“We cannot direct the wind,

but we can adjust the sails.”
(Folklore)
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Today, dependability

Countries disconnected

Data Centre » Networks
Google routing blunder sent Japan's
Internet dark on Friday

Another big BGP blunder

By Richard Chirgwin 27 Aug 2017 at 22:35 400) SHARE ¥

Last Friday, someone in Google fat-thumbed a border gateway protocol
(BGP) advertisement and sent Japanese Internet traffic into a black hole.

The trouble began when The Chocolate Factory “leaked” a big route
table to Verizon, the result of which was traffic from Japanese giants like
NTT and KDDI was sent to Google on the expectation it would be treated
as transit.

requirements stand in

Passengers stranded

British Airways' latest Total Inability To
Support Upwardness of Planes*
caused by Amadeus system outage
Stuck on the ground awaiting a load sheet? Here's
why

By Gareth Corfield 19 Jul 2018 at 11:16 109() SHARE ¥

Even tech-savvy companies struggle:
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contrast with reality:

Even 911 affected

Officials: Human error to blame in Minn. 911
outage

According to a press release, CenturyLink told department of public safety that
human error by an employee of a third party vendor was to blame for the cutage

Aug 16,2018

Duluth News Tribune

SAINT PAUL, Minn. — The Minnesota Ds Public Safety y Communication

was told by its 311 provider that an Aug. 1 outage was caused by human error.

Credits: Laurent Vanbever, Nate Foster
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Example: BGP in
Microsoft
datacenter

X,Y: allow from G*

Datacenter

If link (G,X) fails and traffic from G is rerouted via Y and C to X:
X announces (does not block) G and H as it comes from C. (Note: BGP.)

Credits: Ratul Mahajan
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-» Reachability: Can traffic
from ingress port A reach B?

-» Loop-freedom: Do forwarding
rules imply loop-free routes?

-» Policy: Does traffic from A to
B never go via C?

-» Waypoint enforcement: Is
traffic from A to B always routed
via a node C (e.g., an IDS)?

. and everything even under failures?!



Tn-Label |_Outl o
T [ (or,v2) | push(10)
L | (vrw) | push(20)

Toy 10 (v2.vs) | swap(11)
20 (v2.v4) | swap(21)
Tes 11 (v3.v4) | swap(12)
21 (va,vs) | swap(22)
1 (v3. 1) | swap(12)
21 (va,vs) | swap(22) . .
T 12
. [ Compilation
o 30 o) | s
30 Ve« K 3
61 6, v7) | swap(62)
8 |as = X = gXX
Ter 31 v pop
62 swap(11)
72 swap(22)
z
2 s pX = qYX

qy = rYY
ryY = r
rX = pX

local FFT Out-I | In-Label | Out-1 op
Tog (v2,vg) 11 (va,vg) | push(30) .
" | (omes) | 21| (oarve) | push(30) Interpretation
(2, vg) 30 (vg,v5) | push(40)
global FFT | Out-l | In-Label | Out-l op

Tua (v2,3) 11 (v2, 1) | swap(61)
(vg,v3) 21 (v2,vg) | swap(7T1)
(v2,v6) 6l (va.v5) | push{40)
(w2, vg) 7l (vg,v5) | push(40)

Formal language
which supports
automated analysis

Router configurations
(Cisco, Juniper, etc.)



T To-Label | Owl | op
Toy 4 (v1,v2) | push(10)
L | (vnw) | push(20)
- 10| (v2v) | swap(11)
20 | (u2rvg) | swap(21)
Tos 11 (v3.v4) | swap(12)
2| (e, ox) | swap(22)
1| (vsv) | swap(12)
20| (ua,0x) | swap(22) . .
2| o | Compilation
T 40 (vs.v6) pop
Teo 30
30
ol
== pX = gXX
Ter 31 pop
62 swap(11)
2 swap(22)
T 2 p
) » i pX ﬁ qYX

On request or qY = pyy
ry = r
rX = pX

regularly.

local FFT Out-I | In-Label | Out-1 op
o2 {0273 1l (v2,70) | push{30) .
(onvs) | 21 | (varve) | push(30) Interpretation
(w2, vg) 30 (vg,v5) | push(40)
global FFT | Out-l | In-Label | Out-l op
To (w2, ) 11 (va,vg) | swap(Gl)
(vg,v3) 21 (v2,vg) | swap(7T1)
(va.v5) | 61 (v2,vs) | push(40)
(vg, vg) 71 (vg,v5) | push(40)

Formal language
which supports
automated analysis

Router configurations
(Cisco, Juniper, etc.)



T To-Label | Owl | op
Toy 4 (v1,v2) | push(10)
L | (vnw) | push(20)
- 10| (v2v) | swap(11)
20 | (u2rvg) | swap(21)
Tos 11 (v3.v4) | swap(12)
2| (e, ox) | swap(22)
1| (vsv) | swap(12)
20| (ua,0x) | swap(22) . .
2| o | Compilation
T 40 (vs.v6) pop
Teo 30
30
ol
== pX = gXX
Ter 31 pop
62 swap(11)
2 swap(22)
T 2 p
) » i pX ﬁ qYX

On request or qY = pyy
ry = r
rX = pX

regularly.

local FFT Out-I | In-Label | Out-1 op
o2 {0273 1l (v2,70) | push{30) . .
(vava) | 21 | (vmvg) | push(30) Fix/ Synt hesize
(w2, vg) 30 (vg,v5) | push(40)
global FFT | Out-l | In-Label | Out-l op
To (w2, ) 11 (va,vg) | swap(Gl)
(vg,v3) 21 (v2,vg) | swap(7T1)
(va.v5) | 61 (v2,vs) | push(40)
(vg, vg) 71 (vg,v5) | push(40)

Formal language
which supports
automated analysis

Router configurations
(Cisco, Juniper, etc.)




A Modern Approach:

Automated Whatif Analysis
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= Commercial Capacity

-»> NORDUnet: provider for Nordic
countries

-» 24 MPLS routers, running
Juniper 0S, >30,000 labels!

NORDUnet

For specific networks such as MPLS: feasible and fast!
Tools such as P-Rex or AalWiNes do it in secs for MPLS:
reduction to automata theory, polynomial-time. Formal
But general networks more challenging. methods!
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Fixing&Synthesis: Harder

-» Approaches: Petri games, Stackelberg
games, UPPAAL Stratego..

-» But synthesis slower than verification
~» An opportunity for using AI!

-> Ideally AI+FM: guarantees from formal
methods, performance from AI

-» For example: synthesize with AI then
verify with formal methods

~» Examples: DeepMPLS, DeepBGP, ..

. and what about quantitative properties?



A Possible Starting Point:

The AalWiNes Tool

MPLS Reachability Analysis & Visualization Tool

Model Aamet

Query <ip> [.#Sydney1] .* [Brisbane2#.] <ip> 0

Examples:
<ip> [.#Sydney1] .* [Brisbane2#.] <ip> 0
<smpls ip> [.#Sydney1] .* [Brisbane2#.] <mpls* smpls ip> 1

Initial header: ip

]

OGRS igloufelgHl [ - #Sydneyl] .* [Brisbane2#.] Y.
Final header: ip v

Query: Max link failures: [
(X
regular
expression Options

Run Validation

Result Satisfied

Query: <ip> [.#Sydney1] .* [Brisbane2#.] <ip> 0
<ip6> : [ ¥ #Sydney1]

<s43,ip6> : [Sydney1#Brisbanel]

<s44,ip6> : [Brisbanel#Brisbane2]

<ip6> : [Brisbane2#® ]

Philippines
About

Indonesia A tool for MPLS reachability analysis and visualization
from:

« Aalborg University

« University of Vienna

L Have a look at the

irns
o Townsville

jckhampton

ide2 | "“BrisbaneZ

\ Ar'm1 dale
Melbou sz

Caledonia

Dozens of
Hbbart networks

Online demo: https://demo.aalwines.cs.aau.dk/

Source code: https://github.com/DEIS-Tools/AalWiNes
Paper: https://schmiste.qgithub.io/conext20.pdf
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Recall: explosive growth of demand

Problem: network equipment reaching

capacity limits
— Transistor density rates stalling
— “End of Moorefs Law in networking”

Hence: more equipment,
larger networks

Resource intensive and:
inefficient

Gbps/€

[1] Source: Microsoft, 2019



How to interconnect?

(e]e]

(o] o)

o0

oo

oo

00

00

©

o0

©
oo

16



Root Cause

Fixed and Demand-Oblivious Topology

Many flavors,

fixed and
oblivious to

but in common:

actual demand.
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Root Cause

Fixed and Demand-Oblivious Topology

-------------
............
-------------

Many flavors,

fixed and
oblivious to

Highway which ignores

but in common:

actual demand.

actual traffic:

frustrating!
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A Vision

Flexible and Demand-Aware Topologies

1 23 456 78

new
demand:

Demand-Aware
Networks

0 ~N OV R WN R

e.g.,
mirrors

new flexible
interconnect
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sources

Empirical studies:

traffic matrices sparse and skewed

destinations
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Facebook
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Sounds Crazy?
Emerging Enabling
Technology.

H2020:

“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council:
“Photons are the new
Electrons.”

Photonics

19



>

Spectrum of prototypes
— Different sizes, different reconfiguration times
— From our last years’ ACM SIGCOMM workshop OptSys

\ 4

v

v

Prototype 1

Prototype 2

Prototype 3
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-» Optical Circuit Switch rapid adaption of physical layer

— Based on rotating mirrors

Fixed
Mirror

/
L X

Rotate Mirror =N

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010
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Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency

22



Our focus:
in hardware

Everywhere, but mainly
in software

Algorithmic trading

oo
©
00

Recommender systems
NETFLIX

Neural networks
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non-temporal complexity

bursty uniform

No structure

bursty & skewed

skewed

temporal complexity

NSTLITIIT
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non-temporal complexity

bursty uniform
pF
CNS
Multi
Grid
L@ NN
bursty & skewed
skewed

temporal complexity

Nops.
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uniform

non-temporal complexity

skewed
skewed

temporal complexity

Griner et al.,
Sigmetrics 2020

Nops.
.5 BEREEEES

i
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A first insight: entropy of the demand.



Traditional BST Demand-aware BST Self-adjusting BST

More structure: improved access cost >
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Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST; BST,.
Q) @

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

Results, e.g.:
Demand-aware networks
of asymptotically
optimal route lengths.

Reduced expected route lengths! >
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Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST; BST,.
Q) @

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

Results, e.g.:
Demand-aware networks
of asymptotically
optimal route lengths.

Reduced expected route lengths! >

Avin et al., SIGCOMM CCR 2018.
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Automation and programmability: enables
more adaptable networks

Attractive for:

Fine-grained traffic engineering (e.g., at Google)

Accounting for changes in the demand (spatio-temporal structure)
Security policy changes

Service relocation

Maintenance work COMMUNICATIONS - 5

Link/node -Failur\es ACM HOME =~ CURRENTISSUE ~NEWS BLOGS OPINION RESEARCH  PRACTICE cmm VIDEOS

Home / Magazine Archive | March 2018 (Vol. 9, No. 3) / A Purpose-Built Global Network: Google's Move to SON / Full Text.

PRACTICE

A Purpose-Built Global Network: Google's Move to SDN

‘Communications of the ACM, March 2016, Vol. 59 No. 3, Pages 46-54
higibbes ezl SIGN IN for Full Access
Comments

viewas: 2 0 © B E s = & @ W ® 0B @O

Ps
Everything about Google is at scale, of coursea market cap of
=V legendary proportions, an unrivaled talent pool, enough
i intellectual property to keep armi ceis for life,
7 , and, oh yeah, a private WAN bigger than you can possibly
imagine that also happens to be growing substantially faster than

e ﬁ l the Internet as a whole,

[T

11



&

Enabled by SDN, it has become ,,easy*
to quicRly change route to blue route.
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t Asynchronous:
loop!

But still need clever algorithms! Updates are
asynchronous, may lead to temporal inconsistencies.
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Again: Formal Methods for

Self-Adjusting Updates

Asynchronous:
loop!

i
1
S
J

Vision: self-adjusting networks could synthesize
even their algorithms! ,,Ex machina“: e.g., parametrized.



Already “in the making”!

NetSynth (PLDI’15): supports any LTL property and hence
operator preferences. Then: standard framework to synthesize
schedule.

Latte (PER’20): fast Petri net model and synthesis

SinitialEnf
L~ N

Example: Gadget (e ) idot

1/ (pek) 1'(e)

’
() Sigiliial

VPN — [vpnMin, vpnMaz] 1’ (pck) )

S8H — [sshMin, sshMaz]

VelIP — [voipMin, voipMax]
S
| V7

~ ~
= VPN < vpnMaz

SSH < sshMazx
VoIP < voipMaz
Sﬂnal

No—
VPN < vpnMazx
8SH < sshMaz
VolP < voipMaz

1/ (pek)
VPN — [vpnMin, vpnMaz]
SS8H — [sshMin, sshMaz]

SSVPN < wpnMaz
VoIP — [voipMin, voipMaz] 1/ (.)

1"(e) SSH < sshMag
VoIP < voipMaz

! h
NS—T
SFinalEnf




Already “in the making”!

NetSynth (PLDI’15): supports any LTL property and hence

Example: Gadget

VPN — [vpnMin, vpnMaz]
S8H — [sshMin, sshMaz]
VelIP — [voipMin, voipMax]

No—
VPN < vpnMaz
VPN — [vpnMin, vpnMaz]

SS8H — [sshMin, sshMaz]
VoIP — [voipMin, voipMax]

VolP < voipMaz

operator preferences. Then: standard framework to synthesize
schedule.

Latte (PER’20): fast Petri net model and synthesis
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SSH < sshMazx
VoIP < voipMaz
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SSVPN < wpnMaz
SS8H < sshMaz
VoIP < voipMaz
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Already “in the making”!

NetSynth (PLDI’15): supports any LTL property and hence

Example: Gadget

VPN — [vpnMin, vpnMaz]
S8H — [sshMin, sshMaz]
VelIP — [voipMin, voipMax]

No—
VPN < vpnMaz
VPN — [vpnMin, vpnMaz]

SS8H — [sshMin, sshMaz]
VoIP — [voipMin, voipMax]

VolP < voipMaz

May be enhanced with AI.

operator preferences. Then: standard framework to synthesize
schedule.

Latte (PER’20): fast Petri net model and synthesis

Sinitial

“=UPN < wpnMaz
SSH < sshMazx
VoIP < voipMaz

Stinal

SSVPN < wpnMaz
SS8H < sshMaz
VoIP < voipMaz

N







S

Performance of formal methods? Opportunity: algorithm engineering!

:
v

Use of AI: to speed up synthesis and deal with complexity?

:
v

Limitations of automation: can networks detect themselves,
when the need “help from the operator”?

:
v

Data: How to learn about and/or predict demand? Telemetry?

:
v

Programmability vs security?

28



-» Enabling technology like SDN often deployed “in software”
-> E.g., virtual switches in datacenters

SN Controller |
=

Simple in core:
hardware switches.

Clever at edge: virtualized
and programmable.

29



VM VM VM

<
)
&+
User - S
----------------- [ Virtual Switch}——---—-——---------- o E
Kernel o
. / 5
N -

I

C

Virtual switches reside in the server’s
virtualization layer (e.g., Xen’s Dom@).
Goal: provide connectivity and isolation.

30



Complexity: Parsing

Ethernet

LLC

VLAN

MPLS

IPv4

ICMPV4

TCP

ubpP

ARP

SCTP

IPV6

ICMPV6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR
TUNNEL-ID
IPv6 ND

IPv6 EXT HDR
IPV6HOPOPTS
IPV6ROUTING
IPv6Fragment
IPV6DESTOPT
IPV6ESP

IPv6 AH

RARP

IGMP

VM VM VM

S~
<
S~
S S
<
~
~
~
S~
~

| Kernel

N H 2

Parser directly faces attacker and vSwitch
runs with high security privileges.

30



Unified packet parser is fast, but complex. Credits:

Marco Chiesa



- User
L Virtual |
Switch

Kernel
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Ctrl

VM VM VM Malformed packet:
crashes virtual switch
- User
L Virtual |
Switch

Kernel
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Kernel

VM

VM VM VM

{ User - = - User

Virtual
Switch

- “Kernel

Kernel
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-> A vision: self-adjusting networks

-> Example 1: policy-compliant networks
— self-verifying
— self-repairing

-> Example 2: demand-aware topologies

-> 0On both fronts: tip of the iceberg!

— E.g., self-adjusting networks further
supported by telemetry (data) and AI

(e.g., prediction)
Thank you!
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- Traffic matrices of two different distributed
ML applications
— GPU-to0-GPU




- Traffic matrices of two different distributed
ML applications
— GPU-to0-GPU
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-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

- Which one has more structure?
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Time




-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

- Which one has more structure?
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Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

»

Increasing complexity (systematically randomized) >

< More structure (compresses better)
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Reconfigurable Optical Networks
Will Move Supercomputer Data
100X Faster

Newly designed HPC network cards and software that
reshapes topologies on-the-fly will be key to success

By Michelle Hampson

In HPC



