
Theory of Demand-Aware Networks
Stefan Schmid (University of Vienna)

Flexibilities: Along 3 Dimensions

IEEE ComSoc Autumn School
on Network Slicing and Data Driven Communication

The Trend: Flexibilities

Flexibilities: Along 3 Dimensions

Somewhere in beautiful Germany…

Flexibilities: Along 3 Dimensions

Somewhere in beautiful Germany…

Somewhere in beautiful Germany…

Flexibilities: Along 3 Dimensions

Enabler:
SDN

Enabler:
Virtualization

Enabler:
Optics

Flexibilities Enable Demand-Aware Networks

But when are they useful?

A Simple Answer

Demand-Oblivious Networks =

Seriously: We believe, often, in practice!

0 3 3 3
3 0 3 3
3 3 0 3
3 3 3 0

In theory: traffic matrix
uniform and static

0 6 6 0
0 0 0 0
0 0 0 0
0 0 0 0

In practice: skewed
and dynamic

A
B
C
D

A B C D A B C D
A
B
C
D

0 0 0 0
0 0 0 0
8 0 6 0
0 0 0 0

0 0 0 0
0 0 0 7
0 0 0 7
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 12 8 0

0 6 6 0
0 0 0 0
0 0 0 0
0 0 0 0

Microsoft data: 200K servers across 4 production clusters, cluster sizes: 100 - 2500 racks.
Mix of workloads: MapReduce-type jobs, index builders, database and storage systems.

Observation 1:
• Many rack pairs exchange

little traffic
• Only some hot rack pairs

are active

Observation 2:
• Some source racks send

large amounts of traffic to
many other racks

Empirical Motivation

So: How much structure is there?

How to measure it?
And which types of structures? E.g., temporal

structure in addition to non-temporal structure?
Tricky!

Often only intuitions in the literature…
“less than 1% of the rack pairs account for

80% of the total traffic”

“only a few ToRs switches are hot
and most of their traffic goes to a few

other ToRs”

“over 90% bytes
flow in elephant flows”

… and it is intuitive!
Non-temporal Structure

Traffic matrix of two different distributed ML applications (GPU-to-GPU):
Which one has more structure?

vs

Color =
comm. pair

… and it is intuitive!
Non-temporal Structure

Traffic matrix of two different distributed ML applications (GPU-to-GPU):
Which one has more structure?

vs

Color =
comm. pair

More
uniform

More
skewed

Two different ways to generate same traffic matrix (same non-temporal structure):
Which one has more structure?

vs

… and it is intuitive!
Temporal Structure

Two different ways to generate same traffic matrix (same non-temporal structure):
Which one has more structure?

vs

… and it is intuitive!
Temporal Structure More

bursty

More
random

Two different ways to generate same traffic matrix (same non-temporal structure):
Which one has more structure?

vs

… and it is intuitive!
Temporal Structure More

bursty

More
randomQuite intuitive: but how to define and

measure systematically?

The Trace Complexity

• An information-theoretic approach: how can we measure the entropy
(rate) of a traffic trace?

• Henceforth called the trace complexity

• Simple approximation: „shuffle&compress“
– Remove structure by iterative randomization
– Difference of compression before and after randomization: structure

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Increasing complexity (systematically randomized)

More structure (compresses better)

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Remove
temporal locality

Break src-dst
pairs

Remove non-
temporal locality

Difference in
compression?

Difference in
compression?

Difference in
compression?

The Trace Complexity
Original src-dst trace Randomize rows Randomized columns Uniform trace

Remove
temporal locality

Break src-dst
pairs

Remove non-
temporal locality

Difference in
compression?

Difference in
compression?

Difference in
compression?

Can be used to define a „complexity map“!

The Complexity Map

Complexity Map: Entropy
(„complexity“) of traffic traces.

!

!

More complexity

More structure

Complexity Map: Entropy
(„complexity“) of traffic traces.

!

!

M
or

e
co

m
pl

ex
ity

M
or

e
st

ru
ct

ur
e

The Complexity Map

Complexity Map: Entropy
(„complexity“) of traffic traces.

Size = product
of entropy

!

!

The Complexity Map

M
or

e
co

m
pl

ex
ity

M
or

e
st

ru
ct

ur
e

Uniform: Today’s
datacenters

• Traditional networks are optimized
for the “worst-case” (all-to-all
communication traffic)

• Example, fat-tree topologies:
provide full bisection bandwidth

The Complexity Map

Good in the worst case but:
cannot leverage different

temporal and non-temporal
structures of traffic traces!

The Complexity Map

Non-temporal structure could
be exploited already with static

demand-aware networks!

Good in the worst case but:
cannot leverage different

temporal and non-temporal
structures of traffic traces!

The Complexity Map

The Complexity MapTo exploit temporal structure,
need adaptive demand-aware

(“self-adjusting”) networks.

Non-temporal structure could
be exploited already with static

demand-aware networks!

Good in the worst case but:
cannot leverage different

temporal and non-temporal
structures of traffic traces!

• Facebook clusters: DB, WEB, HAD
• HPC workloads: CNS, Multigrid
• Distributed Machine Learning (ML)
• Synthetic traces like pFabric

Observation: different applications
feature quite significant (and
different!) temporal and non-

temporal structures.

The Complexity Map

Both structures!

TOR switches

Mirrors

Lasers

Goal: Design self-adjusting
networks which leverage both

dimensions of structure!

The Complexity Map

Potential gain / tax of
self-adjusting

networks!

Both structures!

No structure!

TOR switches

Mirrors

Lasers

Goal: Design self-adjusting
networks which leverage both

dimensions of structure!

The Complexity Map

Further Reading

Measuring the Complexity of
Packet Traces. Avin, Ghobadi,
Griner, Schmid. ArXiv 2019.

So: How to design networks which exploit
this structure? How good can they be?

Metrics again!

A Simple Example: Network Design

Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.

31st International Symposium on Distributed
Computing (DISC), Vienna, Austria, October 2017.

1 2 3 4 5 6 7 8

demand
matrix:

e.g.,
mirrors

new flexible
interconnect

1 2 3 4 5 6 7 8

Matches demand

demand
matrix:

e.g.,
mirrors

new flexible
interconnect

1 2 3 4 5 6 7 8

e.g.,
mirrors

new flexible
interconnect

new
demand:

1 2 3 4 5 6 7 8

e.g.,
mirrors

new flexible
interconnect

new
demand:

Matches demand

More Formally

So
ur

ce
s

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2
65

1
13

1
65

1
65

2
65

3
65

2
65

0 1
65

0 0 0 2
65

1
13

1
65

0 2
65

0 0 1
13

1
65

0 2
65

0 4
65

0 0
1

65
0 3

65
4

65
0 0 0

2
65

0 0 0 0 0 3
65

3
65

2
65

1
13

0 0 3
65

0

1

2
3

4
5
6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7

D N

So
ur

ce
s

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2
65

1
13

1
65

1
65

2
65

3
65

2
65

0 1
65

0 0 0 2
65

1
13

1
65

0 2
65

0 0 1
13

1
65

0 2
65

0 4
65

0 0
1

65
0 3

65
4

65
0 0 0

2
65

0 0 0 0 0 3
65

3
65

2
65

1
13

0 0 3
65

0

1

2
3

4
5
6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7

Makes sense
to add link!

Much from 4 to 5.

D N

So
ur

ce
s

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2
65

1
13

1
65

1
65

2
65

3
65

2
65

0 1
65

0 0 0 2
65

1
13

1
65

0 2
65

0 0 1
13

1
65

0 2
65

0 4
65

0 0
1

65
0 3

65
4

65
0 0 0

2
65

0 0 0 0 0 3
65

3
65

2
65

1
13

0 0 3
65

0

1

2
3

4
5
6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7
1 communicates

to many. Bounded degree: route
to 7 indirectly.

D N

So
ur

ce
s

Destinations

Input:
Workload

Output:
Constant-Degree DAN

0 2
65

1
13

1
65

1
65

2
65

3
65

2
65

0 1
65

0 0 0 2
65

1
13

1
65

0 2
65

0 0 1
13

1
65

0 2
65

0 4
65

0 0
1

65
0 3

65
4

65
0 0 0

2
65

0 0 0 0 0 3
65

3
65

2
65

1
13

0 0 3
65

0

1

2
3

4
5
6

7

1 2 3 4 5 6 7

1

2

3 4

5

6

7

4 and 6 don’t
communicate…

… but “extra” link still
makes sense: not a

subgraph.

D N

ERL D,N = �
(u,v)∈D

p u, v � dN(u, v)

Objective: Expected Route Length

path length on N

frequencyD[𝐩𝐩 𝐢𝐢, 𝐣𝐣]: joint distribution

DAN N of degree Δ

Remark

• Can represent demand matrix as a demand graph

sparse distribution D sparse graph G(D)

3 4

So
ur

ce
s

Destinations
1 2

Some Examples
• DANs of Δ = 3:

– E.g., complete binary tree
– dN(u,v) ≤ 2 log n
– Can we do better than log n?

• DANs of Δ = 2:
– E.g., set of lines and cycles

Remark: Hardness Proof

DAN design can be NP-hard
• Example Δ = 2: A Minimum Linear

Arrangement (MLA) problem
– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges

Embedding?

DAN design can be NP-hard

Bad!

e.g.,
cost 5

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges

DAN design can be NP-hard

Better!

e.g.,
cost 1

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges

DAN design can be NP-hard

Better!

e.g.,
cost 1

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges

DAN design can be NP-hard

A new knob for
optimization!

e.g.,
cost 1

• But what about > 2? Embedding
problem still hard, but we have an
additional degree of freedom:

Do topological flexibilities make problem
easier or harder?!

• Example Δ = 2: A Minimum Linear
Arrangement (MLA) problem

– A “Virtual Network Embedding Problem”, VNEP
– Minimize sum of lengths of virtual edges

Rewinding the clock of the
Internet to a decade ago...

Rewinding the Clock:
Degree-Diameter Tradeoff

Each network with n nodes and max degree Δ >2
must have a diameter of at least log(n)/log(Δ-1)-1.

Example: constant Δ, log(n) diameter

Kudos to: Pedro Casas

Proof Idea

In k steps, reach at
most 1+ Σ Δ(Δ -1)k

nodes

Kudos to: Pedro Casas

1 Δ Δ(Δ -1) …

Is there a better tradeoff in DANs?

Sometimes, DANs can be much better!

Example 1: low-degree demand

If demand graph is of degree Δ, it is trivial
to design a DAN of degree Δ which achieves

an expected route length of 1.

Just take DAN =
demand graph!

Sometimes, DANs can be much better!

Example 2: skewed demand

If demand is highly skewed, it is also
possible to achieve an expected route

length of O(1) in a constant-degree DAN.

?

Sometimes, DANs can be much better!

Example 2: skewed demand

If demand is highly skewed, it is also
possible to achieve an expected route

length of O(1) in a constant-degree DAN.

E.g., arrange neighbors of node 1
in a Huffman tree!

Toward Demand-Aware Networking: A Theory for Self-
Adjusting Networks. Chen Avin and Stefan Schmid. ACM

SIGCOMM CCR, October 2018

So on what does it depend?

So on what does it depend?

We argue (but still don‘t know!): on the
“entropy” of the demand!

?

Intuition: Entropy Lower Bound?

Lower Bound Idea:
Leverage Coding or Datastructure

So
ur

ce
s

Destinations

• DAN just for a single (source) node 3

• How good can this tree be? Cannot do better
than Δ-ary Huffman tree for its destinations

• Entropy lower bound on ERL known for binary
trees, e.g. Mehlhorn 1975

0 2
65

1
13

1
65

1
65

2
65

3
65

2
65

0 1
65

0 0 0 2
65

1
13

1
65

0 2
65

0 0 1
13

1
65

0 2
65

0 4
65

0 0
1

65
0 3

65
4

65
0 0 0

2
65

0 0 0 0 0 3
65

3
65

2
65

1
13

0 0 3
65

0

1

2
3

4
5
6

7

1 2 3 4 5 6 7

Lower Bound Idea:
Leverage Coding or Datastructure

So
ur

ce
s

Destinations

• DAN just for a single (source) node 3

• How good can this tree be? Cannot do better
than Δ-ary Huffman tree for its destinations

• Entropy lower bound on ERL known for binary
trees, e.g. Mehlhorn 1975

0 2
65

1
13

1
65

1
65

2
65

3
65

2
65

0 1
65

0 0 0 2
65

1
13

1
65

0 2
65

0 0 1
13

1
65

0 2
65

0 4
65

0 0
1

65
0 3

65
4

65
0 0 0

2
65

0 0 0 0 0 3
65

3
65

2
65

1
13

0 0 3
65

0

1

2
3

4
5
6

7

1 2 3 4 5 6 7

An optimal “ego-tree“
for this source!

So: Entropy of the Entire Demand

• Proof idea (EPL=Ω(HΔ(Y|X))):

• Compute ego-tree for each source
node

• Take union of all ego-trees

• Violates degree restriction but valid
lower bound

sources destinations

entropy degree

Do this in both dimensions:

Ω(HΔ(X|Y))

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)}) Ω(HΔ(Y|X))

Entropy of the Entire Demand:
Sources and Destinations

Do this in both dimensions:

Ω(HΔ(X|Y))

D

EPL ≥ Ω(max{HΔ(Y|X), HΔ(X|Y)}) Ω(HΔ(Y|X))

Entropy of the Entire Demand:
Sources and Destinations

Demand-Aware Network Designs of Bounded Degree. Chen
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017.

Achieving Entropy Limit: Algorithms

Ego-Trees Revisited
• ego-tree: optimal tree for

a row (= given source)

D[i]
ego-tree

Ego-Trees Revisited

D[i] Can we merge the trees without
distortion and keep degree low?

• ego-tree: optimal tree for
a row (= given source)

ego-tree

Ego-Trees Revisited

D[i] Can we merge the trees without
distortion and keep degree low?

For sparse demands yes:
enough low-degree nodes which can

serve as “helper nodes“!

• ego-tree: optimal tree for
a row (= given source)

ego-tree

From Trees to Networks

Taking union of ego-trees results in high degree:
u and v will appear in many ego-trees

Idea: Degree Reduction
Demand graph1 2 Hierarchical representation

3 Add low-degree nodes as helpers

Node h helps edge (u, v) by participating in ego-tree(u) as a
relay node toward v and in ego-tree(v) as a relay toward u

high degree

low degree

Demand-Aware Network Designs of Bounded Degree. Chen
Avin, Kaushik Mondal, and Stefan Schmid. DISC, 2017.

But: How to design DANs which
also leverage temporal structure?

Inspiration from self-adjusting
datastructures again!

An Analogy

Static vs dynamic demand-
aware networks!?

DANs vs SANs?

00110101…

if demand arbitrary and unknown

log diameter

log # bits / symbol

An Analogy to Coding
„Coming to Barcelona?“

01011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

entropy / symbol

entropy?

DAN!

An Analogy to Coding

if demand known and fixed

„Coming to Barcelona?“

011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

if demand known and fixed

entropy / symbol

entropy?

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

An Analogy to Coding

if demand unknown but reconfigurable

„Coming to Barcelona?“

An Analogy to Coding 011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable

„Coming to Barcelona?“

An Analogy to Coding 011…

if demand arbitrary and unknown

log diameter

log # bits / symbol

DAN! SAN!

Dynamic DANs:
Aka. Self-Adjusting
Networks (SANs)!

Can exploit
spatial locality!

Additionally exploit
temporal locality!

if demand known and fixed if demand unknown but reconfigurable

„Coming to Barcelona?“

Analogous to Datastructures: Oblivious…
• Traditional, fixed BSTs do not rely on any

assumptions on the demand

• Optimize for the worst-case

• Example demand:
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

• Items stored at O(log n) from the root,
uniformly and independently of their
frequency

many many many many
Many requests

for leaf 1…
… then for

leaf 3…

many

Corresponds to
max possible demand!

• Demand-aware fixed BSTs can take
advantage of spatial locality of the
demand

• E.g.: place frequently accessed elements
close to the root

• E.g., Knuth/Mehlhorn/Tarjan trees

• Recall example demand:
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

– Amortized cost O(loglog n)
Amortized cost corresponds

to empirical entropy of demand!

loglog n

… Demand-Aware …

• Demand-aware reconfigurable BSTs
can additionally take advantage of
temporal locality

• By moving accessed element to the
root: amortized cost is constant, i.e.,
O(1)

– Recall example demand:
1,…,1,3,…,3,5,…,5,7,…,7,…,log(n),…,log(n)

… Self-Adjusting!

Datastructures
Oblivious Demand-Aware Self-Adjusting

Lookup
O(log n)

Exploit spatial locality:
empirical entropy O(loglog n)

Exploit temporal locality as well:
O(1)

Analogously for Networks
Oblivious DAN SAN

Const degree
(e.g., expander):

route lengths O(log n)

Exploit spatial locality Exploit temporal locality as well

000
Avin, S.: Toward Demand-Aware Networking: A Theory

for Self-Adjusting Networks. SIGCOMM CCR 2018.

Algorithms for Self-Adjusting Networks

Ego-trees strike back!

From trees to networks!

Ego-Trees!

D[i] Ego−Tree

i

Ego-Trees!

D[i]

Idea: use our old
approach but
now let each

node adjust its
ego-tree!

i

Ego−Tree

A Dynamic Ego-Tree:
Splay Tree

Demand-Oblivious

Fixed

Unknown

Bisection

Demand-Aware

Fixed Reconfigurable

Sequence Generator Offline Online

Awareness

Topology

Input

Static
Optimality

AlgorithmOFF ON

PropertyDiameter

Resiliency

Dynamic
Optimality

Learning
Optimality

STAT GENOBL

Uncharted Landscape! 000
Toward Demand-Aware Networking: A Theory for

Self-Adjusting Networks. SIGCOMM CCR, 2018.

Thank you! Questions?

Fu
rt

he
r R

ea
di

ng
Survey of Reconfigurable Data Center Networks: Enablers, Algorithms, Complexity
Klaus-Tycho Foerster and Stefan Schmid.
SIGACT News, June 2019.
Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.
Measuring the Complexity of Network Traffic Traces
Chen Griner, Chen Avin, Manya Ghobadi, and Stefan Schmid.
arXiv, 2019.
Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Distributed Self-Adjusting Tree Networks
Bruna Peres, Otavio Augusto de Oliveira Souza, Olga Goussevskaia, Chen Avin, and Stefan Schmid.
38th IEEE Conference on Computer Communications (INFOCOM), Paris, France, April 2019.
Efficient Non-Segregated Routing for Reconfigurable Demand-Aware Networks
Thomas Fenz, Klaus-Tycho Foerster, Stefan Schmid, and Anaïs Villedieu.
IFIP Networking, Warsaw, Poland, May 2019.
DaRTree: Deadline-Aware Multicast Transfers in Reconfigurable Wide-Area Networks
Long Luo, Klaus-Tycho Foerster, Stefan Schmid, and Hongfang Yu.
IEEE/ACM International Symposium on Quality of Service (IWQoS), Phoenix, Arizona, USA, June 2019.
Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.

A survey!

Demand-aware networks

https://www.univie.ac.at/ct/stefan/sigact19.pdf
https://www.univie.ac.at/ct/stefan/ccr18san.pdf
https://www.univie.ac.at/ct/stefan/Poster-khen.pdf
https://www.univie.ac.at/ct/stefan/infocom2019a.pdf
https://www.univie.ac.at/ct/stefan/infocom2019b.pdf
https://www.univie.ac.at/ct/stefan/ifip19dan.pdf
https://www.univie.ac.at/ct/stefan/iwqos19.pdf
https://net.t-labs.tu-berlin.de/%7Estefan/disc17.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/%7Estefan/ancs18.pdf

How Predictable is Traffic?
Even if reconfiguration fast, control plane
(e.g., data collection) can become a
bottleneck. However, many good examples:
• Machine learning applications
• Trend to disaggregation (specialized

racks)
• Datacenter communication dominated

by elephant flows
• Etc.

ML workload (GPU to GPU):
deep convolutional neural network

Predictable from their dataflow graph

	Theory of Demand-Aware Networks
	
	Flexibilities: Along 3 Dimensions
	Flexibilities: Along 3 Dimensions
	Flexibilities: Along 3 Dimensions
	
	A Simple Answer
	Seriously: We believe, often, in practice!
	Empirical Motivation
	So: How much structure is there?
	Often only intuitions in the literature…
	… and it is intuitive!�Non-temporal Structure
	… and it is intuitive!�Non-temporal Structure
	… and it is intuitive!�Temporal Structure
	… and it is intuitive!�Temporal Structure
	… and it is intuitive!�Temporal Structure
	The Trace Complexity
	The Trace Complexity
	The Trace Complexity
	The Trace Complexity
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	The Complexity Map
	Further Reading
	
	
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Objective: Expected Route Length
	Remark
	Some Examples
	Remark: Hardness Proof
	DAN design can be NP-hard
	DAN design can be NP-hard
	DAN design can be NP-hard
	DAN design can be NP-hard
	DAN design can be NP-hard
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Is there a better tradeoff in DANs?
	Sometimes, DANs can be much better!
	Sometimes, DANs can be much better!
	Sometimes, DANs can be much better!
	So on what does it depend?
	So on what does it depend?
	Intuition: Entropy Lower Bound
	Lower Bound Idea: �Leverage Coding or Datastructure
	Lower Bound Idea: �Leverage Coding or Datastructure
	So: Entropy of the Entire Demand
	Entropy of the Entire Demand: �Sources and Destinations
	Entropy of the Entire Demand: �Sources and Destinations
	Achieving Entropy Limit: Algorithms
	Ego-Trees Revisited
	Ego-Trees Revisited
	Ego-Trees Revisited
	From Trees to Networks
	Idea: Degree Reduction
	But: How to design DANs which �also leverage temporal structure?
	An Analogy
	An Analogy to Coding
	An Analogy to Coding
	An Analogy to Coding
	An Analogy to Coding
	An Analogy to Coding
	Analogous to Datastructures: Oblivious…
	… Demand-Aware …
	… Self-Adjusting!
	Datastructures
	Analogously for Networks
	Algorithms for Self-Adjusting Networks
	Ego-Trees!
	Ego-Trees!
	A Dynamic Ego-Tree:�Splay Tree
	Slide Number 89
	Thank you! Questions?
	Further Reading
	How Predictable is Traffic?

