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This paper considers the area convergence problem, which requires a group of robots to gather in a
small area not defined a priori. While it is known that robots can gather at a point if they can precisely
measure distances, we, in this paper, show that without any agreement on the coordinate system, it
is impossible for robots to converge to an area if they cannot measure distances or angles. We denote
these robots without the ability to measure distances or angles as monoculus robots. We present a
counterexample showing that monoculus robots fail in area convergence even with the capability of
measuring angles. However, monoculus robots with a weak notion of distance or minimal agreement
on the coordinate system are sufficient to achieve area convergence. In particular, we present area
convergence algorithms in asynchronous model for such monoculus robots with one of the two
following simple additional capabilities: (1) locality detection (LD), a notion of distance or (2)
orthogonal line agreement (OLA), a notion of direction. We discuss extensions corresponding to
multiple dimensions and the termination. Additionally, we validate our findings using simulation
and show the robustness of our algorithms in the presence of errors in observation or movement.
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1. INTRODUCTION

1.1. The context: tiny robots

In recent years, there has been a wide interest in the cooper-
ative behavior of tiny robots. In particular, many distributed
coordination protocols have been devised for a wide range of
models and for a wide range of problems, like convergence,
gathering, pattern formation, flocking, etc. [1–4]. At the same
time, researchers have also started characterizing the scenarios
in which such problems cannot be solved, deriving impossibil-
ity results [5, 6].

1.2. Our motivation: even simpler robots

An interesting question regards the minimal cognitive capa-
bilities that such tiny robots need to have for completing a
specific task. In particular, researchers have initiated the study
of ‘weak robots’ [7]. Weak robots are anonymous (they do not

have any identifier), autonomous (they work independently),
homogeneous (they behave the same in the same situation)
and silent (they also do not communicate with each other).
Weak robots are usually assumed to have their own local view,
represented as a Cartesian coordinate system with an origin,
unit length and axes. The robots may not agree on the orienta-
tion of axes, or the chirality (relative order of the orientation
of axes or handedness). The robots move in a sequence of
three consecutive actions Look-Compute-Move: they observe
the positions of other robots in their local coordinate system,
and the observation step returns a set of points to the observing
robot. The robots cannot distinguish if there are multiple robots
at the same position, i.e. they do not have the capability of
multiplicity detection. Importantly, the robots are oblivious and
cannot maintain state between rounds. The computation they
perform is always based on the data they have collected in the
current observation step; in the next round, they again collect
the data. Such weak robots are therefore interesting from a
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TABLE 1. A summary of literature for robots with limited sensing.

Papers Scheduling Visibility Merging Distance sensing Angle sensing External control Movement

[1] SSYNC Limited Same point Precise Precise No Precise
[11] SSYNC Limited Ignored No Precise No Precise
[12] SSYNC Limited Same point Limited Precise No Precise
[13] SSYNC Limited Ignored Precise Precise No Precise
[14] SSYNC Limited Ignored Precise Precise Yes Precise
[15] ASYNC Limited No Precise Precise No Precise
LD ASYNC Unlimited Ignored Limited No No Fixed
OLA ASYNC Unlimited Ignored No Relative No Fixed

self-stabilizing perspective: as robots do not rely on memory,
an adversary cannot manipulate the memory either. Indeed,
researchers have demonstrated that weak robots are sufficient
to solve a wide range of problems. In particular, it has been
shown that the convergence problem, that is, the problem of
moving robots close to each other, can even be solved for very
weak, oblivious robots [1, 8–10].

Further simpler robots have also been considered in the
literature. They stem primarily from practical experiments with
real multi-robot systems with limited cognitive capabilities
[11]. The papers [11–14, 16] consider the merging assumption,
i.e. two robots behave as a single robot once they become
sufficiently close to each other. This assumption fares well
where the scheduler is fully synchronous or semi-synchronous
because the robots wake up at the same time in the next
round. In the case of an asynchronous time model, even if two
robots exist at the same point at the same time, they may not
necessarily have that point as the destination, or one of them
may wake up while the other is idle. The robots may cross over
each other. Collisions can be ignored in the case of point robots.

In this paper, we explore the area convergence problem,
where the robots have to move inside a small area not fixed
beforehand. We consider a weaker version of the robot model,
named as monoculus robots, aptly derived from its meaning as
‘one-eyed’. A monoculus robot contains a single camera with
a viewfinder that cannot measure the distances or angles. We
introduce two natural, additional capabilities, namely, locality
detection and orthogonal line agreement, for these monocu-
lus robots. The locality detection model is motivated by, e.g.
capacitive sensing or sensing differences in temperature or
vibration. The orthogonal line model is practically motivated
by robots having a simple compass alignment for orthogonal
line agreement. The robots can move a fixed distance on each
activation, which can easily be encoded in hardware as the
number of rotations of the wheel or something similar.

We focus on the area convergence problem for these
monoculus robots and show that the problem is already non-
trivial in this setting. Not only enforcing convex hull invariants
are challenging, but also the fact that observation is very
limited, and we cannot detect multiplicity: as robots are also

not able to perform multiplicity detection (i.e. determine how
many robots are collocated at a certain point), strategies such
as ‘move toward the center of gravity’ (the direction in which
most robots are located) are not possible.

1.3. Our contributions

This paper studies area convergence problems for anonymous,
autonomous, oblivious, point robots without abilities to mea-
sure distances or angles, considered as monoculus robots, under
the most general asynchronous scheduling model, and makes
the following contributions.

1. We study area convergence of the monoculus robots and
show that these robots are incapable of achieving area
convergence.

2. We present a counterexample showing that monoculus
robots with the ability of measuring angles fail to con-
verge following a naive strategy like ‘move along the
angle bisector (of convex hull angle)’.

3. We introduce locality detection (LD), a notion of dis-
tance, and orthogonal line agreement (OLA), a notion
of direction, accordingly.

4. We present and formally analyse deterministic and self-
stabilizing distributed area convergence algorithms when
monoculus robots have either LD or OLA.

5. We report on the performance of our algorithms through
simulation. The simulations include a comparison
between both algorithms and also show the adaptability
of our algorithms to errors in look stage and move stages.

6. We show that our approach can be generalized to higher
dimensions and, with a small extension, supports termi-
nation.

1.4. Related work

The problems of gathering [1], where all the robots gather at a
single point, convergence [10], where robots come very close
to each other, and pattern formation [1, 3] have been studied
intensively in the literature.
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Flocchini et al. [7] introduced the CORDA or asynchronous
(ASYNC) scheduling model for weak robots. Suzuki et al.
[17] have introduced the ATOM or semi-synchronous (SSYNC)
model. In [1], impossibility of gathering for n = 2 without
assumptions on local coordinate system agreement for the
SSYNC and the ASYNC model is proved. Also, for n > 2,
it is impossible to solve gathering without assumptions on
either coordinate system agreement or multiplicity detection
[5]. Cohen and Peleg [9] have proposed a center of gravity
algorithm for convergence of two robots in the ASYNC model
and any number of robots in the SSYNC model. Flocchini
et al. [18] propose an algorithm to gather robots with limited
visibility and agreement in the coordinate system in the ASYNC
model. Souissi et al. [19] have proposed an algorithm to gather
robots with limited visibility with an initially unstable compass
if the compass achieves stability eventually in the SSYNC
model. For two robots with an unreliable compass, Izumi
et al. [20] investigate the necessary conditions required to
gather them in the SSYNC and the ASYNC model.

In the ‘weak robot’ model, the robots can find out the loca-
tion of other robots in their local coordinate system in the Look
step. This, in turn, implies that a robot can measure the distance
between any pair of robots, albeit in its local coordinates. It can
also measure the angle between two robots, considering itself as
the corner. All the algorithms exploit this location information
to create an invariant point or a robot where all the other robots
gather. But in this paper, we deprive the robots of the capability
to determine the location of other robots. This leads to robots
incapable of finding any kind of distance or angles.

Robots with inaccurate sensors have also been studied [10].
Previous works also study robots without the ability to measure
distances but can find out the direction of the robots [11].
Subsequently, Gordon et al. also consider robots with crude
distance sensing capabilities, which distinguishes the near and
far robots [12]. A continuous-time model has been analysed
by Manor et al. [13] with a strategy that moves the robots
towards their farthest neighbor. Manor et al. [14] show that with
a common north and angle measurement capability, a swarm
can converge to a disk with external guidance. These papers
[11–13] assume that the robots can move precisely to a point
if it lies within its visibility range. In this paper, we strip the
robots of making movements to specific points, and they can
only move a fixed predetermined once activated.

Note that any kind of pattern formation requires these robots
to move to a particular point of the pattern. Since the monoculus
robots cannot measure exact distances, they cannot stop at a
particular point. Hence any kind of pattern formation algorithm
described in the previous works that requires location infor-
mation as input is obsolete. Gathering problem is nothing but
the point formation problem [1]. Hence gathering is also not
possible for the monoculus robots. A variation of gathering
problem known as ‘Near-Gathering’ has been solved for the
weak robots with limited visibility, where the robots have to
gather in a small disk of radius ε and occupy distinct locations

[15]. The area convergence problem considered in this paper is
similar to the neargathering but does not have restrictions on
robots occupying distinct positions.

1.5. Paper organization

The rest of this paper is organized as follows. Section 2 intro-
duces the necessary background and preliminaries. Section 3
presents an impossibility result for area convergence for
monoculus robots and a counterexample for monoculus robots
with angle measurement capabilities following ‘move along
angle bisector’ strategy. Section 4 introduces two algorithms
for area convergence with monoculus robots having either
locality detection or orthogonal line agreement capability. We
discuss extensions to higher dimensions and termination in
Section 5. We report on simulation results in Section 6 before
concluding in Section 7.

2. PRELIMINARIES

2.1. Model

We are given a system of n robots, R = {r1, r2, · · · , rn}, which
are located in the Euclidean plane. We consider anonymous,
autonomous, homogeneous, oblivious point robots with unlim-
ited visibility. The robots have their local coordinate system,
which may not be the same for all the robots. The robots in
each round execute a sequence of Look-Compute-Move steps:
first, each robot r ∈ R observes other robots and obtains a set
LC = {p1, p2, ..., pk}. A robot is represented as pi in r’s look
phase. It knows the relative order between pi’s, i.e. r knows
that p1 is towards the left of p2 in its local view.

Second, on the basis of the observed information, it executes
an algorithm that computes a direction (Compute step); the
robot then moves in this direction (Move step), for a fixed
distance b (the step size). The robots are silent, cannot detect
multiplicity points and can pass over each other. We ignore
the collisions during movement. We denote this weaker robot
model as monoculus robot.

We consider the most general CORDA or the ASYNC
scheduling model known from weak robots [7] as well as
the ATOM or semi-synchronous (SSYNC) model [17]. These
models define the activation schedule of the robots: the SSYNC
model considers instantaneous computation and movement,
i.e. the robots cannot observe other robots in motion, while
in the ASYNC model, any robot can look at any time. In the
SSYNC model, the time is divided into global rounds, and a
subset of the robots are activated in each round, which finish
their Look-Compute-Move within that round. In the case of
the ASYNC model, there is no global notion of time. The fully
synchronous (FSYNC) model is a special case of the SSYNC
model, in which all the robots are activated in each round. The
algorithms presented in this paper work in both the ASYNC and
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FIGURE 1. r′
4 is the destination of robot r4 from the most recent look

state on or before time t, and analogously for r5. At t, �r1r2r3r4r5

is both the CHt and ACHt. At t′ (> t), �r1r2r3r4r′
5 is CHt′ , while�r1r2r3r4r′

4r′
5 is ACHt′ . ACHt contains both r4 and r′

4 because r4

has not moved. ACHt′ contains r′
4 as a corner which is outside CHt′ ,

because r5 moved to r′
5.

the SSYNC model. For the sake of generality, we present our
proofs in terms of the ASYNC model.

2.2. Notation and terminology

A Configuration (C) is a set containing all the robot positions
in 2D. At any time t the configuration (the mapping of robots
in the plane) is denoted by Ct. The convex hull of configuration
Ct is denoted as CHt. We define Augmented Configuration at
time t (ACt) as Ct augmented with the destinations of each robot
from the most recent look state on or before t. If all the robots
are idle at time t, then ACt is the same as Ct. The convex hull of
ACt is denoted as ACHt as shown in Fig. 1. Area convergence
is achieved when the distance between any pair of robots is
less than a predefined value ζ (and subsequently does not vio-
late this). Our multi-robot system is vulnerable to adversarial
manipulation; however, the algorithms presented in this paper
are self-stabilizing [21] and robust to state manipulations. Since
the robots are oblivious, they only depend on the current state:
if the state is perturbed, the algorithms are still able to converge
in a self-stabilizing manner [22].

3. IMPOSSIBILITY

The following theorem shows that monoculus robots by
themselves cannot converge deterministically. Remember that
monoculus robots are incapable of measuring distances or
angles. Consider a robot with a viewfinder and a mark on the
camera. The robot can align the viewfinder with that robot’s
location, thus allowing it to move towards another robot’s
location. The mark specifying the positive x-axis allows the
robot to keep track of one direction to perform a 360◦ rotation
during the look step. The robots do not have any agreement on
the mark specifying the direction of the positive x-axis.

In a deterministic algorithm, the robot cannot move along a
direction that makes a particular angle with the known direction
of the positive x-axis, since the robot cannot measure angles. So
under the same configuration, it cannot move in the same direc-

FIGURE 2. Locally indistinguishable configurations with respect to
r.

FIGURE 3. Change in local orientation of r1.

tion that it chose previously. Thus any deterministic algorithm
has to follow the direction of one of the visible robots.

3.1. Monoculus robots

Theorem 1.1. There is no deterministic area convergence
algorithm for monoculus robots without any agreement on the
coordinate system in ASYNC.

Proof. We prove the theorem using a symmetry argument.
Consider the two configurations C1 and C2 in Fig. 2. In C1, all
the robots are equidistant from robot r, while in C2, the robots
are at different distances. However, the relative position of the
robots is the same at r. Now considering the local view of robot
r, it cannot distinguish between C1 and C2. Say a deterministic
algorithm φ decides a direction of movement for robot r in
configuration C1. Since both C1 and C2 are the same from robot
r’s perspective, the deterministic algorithm outputs the same
direction of movement for both cases.

Now consider the convex hull CH1 and CH2 of C1 and C2,
respectively, as shown in Fig. 2. The robot r moves a distance
b in one round. The distance from any point on CH1 is more
than b, but we can skew the convex hull in the direction of
movement, so to make it like CH2, where if the robot r moves
a distance b, it exits CH2. Therefore there exists a situation for
any algorithm φ such that the area of the convex hull increases.

Now we have to generate a situation where the area of the
convex hull increases continuously, such that the configura-
tion diverges. Consider the configurations in Fig. 3. Suppose
the robot r1 decides to move towards B according to the
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FIGURE 4. A configuration showing increase in convex hull area.

configuration as shown in C1. The adversary can always posi-
tion the robot r1 in the initial configuration such that r1’s local
orientation of axes are as per C2. Then r1 will move towards A
in C2.

To show an increase in the convex hull area, consider the
configuration shown in Fig. 4. The robots r1, r2 and r3 are
placed by the adversary such that they move in the outward
direction. The new configuration becomes analogous to the
old configuration after r1, r2 and r3 move. A similar situation
repeats for r′

1, r′
2 and r′

3. �

3.2. Monoculus robots with angle measurement capability

Suppose the monoculus robots have the ability to measure
angles. This provides another aspect of minimal enhancement.
Once a robot can determine the angles of all other robots with
respect to itself, it can find out whether it is on the boundary
of the convex hull or not. A naïve strategy like move along the
angle bisector of the convex hull angle can be considered. We
now present a counterexample showing that moving along the
angle bisector does not converge.

Example 1.2. Consider three robots at B, C and D such that
BC = CD. Let G and G′ are points such that BG and DG′
are parallel to the angle bisector of � BCD as shown in Fig. 5.
Suppose � BCD = θ . The angle bisector at B of the angle
� CBG makes an angle θ/4 with BD. Let the angle bisector
intersect DG′ at B′ such that BB′ = b, where b is the step size.
Analogously, D′ lies on BG. So, we have BD = b cos(θ/4) and
B′D = b sin(θ/4). Place another two robots at A and E, which
are the midpoints of BD′ and DB′, respectively.

Given this initial configuration at time t, the adversary acti-
vates the robots at B, C and D at the same time. The robots
at B and D move to B′ and D′, respectively. The adversary
puts another robot at C′ such that CC′ = AB. With this, the
new configuration at time t′ has the robots at D′, A, C′, E and
B′. The new configuration is exactly the same as the previous
configuration. This configuration can be repeated infinitely
many times. Note that a finite number of robots are needed on

FIGURE 5. Repeating configurations with the angle bisector strategy.

the line CK to continue this repeating configuration. This class
of configurations can be constructed for any value of θ ≤ π/3.
This counterexample shows that the angle bisector strategy fails
to converge the robots.

4. AREA CONVERGENCE ALGORITHMS

Area convergence is the problem of moving all the robots inside
a sufficiently small non-predefined area. In this section, we
present area convergence algorithms for monoculus robots with
additional capability where they can either have locality detec-
tion (LD), a notion of distance or orthogonal line agreement
(OLA), a notion of direction.

Locality Detection (LD): Locality detection is the ability
of a robot to determine whether its distance from any robot is
greater than a predefined value c or not.

A robot with locality detection capability can divide the
robots into two sets based on the distance from itself. So a
monoculus robot with locality detection can partition the set
LC to two disjoint sets LClocal and LCnon−local, where LClocal
and LCnon−local are the set of directions of robots with distances
less than equal to c and more than c, respectively. We assume
that when a robot determines the distance of another robot
in a particular direction, it can only determine the distance
from the nearest robot in that direction. In other words, if
there are multiple robots in a particular direction, i.e. they are
collinear, then the resulting direction is part of either LClocal
or LCnon−local depending on the distance from the nearest
robot.

Orthogonal Line Agreement (OLA): The robots agree on
a pair of orthogonal lines but can neither distinguish the two
lines in a consistent way nor have a common sense of direction.

Robots with orthogonal line agreement capability agree on
the direction of two perpendicular lines, but the lines them-
selves are indistinguishable: the robots neither agree on a
direction (e.g. North) nor can they mark a line as, e.g. the
North–South or East–West line. In other words, any two robots
agreeing on the pair of orthogonal lines, either have their
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x-axis parallel or perpendicular to the other. In the case of
parallel orientation, the plus/minus direction of the x-axis may
point to the same or the opposite direction, and in the case
of a perpendicular orientation, the rotation of the axis can be
clockwise or counterclockwise.

In the following, we present algorithms for robots with only
one of the two capabilities.

4.1. Monoculus robots with locality detection

In this section, we consider the area convergence problem for
the monoculus robots with locality detection LD capability.
Our claims hold for any c ≥ 2b, where c is the predefined
distance of locality detection, and b is the step size a robot
moves each time it is activated. The step size b and locality
detection distance c are common for all the robots. Each robot
r executes Algorithm 1 (ConvergeLocality) every time it is
activated. Algorithm 1 distinguishes between two cases: (1)
if the robot r only sees one other robot p, it infers that the
current configuration must be a line (of 2 or more robots),
and that this robot must be on the border of this line; in this
case, the boundary robots always move inside (usual step size
b). (2) Otherwise, a robot moves towards any visible, non-
local robot (distance at least c), for a b distance (the step size).
The algorithm works independent of n, the number of robots
present.

Our proof unfolds in a number of lemmas followed by a
theorem. First, Lemma 1.3 shows that it is impossible to have
a pair of robots with a distance larger than 2c in the con-
verged situation. Lemma 1.4 shows that our algorithm ensures
a monotonically decreasing convex hull size. Lemma 1.5 then
proves that the decrement in the perimeter for each movement
is greater than a constant (the convex hull decrement is strictly
monotonic). Combining all the three lemmas, we obtain the
correctness proof of the algorithm. In the following, we call
two robots neighboring if they see each other (line of sight is
not obstructed by another robot).

FIGURE 6. A non-linear configuration with a pair of robots at a
distance 2c.

Lemma 1.3. If there exists a pair of robots at distance more
than 2c in a non-linear configuration, then there exists a pair
of neighboring robots at distance more than c.

Proof. Proof by contradiction. If there is a pair of robots with
distance more than 2c, then they themselves are the neighboring
pair with more than c distance. To prevent them from being a
neighboring pair with more than c distance, there should be at
least two robots on the line joining them positioned such that
each neighboring pair has a distance less than c. Since under
LD, the robots can only determine the distance of the nearest
robot in a particular direction; they cannot look beyond their
neighbors to find another robot at a distance of more than c.
In Fig. 6, r1 and r4 are 2c apart. So r2 and r3 block the view
such that r1r2 < c, r2r3 < c and r3r4 < c. Since it is a non-
linear configuration, say robot r5 is not on the line joining r1
and r4. l is the perpendicular bisector of r1r4. If r5 is on the left
side of l, then it is more than c distance away from r4 and if
it is on the right side of l then it is more than c distance away
from r1. If there is another robot on r4r5, then consider that
as the new robot in a non-linear position, and we can argue
similarly considering that robot to be r5. If r5 is on l, then
r1r5 = r4r5 > c.Hence there would at least be a single robot
similar to r5 in a non-linear configuration for which the distance
is more than c. �

Lemma 1.4. For any time t′ > t before area convergence,
ACHt′ ⊆ ACHt.

Proof. The proof follows from a simple observation. Consider
any robot ri. If ri decides to move towards some robot, say rj,
then it moves on the line joining two robots. There are two
cases.

Case 1: If all the robots are on a straight line, then the
boundary robots move monotonically closer in each step.
The distance between the end robots is a monotonically
decreasing sequence until it reaches c.

Case 2: For a non-linear configuration the robot moves when
the distance between ri and rj is more than c and it moves
only a distance b, where c ≥ 2b. The movement path
at the time when it looks is always contained inside the
CHt, and CHt ⊆ ACHt. So the ACHt contains its entire
movement path, and it continues to do so until the robot
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FIGURE 7. On activation ri and rj will move outside the solid circle inside the convex hull. The radius of the solid circle is b/2. The robot rk

moves a distance b towards ri because the distance between them is more than 2b and stops at D. In the second figure the shadowed area is the
decrement considered for each corner and the central convex hull inside solid thick lines is the new convex hull after every robot moves.

has reached its destination. For any t′ > t, parts of the
path traversed by the robots those are outside CHt′ are
removed from ACHt (ref. the path traveled by r5 to r′

5 in
Fig. 1, which is outside CH′

t).

Hence ACHt′ ⊆ ACHt. �

Lemma 1.5. After each robot is activated at least once,
the decrement in the perimeter of the convex hull is at least

b

(
1 −

√
1
2

(
1 + cos

(
2π
n

)))
, where b is the step size and n is

the total number of robots.

Proof. Suppose the n robots form a k (k ≤ n) sided convex
hull. The sum of internal angles of a k-sided convex polygon is
(k−2)π . So there exists a robot r at a corner A (ref. Fig. 7) of the

convex hull such that the internal angle is less than
(

1 − 2
n

)
π ,

where n is the total number of robots. Let B and C be the
points where the circle centered at A with radius b/2 intersects
the convex hull. Any robot lying outside the circle will not
move inside the circle according to Algorithm 1, because the
maximum distance between any two points in the circle is b,
and all the robots move towards a robot, which is more than c
distance apart and c � 2b. All the robots inside the circle will
eventually move out once they are activated, because the robot
that is activated will have to move at least b distance, and since
the distance between any two points in the b/2 radius circle
is less than or equal to b, the robot will find itself outside the
b/2 radius circle inside the convex hull. After all the robots are
activated at least once, the decrement in perimeter is at least
AB + AC − BC. From cosine rule, AB + AC − BC is

b

2
+ b

2
−

√(
b

2

)2

+
(

b

2

)2

− 2
b

2

b

2
cos

(
π − 2π

n

)

= b

(
1 −

√
1

2

(
1 + cos

(
2π

n

)))
�

FIGURE 8. Robots on the boundary of a square are moving along
the boundary (a) all in the clockwise direction, (b) not all in the same
direction. The dotted line represents the configuration before move-
ment, and the solid line represents the configuration after movement.

Remark 1. Let us consider a special case of the execution
of the algorithm. Here all n robots are on the boundary of the
convex hull with side length more than c and move only on
the boundary of the convex hull. Then the n-sided polygon
will again become a n-sided polygon, but the perimeter will
decrease overall as a consequence of Lemma 1.5 as shown
in Fig 8.

Since we consider the ASYNC scheduler, all robots are not
activated at any time. There may be a scheduler that does
not activate some robot at all. In that case, area convergence
becomes impossible to achieve. To avoid this scenario, we
consider a fair scheduler. We say a fair scheduler activates a
robot infinitely many times in infinite time. This means a robot
stays idle for an unpredictable but finite amount of time. So
there exists a time period such that all the robots are activated at
least once. We consider that time period to be a fair scheduling
round. It is also known as an epoch in literature.

Theorem 1.6. (Correctness) Algorithm 1 always terminates
after at most �

(D
b

)
fair scheduling rounds and for any arbi-

trary but fixed n, where D is the diameter of smallest enclosing
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Area Convergence of Monoculus Robots 1313

circle in initial configuration and b is the step size. After
termination all the robots converge within a c radius disc.

Proof. If a corner robot on the boundary of the convex hull
is activated, then the perimeter of the convex hull decreases
from Lemma 1.5. If non-corner robots are activated, then the
perimeter of the convex hull remains the same. If we have a fair
scheduler, the idle time for robots is unpredictable but finite.
Consequently, the time between successive activations is also
finite. So we can always assume a time step, which is large
enough for each robot to activate at least once. The total number
of robots n is finite and invariant throughout the execution, so

1 −
√

1
2

(
1 + cos

(
2π
n

))
= δ is constant. Hence the decrement

of perimeter is at least bδ according to Lemma 1.5. Notice
that the perimeter of the convex hull is always smaller than the
perimeter of the smallest enclosing circle. According to Lemma
1.3, eventually, there will not be a pair of robots with more than
2c distance. Note that the distance between any two points in
a disk of radius c is less than or equal to 2c. In other words,
ζ = 2c. Hence the robots will converge within a disk of radius
c. So the perimeter of the circle at termination is 2πc. Now the
decrement in perimeter is πD − 2πc. Total time required is
π(D−2c)

δb = �
(D

b

)
. �

4.2. Monoculus robots with orthogonal line agreement

In this section we consider monoculus robots with orthogonal
line agreement (OLA). Remember that monoculus robots do
not agree on the coordinate system and only possess a single
mark for the positive x-axis. Here we assume agreement on
a pair of orthogonal lines. The angle measurement capability
of the robots is relative to the lines, i.e. they can distinguish
between robots located on the left or right of the orthogonal
lines. Using this capability, our algorithm will distinguish
between boundary-, corner- and inner-robots, defined in a
canonical way. We note that robots can determine their type:
from Fig. 9, we can observe that for r2, all the robots lie below
the horizontal line. That means, one side of the horizontal line
is empty, and therefore, r2 can figure out that it is a boundary
robot. Similarly all ri, i ∈ {2, 3, 4, 5, 6, 7, 8} are boundary
robots. Whereas, for r1, both horizontal and vertical lines have
one of the sides empty; hence r1 is a corner robot. Other robots
are all inner robots. Consequently, we define boundary robots
as the robots having exactly one side of one of the orthogonal
lines empty.

Algorithm 2 (ConvergeQuadrant) can be described as
follows. A rectangle can be constructed with lines parallel to
the orthogonal lines passing through boundary robots such that
all the robots are inside this rectangle. In Fig. 9, each boundary
robot always moves inside the rectangle perpendicular to the
boundary, and the inside robots do not move. Note that the
corner robot r1 has two possible directions to move. So it
moves toward any robot in that common quadrant. Gradually

FIGURE 9. Movement direction of the boundary robots.

the distance between opposite boundaries becomes smaller and
smaller, and the robots converge. In case all the robots are on
a line that is parallel to either of the orthogonal lines, then the
robots will find that both sides of the line are empty. In that
case, they should not move. But the robots on either end of the
line would only see one robot. So they would move along the
line towards that robot.

Theorem 1.7. (Correctness) Algorithm 2 moves all the robots
inside some 2b-sided square in finite time, where b is the
step size.

Proof. Consider the distance between the robots on the left
and right boundary. The horizontal distance between them
decreases each time either of them gets activated. The rightmost
robot will move towards the left, and the leftmost will move
towards the right. The internal robots do not move. So in at most
n activation rounds of the boundary robot, the distance between
two of the boundary nodes will decrease by at least b. Hence
the distance is monotonically decreasing until 2b. Afterward,
the total distance will never exceed 2b anymore.
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1314 D. Pattanayak et al.

If there is a corner robot present in the configuration, that
robot will move towards any robot in the non-empty quad-
rant. So, the movement of the corner robot contributes to the
decrement in the distance in both directions. If an inside robot
is very close to one of the boundaries and the corner robot
moves towards that robot, then the decrement in one of the
dimensions can be small (an ε > 0). Consider, for example,
the configuration of a strip of width b, then the corner robot
becomes the adjacent corner in the next round; this can happen
only finitely many times. Each dimension converges within
a distance 2b, so in the converged state, the shape of the
converged area would be 2b-sided square, i.e. ζ = 2

√
2b. �

Remark 2. If the robots have some sense of angular knowl-
edge, the corner robots can always move in a π/4 angle, so the
decrement in both dimensions is significant, resulting in faster
area convergence.

5. DISCUSSION

This section shows that our approach supports some interesting
extensions.

5.1. Termination for OLA model

While we only focused on area convergence and not termina-
tion so far, we can show that with a small amount of memory,
termination is also possible in the OLA model.

To see this, assume that each robot has a 2-bit persistent
memory in the OLA model for each dimension, total 4-bits for
two dimensions. Algorithm 2 has been modified to Algorithm
3 such that it can accommodate termination. All the bits are
initially set to 0. Each robot has its local coordinate system,
which remains consistent over the execution of the algorithm.
The four bits correspond to four boundaries in two dimensions,
i.e. left, right, top and bottom. If a robot finds itself on one of
the boundaries according to its local coordinate system, then
it sets the corresponding bit of that boundary to 1. Once both
bits corresponding to a dimension become 1, the robot stops
moving in that dimension. Consider a robot r. Initially, it was
on the left boundary in its local coordinate system. Then it sets
the first bit of the pair of bits corresponding to x-axis. It moves
towards the right. Once it reaches the right boundary, then it sets
the second bit corresponding to x-axis to 1. Once both the bits
are set to 1, it stops moving along the x-axis. Similar movement
termination happens on the y-axis. Once all the 4-bits are set to
1, the robot stops moving.

5.2. Extension to d-Dimensions

Both our algorithms can easily be extended to d-dimensions.
For the LD model, the algorithm remains exactly the same. For
the proof of area convergence, similar arguments as Lemma 1.5
can be used in d dimensions. We can consider the convex
hull in d-dimensions, and the boundary robots of the convex
hull always move inside. The size of the convex hull reduces
gradually, and the robots converge.

Analogously for the OLA model, the distance between two
robots in the boundary of any dimension gradually decreases,
and the corner robots always move inside the d-dimensional
cuboid. Hence it converges. Here the robot would require 2d
number of bits for termination.

6. SIMULATION

6.1. Simulation setup

We now complement our formal analysis with simulations,
studying the average case. We assume that initially, robots are
distributed uniformly at random in a square. The step size b is
equal to 1 for both the algorithms. We fix the locality detection
distance c = 2 for Algorithm 1. Our simulations are performed
in the ASYNC model [3]. The idle time between successive
activations of each robot follows the exponential distribution
with rate parameter λ = 1. We also perform simulations in the
FSYNC model to compare convergence times of Algorithms
1 and 2 with the ASYNC model. We have used box plots to
show the distributions. The box plots in simulation figures show
four quartiles of the distribution taken from 100 executions of
the algorithms. Then we connect the mean of 100 executions
with line segments. In the following convergence distance and
convergence time correspond to the distance and time required
for area convergence.
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FIGURE 10. Performance ratio of convergence distance varying size
of initial deployment area with 30 robots.

6.2. Convergence distance

As a baseline to evaluate performance, we consider the ratio of
the actual distance traveled with optimal convergence distance.
Moreover, as a lower bound for the optimal distance traveled,
we consider an algorithm that converges all robots from their
initial position directly to the centroid, defined as follows:

{x̄, ȳ} =
{∑n

i=1 xi
n ,

∑n
i=1 yi
n

}
where {xi, yi}∀i ∈ {1, 2, · · · , n} are

the robots’ coordinates. We calculate the distance di from each
robot to the centroid in the initial configuration. The optimal
distance we have used as convergence distance is the sum of
distances from each robot to the disc of radius b = 1 centered
at the centroid. So the total optimal convergence distance dopt

is given by dopt = ∑n
i=1(di − 1), if di > 1.

In the simulation of Algorithm 1, we define dCL as the
cumulative number of steps taken by all the robots to converge
(sometimes also known as the work). Now we define the
performance ratio, ρCL as ρCL = dCL

dopt
. Similarly for Algorithm

2 we define dCQ and ρCQ.
Figures 10 and 11 show the comparison between the perfor-

mance ratio (PR) for distance. We can observe that in Fig. 11,
the distance traveled compared to optimal distance increases
for the same size region as the number of robots increases for
Algorithm 1, but it remains almost the same for Algorithm
2. We can observe that Algorithm 2 performs better than
Algorithm 1. This is due to the fact that in Algorithm 2, only
boundary robots move.

6.3. Convergence time

We now compare the time of area convergence of robots. We
have simulated both the algorithms in FSYNC and ASYNC
models. In Fig. 12, we plot the time taken by Algorithm 1.
Similarly in Fig. 13, we plot for Algorithm 2.

FIGURE 11. Performance ratio of convergence distance varying
number of robots with 30 × 30 initial deployment area.

FIGURE 12. Comparison between time taken by Algorithm 1 in
FSYNC and ASYNC model varying size of initial deployment area for
30 robots.

We repeat the process varying the number of robots and
show the results in Figs 14 and 15. We can observe that the gap
between the FSYNC and ASYNC gradually increases as the size
of the area increases, but the gap remains almost constant when
the number of robots increases. This is because the convergence
time depends on the maximum distance needed to be traveled
by a robot. If the robot is initially placed farther from the
convergence area, it takes more time to reach it. But in the case
of variation in the number of robots, the deployed area remains
the same. Hence the robots only need to travel the same distance
even if there are a lot of robots.

Let us denote tCL as the time taken by Algorithm 1 to achieve
area convergence in the ASYNC model. Similarly, tCQ as the
time taken by Algorithm 2. Then we compare the time taken
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1316 D. Pattanayak et al.

FIGURE 13. Comparison between time taken by Algorithm 2 in
FSYNC and ASYNC model varying size of initial deployment area with
30 robots.

FIGURE 14. Comparison between time taken by Algorithm 1 in
FSYNC and ASYNC model varying number of robots with 30 × 30
initial deployment area.

by both the algorithms with each other in Figs 16 and 17. We
can observe that unlike the comparison of distance, Algorithm
2 takes more time to converge compared to Algorithm 1. This is
because, in Algorithm 2, only boundary robots move, whereas
the internal robots do not move until they become boundary
robots. In the case of Algorithm 1, the internal robots also
continuously move closer to the convergence area.

6.4. Sensitivity analysis: impact of errors

In Figs 18 and 19, we plot the variation of convergence time
with respect to errors in moving towards a robot. A robot
executing either Algorithm 1 or 2 has to move towards a robot

FIGURE 15. Comparison between time taken by Algorithm 2 in
FSYNC and ASYNC model varying number of robots with 30 × 30
initial deployment area.

FIGURE 16. Comparison of convergence time for Algorithm 1 and
2 varying size of initial deployment area with 30 robots.

in the move step. We consider that the direction it decides to
move towards is not exactly the direction of the other robot. We
term this as look error. In the plot, we execute the algorithms
with look errors corresponding to a normal distribution with
mean μ = π

i for i ∈ {10, 9, · · · , 1} and variance σ 2 = 2μ. We
can observe that the convergence time of Algorithm 1 remains
almost the same even after the introduction of look error. In
Figs 18 and 19, we plot the convergence time varying error in
moving towards a robot. Since the direction of movement of in
case of Algorithm 1 is chosen at random out of all the robots
at a distance more than c, moving in a different direction does
not affect convergence time as shown in Fig. 18.

In the case of Algorithm 2, the error in look data may lead the
robot to think that it is inside the boundary while it is actually
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Area Convergence of Monoculus Robots 1317

FIGURE 17. Comparison of convergence time for Algorithm 1 and
2 varying number of robots with 30 × 30 initial deployment area.

FIGURE 18. Convergence time with varying look error for Algorithm
1 with 30 robots in 10 × 10 initial deployment area.

on the boundary. We can observe that the convergence time
increases as the look error increases in Fig. 19.

Similar to look error, we also introduce errors in movement.
The robots are supposed to move a distance b = 1 each time
they are activated. The move error makes the robots move to
a distance b + N (μ, σ 2). The move error follows a normal
distribution with mean μ ∈ {−0.5, −0.4, · · · , 0.5} and variance
σ 2 = |2μ|. We have considered the mean as both positive
and negative for move error. Observe that the convergence time
increases with positive error in the movement for Algorithm 1,
because the robots near the convex hull may go outside of the
convex hull as the error in movement increases as shown in
Fig. 20. If the error in movement is negative, then the robots
move less distance towards convergence area leading to an
increase in convergence time. Since the robots only move inside

FIGURE 19. Convergence time with varying look error for Algorithm
2 with 30 robots in 10 × 10 initial deployment area.

FIGURE 20. Convergence time varying move error for Algorithm 1
with 30 robots in 10 × 10 initial deployment area.

for Algorithm 2, they converge faster as the movement distance
in each step increases, as shown in Fig. 21.

Finally, we also plot convergence time with different values
of c varying {2b, 1.9b, · · · , b}. For the previous simulations,
we have considered the value of c to be 2b with b = 1.
Fig. 22 shows that the convergence time increases as value of c
approaches b. Since the decrement in the convex hull becomes
gradually smaller as c approaches b, it takes more time to
converge.

7. CONCLUSION

This paper considered a particularly weaker robot model
known as the monoculus robot model and showed what
minimum additional capabilities are required to achieve area
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FIGURE 21. Convergence time varying move error for Algorithm 2
with 30 robots in 10 × 10 initial deployment area.

FIGURE 22. Convergence time varying the value of c in Algorithm
1 for 30 robots in 10 × 10 initial deployment area.

convergence. The two approaches involve minor agreement on
a common direction or a notion of distance. We presented two
algorithms for area convergence with the notion of direction
and distance, while showing a counterexample with respect to
the notion of angles.

From simulations, we observed that the ConvergeLo-
cality algorithm converges in an almost optimal amount of
time, while ConvergeQuadrant takes more time. But the
cumulative number of steps is less for ConvergeQuadrant
compared to ConvergeLocality since only boundary robots
move. In the simulations, we have also shown the adaptability
and robustness of our algorithms to errors during look and
move states. In particular, ConvergeLocality is resilient
to the error in observation and ConvergeQuadrant is
resilient to error in movement. We believe that our work opens

interesting avenues for future research. For example, it would
be interesting to generalize our study to a limited visibility
model.
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