

Reality vs Requirements

7

Countries disconnected Passengers stranded Even 911 affected

Even tech-savvy companies struggle:

Today, dependability requirements stand in contrast with reality:

Mainly:

human

errors!

Credits: Laurent Vanbever, Nate Foster 3

It’s High Time!

Reality vs Requirements

Passau, Germany

Agenda

Three Use Cases

Passau, Germany

Agenda

Three Use Cases

Formal

methods as

a tool!

10

Motivation: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Credits: Ratul Mahajan 5

11

Motivation: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

Credits: Ratul Mahajan 5

12

Motivation: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

X,Y: allow from G* X,Y: block from P*

Credits: Ratul Mahajan 5

13

Motivation: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

Credits: Ratul Mahajan 5

14

Motivation: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

Credits: Ratul Mahajan 5

15

Motivation: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

If link (G,X) fails and traffic from G is rerouted via Y and C to X:

X announces (does not block) G and H as it comes from C. (Note: BGP.)

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

Credits: Ratul Mahajan 5

Admin’s Responsibilities

A

B

C

Forwarding and
failover rules ⇢ Reachability: Can traffic

from ingress port A reach B?

⇢ Loop-freedom: Do forwarding

rules imply loop-free routes?

⇢ Policy: Does traffic from A to

B never go via C?

⇢ Waypoint enforcement: Is

traffic from A to B always routed

via a node C (e.g., an IDS)?

6

Reachable?

Admin’s Responsibilities

A

B

C

⇢ Reachability: Can traffic

from ingress port A reach B?

⇢ Loop-freedom: Do forwarding

rules imply loop-free routes?

⇢ Policy: Does traffic from A to

B never go via C?

⇢ Waypoint enforcement: Is

traffic from A to B always routed

via a node C (e.g., an IDS)?

6

Loop-free?

Admin’s Responsibilities

A

B

C

⇢ Reachability: Can traffic

from ingress port A reach B?

⇢ Loop-freedom: Do forwarding

rules imply loop-free routes?

⇢ Policy: Does traffic from A to

B never go via C?

⇢ Waypoint enforcement: Is

traffic from A to B always routed

via a node C (e.g., an IDS)?

6

Policy ok?

Admin’s Responsibilities

A

B

C

⇢ Reachability: Can traffic

from ingress port A reach B?

⇢ Loop-freedom: Do forwarding

rules imply loop-free routes?

⇢ Policy: Does traffic from A to

B never go via C?

⇢ Waypoint enforcement: Is

traffic from A to B always routed

via a node C (e.g., an IDS)?

E.g. NORDUnet: no traffic
via Iceland (expensive!).

6

Waypoint?

Admin’s Responsibilities

A

B

C

E.g. IDS

⇢ Reachability: Can traffic

from ingress port A reach B?

⇢ Loop-freedom: Do forwarding

rules imply loop-free routes?

⇢ Policy: Does traffic from A to

B never go via C?

⇢ Waypoint enforcement: Is

traffic from A to B always routed

via a node C (e.g., an IDS)?

6

Admin’s Responsibilities

A

B

C

E.g. IDS

⇢ Reachability: Can traffic

from ingress port A reach B?

⇢ Loop-freedom: Do forwarding

rules imply loop-free routes?

⇢ Policy: Does traffic from A to

B never go via C?

⇢ Waypoint enforcement: Is

traffic from A to B always routed

via a node C (e.g., an IDS)?

k failures =

(
𝑛
𝑘
) possibilities

… and everything even under failures?!

6

A Modern Approach:

Automated Whatif Analysis

Router configurations
(Cisco, Juniper, etc.)

Formal language
which supports

automated analysis

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

What if?!

7

A Modern Approach:

Automated Whatif Analysis

Router configurations
(Cisco, Juniper, etc.)

Formal language
which supports

automated analysis

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

What if?!

On request or
regularly.

7

A Modern Approach:

Automated Whatif Analysis

Router configurations
(Cisco, Juniper, etc.)

Formal language
which supports

automated analysis

Compilation

Fix/synthesize

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

What if?!

On request or
regularly.

7

A Modern Approach:

Automated Whatif Analysis

Router configurations
(Cisco, Juniper, etc.)

Formal language
which supports

automated analysis

Compilation

Fix/synthesize

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

What if?!

On request or
regularly.

7

Challenge:

Hard Even for Computers?

⇢ NORDUnet: provider for Nordic

countries

⇢ 24 MPLS routers, running

Juniper OS, >30,000 labels!

8

Challenge:

Hard Even for Computers?

⇢ NORDUnet: provider for Nordic

countries

⇢ 24 MPLS routers, running

Juniper OS, >30,000 labels!

8

For specific networks such as MPLS: feasible and fast!

Tools such as P-Rex or AalWiNes do it in secs for MPLS:

reduction to automata theory, polynomial-time. Formal

methods!

Challenge:

Hard Even for Computers?

⇢ NORDUnet: provider for Nordic

countries

⇢ 24 MPLS routers, running

Juniper OS, >30,000 labels!

8

For specific networks such as MPLS: feasible and fast!

Tools such as P-Rex or AalWiNes do it in secs for MPLS:

reduction to automata theory, polynomial-time.

But general networks more challenging.
Formal

methods!

Fixing&Synthesis: Harder

⇢ Approaches: Petri games, Stackelberg

games, UPPAAL Stratego…

⇢ But synthesis slower than verification

⇢ An opportunity for using AI!

⇢ Ideally AI+FM: guarantees from formal

methods, performance from AI

⇢ For example: synthesize with AI then

verify with formal methods

⇢ Examples: DeepMPLS, DeepBGP, …

9

Fixing&Synthesis: Harder

⇢ Approaches: Petri games, Stackelberg

games, UPPAAL Stratego…

⇢ But synthesis slower than verification

⇢ An opportunity for using AI!

⇢ Ideally AI+FM: guarantees from formal

methods, performance from AI

⇢ For example: synthesize with AI then

verify with formal methods

⇢ Examples: DeepMPLS, DeepBGP, …

9

AI FM

Fixing&Synthesis: Harder

⇢ Approaches: Petri games, Stackelberg

games, UPPAAL Stratego…

⇢ But synthesis slower than verification

⇢ An opportunity for using AI!

⇢ Ideally AI+FM: guarantees from formal

methods, performance from AI

⇢ For example: synthesize with AI then

verify with formal methods

⇢ Examples: DeepMPLS, DeepBGP, …

9

AI FM

Fixing&Synthesis: Harder

⇢ Approaches: Petri games, Stackelberg

games, UPPAAL Stratego…

⇢ But synthesis slower than verification

⇢ An opportunity for using AI!

⇢ Ideally AI+FM: guarantees from formal

methods, performance from AI

⇢ For example: synthesize with AI then

verify with formal methods

⇢ Examples: DeepMPLS, DeepBGP, …

9

AI FM

… and what about quantitative properties?

Online demo: https://demo.aalwines.cs.aau.dk/

Source code: https://github.com/DEIS-Tools/AalWiNes

Paper: https://schmiste.github.io/conext20.pdf

Query:
regular

expression

Witness Dozens of
networks

10

A Possible Starting Point:

The AalWiNes Tool

https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes
https://schmiste.github.io/conext20.pdf

Passau, Germany

Agenda

Three Use Cases

Passau, Germany

Agenda

Three Use Cases

On lower

layers!

⇢ Recall: explosive growth of demand

⇢ Problem: network equipment reaching

capacity limits
⇀ Transistor density rates stalling

⇀ “End of Moore‘s Law in networking”

⇢ Hence: more equipment,

larger networks

⇢ Resource intensive and:

inefficient

Annoying for companies,

opportunity for researchers

[
1
]

S
o
u
r
c
e
:

M
i
c
r
o
s
o
f
t
,

2
0
1
9

G
b
p
s
/
€

Time

Let’s go back to datacenter use case:

Moore’s Law of Datacenters

Root Cause
Fixed and Demand-Oblivious Topology

How to interconnect?

16

Root Cause
Fixed and Demand-Oblivious Topology

Many flavors,

but in common:

fixed and

oblivious to

actual demand.

16

Root Cause
Fixed and Demand-Oblivious Topology

Highway which ignores

actual traffic:

frustrating!

Many flavors,

but in common:

fixed and

oblivious to

actual demand.

16

A Vision
Flexible and Demand-Aware Topologies

17

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

17

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

demand

matrix:

17

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

Matches demand

demand

matrix:

e.g.,

mirrors

new flexible

interconnect

17

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

new

demand:

e.g.,

mirrors

new flexible

interconnect

17

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

new

demand:

Matches demand

e.g.,

mirrors

new flexible

interconnect

17

A Vision
Flexible and Demand-Aware Topologies

1 2 3 4 5 6 7 8

Demand-Aware

Networks

new

demand:

e.g.,

mirrors

new flexible

interconnect

17

The Motivation
Much Structure in the Demand

Hypothesis: this can

be exploited.

Empirical studies:

s
o
u
r
c
e
s

destinations

Facebook

s
o
u
r
c
e
s

destinations

Microsoft

traffic bursty over time

M
b
p
s

Facebook

Time (seconds)

traffic matrices sparse and skewed

18

Sounds Crazy?
Emerging Enabling
Technology.

H2020:

“Photonics one of only five

key enabling technologies

for future prosperity.”

US National Research Council:

“Photons are the new

Electrons.”
Photonics

19

Enabler
Novel Reconfigurable Optical Switches

⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times

⇀ From our last years’ ACM SIGCOMM workshop OptSys

Prototype 1

Prototype 2

Prototype 3

20

Example
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror

21

The Big Picture

Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting

Networks

Now is the time!

22

Unique Position
Demand-Aware, Self-Adjusting Systems

Everywhere, but mainly
in software

Our focus:
in hardware

vs
Algorithmic trading

Neural networks

Recommender systems

23

Question 1:

How to Quantify
such “Structure”
in the Demand?

bursty uniform

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

temporal complexity

An Information-Theoretic Approach

Complexity Map

No structure

bursty & skewed
skewed

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

25

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Different

structures!

bursty uniform

bursty & skewed
skewed

NN

No structure

An Information-Theoretic Approach

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

25

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Potential

gain!

bursty & skewed
skewed

bursty uniform

NN

An Information-Theoretic Approach

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

25

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Potential

gain!

bursty & skewed
skewed

bursty uniform

NN

An Information-Theoretic Approach

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

25

Griner et al.,

Sigmetrics 2020

Question 2:

Given This Structure,
What Can Be Achieved?
Metrics and Algorithms?

A first insight: entropy of the demand.

Interesting Perspective:

Connection to
Datastructures

Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost

26

Interesting Perspective:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

26

Interesting Perspective:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

Similar benefits?

26

Interesting Perspective:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding)

More structure: improved access cost / shorter codes

More than

an analogy!

Similar benefits?

26

Interesting Perspective:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding) More than

an analogy!

Reduced expected route lengths!

entropy
rate

entropylog n

entropy
rate

entropylog n

Generalize methodology:

... and transfer

entropy bounds and

algorithms of data-

structures to networks.

Results, e.g.:

Demand-aware networks

of asymptotically

optimal route lengths.

26

Interesting Perspective:

Connection to
Datastructures & Coding

Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding) More than

an analogy!

Reduced expected route lengths!

entropy
rate

entropylog n

entropy
rate

entropylog n

Generalize methodology:

... and transfer

entropy bounds and

algorithms of data-

structures to networks.

Results, e.g.:

Demand-aware networks

of asymptotically

optimal route lengths.

26

Avin et al., SIGCOMM CCR 2018.

Passau, Germany

Agenda

Three Use Cases

Another Benefit of Automation:

More Adaptive Operation

⇢ Automation and programmability: enables

more adaptable networks

⇢ Attractive for:

⇢ Fine-grained traffic engineering (e.g., at Google)

⇢ Accounting for changes in the demand (spatio-temporal structure)

⇢ Security policy changes

⇢ Service relocation

⇢ Maintenance work

⇢ Link/node failures

11

Another Benefit of Automation:

More Adaptive Operation

untrusted

hosts
trusted

hosts

SDN Controller Platform

In NFV: Not necessarily deployed at edge!

Enabled by SDN, it has become „easy“

to quickly change route to blue route.
12

Another Benefit of Automation:

More Adaptive Operation

untrusted

hosts
trusted

hosts

SDN Controller Platform

In NFV: Not necessarily deployed at edge!

But still need clever algorithms! Updates are
asynchronous, may lead to temporal inconsistencies.

Asynchronous:
loop!

12

Another Benefit of Automation:

More Adaptive Operation

untrusted

hosts
trusted

hosts

SDN Controller Platform

In NFV: Not necessarily deployed at edge!

Asynchronous:
loop!

12

Survey:

100s of

algorithms

But still need clever algorithms! Updates are
asynchronous, may lead to temporal inconsistencies.

Again: Formal Methods for

Self-Adjusting Updates

untrusted

hosts
trusted

hosts

SDN Controller Platform

In NFV: Not necessarily deployed at edge!

Vision: self-adjusting networks could synthesize

even their algorithms! „Ex machina“: e.g., parametrized.

Asynchronous:
loop!

Examples: NetSynth, Latte

⇢ Already “in the making”!

⇢ NetSynth (PLDI’15): supports any LTL property and hence

operator preferences. Then: standard framework to synthesize

schedule.

⇢ Latte (PER’20): fast Petri net model and synthesis

⇢ Example: Gadget to model switches:

If token down here: switch
updated to new path

If token up here:
packets go old path

Examples: NetSynth, Latte

⇢ Already “in the making”!

⇢ NetSynth (PLDI’15): supports any LTL property and hence

operator preferences. Then: standard framework to synthesize

schedule.

⇢ Latte (PER’20): fast Petri net model and synthesis

⇢ Example: Gadget to model switches:

If token down here: switch
updated to new path

If token up here:
packets go old path

Formal

methods!

Examples: NetSynth, Latte

⇢ Already “in the making”!

⇢ NetSynth (PLDI’15): supports any LTL property and hence

operator preferences. Then: standard framework to synthesize

schedule.

⇢ Latte (PER’20): fast Petri net model and synthesis

⇢ Example: Gadget to model switches:

If token down here: switch
updated to new path

If token up here:
packets go old path

Formal

methods!

May be enhanced with AI.

Challenges of Self-Adjusting Networks

Challenges

⇢ Performance of formal methods? Opportunity: algorithm engineering!

⇢ Use of AI: to speed up synthesis and deal with complexity?

⇢ Limitations of automation: can networks detect themselves,

when the need “help from the operator”?

⇢ Data: How to learn about and/or predict demand? Telemetry?

⇢ Programmability vs security?

28

Example: Security

SDN Controller

Clever at edge: virtualized
and programmable.

Simple in core:
hardware switches.

⇢ Enabling technology like SDN often deployed “in software”

⇢ E.g., virtual switches in datacenters

29

Virtual Switches
V
i
r
t
u
a
l
i
z
a
t
i
o
n

L
a
y
e
r

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Virtual switches reside in the server’s
virtualization layer (e.g., Xen’s Dom0).
Goal: provide connectivity and isolation.

30

Complexity: Parsing

User

Kernel

VM VM VM

N
I
C

Virtual SwitchL2,L2.5
,L3,L4

Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN
PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP

Parser directly faces attacker and vSwitch
runs with high security privileges.

30

Credits:

Marco Chiesa

Parsing must be fast!

Unified packet parser is fast, but complex.

Bears Risks!

User

Kernel

VM VM VM

Virtual
Switch

31

Bears Risks!

User

Kernel

VM VM VM

Virtual
Switch

31

Bears Risks!

User

Kernel

Ctrl

Virtual

Switch

User

Kernel

VM VM VM

Virtual
Switch

Malformed packet:

crashes virtual switch

31

Bears Risks!

User

Kernel

Ctrl

Virtual

Switch

User

Kernel

VM VM VM

Virtual
Switch

User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

31

Conclusion

⇢ A vision: self-adjusting networks

⇢ Example 1: policy-compliant networks

⇀ self-verifying

⇀ self-repairing

⇢ Example 2: demand-aware topologies

⇢ On both fronts: tip of the iceberg!

⇀ E.g., self-adjusting networks further

supported by telemetry (data) and AI

(e.g., prediction)
Thank you!

84

References

AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks

Peter Gjøl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk,

and Jiri Srba.

16th ACM International Conference on emerging Networking EXperiments and Technologies

(CoNEXT), Barcelona, Spain, December 2020.

On the Complexity of Traffic Traces and Implications

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.

ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Boston, Massachusetts, USA,

June 2020.

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)

Chen Avin and Stefan Schmid.

ACM SIGCOMM Computer Communication Review (CCR), October 2018.

Cerberus: The Power of Choices in Datacenter Topology Design (A Throughput Perspective)

Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen Avin.

ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Mumbai, India, June 2022.

Latte: Improving the Latency of Transiently Consistent Network Update Schedules

Mark Glavind, Niels Christensen, Jiri Srba, and Stefan Schmid.

38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation

(PERFORMANCE) and ACM Performance Evaluation Review (PER), Milan, Italy, November 2020.

Taking Control of SDN-based Cloud Systems via the Data Plane (Best Paper Award)

Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja

Feldmann, and Stefan Schmid.

ACM Symposium on SDN Research (SOSR), Los Angeles, California, USA, March 2018.

https://schmiste.github.io/conext20.pdf
https://schmiste.github.io/sigmetrics20complexity.pdf
https://schmiste.github.io/ccr18san.pdf
https://schmiste.github.io/sigmetrics22cerberus.pdf
https://schmiste.github.io/perf20latte.pdf
https://schmiste.github.io/sosr18.pdf

Backup Slides

Case Study:

MPLS Networks

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

Original
Routing

Push 10

Push 20

Swap Swap
Swap Pop

Pop

Case Study:

MPLS Networks

16

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

22

10
20

11
21 12

2230|11
30|21

11
21

31|11
31|21

One failure:
push 30: route
around (v2,v3)

12

10
20

11
21

Original
Routing

Case Study:

MPLS Networks

16

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

22

10
20

11
21 12

2230|11
30|21

11
21

31|11
31|21

One failure:
push 30: route
around (v2,v3)

12

10
20

11
21

Original
Routing

Pop
Normal

swap

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21

Case Study:

MPLS Networks

16

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Push 30

Push 40

pop pop

Two failures:
first push 30:

route around (v2,v3)

Push recursively
40: route around

(v2,v6)

12

10
20

11
21

Original
Routing

One failure:
push 30: route
around (v2,v3)

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

vs

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

More uniform More structure

vs

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

vsvs

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

T
i
m
e

Original

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows UniformOriginal

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

Can be used to define
2-dimensional

complexity map!

Bonus Material

Hogwarts Stair

Bonus Material

Golden Gate Zipper

Bonus Material

In HPC

