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Somewhere in beautiful Germany…

Flexibilities: Along 3 Dimensions 

Enabler: 
SDN

Enabler: 
Virtualization

Enabler: 
Optics



Flexibilities Enable Demand-Aware Networks

But when are they useful?



A Simple Answer

Demand-Oblivious Networks =



Seriously: We believe, often, in practice!
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Microsoft data: 200K servers across 4 production clusters, cluster sizes: 100 - 2500 racks.
Mix of workloads: MapReduce-type jobs, index builders, database and storage systems.

Observation 1:
• Many rack pairs exchange 

little traffic
• Only some hot rack pairs

are active

Observation 2:
• Some source racks send 

large amounts of traffic to 
many other racks

Empirical Motivation



So: How much structure is there?

How to measure it?
And which types of structures? E.g., temporal 

structure in addition to non-temporal structure?
Tricky!



Often only intuitions in the literature…
“less than 1% of the rack pairs account for 

80% of the total traffic”

“only a few ToRs switches are hot 
and most of their traffic goes to a few 

other ToRs”

“over 90% bytes 
flow in elephant flows”



… and it is intuitive!
Non-temporal Structure

Traffic matrix of two different distributed ML applications (GPU-to-GPU):
Which one has more structure?

vs

Color = 
comm. pair
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Non-temporal Structure

Traffic matrix of two different distributed ML applications (GPU-to-GPU):
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More 
uniform

More 
skewed



Two different ways to generate same traffic matrix (same non-temporal structure):
Which one has more structure?

vs

… and it is intuitive!
Temporal Structure
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random



Two different ways to generate same traffic matrix (same non-temporal structure):
Which one has more structure?

vs

… and it is intuitive!
Temporal Structure More 

bursty

More 
randomQuite intuitive: but how to define and 

measure systematically?



The Trace Complexity

• An information-theoretic approach: how can we measure the entropy
(rate) of a traffic trace?

• Henceforth called the trace complexity

• Simple approximation: „shuffle&compress“
– Remove structure by iterative randomization
– Difference of compression before and after randomization: structure



The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Increasing complexity (systematically randomized)

More structure (compresses better)



The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Remove 
temporal locality

Break src-dst
pairs

Remove non-
temporal locality

Difference in 
compression?

Difference in 
compression?

Difference in 
compression?



The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Remove 
temporal locality

Break src-dst
pairs

Remove non-
temporal locality

Difference in 
compression?

Difference in 
compression?

Difference in 
compression?

Can be used to define a „complexity map“!



The Complexity Map

Complexity Map: Entropy 
(„complexity“) of traffic traces.

!

!

More complexity

More structure



Complexity Map: Entropy 
(„complexity“) of traffic traces.
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Complexity Map: Entropy 
(„complexity“) of traffic traces.

Size = product 
of entropy

!
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Uniform: Today’s 
datacenters

• Traditional networks are optimized 
for the “worst-case” (all-to-all 
communication traffic)

• Example, fat-tree topologies: 
provide full bisection bandwidth

The Complexity Map



Good in the worst case but: 
cannot leverage different 

temporal and non-temporal 
structures of traffic traces! 

The Complexity Map



Non-temporal structure could 
be exploited already with static 

demand-aware networks!

Good in the worst case but: 
cannot leverage different 

temporal and non-temporal 
structures of traffic traces! 

The Complexity Map



The Complexity MapTo exploit temporal structure, 
need adaptive demand-aware 

(“self-adjusting”) networks.

Non-temporal structure could 
be exploited already with static 

demand-aware networks!

Good in the worst case but: 
cannot leverage different 

temporal and non-temporal 
structures of traffic traces! 



• Facebook clusters: DB, WEB, HAD
• HPC workloads: CNS, Multigrid
• Distributed Machine Learning (ML)
• Synthetic traces like pFabric

Observation: different applications 
feature quite significant (and 
different!) temporal and non-

temporal structures.

The Complexity Map



Both structures!

TOR switches

Mirrors

Lasers

Goal: Design self-adjusting 
networks which leverage both

dimensions of structure!

The Complexity Map



Potential gain / tax of
self-adjusting

networks!

Both structures!

No structure!

TOR switches

Mirrors

Lasers

Goal: Design self-adjusting 
networks which leverage both

dimensions of structure!

The Complexity Map



Further Reading

Measuring the Complexity of 
Packet Traces. Avin, Ghobadi, 
Griner, Schmid. ArXiv 2019.



So: How to design networks which exploit 
this structure? How good can they be?

Metrics again!



A Simple Example: Network Design

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.

31st International Symposium on Distributed 
Computing (DISC), Vienna, Austria, October 2017.



1 2 3 4 5 6 7 8

demand
matrix:

e.g., 
mirrors

new flexible
interconnect



1 2 3 4 5 6 7 8

Matches demand

demand
matrix:

e.g., 
mirrors

new flexible
interconnect



1 2 3 4 5 6 7 8

e.g., 
mirrors

new flexible
interconnect

new
demand:



1 2 3 4 5 6 7 8

e.g., 
mirrors

new flexible
interconnect

new
demand:

Matches demand



More Formally
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ERL D,N = �
(u,v)∈D

p u, v � dN(u, v)

Objective: Expected Route Length

path length on N

frequencyD[𝐩𝐩 𝐢𝐢, 𝐣𝐣 ]: joint distribution

DAN N of degree Δ



Remark

• Can represent demand matrix as a demand graph

sparse distribution D sparse graph G(D)

3 4
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Some Examples
• DANs of Δ = 3:

– E.g., complete binary tree
– dN(u,v) ≤ 2 log n
– Can we do better than log n?

• DANs of Δ = 2:
– E.g., set of lines and cycles



Remark: Hardness Proof



DAN design can be NP-hard
• Example Δ = 2: A Minimum Linear 

Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges

Embedding?



DAN design can be NP-hard

Bad!

e.g., 
cost 5

• Example Δ = 2: A Minimum Linear 
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges



DAN design can be NP-hard

Better!

e.g., 
cost 1

• Example Δ = 2: A Minimum Linear 
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges



DAN design can be NP-hard

Better!

e.g., 
cost 1

• Example Δ = 2: A Minimum Linear 
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges



DAN design can be NP-hard

A new knob for 
optimization!

e.g., 
cost 1

• But what about > 2? Embedding
problem still hard, but we have an 
additional degree of freedom:

Do topological flexibilities make problem
easier or harder?!

• Example Δ = 2: A Minimum Linear 
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges



Rewinding the clock of the 
Internet  to a decade ago...



Rewinding the Clock: 
Degree-Diameter Tradeoff

Each network with n nodes and max degree Δ >2 
must have a diameter of at least log(n)/log(Δ-1)-1.

Example: constant Δ, log(n) diameter

Kudos to: Pedro Casas



Proof Idea

In k steps, reach at 
most 1+ Σ Δ(Δ -1)k

nodes

Kudos to: Pedro Casas

1 Δ Δ(Δ -1) …



Is there a better tradeoff in DANs?



Sometimes, DANs can be much better!

Example 1: low-degree demand

If demand graph is of degree Δ, it is trivial 
to design a DAN of degree Δ which achieves

an expected route length of 1.

Just take DAN = 
demand graph!



Sometimes, DANs can be much better!

Example 2: skewed demand

If demand is highly skewed, it is also 
possible to achieve an expected route 

length of O(1) in a constant-degree DAN.

?



Sometimes, DANs can be much better!

Example 2: skewed demand

If demand is highly skewed, it is also 
possible to achieve an expected route 

length of O(1) in a constant-degree DAN.

E.g., arrange neighbors of node 1 
in a Huffman tree!

Toward Demand-Aware Networking: A Theory for Self-
Adjusting Networks. Chen Avin and Stefan Schmid. ACM 

SIGCOMM CCR, October 2018



So on what does it depend?



So on what does it depend?

We argue (but still don‘t know!): on the
“entropy” of the demand!

?



Intuition: Entropy Lower Bound?



Lower Bound Idea: 
Leverage Coding or Datastructure

So
ur
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Destinations

• DAN just for a single (source) node 3

• How good can this tree be? Cannot do better 
than Δ-ary Huffman tree for its destinations

• Entropy lower bound on ERL known for binary 
trees, e.g. Mehlhorn 1975       
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An optimal “ego-tree“ 
for this source!



So: Entropy of the Entire Demand

• Proof  idea (EPL=Ω(HΔ(Y|X))): 

• Compute ego-tree for each source 
node

• Take union of all ego-trees

• Violates degree restriction but valid 
lower bound

sources destinations

entropy degree



Do this in both dimensions:

Ω(HΔ(X|Y)) 

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)}) Ω(HΔ(Y|X)) 

Entropy of the Entire Demand: 
Sources and Destinations



Do this in both dimensions:

Ω(HΔ(X|Y)) 

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)}) Ω(HΔ(Y|X)) 

Entropy of the Entire Demand: 
Sources and Destinations

Demand-Aware Network Designs of Bounded Degree. Chen 
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017.



Achieving Entropy Limit: Algorithms



Ego-Trees Revisited
• ego-tree: optimal tree for 

a row (= given source)

D[i]
ego-tree



Ego-Trees Revisited

D[i] Can we merge the trees without
distortion and keep degree low?

• ego-tree: optimal tree for 
a row (= given source)

ego-tree



Ego-Trees Revisited

D[i] Can we merge the trees without
distortion and keep degree low?

For sparse demands yes: 
enough low-degree nodes which can 

serve as “helper nodes“!

• ego-tree: optimal tree for 
a row (= given source)

ego-tree



From Trees to Networks



Taking union of ego-trees results in high degree: 
u and v will appear in many ego-trees

Idea: Degree Reduction
Demand graph1 2 Hierarchical representation

3 Add low-degree nodes as helpers

Node h helps edge (u, v) by participating in ego-tree(u) as a 
relay node toward v and in ego-tree(v) as a relay toward u

high degree

low degree

Demand-Aware Network Designs of Bounded Degree. Chen 
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017.



But: How to design DANs which 
also leverage temporal structure?

Inspiration from self-adjusting 
datastructures again!



An Analogy

Static vs dynamic demand-
aware networks!?

DANs vs SANs?



00110101…

if demand arbitrary and unknown

log diameter

log # bits / symbol

An Analogy to Coding
„Coming to Barcelona?“
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„Coming to Barcelona?“
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entropy / symbol

entropy?

DAN! SAN!

Dynamic DANs: 
Aka. Self-Adjusting 
Networks (SANs)! 

An Analogy to Coding

if demand unknown but reconfigurable

„Coming to Barcelona?“
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An Analogy to Coding 011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs: 
Aka. Self-Adjusting 
Networks (SANs)! 

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable

„Coming to Barcelona?“



Analogous to Datastructures: Oblivious…
• Traditional, fixed BSTs do not rely on any

assumptions on the demand

• Optimize for the worst-case

• Example demand: 
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root, 
uniformly and independently of their
frequency

many many many many
Many requests 

for leaf 1…
… then for 

leaf 3…

many

Corresponds to 
max possible demand!



• Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

• E.g.: place frequently accessed elements
close to the root

• E.g., Knuth/Mehlhorn/Tarjan trees

• Recall example demand:       
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

– Amortized cost O(loglog n)
Amortized cost corresponds 

to empirical entropy of demand!

loglog n

… Demand-Aware …



• Demand-aware reconfigurable BSTs 
can additionally take advantage of
temporal locality

• By moving accessed element to the
root: amortized cost is constant, i.e., 
O(1)

– Recall example demand:       
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

… Self-Adjusting!



Datastructures
Oblivious Demand-Aware Self-Adjusting

Lookup 
O(log n)

Exploit spatial locality: 
empirical entropy O(loglog n)

Exploit temporal locality as well:
O(1)



Analogously for Networks
Oblivious DAN SAN

Const degree
(e.g., expander): 

route lengths O(log n)

Exploit spatial locality Exploit temporal locality as well

000
Avin, S.: Toward Demand-Aware Networking: A Theory 

for Self-Adjusting Networks. SIGCOMM CCR 2018.



Algorithms for Self-Adjusting Networks

Ego-trees strike back!

From trees to networks!



Ego-Trees!

D[i] Ego−Tree

i



Ego-Trees!

D[i]

Idea: use our old
approach but 
now let each

node adjust its
ego-tree!

i

Ego−Tree



A Dynamic Ego-Tree:
Splay Tree



Demand-Oblivious

Fixed

Unknown

Bisection

Demand-Aware

Fixed Reconfigurable

Sequence Generator Offline Online

Awareness

Topology

Input

Static
Optimality

AlgorithmOFF ON

PropertyDiameter

Resiliency

Dynamic
Optimality

Learning
Optimality

STAT GENOBL

Uncharted Landscape! 000
Toward Demand-Aware Networking: A Theory for 

Self-Adjusting Networks. SIGCOMM CCR, 2018.



Thank you! Questions?
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Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid.
SIGACT News, June 2019.
Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.
Measuring the Complexity of Network Traffic Traces
Chen Griner, Chen Avin, Manya Ghobadi, and Stefan Schmid.
arXiv, 2019.
Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Distributed Self-Adjusting Tree Networks
Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks
Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu.
IFIP Networking, Warsaw, Poland, May 2019.
DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks
Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu.
IEEE/ACM International Symposium on Quality of Service (IWQoS), Phoenix, Arizona, USA, June 2019.
Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.

A survey!

Demand-aware networks

https://www.univie.ac.at/ct/stefan/sigact19.pdf
https://www.univie.ac.at/ct/stefan/ccr18san.pdf
https://www.univie.ac.at/ct/stefan/Poster-khen.pdf
https://www.univie.ac.at/ct/stefan/infocom2019a.pdf
https://www.univie.ac.at/ct/stefan/infocom2019b.pdf
https://www.univie.ac.at/ct/stefan/ifip19dan.pdf
https://www.univie.ac.at/ct/stefan/iwqos19.pdf
https://net.t-labs.tu-berlin.de/%7Estefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/%7Estefan/ancs18.pdf


How Predictable is Traffic?
Even if reconfiguration fast, control plane 
(e.g., data collection) can become a 
bottleneck. However, many good examples:
• Machine learning applications
• Trend to disaggregation (specialized 

racks)
• Datacenter communication dominated 

by elephant flows
• Etc.

ML workload (GPU to GPU):
deep convolutional neural network

Predictable from their dataflow graph


	Theory of Demand-Aware Networks
	 
	Flexibilities: Along 3 Dimensions 
	Flexibilities: Along 3 Dimensions 
	Flexibilities: Along 3 Dimensions 
	 
	A Simple Answer
	Seriously: We believe, often, in practice!
	Empirical Motivation
	So: How much structure is there?
	Often only intuitions in the literature…
	… and it is intuitive!�Non-temporal Structure
	… and it is intuitive!�Non-temporal Structure
	… and it is intuitive!�Temporal Structure
	… and it is intuitive!�Temporal Structure
	… and it is intuitive!�Temporal Structure
	The Trace Complexity
	The Trace Complexity
	The Trace Complexity
	The Trace Complexity
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	Further Reading
	 
	 
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	 
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Objective: Expected Route Length
	Remark
	Some Examples
	Remark: Hardness Proof
	DAN design can be NP-hard
	DAN design can be NP-hard
	DAN design can be NP-hard
	DAN design can be NP-hard
	DAN design can be NP-hard
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Is there a better tradeoff in DANs?
	Sometimes, DANs can be much better!
	Sometimes, DANs can be much better!
	Sometimes, DANs can be much better!
	So on what does it depend?
	So on what does it depend?
	Intuition: Entropy Lower Bound
	Lower Bound Idea: �Leverage Coding or Datastructure
	Lower Bound Idea: �Leverage Coding or Datastructure
	So: Entropy of the Entire Demand
	Entropy of the Entire Demand: �Sources and Destinations
	Entropy of the Entire Demand: �Sources and Destinations
	Achieving Entropy Limit: Algorithms
	Ego-Trees Revisited
	Ego-Trees Revisited
	Ego-Trees Revisited
	From Trees to Networks
	Idea: Degree Reduction
	But: How to design DANs which �also leverage temporal structure?
	An Analogy
	An Analogy to Coding
	An Analogy to Coding
	An Analogy to Coding
	An Analogy to Coding
	An Analogy to Coding
	Analogous to Datastructures: Oblivious…
	… Demand-Aware …
	… Self-Adjusting!
	Datastructures
	Analogously for Networks
	Algorithms for Self-Adjusting Networks
	Ego-Trees!
	Ego-Trees!
	A Dynamic Ego-Tree:�Splay Tree
	Slide Number 89
	Thank you! Questions?
	Further Reading
	How Predictable is Traffic?

