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Network resilience is a key yet challenging property

Image credits: route by Philipp Petzka from the Noun Project

High resilience

Why is it that hard?
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Video shot taken from “Lemmings” 
designed and developed by DMA Design

routing 
restoration failure event

control-plane 
detection & route 

recomputation

data-plane update

tim
e

Routing reconvergence takes time!
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Centralized controllers make reconvergence slower

Image credits: route by Philipp Petzka from the Noun Project

Advanced SDN routing
e.g., intent-based logically 

centralized SDN

failure occurs

control-plane 
detection & route 

recomputation

data-plane update

tim
e

High resilience
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Hard to recover within 50ms!

[1] On low-latency-capable topologies, and their impact on the design of intra-domain routing. In SIGCOMM 2018

Image credits: route by Philipp Petzka from the Noun Project

Advanced SDN routing
e.g., intent-based logically 

centralized SDN

High resilience
“[carrier-grade networks] level of 

availability requires substantial over-
provisioning and fast reroute local 

recovery, e.g., within 50 milliseconds“ [1]

failure occurs

control-plane 
detection & route 

recomputation

data-plane update

tim
e
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Fast Reroute (FRR):
pre-computing failover paths

B

C

A

primary

2nd 
backup

backup

match/actions (e.g., at X)

FRR entails solving two orthogonal problems:

1. control-plane: compute network-wide primary/backup forwarding rules

control plane

FRR actions (e.g., at X)

1

FRR1 >> fwd A
X

dst = A >> FRR1

B C
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Fast Reroute (FRR):
pre-computing failover paths
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FRR entails solving two orthogonal problems:

1. control-plane: compute network-wide primary/backup forwarding rules

control plane

FRR actions (e.g., at X)

1

FRR1 >> fwd A
FRR2 >> fwd B C A

X

dst = A >> FRR1

dst = B >> FRR2
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Fast Reroute (FRR):
pre-computing failover paths

2
match/actions (e.g., at X)

FRR entails solving two orthogonal problems:

1. control-plane: compute network-wide primary/backup forwarding rules

2. data-plane: support conditional forwarding in each switch

control plane

FRR actions (e.g., at X)

1

B

C

A

primary2nd 
backup

backup

X

header/metadata

pa
rs

er

de
pa

rs
er

packet pipeline

FRR1 >> fwd A B C
FRR2 >> fwd C B A

dst = A >> FRR1

dst = B >> FRR2

dst = A >> FRR1

dst = B >> FRR2

FRR1 >> fwd A B C
FRR2 >> fwd C B A
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The goal of this talk: implement a FRR primitive 
that minimizes pipeline resource consumption

2

FRR actions (e.g., at X)

FRR1 >> fwd A B C
FRR2 >> fwd C B A

header/metadata

pa
rs

er

de
pa

rs
er

dst = A >> FRR1
dst = B >> FRR2

FRR1 >> fwd A B C
FRR2 >> fwd C B A

packet pipelinePURR: A building block for implementing arbitrary FRR mechanisms

Cat by dDara from the Noun Project
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PURR applies to P4 programmable switches

Advanced SDN routing
(e.g., intent-based 

logically centralized 
SDN)

High availability
(e.g., within 50 

milliseconds”[1])

[1] On low-latency-capable topologies, and their impact on the design of intra-domain routing. In SIGCOMM 2018

High flexibility
(e.g., reconfigurable 

P4 dataplanes)

Image credits: route by Philipp Petzka from the Noun Project
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Runtime P4 
(Control plane)

simplified pipeline

Resources:
- SRAM (exact matches), e.g., 2M entries
- TCAM (wildcard matches), e.g., 100K entries
- ALU
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PURR applies to P4 programmable switches

Advanced SDN routing
(e.g., intent-based 

logically centralized 
SDN)

High availability
(e.g., within 50 

milliseconds”[1])

[1] On low-latency-capable topologies, and their impact on the design of intra-domain routing. In SIGCOMM 2018

High flexibility
(e.g., reconfigurable 

P4 dataplanes)

Image credits: route by Philipp Petzka from the Noun Project
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Runtime P4 
(Control plane)

simplified pipeline

Resources:
- SRAM (exact matches), e.g., 2M entries
- TCAM (wildcard matches), e.g., 100K entries
- ALU

How do we realize FRR in P4?
No P4 built-in FRR primitive but…

a programmable pipeline: many approaches are possible!
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First approach:  packet recirculation
match

tag

action

fwd
write &

recirculate

1 1 tag := 2

2 2 tag := 3

3 3 tag := 4

4 4 -

FRR1 = 1 2 3 4
port 1 fails

port 2 fails

Input

throughput reduction
latency increase



throughput reduction
latency increase
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FRR recirculation has high memory occupancy
match

tag

action

fwd
write &

recirculate

1 1 tag := 2

2 2 tag := 3

3 3 tag := 4

4 4 -

5 4 tag:= 6

6 3 tag = 7

7 2 tag = 8

8 1 -

port 4 fails

port 3 fails

2020-10-04

FRR1 = 1 2 3 4
FRR2 = 4 3 2 1

Input

throughput reduction
latency increase

high memory overhead



A building block for implementing arbitrary FRR mechanisms
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PURR: a primitive for reconfigurable FRR

parallel search with TCAM model port status -> flip one single bit 

Cat by dDara from the Noun Project

high
throughput

low forwarding
latency

efficient
reroute

flexibility small 
forwarding

tables

support arbitrary FRR mechanisms, 
i.e., arbitrary FRR input sequences



A building block for implementing arbitrary FRR mechanisms

• intriguing connection to (algorithmic) “string theory”

2020-10-04 16

PURR: a primitive for reconfigurable FRR

Cat by dDara from the Noun Project

high
throughput

low forwarding
latency

efficient
reroute

flexibility small 
forwarding

tables
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PURR: Encoding FRR in the packet metadata
Input

FRR1 = 1 2 3 4

packet metadata

FRR = 1

port status

1 1 1 1

P4 register

port status

1 1 1 1

port 1 is 
active

port 2 is 
active

match action

port status fwd

1 * * * 1

* 1 * * 2

* * 1 * 3

* * * 1 4

TCAM wildcard 
match memory
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PURR: Encoding FRR in the packet metadata
Input

match action

port status fwd
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* 1 * * 2

* * 1 * 3

* * * 1 4

FRR1 = 1 2 3 4

port status

1 1 1 1

packet metadata
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match memory
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PURR: Encoding FRR in the packet metadata
Input

match action

port status fwd

1 * * * 1

* 1 * * 2

* * 1 * 3

* * * 1 4

FRR1 = 1 2 3 4

port status

0 1 1 1

packet metadata

FRR = 1

port 1 fails

TCAM wildcard 
match memory
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PURR: Encoding FRR in the packet metadata
Input

match action

port status fwd

1 * * * 1

* 1 * * 2

* * 1 * 3

* * * 1 4

port 2 fails

FRR1 = 1 2 3 4

port status

0 0 1 1

packet metadata

FRR = 1

TCAM wildcard 
match memory
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PURR: One tempting option: “Duplication” TCAM
Input

FRR1 = 1 2 3 4     FRR2 = 2 3 4 1

match action

FRR port status fwd

1 1 * * * 1

1 * 1 * * 2

1 * * 1 * 3

1 * * * 1 4

2 * 1 * * 2

2 * * 1 * 3

2 * * * 1 4

2 1 * * * 1

similar to FRR recirculation:
high memory overhead

port status

0 0 1 1

packet metadata

FRR = 2
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match
action write

frr_ports

FRR = 1 1 1 1 1 0

FRR = 2 0 1 1 1 1

match
action write

frr_ports

FRR = 1 b1b2b3b4b5

FRR = 2 0 1 1 1 1 0 0

FRR = 3 0 0 1 1 1 1 0

FRR = 4 0 0 0 1 1 1 1

bit-to-port mapping
1 2 3 4 1

Encoding FRR input:
• add a packet metadata field frr_ports
• map bits to the switch ports
• set bit to 1 to include a port
• set bit to 0 to skip a port

PURR: Encoding FRR in the packet metadata
Input

FRR1 = 1 2 3 4     FRR2 = 2 3 4 1

22

port status

1 1 1 1

packet metadata

FRR = 1
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match
action write

frr_ports

FRR = 1 1 1 1 1 0

FRR = 2 0 1 1 1 1

PURR: Encoding FRR in the packet metadata
Input

FRR1 = 1 2 3 4     FRR2 = 2 3 4 1

23

port status

1 1 1 1

packet metadata

FRR = 1

bit-to-port mapping
1 2 3 4 1

match action

frr_ports port status fwd

1 * * * * 1 * * * 1

* 1 * * * * 1 * * 2

* * 1 * * * * 1 * 3

* * * 1 * * * * 1 4

* * * * 1 1 * * * 1
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match
action write

frr_ports

FRR = 1 1 1 1 1 0

FRR = 2 0 1 1 1 1

PURR: Encoding FRR in the packet metadata
Input

FRR1 = 1 2 3 4     FRR2 = 2 3 4 1

24

port status

1 1 1 1

packet metadata

FRR = 1

bit-to-port mapping
1 2 3 4 1

match action

frr_ports port status fwd

1 * * * * 1 * * * 1

* 1 * * * * 1 * * 2

* * 1 * * * * 1 * 3

* * * 1 * * * * 1 4

* * * * 1 1 * * * 1
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match
action write

frr_ports

FRR = 1 1 1 1 1 0

FRR = 2 0 1 1 1 1

PURR: Encoding FRR in the packet metadata
Input

FRR1 = 1 2 3 4     FRR2 = 2 3 4 1

25

port status

0 1 1 1

packet metadata

FRR = 1

bit-to-port mapping
1 2 3 4 1

match action

frr_ports port status fwd

1 * * * * 1 * * * 1

* 1 * * * * 1 * * 2

* * 1 * * * * 1 * 3

* * * 1 * * * * 1 4

* * * * 1 1 * * * 1
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match
action write

frr_ports

FRR = 1 1 1 1 1 0

FRR = 2 0 1 1 1 1

PURR: re-cycling TCAM entries
Input

FRR1 = 1 2 3 4     FRR2 = 2 3 4 1

26

port status

1 1 1 1

packet metadata

FRR = 2

bit-to-port mapping
1 2 3 4 1

match action

frr_ports port status fwd

1 * * * * 1 * * * 1

* 1 * * * * 1 * * 2

* * 1 * * * * 1 * 3

* * * 1 * * * * 1 4

* * * * 1 1 * * * 1
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The key problem: How to compute the bit-to-port 
mapping that minimizes memory occupancy?

bit-to-port mapping = .2 3 1 0 2 1 3
FRR1 = 2 3 1 0
FRR2 =         0 2 1 3
FRR3 =    3   0 2 1
FRR4 =        1 0 2    3

FRR1 = 2 3 1 0   FRR2 = 0 2 1 3    FRR3 = 3 0 2 1    FRR4 = 1 0 2 3

Shortest Common Supersequence (SCS) problem without repetitions
• SCS without repetitions is computationally hard (based on [2])
• Dynamic Programming (DPSCS) computes optimum in exponential time

bit-to-port mapping = ?

[2 ]T. Jiang, M. Li. On the approximation of shortest common supersequences and longest common subsequences. In Journal on Computing.



Fast-Greedy: a heuristic for solving this specific SCS
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idea: remove the most 
frequent left-most 
element among the 
longest sequences

See the paper for:
• multi-table 

optimization

F1=2 3 1 0
F2=2 0 1 3 
F3=2 3 0 1
F4=3 1 2 0
remove 2

F1=3 1 0
F2=0 1 3 
F3=3 0 1
F4=3 1 2 0 
remove 3

F1=1 0
F2=0 1 3 
F3=0 1
F4=1 2 0
remove 0

F1=1 0
F2=1 3 
F3=1
F4=1 2 0
remove 1

F1=0
F2=3 
F3= ---
F4=2 0
remove 2

F1=0
F2=3 
F3= ---
F4=0
remove 0

F1= ---
F2=3 
F3= ---
F4= ---
remove 3

SCS = 2 3 0  1  2  0  3
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P4-based implementations:

• implemented different FRR mechanisms in P4 using 
PURR  (e.g., F10 [1], arborescences [2], BFS, DFS, 
rotor router [3])

• compiled on Tofino

FPGA-based implementation:

• implemented PURR on the NetFPGA-SUME platform

Implementation feasibility

[1] V. Liu et al. "F10: A Fault-Tolerant Engineered Network" in NSDI 2013
[2] M. Chiesa et al. "On the Resiliency of Randomized Routing Against Multiple Edge Failures" in Transactions on Networking 2016
[3] Borokhovich et al ””Graph exploration algorithms” in HotSDN 2013
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Two subquestions:

1. How much memory does PURR save?

2. How does performance in a datacenter vary depending 
on how one implements a FRR primitive?

See the paper for:

• multi-table optimization

• random vs tree-based FRR sequences

• FPGA chip occupancy

• low-size FRR sequences

Evaluation: How does the FRR implementation
impact memory and performance?



How much memory does PURR save? 
The “circular sequences” case
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Input:
• switch with k ports
• 10 circular set of FRR 

sequences

“Duplication TCAM” FRR:
• k2 number of TCAM entries

With PURR encoding:
• k-1 number of TCAM entries

• 10 Top-of-Rack switches in a 
datacenter with F10 FRR [nsdi-13]

• 10 destinations with the "k arc-
disjoint" FRR mechanism [ton-16]

[nsdi-13] V. Liu et al. "F10: A Fault-Tolerant Engineered Network" in NSDI 2013
[ton-16] M. Chiesa et al. "On the Resiliency of Randomized Routing Against Multiple Edge Failures" in Transactions on Networking 2016



How much memory does PURR save? 
The “circular sequences” case
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Input:
• switch with k ports
• 10 circular set of FRR 

sequences

“Duplication TCAM” FRR:
• k2 number of TCAM entries

With PURR encoding:
• k-1 number of TCAM entries

For k = 24
• 92% less TCAM entries
• 470 instead of 5.760

For k = 48
• 96% less TCAM entries
• 950 instead of 23.040

[nsdi-13] V. Liu et al. "F10: A Fault-Tolerant Engineered Network" in NSDI 2013
[ton-16] M. Chiesa et al. "On the Resiliency of Randomized Routing Against Multiple Edge Failures" in Transactions on Networking 2016



2020-10-04 33

How much memory does PURR save? 
Fast-greedy performs close to the optimum 
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Input: randomly generated set of FRR sequences of length 7
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How much memory does PURR save? 
Fast-greedy scales to large number of sequences

Input: randomly generated set of FRR sequences

sequence size=32

sequence size=16

sequence size=8

sequence size=32

sequence size=16

sequence size=8

32 factorial possible FRR sequences
The “duplication” TCAM or recirculation FRR 

approaches would not scale
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How does FCT vary depending on the FRR primitive?
PURR improves both FCT and throughput

Sm
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1.0

0.5

0.0
10 20 30 40 50 60 70

FRR recirculation

immediate reconvergence

2.4x

NS-3 simulations
Topology: 32-server Clos network, 10Gbps links

Workload: data-mining       Transport: DCTCP        One link failure at 0.5s
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How does FCT vary depending on the FRR primitive?
PURR improves both FCT and throughput
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immediate reconvergence
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NS-3 simulations
Topology: 32-server Clos network, 10Gbps links

Workload: data-mining       Transport: DCTCP        One link failure at 0.5s

purr 2x
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Fast Reroute is a critical functionality in today’s network

• requires high throughput, low latency, fast reactiveness, small forwarding tables

P4 does not define an FRR built-in primitive

• pipeline compilers and control-plane must program the P4 pipeline 

PURR: We propose a lightweight TCAM-based FRR primitive

• an intriguing connection to algorithmic string theory

• no FRR-tailored hardware support

• improve performance by a factor of ~2x w.r.t. FRR recirculation

Conclusions: Keep calm and enjoy programmability

Marco Chiesa
KTH Royal Institute of Technology

Code: bitbucket.org/marchiesa/purr
Thank you!

Cat by dDara from the Noun Project

reusable

https://bitbucket.org/marchiesa/purr/


Backup slides
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Input:

• a 64-port programmable switch

• all possible three ports FRR sequences

“Duplication TCAM” approach:

• #TCAM entries = 64*63*62*3 = 750K

• TCAM memory = 750K * (20 + 3) = 17.2Mb

Smaller sequences on switches with 
high-density ports

PURR encoding approach:

• #TCAM entries < (64*3) = 192

• TCAM memory < 192 * (64*4) = 50Kb

more than  99% memory reduction!

FRR recirculation:

• #TCAM entries = 64*63*62 = 250K

• TCAM memory = 250K * (17+3) = 5Mb
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Three naïve approaches to implementing FRR

low

low

low

high

high

high

low

low

high

high

high

high

high

high

high

FRR 
recirculation

FRR 
sequential

FRR parallel 
duplication

throughput

latency

reactiveness

memory

flexibility
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Second approach: sequential search

match action

FRR = 1 fwd(1)

match action

FRR = 1 fwd(2)

match action

FRR = 1 fwd(3)

match action

FRR = 1 fwd(4)

Input
FRR1 = 1 2 3 4   FRR2 = 2 3 4 1    FRR3 = 3 4 1 2    FRR4 = 4 1 2 3
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Second approach: sequential search

match action

FRR = 1 fwd(1)

FRR = 2 fwd(2)

match action

FRR = 1 fwd(2)

FRR = 2 fwd(3)

match action

FRR = 1 fwd(3)

FRR = 2 fwd(4)

match action

FRR = 1 fwd(4)

FRR = 2 fwd(1)

Input
FRR1 = 1 2 3 4   FRR2 = 2 3 4 1 FRR3 = 3 4 1 2    FRR4 = 4 1 2 3
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Second approach: sequential search

match action

FRR = 1 fwd(1)

FRR = 2 fwd(2)

FRR = 3 fwd(3)

match action

FRR = 1 fwd(2)

FRR = 2 fwd(3)

FRR = 3 fwd(4)

match action

FRR = 1 fwd(3)

FRR = 2 fwd(4)

FRR = 3 fwd(1)

match action

FRR = 1 fwd(4)

FRR = 2 fwd(1)

FRR = 3 fwd(2)

Input
FRR1 = 1 2 3 4   FRR2 = 2 3 4 1    FRR3 = 3 4 1 2 FRR4 = 4 1 2 3
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Second approach: sequential search

match action

FRR = 1 fwd(1)

FRR = 2 fwd(2)

FRR = 3 fwd(3)

FRR = 4 fwd(4)

match action

FRR = 1 fwd(2)

FRR = 2 fwd(3)

FRR = 3 fwd(4)

FRR = 4 fwd(1)

match action

FRR = 1 fwd(3)

FRR = 2 fwd(4)

FRR = 3 fwd(1)

FRR = 4 fwd(2)

match action

FRR = 1 fwd(4)

FRR = 2 fwd(1)

FRR = 3 fwd(2)

FRR = 4 fwd(3)

Input
FRR1 = 1 2 3 4   FRR2 = 2 3 4 1    FRR3 = 3 4 1 2    FRR4 = 4 1 2 3
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A sequential search wastes hardware resources

match action

FRR = 1 fwd(1)

FRR = 2 fwd(2)

FRR = 3 fwd(3)

FRR = 4 fwd(4)

match action

FRR = 1 fwd(2)

FRR = 2 fwd(3)

FRR = 3 fwd(4)

FRR = 4 fwd(1)

match action

FRR = 1 fwd(3)

FRR = 2 fwd(4)

FRR = 3 fwd(1)

FRR = 4 fwd(2)

match action

FRR = 1 fwd(4)

FRR = 2 fwd(1)

FRR = 3 fwd(2)

FRR = 4 fwd(3)

Input
FRR1 = 1 2 3 4  FRR2 = 2 3 4 1 FRR3 = 3 4 1 2    FRR4 = 4 1 2 3

• increased latency
• waste of resources at each stage
• many updates to the forwarding table

port 2 fails

port 3 fails
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PURR improves both FCT and throughput
Two link failures, higher gains

NS-3 simulations

Topology: 32-server Clos network, 10Gbps links, 10𝜇𝜇𝜇𝜇 link latency
Workload: data-mining       Transport: DCTCP

1.7x
1.8x
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Evaluation: Random vs tree-based sequences
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The web search workload

NS-3 simulations

Topology: 32-server Clos network, 10Gbps links, 10𝜇𝜇𝜇𝜇 link latency
Workload: web-search       Transport: DCTCP
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