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Virtualization and Programmability: 
It’s a great time to be a networking researcher!

Impact Rhone and Arve Rivers, 
Switzerland

Credits: George Varghese. 



Teaching Goals: You will understand…

❏ … where flexibilities arise in current networks

❏ … how to exploit them algorithmically

❏ … requirements and challenges of performance
isolation

❏ … where more research is urgently needed



Roadmap

❏ A short recap: 
❏ Networking preliminaries
❏ Opportunities and challenges of SDNs
❏ Network virtualization: today and tomorrow

❏ Algorithms I: Flexible routing

❏ Algorithms II: Flexible embedding and slicing

❏ Algorithms III: Flexible fast rerouting

❏ Algorithms IV: Toward self-adjusting networks

❏ Security aspects (if time permits)
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Racks of 
Servers

Many VMs!

How to design a datacenter network?



Internet

Network

How to design a datacenter network?

Racks of 
Servers



Which devices? 
Switches or 

routers? Internet

Network

How to design a datacenter network?

Racks of 
Servers



Network Layer:
 To transport datagrams

between hosts…
 … routers execute a routing 

algorithm: compute shortest 
and policy-compliant paths…
 … based on hierarchical, 

location-dependent IP 
addresses!

IP address like postal address: changes when moving to new LAN.

LAN

137.196.7.23

137.196.7.78

137.196.7.14

137.196.7.88

To understand the tradeoff: Preliminaries 



MAC address like Social Security number.

Link Layer:
 Switches rely on flat, 

location-independent and 
globally unique MAC 
addresses to forward 
frames
 Address portable across 

LANs

LAN

137.196.7.23

137.196.7.78

137.196.7.14

137.196.7.88

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

To understand the tradeoff: Preliminaries 



MAC address like Social Security number.

Link Layer:
 Switches rely on flat, 

location-independent and 
globally unique MAC 
addresses to forward 
frames
 Address portable across 

LANs

LAN

137.196.7.23

137.196.7.78
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To understand the tradeoff: Preliminaries 

But how do switches in a LAN know to which ports they need to 
forward a packet? 



MAC address like Social Security number.

Link Layer:
 Switches rely on flat, 

location-independent and 
globally unique MAC 
addresses to forward 
frames
 Address portable across 

LANs

LAN

137.196.7.23

137.196.7.78

137.196.7.14

137.196.7.88

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

To understand the tradeoff: Preliminaries 

But how do switches in a LAN know to which ports they need to 
forward a packet? 
And given an IP address (e.g., of gateway router) how can a host 
determine the required MAC destination address?



MAC address like Social Security number.

Link Layer:
 Switches rely on flat, 

location-independent and 
globally unique MAC 
addresses to forward 
frames
 Address portable across 

LANs

LAN

137.196.7.23

137.196.7.78

137.196.7.14

137.196.7.88

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

To understand the tradeoff: Preliminaries 

LANs are not about routing 
but broadcasting and learning.

Layer-2 network = single broadcast domain.



Assume: host A wants to send a packet to host B via router R:

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Assume host A knows: 
- B and R‘s IP addresses
- R’s MAC address

Recall: Routing to Another LAN



IP
Eth
Phy

IP src: 111.111.111.111
IP dest: 222.222.222.222

 Step 1: Host A creates IP datagram (IPsrc=A, IPdst=B) 
 Step 2: A creates link-layer frame with MACdst=R (R’s MAC address)

MAC src: 74-29-9C-E8-FF-55
MAC dest: E6-E9-00-17-BB-4B

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Recall: Routing to Another LAN



IP
Eth
Phy

 Step 3: Frame sent from A to R

IP
Eth
Phy

 Step 4: Frame received at R, passed up to IP

MAC src: 74-29-9C-E8-FF-55
MAC dest: E6-E9-00-17-BB-4B

IP src: 111.111.111.111
IP dest: 222.222.222.222

IP src: 111.111.111.111
IP dest: 222.222.222.222

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Recall: Routing to Another LAN



IP src: 111.111.111.111
IP dest: 222.222.222.222

 Step 5: R forwards datagram with same IPsrc=A, IPdst=B 
 Step 6: R creates link-layer frame with MACdst=B (B’s MAC address), 

frame contains A-to-B IP datagram

MAC src: 1A-23-F9-CD-06-9B
MAC dest: 49-BD-D2-C7-56-2A

IP
Eth
Phy

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

4

Recall: Routing to Another LAN



IP src: 111.111.111.111
IP dest: 222.222.222.222

MAC src: 1A-23-F9-CD-06-9B
MAC dest: 49-BD-D2-C7-56-2A

IP
Eth
Phy

IP
Eth
Phy

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

 Step 5: R forwards datagram with same IPsrc=A, IPdst=B 
 Step 6: R creates link-layer frame with MACdst=B (B’s MAC address), 

frame contains A-to-B IP datagram

Recall: Routing to Another LAN



R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111
74-29-9C-E8-FF-55

A

222.222.222.222
49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

MAC of R?

But what if host A does not know R’s MAC address yet, but 
only the gateway R’s IP address?

Recall: Routing to Another LAN



To learn R’s MAC address:
Host A broadcasts ARP query

containing R's IP address 
ARP packet dstMAC = FF-FF-FF-FF-

FF-FF
all nodes on LAN receive ARP 

query 

Router R receives ARP packet, 
replies to A with its (R's) MAC 
address

Unicast to A‘s MAC address 
(why?)

DNS
UDP

IP
Eth
Phy

ARP query
ARP

ARP reply

MAC of R?

Me!

Eth
Phy

ARP

R

A

Given IP, find MAC!
The ARP Protocol



The learned mappings are 
cached: each IP node (host, 
router) on LAN maintains ARP 
table:

< IP address; MAC address; TTL>

IP MAC TTL
IP R MAC R 20min

Time-To-Live: avoid 
stale entries

ARP is “plug&play”: nodes learn and create their ARP tables 
without intervention from administrator!

R

A

Layer 2: About broadcasting and learning!



switch with six interfaces
(1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

345

6

Another question: how does a 
switch know where to forward a 
frame? E.g., that  A’ is reachable 
via interface 4, B’ reachable via 
interface 5?

Also the switches broadcast and learn



switch with six interfaces
(1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

345

6

Another question: how does a 
switch know where to forward a 
frame? E.g., that  A’ is reachable 
via interface 4, B’ reachable via 
interface 5?

Also the switches broadcast and learn

Host‘s MAC 
address

Interface to
reach host

TTL

A‘ 4 12min
B‘ 5 3min

MAC learning:
Each switch runs a MAC learning 
protocol and has a switch table:

But how can switches 
obtain this information?



Host‘s MAC 
address

Interface to
reach host

TTL

A

A’

B

B’ C

C’

2

345

6

A  A’

Source: A
Dest: A’

A 1 10min

A A’A A’A A’A A’A  A’

• Destination A’ location 
unknown:
flood but learn A

A’ A

 Now destination A location 
known:

A’ 4 10min

send directly (and learn A’)

1

MAC Learning



 Layer-2 networks are very flexible: location-
independent addresses, plug&play, self-learning, 
etc.: devices (and virtual machines!) can move 
(migrate)

 But: Layer-2 networks do not scale: despite 
caching, LAN-wide broadcasts needed once in a 
while (ARP, MAC learning, DHCP, etc.)!

Intermediate Conclusion



 Layer-2 networks are very flexible: location-
independent addresses, plug&play, self-learning, 
etc.: devices (and virtual machines!) can move 
(migrate)

 But: Layer-2 networks do not scale: despite 
caching, LAN-wide broadcasts needed once in a 
while (ARP, MAC learning, DHCP, etc.)!

Intermediate Conclusion

How large should a LAN be?

Flexibility vs Scalability tradeoff!



Racks of Servers

Internet Router or 
switch?

So how to design a datacenter?



Internet

Router

Switch

Proposal #1

Last-hop 
router

Where are LANs?



Internet

Router

LAN
Switch

Proposal #1

Last-hop 
router



Internet

Virtual Machine 
with IP address

Router

LAN
Switch

Last-hop 
router

Proposal #1

Mobility with this IP?
Broadcast domain?



Internet

Virtual Machine 
with IP address

Router

LAN

A large LAN: High mobility… 

Switch

No need to change IP!

Last-hop 
router

Proposal #1



Internet

Virtual Machine 
with IP address

Router

Switch
LAN = 
broadcast
domain! 

A large LAN: High mobility…
… but high overhead due to learning

and broadcasting.No need to change IP!

Last-hop 
router

Proposal #1



Racks of Servers

Internet

Virtual Machine 
with IP address

Router

Last-hop 
router

Switch

Proposal #2



Racks of Servers

Internet

Virtual Machine 
with IP address

Router

SwitchLAN

Last-hop 
router

Proposal #2



LAN

Mobility

A small LAN: A different 
mobility – overhead (scalability) tradeoff!

Racks of Servers

Internet

Virtual Machine 
with IP address

Router

SwitchLAN

Last-hop 
router

Proposal #2



Racks of Servers

Internet

Router

Switch

What about isolation of tenants?



Racks of Servers

Internet

Router

Switch

What about isolation of tenants?

encapsulate

Network virtualization: VLANs, VxLANs, tunneling, … or SDN!



Isolation: Required on all levels! 

Virtualization and Isolation
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SDN in a Nutshell

Ctrl

Control
Programs

Control
Programs

❏ Logically centralized control

❏ Innovation at speed of 
software development

❏ Direct control over paths

❏ Generalized match-action

❏ Example benefits:
❏ Flexible network virtualization
❏ Traffic engineering



Rewinding the clock of the 
Internet  to a decade ago...

Slide credit: 
Pedro Casas



Traditional Traffic Engineering



Kudos to: Pedro Casas

s1

s2

d
a single destination

2 sources of traffic 

Traditional Traffic Engineering

v
all link capacities 1



Kudos to: Pedro Casas

s1

s2

d

Only 2 possible demands:
1. s1 ▻ d = 1
2. s2 ▻ d = 1 

Traditional Traffic Engineering

v
all link capacities 1

1
1

• E.g., OSPF
• Indirectly: changing weights

1

1 1

1

1
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s1
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d

Only 2 possible demands:
1. s1 ▻ d = 1
2. s2 ▻ d = 1 

Traditional Traffic Engineering

v
all link capacities 1

1
1

• E.g., OSPF
• Indirectly: changing weights, equal splits

1

1 1

1

1
1

0.5

0.5
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Only 2 possible demands:
1. s1 ▻ d = 1
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v
all link capacities 1

1
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• E.g., OSPF
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Kudos to: Pedro Casas

s1

s2

d

Only 2 possible demands:
1. s1 ▻ d = 1
2. s2 ▻ d = 1 

Traditional Traffic Engineering

v
all link capacities 1

1
1

• E.g., OSPF
• Indirectly: changing weights, equal splits

1

1 1

1

1
1

0.5

0.5

No link-weight assignment can 
attain  ≤ 100% link utilization!



s1

s2

d

Only 2 possible demands:
1. s1 ▻ d = 1
2. s2 ▻ d = 1 

Easy in SDN!

v

1
1

1

1



SDN: Not necessarily simpler!



Recall: Networking 101

Credits: Jennifer Rexford

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p



h1

h2
h3

1

2
3

❏ Example
❏ h1 sends to h2:

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101



h1

h2
h3

1

2
3

❏ Example
❏ h1 sends to h2: flood

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101



❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)

h1

h2
h3

1

2
3

dstmac=h1,fwd(1)

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101



❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)
❏ h3 sends to h1: forward to p1 h1

h2
h3

1

2
3

dstmac=h1,fwd(1)

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101



h1 3

❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)
❏ h3 sends to h1: forward to p1, learn (h3,p3)

h2
h3

1

2

dstmac=h1,fwd(1)
dstmac=h3,fwd(3)

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101



❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)
❏ h3 sends to h1: forward to p1, learn (h3,p3)
❏ h1 sends to h3: forward to p3

h1 3

h2
h3

1

2

dstmac=h1,fwd(1)
dstmac=h3,fwd(3)

❏ Networking «Hello World»: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Recall: Networking 101



How to implement this behavior in SDN?

h1 3

From Traditional Networks to SDN

h2
h3

1

2

Controller



Example: SDN MAC Learning 
Done Wrong

❏ Initial table: Send 
everything to controller

h1

h2
h3

1

2
3

Controller

OpenFlow
switch

Pattern Action
* send to controller



Example: SDN MAC Learning 
Done Wrong

❏ When h1 sends to h2:

h1

h2
h3

1

2
3

Controller

OpenFlow
switch

Pattern Action
* send to controller

❏ Initial table: Send 
everything to controller



Example: SDN MAC Learning 
Done Wrong

h1

h2
h3

1

2
3

OpenFlow
switch

Controller

❏ When h1 sends to h2: 
❏ Controller learns that h1@p1, updates table, and floods

h1 sends to h2

Pattern Action
* send to controller

Pattern Action
dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown



Example: SDN MAC Learning 
Done Wrong

h1

h2
h3

1

2
3

OpenFlow
switch

Controller

❏ Now assume h2 sends to h1:

Pattern Action
dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown



Example: SDN MAC Learning 
Done Wrong

h1

h2
h3

1

2
3

OpenFlow
switch

Controller

❏ Now assume h2 sends to h1:
❏ Switch knows destination: message forwarded to h1
❏ BUT: No controller interaction, does not learn about h2: 

no new rule for h2

Pattern Action
dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown



Example: SDN MAC Learning 
Done Wrong

h1

h2
h3

1

2
3

OpenFlow
switch

Controller

❏ Now, when h3 sends to h2:

h3 sends to h2

Pattern Action
dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown



Example: SDN MAC Learning 
Done Wrong

h1

h2
h3

1

2
3

OpenFlow
switch

Controller

❏ Now, when h3 sends to h2:
❏ Dest unknown: goes to controller which learns about h3
❏ And then floods

h3 sends to h2

Pattern Action
dstmac=h3 Forward(3)
dstmac=h1 Forward(1)

* send to controller

Pattern Action
dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown



Example: SDN MAC Learning 
Done Wrong

h1

h2
h3

1

2
3

OpenFlow
switch

Controller

❏ Now, if h2 sends to h3 or h1:

Pattern Action
dstmac=h3 Forward(3)
dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown



Example: SDN MAC Learning 
Done Wrong

h1

h2
h3

1

2
3

OpenFlow
switch

Controller

❏ Now, if h2 sends to h3 or h1:
❏ Destinations known: controller does not learn about h2

Pattern Action
dstmac=h3 Forward(3)
dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown



Example: SDN MAC Learning 
Done Wrong

h1

h2
h3

1

2
3

OpenFlow
switch

Controller

Ouch! Controller cannot learn about h2 anymore: 
whenever h2 is source, destination is known. All future

requests to h2 will all be flooded: inefficient!

Pattern Action
dstmac=h3 Forward(3)
dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown



Example: SDN MAC Learning 
Done Wrong

h1

h2
h3

1

2
3

OpenFlow
switch

Controller

Pattern Action
dstmac=h3 Forward(3)
dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Ouch! Controller cannot learn about h2 anymore: 
whenever h2 is source, destination is known. All future

requests to h2 will all be flooded: inefficient!

How to efficiently detect such 
problems? And which rules to use

to overcome them? An 
algorithmic problem! 
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❏ On predictable performance

❏ Algorithms I: Flexible routing

❏ Algorithms II: Flexible embedding and slicing

❏ Algorithms III: Flexible fast rerouting

❏ Algorithms IV: Theory of demand-aware networks

❏ Security aspects (if time permits)
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On Predictable Performance…

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1 vSDN-1

An Experiment: 2 vSDNs with bw guarantee! 

Assume: perfect
performance isolation on 

the network! 

Consider: 2 SDN-based
virtual networks (vSDNs) 

sharing physical resources! 



SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1 vSDN-1
To enable multi-tenancy, 

take existing network
hypervisor (e.g. Flowvisor, 

OpenVirteX): provides
network abstraction and 
control plane translation!

An Experiment: 2 vSDNs with bw guarantee! 

On Predictable Performance…



SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1 vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod 7 flow-mod

Translation 
could include, 

e.g., switch
DPID, port

numbers, …

An Experiment: 2 vSDNs with bw guarantee! 

Intercepts control
plane messages. 

On Predictable Performance…



SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1 vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod 7 flow-mod

It turns out: the network hypervisor can 
be source of unpredictable performance!

An Experiment: 2 vSDNs with bw guarantee! 

On Predictable Performance…



SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1 vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod 7 flow-mod

Experiment: web latency depends
on hypervisor CPU load!

On Predictable Performance…



Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

The Many Faces of Performance Interference



Further Reading

On The Impact of the Network Hypervisor on Virtual 
Network Performance
Andreas Blenk, Arsany Basta, Wolfgang Kellerer, and
Stefan Schmid.
IFIP Networking, Warsaw, Poland, May 2019.

https://www.univie.ac.at/ct/stefan/ifip19hypervisor.pdf
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s t

A novelty:
❏ Traditionally: routes form simple paths (e.g., shortest paths)
❏ Now: routing through middleboxes may require more

general paths, with loops: a walk

How to compute a 
shortest route 

through a waypoint?

A Nugget: Flexible Traffic Steering

2 2



Comuting A Shortest Walk Through A 
Single Given Waypoint is Non-Trivial!

s

❏ Computing shortest routes through waypoints
is non-trivial!

wt

Assume unit capacity and 
demand for simplicity!
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❏ Computing shortest routes through waypoints
is non-trivial!

wt

Greedy fails: choose shortest path from s to w… 

Assume unit capacity and 
demand for simplicity!

Comuting A Shortest Walk Through A 
Single Given Waypoint is Non-Trivial!



s

wt

Greedy fails: … now need long path from w to t

❏ Computing shortest routes through waypoints
is non-trivial! Assume unit capacity and 

demand for simplicity!

Comuting A Shortest Walk Through A 
Single Given Waypoint is Non-Trivial!



s

wt

Greedy fails: … now need long path from w to t

Total length: 
2+6=8

❏ Computing shortest routes through waypoints
is non-trivial! Assume unit capacity and 

demand for simplicity!

Comuting A Shortest Walk Through A 
Single Given Waypoint is Non-Trivial!



s

wt

A better solution: jointly optimize the two segments!

Total length: 
4+2=6

❏ Computing shortest routes through waypoints
is non-trivial! Assume unit capacity and 

demand for simplicity!

Comuting A Shortest Walk Through A 
Single Given Waypoint is Non-Trivial!



Relationship to Shortest Disjoint Paths

If capacities are 1, segments need to be edge-
disjoint: A disjoint paths problem

• A well-known combinatorial problem!
• NP-hard on directed networks
• Feasibility in P on undirected networks for small (constant) number

of flows
• Polytime randomized algorithm for 2 disjoint paths (recent result!)

s1

t1
s2

t2

s3

t3



NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2) 
to shortest walk (s,w,t) problem

Fact: computing 2-
disjoint paths (2DP) is NP-
hard on directed graphs.
We show: If waypoint 
routing was in P, we 
could solve 2DP fast. 
Contradiction! 



s1

s2

t1

t2

w

•Reduction: To 
find shortest 
paths (s1,t1), 
(s2,t2), introduce 
waypoint w and 
connect t1 to s2
via w…. 

Reduction: From joint shortest paths (s1,t1),(s2,t2) 
to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem



s1

s2

t1

t2

w

•Reduction: To 
find shortest 
paths (s1,t1), 
(s2,t2), introduce 
waypoint w and 
connect t1 to s2
via w…. 

Reduction: From joint shortest paths (s1,t1),(s2,t2) 
to shortest walk (s,w,t) problem

… and ask for 
shortest waypoint 
route (s1,w,t2)

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem



s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2) 
to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths ProblemThe walk (s1,w,t2) walk defines a (s1,t1) 

and a (s2,t2) path pair before/after the 
waypoint! Solves original problem: 

Contradiction!

•Reduction: To 
find shortest 
paths (s1,t1), 
(s2,t2), introduce 
waypoint w and 
connect t1 to s2
via w…. 

… and ask for 
shortest waypoint 
route (s1,w,t2)



What about waypoint routes on 
undirected networks?



Path 1

❏ For a single waypoint, can even compute shortest route (walk)!
❏ Recall: there is a randomized polytime algorithm for 2 disjoint paths

What about waypoint routes on 
undirected networks? (2)

Idea: Reduce it to disjoint paths problem!

S TPath 2

u v3 u v
Step 1: replace 

weights with 
parallel links

Step 2: compute 
2 disjoint paths 
(A,W) and (W,B)

W



Path 1

❏ For a single waypoint, can even compute shortest route (walk)!
❏ Recall: there is a randomized polytime algorithm for 2 disjoint paths

What about waypoint routes on 
undirected networks? (2)

Idea: Reduce it to disjoint paths problem!

S TPath 2

u v3 u v
Step 1: replace 

weights with 
parallel links

Step 2: compute 
2 disjoint paths 
(A,W) and (W,B)

W

Good news: For a single waypoint, shortest
paths can be computed even faster!



❏ Suurballe’s algorithm: finds two (edge-)disjoint shortest
paths between same endpoints:

ts

Walking Through a Waypoint on Steroids: 
Suurballe’s Algorithm



❏ Suurballe’s algorithm: finds two (edge-)disjoint shortest
paths between same endpoints:

ts

•How to compute a 
shortest (s,w,t) route 
with this algorithm??

Walking Through a Waypoint on Steroids: 
Suurballe’s Algorithm



❏ Step 1: replace capacities with parallel edges: paths will 
become edge-disjoint

s tw s tw22

Walking Through a Waypoint on Steroids: 
Reduction to Suurballe’s Algorithm



❏ Step 2: Reduction to Suurballe’s algorithm:

t

s

wG
•In order to find 
shortest (s,w,t) route…

Walking Through a Waypoint on Steroids: 
Reduction to Suurballe’s Algorithm



t

s

wS+ T+G
•… connect S+ to s and t, 
and w to T+…

❏ Step 2: Reduction to Suurballe’s algorithm:

Walking Through a Waypoint on Steroids: 
Reduction to Suurballe’s Algorithm



t

s

wS+ T+G
•… ask Suurballe for 2 disjoint 
paths from S+ to T+…

❏ Step 2: Reduction to Suurballe’s algorithm:

Walking Through a Waypoint on Steroids: 
Reduction to Suurballe’s Algorithm



t

s

wG
•Solution! Undirected: 
direction does not matter.

❏ Step 2: Reduction to Suurballe’s algorithm:

Walking Through a Waypoint on Steroids: 
Reduction to Suurballe’s Algorithm



Wait A Moment…!?
Can we not use Suurballe as well to solve 2 disjoint paths?

t

s
S+

G

w T+

s1

S+

G

T+

s2

t1

t2

Reduction 
Waypoint Routing  ⇒ Suurballe

Reduction 
2 Disjoint Paths ⇒ Suurballe



Wait A Moment…!?
No! Solves a much easier problem: 2 routes from {s1,s2} to {t1,t2}.

t

s
S+

G

w T+

s1

S+

G

T+

s2

t1

t2

Reduction 
Waypoint Routing  ⇒ Suurballe

Reduction 
2 Disjoint Paths ⇒ Suurballe



❏ Remark 1: Suurballe is actually for directed substrate
graphs, so need gadget to transform problem in right form:

y

x

u v u v

❏ Remark 2: Suurballe: for vertex disjoint
❏ Suurballe & Tarjan: edge disjoint

Remarks: Under the rug…



Remark: There are complex requests…

Credits: https://tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06

IETF Draft:

Customer LB1 Cache LB2 FW NAT Internet

❏ Service chain for mobile operators
❏ Load-balancers are used to route (parts of) the traffic through cache

Can be seen as a 
virtual network…



Further Reading

Walking Through Waypoints
Saeed Akhoondian Amiri, Klaus-Tycho Foerster, and
Stefan Schmid.
13th Latin American Theoretical Informatics Symposium 
(LATIN), Buenos Aires, Argentina, April 2018.
Charting the Algorithmic Complexity of Waypoint Routing
Saeed Akhoondian Amiri, Klaus-Tycho Foerster, Riko 
Jacob, and Stefan Schmid.
ACM SIGCOMM Computer Communication Review 
(CCR), 2018.

https://www.univie.ac.at/ct/stefan/latin18.pdf
https://www.univie.ac.at/ct/stefan/ccr18waypoint.pdf
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vm1

vm2

vm3

vm4

❏ A fundamental resource allocation problem
❏ 2 dimensions of flexibility:

❏ Mapping of virtual nodes (to physical nodes)
❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

embedding?

VNet Substrate 
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vm1

vm2

vm3

vm4

❏ A fundamental resource allocation problem
❏ 2 dimensions of flexibility:

❏ Mapping of virtual nodes (to physical nodes)
❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

embedding?

VNet Substrate 

aka “guest 
graph”

aka “host 
graph”

Assume unit demand 
and capacity!



vm1

vm2

vm3

vm4

❏ Let’s start simple: assume node mappings are given

The Virtual Network Embedding Problem

embedding?

VNet Substrate 



vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate 

Embedding the 2 virtual links 
boils down to computation of
2 shortest paths!

❏ Let’s start simple: assume node mappings are given



vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate 

How to compute 2 
shortest paths under 
capacity constraints?

Embedding the 2 virtual links 
boils down to computation of
2 shortest paths!

❏ Let’s start simple: assume node mappings are given



vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate 

Let’s try greedy! 
First vm1-vm2. 

Embedding the 2 virtual links 
boils down to computation of
2 shortest paths!

❏ Let’s start simple: assume node mappings are given



vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate 

Let’s try greedy! 
First vm1-vm2. 

Then vm3-vm4.
Total cost: 6. 

❏ Let’s start simple: assume node mappings are given



vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate 
A better solution: 

cost 5!

Embedding the 2 virtual links 
boils down to computation of
2 shortest paths!

❏ Let’s start simple: assume node mappings are given



vm1

vm2

vm3

vm4

The Virtual Network Embedding Problem

vm1 vm4

vm3
vm2

embedding?

VNet Substrate 

Joint optimization of 2 flows is already a challenging
combinatorial problem! If demand=capacity=1: 
shortest 2-disjoint paths problem. 

Embedding the 2 virtual links 
boils down to computation of
2 shortest paths!

❏ Let’s start simple: assume node mappings are given



Bad news: The Virtual Network Embedding Problem is hard
even if endpoints are already mapped and given.

Therefore: Mapping Virtual Links is Challenging

But maybe at least 
mapping nodes is simple?



❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Guest

Host



❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Cost 5 

Guest

Host



❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Cost 2 

Guest

Host



❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Minimizing the sum of virtual link 
lengths is a Minimum Linear 

Arrangement Problem (MinLA)! 
NP-hard.



Therefore: VNEP is Hard “in Both Dimensions”!

Known? Why is SIP NP-hard? 

❏ We have seen examples that: 
❏ mapping virtual links is hard (even if nodes are given)
❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)



❏ We have seen examples that: 
❏ mapping virtual links is hard (even if nodes are given)
❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)
❏ The SIP problem: Given two graphs G,H, determine whether G contains a subgraph that is 

isomorphic to H?
❏ NP-hard: “does G contain an n-node cycle?” is a Hamilton cycle problem (each node visited 

exactly once), a solution to “does G contain a k-clique?” solves maximum clique problem, etc.

Therefore: VNEP is Hard “in Both Dimensions”!



❏ We have seen examples that: 
❏ mapping virtual links is hard (even if nodes are given)
❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)
❏ The SIP problem: Given two graphs G,H, determine whether G contains a subgraph that is 

isomorphic to H?
❏ NP-hard: “does G contain an n-node cycle?” is a Hamilton cycle problem (each node visited 

exactly once), a solution to “does G contain a k-clique?” solves maximum clique problem, etc.

Therefore: VNEP is Hard “in Both Dimensions”!

So if SIP is hard, why is 
VNEP hard?



❏ Observe: VNEP is a generalization of SIP

❏ For example: 

Can VNet G=(V,E) be embedded in H at cost |E|? 
(I.e., each virtual edge has length 1.)



Is G a subgraph of H?

NP-Hardness: From SIP to VNEP

?



Note: It is sometimes possible to embed a guest graph G on a host 
graph H, even though G is not a minor of H:

Remark: Graph Minors

Assume planar host graph H: 
K5 and K3,3 minor-free…

… but it is possible to embed 
non-planar guest graph G=K5!



Can we at least formulate a “fast” MIP?

?



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

One that provides 
good relaxations!



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Initially: no variables set

subset of variables set

all variables set: infeasible, 
feasible, optimal? 

Usual
procedure:



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Assume: best
feasible so far!

Assume: 
best (still 
unknown)

Assume: 
already

explored

Usual
procedure:



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Decide: Is it worth 
exploring subtree?!

Usual
procedure:



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Usual trick: Relax! Solve LP (fast!), 
and if relaxed solution (more
general!) not better then best

solution so far: skip it!



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)
❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Bottomline: If MIP provides «good
relaxations», large parts of the
search space can be pruned.

Usual trick: Relax! Solve LP (fast!), 
and if relaxed solution (more
general!) not better then best

solution so far: skip it!



A typical MIP formulation:

❏ Introduce binary variables 
map(v,s) to map virtual nodes v
to substrate node s

❏ Introduce flow variables for paths
(say splittable for now)

❏ Ensure flow conservation: all flow
entering a node must leave the
node, unless it is the source or
the destination

Can we at least formulate a “fast” MIP?

v

s

Σu->v fuv = Σv->w fvw

In Out 



Can we at least formulate a “fast” MIP?

140

v: ∑ u fuv – fvu ≥ map(s,v) *b  - map(t,v) * ∞

A

Assume bandwidth b 
requested from node s 

to node t.

We get constraints like:

What does this
formula do and why is

it correct? 

In Out 



Can we at least formulate a “fast” MIP?

141

v: ∑ u fuv – fvu ≥ map(s,v) *b  - map(t,v) * ∞

A

Assume bandwidth b 
requested from node s 

to node t.

We get constraints like:

If map(s,v)=1, i.e., s mapped to v: 
so flow starts at v, and hence

outgoing flow must be larger than
incoming flow (plus b).

In Out 



Can we at least formulate a “fast” MIP?

142

v: ∑ u fuv – fvu ≥ map(s,v) *b  - map(t,v) * ∞

A

Assume bandwidth b 
requested from node s 

to node t.

We get constraints like:

If map(s,v)=0 and map(t,v)=0, i.e., v is
along the path from s to t: then we have
flow conservation: outgoing flow must 
equal incoming flow (here ≥, objective
function will remove unnecessary flow).

In Out 



Can we at least formulate a “fast” MIP?

143

v: ∑ u fuv – fvu ≥ map(s,v) *b  - map(t,v) * ∞

A

Assume bandwidth b 
requested from node s 

to node t.

We get constraints like:

If map(t,v)=1, i.e., t mapped to v: so flow
terminates at node v: so no constraint: 

minus infinity (but objective function will 
remove unnecessary flow).

In Out 



Can we at least formulate a “fast” MIP?

144

v: ∑ u fuv – fvu ≥ map(s,v) *b  - map(t,v) * ∞

A

Assume bandwidth b 
requested from node s 

to node t.

We get constraints like:

Will such a MIP 
provide effective

pruning?

If map(t,v)=1, i.e., t mapped to v: so flow
terminates at node v: so no constraint: 

minus infinity (but objective function will 
remove unnecessary flow).

In Out 



What will happen in this example?

em
be

dd
in
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v1

v2

s1
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What will happen in this example?

v1

v2

s1

s2

map(v1, s1)=.5

map(v2, s2)=.5



What will happen in this example?

v1

v2

map(v1, s1)=.5

map(v2, s2)=.5

v1

v1

v2

v2

flow = 0

Minimal flow = 0: fulfills flow conservation! Relaxation useless: does not 
provide any lower bound or indication of good mapping!

flow = 0



Remark: What about using randomized rounding?

An approximation approach which:
❏ … computes a solution to the linear relaxation

of the IP, 
❏ … decomposes this solution into convex 

combinations of elementary solutions, and 
❏ … probabilistically chooses any of the 

elementary solutions based on their weight.



❏ Problem 1:  relaxed solutions may not be very
meaningful
❏ see example for splittable flows before

❏ Problem 2: also for unsplittable flows, if using a 
standard Multi-Commodity Flow (MCF) formulation of
VNEP, the integrality gap can be huge
❏ Tree-like VNets are still ok
❏ VNets with cycles: randomized rounding not applicable, since

problem not decomposable

What about using randomized rounding?

The linear solutions can be decomposed into
convex combinations of valid mappings.



Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example: u1

u6 u2

u4

u5 u3

VNet
Host

em
be

dd
in

g?

i

k j



Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example: u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

Valid LP solution: virtual node 
mappings sum to 1 and each virtual 
node connects to its neighboring 
node with half a unit of flow…

u1

u6 u2

u4

u5 u3



Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example: u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

Partial 
Decomposition

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

Impossible to decompose and extract any single valid 
mapping. Intuition: Node i is mapped to u1 and the
only neighboring node that hosts j is u2, so i must be
fully mapped on u1 and j on u2. Similarly, k must be
mapped on u3. But flow of virtual edge (k,i) leaving u3
only leads to u4, so i must be mapped on both u1 and 
u4. This is impossible, even if capacities are infinite.

u1

u6 u2

u4

u5 u3



Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example: u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

Partial 
Decomposition

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

Impossible to decompose and extract any single valid 
mapping. Intuition: Node i is mapped to u1 and the
only neighboring node that hosts j is u2, so i must be
fully mapped on u1 and j on u2. Similarly, k must be
mapped on u3. But flow of virtual edge (k,i) leaving u3
only leads to u4, so i must be mapped on both u1 and 
u4. This is impossible, even if capacities are infinite.

u1

u6 u2

u4

u5 u3How to devise a Linear 
Programming formulations, such 
that convex combinations of valid

mappings can be recovered?!



Thank you for your attention!



Thank you for your attention!

Wait a minute! 
These problems need to be solved!

And they often can, even with guarantees. 



❏ Guest graphs may not be general
graphs, but e.g., virtual clusters: very
simple and symmetric, used in 
context of batch processing
❏ k VMs/compute-units/tasks/...
❏ Connected to virtual switch at bandwidth b

Theory vs Practice:
In Practice There is Hope!

vm1 vm2 vm3 vm4 vm5

logical switch

b
b b b b



How to Embed a Virtual Cluster?

Physical switch

Server with 4 VM slots
(3 occupied, 1 free)

Consider host graph:

free

occupied



How to Embed a Virtual Cluster?

Consider guest graph:

b=1

require 2 
cores each

logical switch

n=5



How to Embed a Virtual Cluster?



1. Place logical switch (try all options)



2. Extend network with artificial source s and sink t
1. Place logical switch (try all options)

t

s

cost = 0

cost = 0



2. Extend network with artificial source s and sink t
3. Add capacities (recall that b=1, so each virtual node
needs one unit of capacity)

1. Place logical switch (try all options)

t

s

0
1 2 2 1 2

capacity = how many virtual
nodes (requiring 2 cores) can

be placed?

n=5Capacity = # virtual nodes



t

s

0
1 2 2 1 2

Then: Compute min-cost max flow of size n from s to t
(e.g., successive shortest paths): due to capacity 
constraints at most size n.

n=5



… and assign virtual nodes (and edges) accordingly!

Then: Compute min-cost max flow of size n from s to t
(e.g., successive shortest paths): due to capacity 
constraints at most size n.



In fact: this physical network is even a tree! 
For trees with servers at leaves, even

simpler algorithms are possible. Ideas?

How to Embed a Virtual Cluster?



Dynamic Programming



Dynamic Programming
Bottom-up programming: 
given optimal solution for 

subtrees, can quickly
compute optimal solution for 

entire tree! 



Dynamic Programming

Given optimal embedding for x ∈ {0, 
..., n} virtual nodes in left subtree…

Given optimal embedding for x ∈ {0, 
..., n} virtual nodes in right subtree…



Dynamic Programming
… can compute optimal embedding

of x ∈ {0, ..., n} virtual nodes in 
entire subtree!

Given optimal embedding for x ∈ {0, 
..., n} virtual nodes in left subtree…

Given optimal embedding for x ∈ {0, 
..., n} virtual nodes in right subtree…



Dynamic Programming

Bottom-up «induction». Leaves easy: either x nodes fit server
(cost 0) or not (cost ∞): opt[≤4] = 0 , opt[>4] = ∞



Dynamic Programming

opt(T,x)=min0≤y≤x {opt(left,y)+opt(right,x-y}+bw(T,x)

To compute cost of embedding x nodes in T, place y nodes on the left, x-y 
on the right subtree, and compute cost due to links across root. 

account for bw to n-x 
remaining nodes



Remark on Virtual Cluster Abstraction

❏ Two interpretations: 
❏ Logical switch at unique location
❏ Logical switch can be distributed («Hose model»)

vsbb
b

b

b

b

Logical Switch Variant Hose Variant

1 2 3 2

3

Aggregated bw in/out 
node at most b.

1



Remark on Virtual Cluster Abstraction

❏ Two interpretations: 
❏ Logical switch at unique location
❏ Logical switch can be distributed («Hose model»)

vsbb

b

b

b

Logical Switch Variant Hose Variant

1 2 3 2

3

Can serve the same communication
patterns! (A polytope of possible

traffic matrices.) 

Example: 
(1,2): b/2
(1,3): b/2
(2,3): b/2

1



Remark on Virtual Cluster Abstraction

❏ Two interpretations: 
❏ Logical switch at unique location
❏ Logical switch can be distributed («Hose model»)

vsbb
b

b

b

b

Hose Variant

1 2 3 1 2

3

But embedding costs can be different if we do not 
insist on placing the logical switch explicitly! Not on 
trees though, and not in uncapacitated networks: 
without routing restrictions, optimal routing paths
form a tree (SymG=SymT a.k.a. VPN Conjecture). 



The Benefit of Hose Interpretation



The Benefit of Hose Interpretation
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11

1
11

1

Host Graph: A Ring
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How to embed as a star?



The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1)

11

1
11

1

Host Graph: A Ring

2

2

2

2

2

2

How to embed as a star?

em
be

dd
in

g?

Impossible: need at least 5 units of flow from/to node where star
center is mapped. However, capacity of incident links is only 4.



The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1)

11

1
11

1

Host Graph: A Ring

2

2

2

2

2

2
em

be
dd

in
g?

How about hose?



The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

2

2

2

2

2

2
em

be
dd
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g?

1

2 3

4

56

Node mapping! Now: How to
embed these virtual links?



The Benefit of Hose Interpretation
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Recall: hose has total 
demand at most 1. 



The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1)

em
be

dd
in

g?
1

Virtual links from node 1 to {2,3,4,5,6} 
can be implemented along this route: 
fulfills capacity constraints under any

traffic matrix fulfilling hose specification! 

Host Graph: A Ring

1

2 3

4

56

Recall: hose has total 
demand at most 1. 



The Benefit of Hose Interpretation
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Remaining virtual links to
embed for virtual node 2.



The Benefit of Hose Interpretation
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2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
be

dd
in

g?

1

2 3

4

56

Can be implemented along
this route: from node 2, 
reach nodes {3,4,5,6}.

Remaining virtual links to
embed for virtual node 2.
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embed for virtual node 3.
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VNet: VC(n=6,b=1) Host Graph: A Ring
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From 3, path reaches {4,5,6}.

Remaining virtual links to
embed for virtual node 3.



The Benefit of Hose Interpretation
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Remaining virtual
links to embed for 

virtual node 4.
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VNet: VC(n=6,b=1) Host Graph: A Ring
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Route from 4 to {5,6}.

Remaining virtual
links to embed for 

virtual node 4.



The Benefit of Hose Interpretation
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Remaining
virtual link.



The Benefit of Hose Interpretation
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VNet: VC(n=6,b=1) Host Graph: A Ring

em
be
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56

All virtual links mapped to routes!



The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
be

dd
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g?

1

2 3

4

56

But wait: 5 paths on link {5,6}! 
Can demand really be satisfied

given link capacity of 2?!



The Benefit of Hose Interpretation
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Link {5,6} is used by routes: (1,5),(2,5),(3,6),(4,6),(5,6).
But by definition of the hose model, any traffic matrix M will respect:

M1,5+M2,5 ≤ 1 and M3,6+M4,6+M5,6 ≤ 1.
Hence Σ Mi,j ≤ 2 holds!



The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
be

dd
in

g?

1

2 3

4

56

Link {5,6} is used by routes: (1,5),(2,5),(3,6),(4,6),(5,6).
But by definition of the hose model, any traffic matrix M will respect:

M1,5+M2,5 ≤ 1 and M3,6+M4,6+M5,6 ≤ 1.
Hence Σ Mi,j ≤ 2 holds!

Legal embedding! Recall: 
this was impossible with

virtual switch abstraction.



What about requests “with flexibilities”?



s t

s tor

But what if requests
allow for alternatives

and different 
decompositions?

Requests can be more complex

We have seen:
Already non-trivial!



s t

s tor

But what if requests
allow for alternatives

and different 
decompositions?

Requests can be more complex

We have seen:
Already non-trivial!

Known as PR (Processing and Routing) 
Graph: allows to model different 

choices and implementations!



Example: admission control and embedding

A

A

B

C

D10 Gbps

10 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

?
Which ones can be

admitted and embedded?



A

A

B

C

D10 Gbps

10 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

Example: admission control and embedding

Which ones can be
admitted and embedded?



A

A

B

C

D0 Gbps

0 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

Example: admission control and embedding

Which ones can be
admitted and embedded?



A

A

B

C

D0 Gbps

0 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

Example: admission control and embedding

Which ones can be
admitted and embedded?



A

A

B

C

D0 Gbps

0 Gbps

0 Gbps

Substrate:

C

Requests:

10 Gbps

A B
10 Gbps

B C

5 Gbps

Example: admission control and embedding

Which ones can be
admitted and embedded? ?



A

A

B

C

D0 Gbps

0 Gbps

0 Gbps

Substrate:

C

Requests:

10 Gbps

A B
10 Gbps

B C

5 Gbps

Example: admission control and embedding

Which ones can be
admitted and embedded?



Approximations still possible for trees:
Product graphs and randomized rounding
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fw gw

x86

Substrate:

D

B
C

Product graph:

B

D
CA
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CA
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CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A Dith request ri:

Copy substrate graph for 
each edge of chain

Placement 
constraint

Approximations still possible for trees:
Product graphs and randomized rounding



A

fw gw

x86

Substrate:

D

B
C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

Processing edge: processing happens on C: 
connect C to C in next layer! 

ith request ri:

Routing edge: graph edge 
on same layer

Approximations still possible for trees:
Product graphs and randomized rounding

with 2 types of edges



A

fw gw

x86

Substrate:

D

B
C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

Super-
source

ith request ri:

Super-
sink

Approximations still possible for trees:
Product graphs and randomized rounding
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ith request ri:

fw gw

x86

Substrate:

D

B
C

Product graph:

B

D
CA
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D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

Any (si,ti) flow presents a route of the request ri! 

Approximations still possible for trees:
Product graphs and randomized rounding



ith request ri:

fw gw

x86

Substrate:

D

B

Product graph:
D

C

B

D
CA

C
B

A

B

D
CA

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

B

D

B
A A

D
C

A C

process@A!
process@D!

route!

route!

route!

Any (si,ti) flow presents a route of the request ri! 

Approximations still possible for trees:
Product graphs and randomized rounding



route!

A

ith request ri:

fw gw

x86

Substrate:

D
C

Product graph:

B

D
CA

D
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CA

D
A

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

B

B
C

B
C

process@C!

Any (si,ti) flow presents a route of the request ri! 

Approximations still possible for trees:
Product graphs and randomized rounding



Approximations still possible for trees:
Product graphs and randomized rounding

A

ith request ri:

fw gw

x86

Substrate:

D
C

Product graph:

B

D
CA

D
A

B

D
CA

B

D
CA

D
A

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

B

B
C

B
C

This problem can be solved using 
mincost unsplittable multi-commodity 
flow (approximation) algorithms (e.g., 

randomized rounding).

Any (si,ti) flow presents a route of the request ri! 



Approximations still possible for trees:
Product graphs and randomized rounding

A

ith request ri:

fw gw

x86

Substrate:

D
C

Product graph:

B

D
CA

D
A

B

D
CA

B

D
CA

D
A

fw gw

x86

si ti

si
Si ti

or

ti

C

B C

A D

B

B
C

B
C

But note: cannot keep track of 
dependencies across stages (e.g., 

allocation on links or nodes): may yield 
oversubscription.

Any (si,ti) flow presents a route of the request ri! 

This problem can be solved using 
mincost unsplittable multi-commodity 
flow (approximation) algorithms (e.g., 

randomized rounding).



What about requests which arrive over time?



The Buchbinder-Naor ApproachPrimal and Dual 

Algorithm



The Buchbinder-Naor ApproachPrimal and Dual 

Algorithm

Formulate the packing 
(dual) LP: Maximize profit
(Note: dynamic LP!)



The Buchbinder-Naor ApproachPrimal and Dual 

Algorithm

s.t. constraints



The Buchbinder-Naor ApproachPrimal and Dual 

Algorithm Buchbinder&Naor



The Buchbinder-Naor ApproachPrimal and Dual 

Algorithm

optimal embedding!



The Buchbinder-Naor ApproachPrimal and Dual 

Algorithm

Embedding cost vs profit?



The Buchbinder-Naor ApproachPrimal and Dual 

Algorithm

If cheap: accept and 
update primal variables 
(always feasible solution)



The Buchbinder-Naor ApproachPrimal and Dual 

Algorithm

Else reject



The Buchbinder-Naor ApproachPrimal and Dual 

Algorithm

How to do this 
optimally?!



Further Reading

Virtual Network Embedding Approximations: Leveraging Randomized Rounding
Matthias Rost and Stefan Schmid.
IEEE/ACM Transactions on Networking (TON), 2019.
Parametrized Complexity of Virtual Network Embeddings: Dynamic & Linear 
Programming Approximations
Matthias Rost, Elias Döhne, and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), January 2019.
Charting the Complexity Landscape of Virtual Network Embeddings
Matthias Rost and Stefan Schmid.
IFIP Networking, Zurich, Switzerland, May 2018.
Competitive and Deterministic Embeddings of Virtual Networks
Guy Even, Moti Medina, Gregor Schaffrath, and Stefan Schmid.
Journal Theoretical Computer Science (TCS), Elsevier, 2013.

https://www.univie.ac.at/ct/stefan/ton19vnep.pdf
https://www.univie.ac.at/ct/stefan/vnep-tw.pdf
https://www.univie.ac.at/ct/stefan/ifip18landscape.pdf
http://www.sciencedirect.com/science/article/pii/S0304397512009577?v=s5
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Control
Programs

Control
Programs

OpenFlow etc. allow to
preconfigure conditional failover

rules: 1st line of defense!

The Crux: How to 
define conditional 
rules which have 

local failure 
knowledge only? 

Motivation: Fast Rerouting

Failover via 
control plane 

too slow.



Ctrl

Control
Programs

Control
Programs

Open problem: 
How many link 
failures can be 
tolerated in k-

connected 
network without 

going through 
controller?

OpenFlow etc. allow to
preconfigure conditional failover

rules: 1st line of defense!

The Crux: How to 
define conditional 
rules which have 

local failure 
knowledge only? 

Motivation: Fast Rerouting

Failover via 
control plane 

too slow.



Solution: Use Arborescences (Chiesa et al.)

❏ Assume:
❏ k-connected network G
❏ destination d 
❏ G decomposed into k d-rooted arc-disjoint

spanning arborescences

Basic principle: 
❏ Route along fixed arborescence (“directed spanning tree”) 

towards the destination d
❏ If packet hits a failed edge at vertex v, reroute along a 

different arborescence

Known result: always 
exist in k-connected 

graphs (efficient)

The Crux: which arborescence to 
choose next? Influences resiliency!



Simple Example: Hamilton Cycle

Chiesa et al.: if k-connected graph has k arc 
disjoint Hamilton Cycles, k-1 resilient routing can 

be constructed!



Example: 3-Resilient Routing Function for 2-dim Torus

k=4 connected
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Example: 3-Resilient Routing Function for 2-dim Torus
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spans all nodes: each 
node visited exactly once!

Example: 3-Resilient Routing Function for 2-dim Torus
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Example: 3-Resilient Routing Function for 2-dim Torus
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Edge disjoint: Together 
span all edges!

Example: 3-Resilient Routing Function for 2-dim Torus
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directed: so 4 Arc-

Disjoint Hamilton Cycles.

Example: 3-Resilient Routing Function for 2-dim Torus
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Example: 3-Resilient Routing Function for 2-dim Torus

d

Failover: In order to reach destination d: go along 
1st directed HC, if hit failure, reverse direction, if 

again failure switch to 2nd HC, if again failure 
reverse direction: no more failures possible!
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Torus 4-connected, has 4 arc disjoint 
Hamilton cycles, so can construct 

optimal 3-resilient routing!

Example: 3-Resilient Routing Function for 2-dim Torus
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Torus 4-connected, has 4 arc disjoint 
Hamilton cycles, so can construct 

optimal 3-resilient routing!

Example: 3-Resilient Routing Function for 2-dim Torus

How to do it in k-connected 
graph in general?
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Control
Programs

Programmable and Virtualized Networks

Increasingly 
virtualized

Challenge: security!



Virtualization
Layer

User

Kernel

VM VM VM

Virtual Switches

N
I
C

Virtual Switch

Virtual switches reside in the server’s virtualization layer
(e.g., Xen’s Dom0). Goal: provide connectivity and isolation.



Increasing Complexity:
# Parsed Protocols

Number of parsed high-level protocols constantly increases:



User

Kernel

VM VM VM

N
I
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Virtual Switch

Increasing workloads and advancements in network virtualization
drive virtual switches to implement middlebox functions such as

load-balancing, DPI, firewalls, etc.

Increasing Complexity:
Introduction of middlebox functionality
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Increasing Complexity:
Unified Packet Parsing

Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN
PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP

L2,L2.5,
L3,L4

How to parse all these 
protocols without lowering 
forwarding performance?!
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Unified packet parsing allows parse more and 
more protocols efficiently: in a single pass! 
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Unified packet parsing allows parse more and 
more protocols efficiently: in a single pass! 

Increasing Complexity:
Unified Packet Parsing

Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN
PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP

L2,L2.5,
L3,L4

This centralization is fast! But 
more complex to get it right.



Complexity: The Enemy of Security!

❏ Data plane security not 
well-explored (in general, 
not only virtualized): most
security research on 
control plane

❏ Two conjectures:

Ctrl

1. Virtual switches increase 
the attack surface.

2. Impact of attack larger than 
with traditional data planes.



The Attack Surface: Closer…

Attack surface becomes closer:

❏ Packet parser typically
integrated into the code base of
virtual switch

❏ First component of the virtual
switch to process network
packets it receives from the
network interface

❏ May process attacker-controlled
packets!

Ctrl

VM

Ctrl



The Attack Surface: … More Complex …

Ctrl

VM

Ctrl
Ethernet
LLC
VLAN
MPLS
IPv4
ICMPv4
TCP
UDP
ARP
SCTP
IPv6
ICMPv6
IPv6 ND
GRE
LISP
VXLAN

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

PBB
IPv6 EXT HDR
TUNNEL-ID
IPv6 ND
IPv6 EXT HDR
IPv6HOPOPTS
IPv6ROUTING
IPv6Fragment
IPv6DESTOPT
IPv6ESP
IPv6 AH
RARP
IGMP



… Elevated Priviledges and Collocation …
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L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

❏ Collocated (at least partially) 
with hypervisor’s Dom0 kernel
space, guest VMs, image
management, block storage, 
identity management, …
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❏ Collocated (at least partially) 
with hypervisor’s Dom0 kernel
space, guest VMs, image
management, block storage, 
identity management, …

❏ … the controller itself.

… Elevated Priviledges and Collocation …
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VM

Ctrl

❏ Collocated (at least partially) 
with hypervisor’s (Dom0 kernel
space), guest VMs, image
management, block storage, 
identity management, …

❏ … the controller itself.

… Centralization …

User

Kernel

VM VM VM

NIC

Virtual Switch

Available communication channels 
to (SDN/Openstack) controller! 

Controller needs to be reachable 
from all servers.



Larger Impact: Case Study OVS

1. Rent a VM in the cloud (cheap)
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Larger Impact: Case Study OVS

2. Send malformed MPLS packet to virtual switch (unified parser
parses label stack packet beyond the threshold)
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Larger Impact: Case Study OVS

3. Stack buffer overflow in (unified) MPLS parsing code:
enables remote code execution
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Virtual Switch



Larger Impact: Case Study OVS

4. Send malformed packet to server (virtual switch) where controller
is located (use existing communication channel)

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch



Larger Impact: Case Study OVS

5. Spread

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
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Virtual Switch
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Virtual Switch



A New Threat Model

❏ Limited skills required
❏ Use standard fuzzer to find crashes
❏ Construct malformed packet 
❏ Build ROP chain

❏ Limited resources
❏ rent a VM in the cloud

❏ No physical access needed

User

Kernel

VM VM VM

Virtual Switch

No need to be a state-level attacker to compromise the 
dataplane (and beyond)!

Similar problems in NFV: need even more complex 
parsing/processing. And are often built on top of OvS.



Conclusion

❏ Programmability and virtualization: opportunities but also challenges
❏ E.g.,: faster innovation, flexibilities in resource allocation, etc.

❏ But, e.g.: performance isolation needs to be ensured across all involved resources, resulting resource
allocation problems hard

❏ Algorithmic techniques for flexible resource allocation: from
waypoint routing over virtual network embedding to online 
admission control

❏ Vision of demand-aware and self-adjusting networks: depends on 
the structure of demand! 

❏ Security: even more opportunities and challenges
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