
PURR: A Primitive for Reconfigurable Fast Reroute

Marco Chiesa
KTH Royal Institute of Technology
Code: bitbucket.org/marchiesa/purr

Joint work with:
Roshan Sedar
Gianni Antichi

Michael Borokhovich
Andrzej Kamisiński
Georgios Nikolaidis

Stefan Schmid

https://bitbucket.org/marchiesa/purr/

2020-10-04 2

PURR: Thanks to my coauthors!

Joint work with:
Roshan Sedar
Gianni Antichi

Michael Borokhovich
Andrzej Kamisiński
Georgios Nikolaidis

Stefan Schmid

2020-10-04 3

Network resilience is a key yet challenging property

Image credits: route by Philipp Petzka from the Noun Project

High resilience

Why is it that hard?

2020-10-04 4

Video shot taken from “Lemmings”
designed and developed by DMA Design

routing
restoration failure event

control-plane
detection & route

recomputation

data-plane update

tim
e

Routing reconvergence takes time!

2020-10-04 5

Centralized controllers make reconvergence slower

Image credits: route by Philipp Petzka from the Noun Project

Advanced SDN routing
e.g., intent-based logically

centralized SDN

failure occurs

control-plane
detection & route

recomputation

data-plane update

tim
e

High resilience

2020-10-04 6

Hard to recover within 50ms!

[1] On low-latency-capable topologies, and their impact on the design of intra-domain routing. In SIGCOMM 2018

Image credits: route by Philipp Petzka from the Noun Project

Advanced SDN routing
e.g., intent-based logically

centralized SDN

High resilience
“[carrier-grade networks] level of

availability requires substantial over-
provisioning and fast reroute local

recovery, e.g., within 50 milliseconds“ [1]

failure occurs

control-plane
detection & route

recomputation

data-plane update

tim
e

7

Fast Reroute (FRR):
pre-computing failover paths

B

C

A

primary

2nd
backup

backup

match/actions (e.g., at X)

FRR entails solving two orthogonal problems:

1. control-plane: compute network-wide primary/backup forwarding rules

control plane

FRR actions (e.g., at X)

1

FRR1 >> fwd A
X

dst = A >> FRR1

B C

8

Fast Reroute (FRR):
pre-computing failover paths

B

C

A

primary2nd
backup

backup

match/actions (e.g., at X)

FRR entails solving two orthogonal problems:

1. control-plane: compute network-wide primary/backup forwarding rules

control plane

FRR actions (e.g., at X)

1

FRR1 >> fwd A
FRR2 >> fwd B C A

X

dst = A >> FRR1

dst = B >> FRR2

B C

9

Fast Reroute (FRR):
pre-computing failover paths

2
match/actions (e.g., at X)

FRR entails solving two orthogonal problems:

1. control-plane: compute network-wide primary/backup forwarding rules

2. data-plane: support conditional forwarding in each switch

control plane

FRR actions (e.g., at X)

1

B

C

A

primary2nd
backup

backup

X

header/metadata

pa
rs

er

de
pa

rs
er

packet pipeline

FRR1 >> fwd A B C
FRR2 >> fwd C B A

dst = A >> FRR1

dst = B >> FRR2

dst = A >> FRR1

dst = B >> FRR2

FRR1 >> fwd A B C
FRR2 >> fwd C B A

OutputInput

10

The goal of this talk: implement a FRR primitive
that minimizes pipeline resource consumption

2

FRR actions (e.g., at X)

FRR1 >> fwd A B C
FRR2 >> fwd C B A

header/metadata

pa
rs

er

de
pa

rs
er

dst = A >> FRR1
dst = B >> FRR2

FRR1 >> fwd A B C
FRR2 >> fwd C B A

packet pipelinePURR: A building block for implementing arbitrary FRR mechanisms

Cat by dDara from the Noun Project

2020-10-04
11

PURR applies to P4 programmable switches

Advanced SDN routing
(e.g., intent-based

logically centralized
SDN)

High availability
(e.g., within 50

milliseconds”[1])

[1] On low-latency-capable topologies, and their impact on the design of intra-domain routing. In SIGCOMM 2018

High flexibility
(e.g., reconfigurable

P4 dataplanes)

Image credits: route by Philipp Petzka from the Noun Project

Pa
ck

et
s i

n

Input
headers &
metadata

Pa
ck

et
s o

ut

Packet recirculation

st
ag

e
1

st
ag

e
…

st
ag

e
N

in
gr

es
s

bu
ffe

r

Pa
rs

er

Runtime P4
(Control plane)

simplified pipeline

Resources:
- SRAM (exact matches), e.g., 2M entries
- TCAM (wildcard matches), e.g., 100K entries
- ALU

2020-10-04
12

PURR applies to P4 programmable switches

Advanced SDN routing
(e.g., intent-based

logically centralized
SDN)

High availability
(e.g., within 50

milliseconds”[1])

[1] On low-latency-capable topologies, and their impact on the design of intra-domain routing. In SIGCOMM 2018

High flexibility
(e.g., reconfigurable

P4 dataplanes)

Image credits: route by Philipp Petzka from the Noun Project

Pa
ck

et
s i

n

Input
headers &
metadata

Pa
ck

et
s o

ut

Packet recirculation

st
ag

e
1

st
ag

e
…

st
ag

e
N

in
gr

es
s

bu
ffe

r

Pa
rs

er

Runtime P4
(Control plane)

simplified pipeline

Resources:
- SRAM (exact matches), e.g., 2M entries
- TCAM (wildcard matches), e.g., 100K entries
- ALU

How do we realize FRR in P4?
No P4 built-in FRR primitive but…

a programmable pipeline: many approaches are possible!

2020-10-04 13

First approach: packet recirculation
match

tag

action

fwd
write &

recirculate

1 1 tag := 2

2 2 tag := 3

3 3 tag := 4

4 4 -

FRR1 = 1 2 3 4
port 1 fails

port 2 fails

Input

throughput reduction
latency increase

throughput reduction
latency increase

14

FRR recirculation has high memory occupancy
match

tag

action

fwd
write &

recirculate

1 1 tag := 2

2 2 tag := 3

3 3 tag := 4

4 4 -

5 4 tag:= 6

6 3 tag = 7

7 2 tag = 8

8 1 -

port 4 fails

port 3 fails

2020-10-04

FRR1 = 1 2 3 4
FRR2 = 4 3 2 1

Input

throughput reduction
latency increase

high memory overhead

A building block for implementing arbitrary FRR mechanisms

2020-10-04 15

PURR: a primitive for reconfigurable FRR

parallel search with TCAM model port status -> flip one single bit

Cat by dDara from the Noun Project

high
throughput

low forwarding
latency

efficient
reroute

flexibility small
forwarding

tables

support arbitrary FRR mechanisms,
i.e., arbitrary FRR input sequences

A building block for implementing arbitrary FRR mechanisms

• intriguing connection to (algorithmic) “string theory”

2020-10-04 16

PURR: a primitive for reconfigurable FRR

Cat by dDara from the Noun Project

high
throughput

low forwarding
latency

efficient
reroute

flexibility small
forwarding

tables

2020-10-04 17

PURR: Encoding FRR in the packet metadata
Input

FRR1 = 1 2 3 4

packet metadata

FRR = 1

port status

1 1 1 1

P4 register

port status

1 1 1 1

port 1 is
active

port 2 is
active

match action

port status fwd

1 * * * 1

* 1 * * 2

* * 1 * 3

* * * 1 4

TCAM wildcard
match memory

2020-10-04 18

PURR: Encoding FRR in the packet metadata
Input

match action

port status fwd

1 * * * 1

* 1 * * 2

* * 1 * 3

* * * 1 4

FRR1 = 1 2 3 4

port status

1 1 1 1

packet metadata

FRR = 1

TCAM wildcard
match memory

2020-10-04 19

PURR: Encoding FRR in the packet metadata
Input

match action

port status fwd

1 * * * 1

* 1 * * 2

* * 1 * 3

* * * 1 4

FRR1 = 1 2 3 4

port status

0 1 1 1

packet metadata

FRR = 1

port 1 fails

TCAM wildcard
match memory

2020-10-04 20

PURR: Encoding FRR in the packet metadata
Input

match action

port status fwd

1 * * * 1

* 1 * * 2

* * 1 * 3

* * * 1 4

port 2 fails

FRR1 = 1 2 3 4

port status

0 0 1 1

packet metadata

FRR = 1

TCAM wildcard
match memory

2020-10-04 21

PURR: One tempting option: “Duplication” TCAM
Input

FRR1 = 1 2 3 4 FRR2 = 2 3 4 1

match action

FRR port status fwd

1 1 * * * 1

1 * 1 * * 2

1 * * 1 * 3

1 * * * 1 4

2 * 1 * * 2

2 * * 1 * 3

2 * * * 1 4

2 1 * * * 1

similar to FRR recirculation:
high memory overhead

port status

0 0 1 1

packet metadata

FRR = 2

2020-10-04

match
action write

frr_ports

FRR = 1 1 1 1 1 0

FRR = 2 0 1 1 1 1

match
action write

frr_ports

FRR = 1 b1b2b3b4b5

FRR = 2 0 1 1 1 1 0 0

FRR = 3 0 0 1 1 1 1 0

FRR = 4 0 0 0 1 1 1 1

bit-to-port mapping
1 2 3 4 1

Encoding FRR input:
• add a packet metadata field frr_ports
• map bits to the switch ports
• set bit to 1 to include a port
• set bit to 0 to skip a port

PURR: Encoding FRR in the packet metadata
Input

FRR1 = 1 2 3 4 FRR2 = 2 3 4 1

22

port status

1 1 1 1

packet metadata

FRR = 1

2020-10-04

match
action write

frr_ports

FRR = 1 1 1 1 1 0

FRR = 2 0 1 1 1 1

PURR: Encoding FRR in the packet metadata
Input

FRR1 = 1 2 3 4 FRR2 = 2 3 4 1

23

port status

1 1 1 1

packet metadata

FRR = 1

bit-to-port mapping
1 2 3 4 1

match action

frr_ports port status fwd

1 * * * * 1 * * * 1

* 1 * * * * 1 * * 2

* * 1 * * * * 1 * 3

* * * 1 * * * * 1 4

* * * * 1 1 * * * 1

2020-10-04

match
action write

frr_ports

FRR = 1 1 1 1 1 0

FRR = 2 0 1 1 1 1

PURR: Encoding FRR in the packet metadata
Input

FRR1 = 1 2 3 4 FRR2 = 2 3 4 1

24

port status

1 1 1 1

packet metadata

FRR = 1

bit-to-port mapping
1 2 3 4 1

match action

frr_ports port status fwd

1 * * * * 1 * * * 1

* 1 * * * * 1 * * 2

* * 1 * * * * 1 * 3

* * * 1 * * * * 1 4

* * * * 1 1 * * * 1

2020-10-04

match
action write

frr_ports

FRR = 1 1 1 1 1 0

FRR = 2 0 1 1 1 1

PURR: Encoding FRR in the packet metadata
Input

FRR1 = 1 2 3 4 FRR2 = 2 3 4 1

25

port status

0 1 1 1

packet metadata

FRR = 1

bit-to-port mapping
1 2 3 4 1

match action

frr_ports port status fwd

1 * * * * 1 * * * 1

* 1 * * * * 1 * * 2

* * 1 * * * * 1 * 3

* * * 1 * * * * 1 4

* * * * 1 1 * * * 1

2020-10-04

match
action write

frr_ports

FRR = 1 1 1 1 1 0

FRR = 2 0 1 1 1 1

PURR: re-cycling TCAM entries
Input

FRR1 = 1 2 3 4 FRR2 = 2 3 4 1

26

port status

1 1 1 1

packet metadata

FRR = 2

bit-to-port mapping
1 2 3 4 1

match action

frr_ports port status fwd

1 * * * * 1 * * * 1

* 1 * * * * 1 * * 2

* * 1 * * * * 1 * 3

* * * 1 * * * * 1 4

* * * * 1 1 * * * 1

2020-10-04 27

The key problem: How to compute the bit-to-port
mapping that minimizes memory occupancy?

bit-to-port mapping = .2 3 1 0 2 1 3
FRR1 = 2 3 1 0
FRR2 = 0 2 1 3
FRR3 = 3 0 2 1
FRR4 = 1 0 2 3

FRR1 = 2 3 1 0 FRR2 = 0 2 1 3 FRR3 = 3 0 2 1 FRR4 = 1 0 2 3

Shortest Common Supersequence (SCS) problem without repetitions
• SCS without repetitions is computationally hard (based on [2])
• Dynamic Programming (DPSCS) computes optimum in exponential time

bit-to-port mapping = ?

[2]T. Jiang, M. Li. On the approximation of shortest common supersequences and longest common subsequences. In Journal on Computing.

Fast-Greedy: a heuristic for solving this specific SCS

2020-10-04 28

idea: remove the most
frequent left-most
element among the
longest sequences

See the paper for:
• multi-table

optimization

F1=2 3 1 0
F2=2 0 1 3
F3=2 3 0 1
F4=3 1 2 0
remove 2

F1=3 1 0
F2=0 1 3
F3=3 0 1
F4=3 1 2 0
remove 3

F1=1 0
F2=0 1 3
F3=0 1
F4=1 2 0
remove 0

F1=1 0
F2=1 3
F3=1
F4=1 2 0
remove 1

F1=0
F2=3
F3= ---
F4=2 0
remove 2

F1=0
F2=3
F3= ---
F4=0
remove 0

F1= ---
F2=3
F3= ---
F4= ---
remove 3

SCS = 2 3 0 1 2 0 3

2020-10-04 29

P4-based implementations:

• implemented different FRR mechanisms in P4 using
PURR (e.g., F10 [1], arborescences [2], BFS, DFS,
rotor router [3])

• compiled on Tofino

FPGA-based implementation:

• implemented PURR on the NetFPGA-SUME platform

Implementation feasibility

[1] V. Liu et al. "F10: A Fault-Tolerant Engineered Network" in NSDI 2013
[2] M. Chiesa et al. "On the Resiliency of Randomized Routing Against Multiple Edge Failures" in Transactions on Networking 2016
[3] Borokhovich et al ””Graph exploration algorithms” in HotSDN 2013

2020-10-04 30

Two subquestions:

1. How much memory does PURR save?

2. How does performance in a datacenter vary depending
on how one implements a FRR primitive?

See the paper for:

• multi-table optimization

• random vs tree-based FRR sequences

• FPGA chip occupancy

• low-size FRR sequences

Evaluation: How does the FRR implementation
impact memory and performance?

How much memory does PURR save?
The “circular sequences” case

2020-10-04 31

Input:
• switch with k ports
• 10 circular set of FRR

sequences

“Duplication TCAM” FRR:
• k2 number of TCAM entries

With PURR encoding:
• k-1 number of TCAM entries

• 10 Top-of-Rack switches in a
datacenter with F10 FRR [nsdi-13]

• 10 destinations with the "k arc-
disjoint" FRR mechanism [ton-16]

[nsdi-13] V. Liu et al. "F10: A Fault-Tolerant Engineered Network" in NSDI 2013
[ton-16] M. Chiesa et al. "On the Resiliency of Randomized Routing Against Multiple Edge Failures" in Transactions on Networking 2016

How much memory does PURR save?
The “circular sequences” case

2020-10-04 32

Input:
• switch with k ports
• 10 circular set of FRR

sequences

“Duplication TCAM” FRR:
• k2 number of TCAM entries

With PURR encoding:
• k-1 number of TCAM entries

For k = 24
• 92% less TCAM entries
• 470 instead of 5.760

For k = 48
• 96% less TCAM entries
• 950 instead of 23.040

[nsdi-13] V. Liu et al. "F10: A Fault-Tolerant Engineered Network" in NSDI 2013
[ton-16] M. Chiesa et al. "On the Resiliency of Randomized Routing Against Multiple Edge Failures" in Transactions on Networking 2016

2020-10-04 33

How much memory does PURR save?
Fast-greedy performs close to the optimum

av
g.

 #
TC

AM
 e

nt
rie

s

number of FRR sequences

30

20

10

0
82 3 4 5 6 7

Input: randomly generated set of FRR sequences of length 7

number of FRR sequences

2 3 4 5 6 7

106

105

104

103

102

101

100

10-1av
g.

 ti
m

e
[m

s]

DPSCS

Fast-greedy

Fast-greedy

DPSCS

av
g.

 T
CA

M
 b

its
2020-10-04 34

How much memory does PURR save?
Fast-greedy scales to large number of sequences

Input: randomly generated set of FRR sequences

sequence size=32

sequence size=16

sequence size=8

sequence size=32

sequence size=16

sequence size=8

32 factorial possible FRR sequences
The “duplication” TCAM or recirculation FRR

approaches would not scale

av
g.

 #
TC

AM
 e

nt
rie

s

Th
ro

ug
hp

ut
 [G

bp
s]

Load [%]

101

100

10 20 30 40 50 60 70

2.7x

2020-10-04 35

How does FCT vary depending on the FRR primitive?
PURR improves both FCT and throughput

Sm
al

l f
lo

w
s F

CT
 [m

s]

Load [%]

2.0

1.5

1.0

0.5

0.0
10 20 30 40 50 60 70

FRR recirculation

immediate reconvergence

2.4x

NS-3 simulations
Topology: 32-server Clos network, 10Gbps links

Workload: data-mining Transport: DCTCP One link failure at 0.5s

Th
ro

ug
hp

ut
 [G

bp
s]

Load [%]

101

100

10 20 30 40 50 60 70

2020-10-04 36

How does FCT vary depending on the FRR primitive?
PURR improves both FCT and throughput

Sm
al

l f
lo

w
s F

CT
 [m

s]

Load [%]

2.0

1.5

1.0

0.5

0.0
10 20 30 40 50 60 70

FRR recirculation

immediate reconvergence
1.4x

NS-3 simulations
Topology: 32-server Clos network, 10Gbps links

Workload: data-mining Transport: DCTCP One link failure at 0.5s

purr 2x

2020-10-04 37

Fast Reroute is a critical functionality in today’s network

• requires high throughput, low latency, fast reactiveness, small forwarding tables

P4 does not define an FRR built-in primitive

• pipeline compilers and control-plane must program the P4 pipeline

PURR: We propose a lightweight TCAM-based FRR primitive

• an intriguing connection to algorithmic string theory

• no FRR-tailored hardware support

• improve performance by a factor of ~2x w.r.t. FRR recirculation

Conclusions: Keep calm and enjoy programmability

Marco Chiesa
KTH Royal Institute of Technology

Code: bitbucket.org/marchiesa/purr
Thank you!

Cat by dDara from the Noun Project

reusable

https://bitbucket.org/marchiesa/purr/

Backup slides

2020-10-04 39

Input:

• a 64-port programmable switch

• all possible three ports FRR sequences

“Duplication TCAM” approach:

• #TCAM entries = 64*63*62*3 = 750K

• TCAM memory = 750K * (20 + 3) = 17.2Mb

Smaller sequences on switches with
high-density ports

PURR encoding approach:

• #TCAM entries < (64*3) = 192

• TCAM memory < 192 * (64*4) = 50Kb

more than 99% memory reduction!

FRR recirculation:

• #TCAM entries = 64*63*62 = 250K

• TCAM memory = 250K * (17+3) = 5Mb

2020-10-04 40

Three naïve approaches to implementing FRR

low

low

low

high

high

high

low

low

high

high

high

high

high

high

high

FRR
recirculation

FRR
sequential

FRR parallel
duplication

throughput

latency

reactiveness

memory

flexibility

2020-10-04 41

Second approach: sequential search

match action

FRR = 1 fwd(1)

match action

FRR = 1 fwd(2)

match action

FRR = 1 fwd(3)

match action

FRR = 1 fwd(4)

Input
FRR1 = 1 2 3 4 FRR2 = 2 3 4 1 FRR3 = 3 4 1 2 FRR4 = 4 1 2 3

2020-10-04 42

Second approach: sequential search

match action

FRR = 1 fwd(1)

FRR = 2 fwd(2)

match action

FRR = 1 fwd(2)

FRR = 2 fwd(3)

match action

FRR = 1 fwd(3)

FRR = 2 fwd(4)

match action

FRR = 1 fwd(4)

FRR = 2 fwd(1)

Input
FRR1 = 1 2 3 4 FRR2 = 2 3 4 1 FRR3 = 3 4 1 2 FRR4 = 4 1 2 3

2020-10-04 43

Second approach: sequential search

match action

FRR = 1 fwd(1)

FRR = 2 fwd(2)

FRR = 3 fwd(3)

match action

FRR = 1 fwd(2)

FRR = 2 fwd(3)

FRR = 3 fwd(4)

match action

FRR = 1 fwd(3)

FRR = 2 fwd(4)

FRR = 3 fwd(1)

match action

FRR = 1 fwd(4)

FRR = 2 fwd(1)

FRR = 3 fwd(2)

Input
FRR1 = 1 2 3 4 FRR2 = 2 3 4 1 FRR3 = 3 4 1 2 FRR4 = 4 1 2 3

2020-10-04 44

Second approach: sequential search

match action

FRR = 1 fwd(1)

FRR = 2 fwd(2)

FRR = 3 fwd(3)

FRR = 4 fwd(4)

match action

FRR = 1 fwd(2)

FRR = 2 fwd(3)

FRR = 3 fwd(4)

FRR = 4 fwd(1)

match action

FRR = 1 fwd(3)

FRR = 2 fwd(4)

FRR = 3 fwd(1)

FRR = 4 fwd(2)

match action

FRR = 1 fwd(4)

FRR = 2 fwd(1)

FRR = 3 fwd(2)

FRR = 4 fwd(3)

Input
FRR1 = 1 2 3 4 FRR2 = 2 3 4 1 FRR3 = 3 4 1 2 FRR4 = 4 1 2 3

2020-10-04 45

A sequential search wastes hardware resources

match action

FRR = 1 fwd(1)

FRR = 2 fwd(2)

FRR = 3 fwd(3)

FRR = 4 fwd(4)

match action

FRR = 1 fwd(2)

FRR = 2 fwd(3)

FRR = 3 fwd(4)

FRR = 4 fwd(1)

match action

FRR = 1 fwd(3)

FRR = 2 fwd(4)

FRR = 3 fwd(1)

FRR = 4 fwd(2)

match action

FRR = 1 fwd(4)

FRR = 2 fwd(1)

FRR = 3 fwd(2)

FRR = 4 fwd(3)

Input
FRR1 = 1 2 3 4 FRR2 = 2 3 4 1 FRR3 = 3 4 1 2 FRR4 = 4 1 2 3

• increased latency
• waste of resources at each stage
• many updates to the forwarding table

port 2 fails

port 3 fails

2020-10-04 46

PURR improves both FCT and throughput
Two link failures, higher gains

NS-3 simulations

Topology: 32-server Clos network, 10Gbps links, 10𝜇𝜇𝜇𝜇 link latency
Workload: data-mining Transport: DCTCP

1.7x
1.8x

2020-10-04 47

Evaluation: Random vs tree-based sequences

2020-10-04 48

The web search workload

NS-3 simulations

Topology: 32-server Clos network, 10Gbps links, 10𝜇𝜇𝜇𝜇 link latency
Workload: web-search Transport: DCTCP

	PURR: A Primitive for Reconfigurable Fast Reroute
	PURR: Thanks to my coauthors!
	Network resilience is a key yet challenging property
	Routing reconvergence takes time!
	Centralized controllers make reconvergence slower
	Hard to recover within 50ms!
	Fast Reroute (FRR):�pre-computing failover paths
	Fast Reroute (FRR):�pre-computing failover paths
	Fast Reroute (FRR):�pre-computing failover paths
	The goal of this talk: implement a FRR primitive that minimizes pipeline resource consumption
	PURR applies to P4 programmable switches
	PURR applies to P4 programmable switches
	First approach: packet recirculation
	FRR recirculation has high memory occupancy
	PURR: a primitive for reconfigurable FRR
	PURR: a primitive for reconfigurable FRR
	PURR: Encoding FRR in the packet metadata
	PURR: Encoding FRR in the packet metadata
	PURR: Encoding FRR in the packet metadata
	PURR: Encoding FRR in the packet metadata
	PURR: One tempting option: “Duplication” TCAM
	PURR: Encoding FRR in the packet metadata
	PURR: Encoding FRR in the packet metadata
	PURR: Encoding FRR in the packet metadata
	PURR: Encoding FRR in the packet metadata
	PURR: re-cycling TCAM entries
	The key problem: How to compute the bit-to-port mapping that minimizes memory occupancy?
	Fast-Greedy: a heuristic for solving this specific SCS
	Implementation feasibility
	Evaluation: How does the FRR implementation impact memory and performance?
	How much memory does PURR save? �The “circular sequences” case
	How much memory does PURR save? �The “circular sequences” case
	How much memory does PURR save? �Fast-greedy performs close to the optimum
	How much memory does PURR save? �Fast-greedy scales to large number of sequences
	How does FCT vary depending on the FRR primitive?�PURR improves both FCT and throughput
	How does FCT vary depending on the FRR primitive?�PURR improves both FCT and throughput
	Conclusions: Keep calm and enjoy programmability
	Backup slides
	Smaller sequences on switches with high-density ports
	Three naïve approaches to implementing FRR
	Second approach: sequential search
	Second approach: sequential search
	Second approach: sequential search
	Second approach: sequential search
	A sequential search wastes hardware resources
	PURR improves both FCT and throughput�Two link failures, higher gains
	Evaluation: Random vs tree-based sequences
	The web search workload

