
PURR: A Primitive for Reconfigurable Fast Reroute
(hope for the best and program for the worst)

Marco Chiesa
KTH Royal Institute of Technology

Roshan Sedar
Universitat Politècnica de Catalunya

Gianni Antichi
Queen Mary University of London

Michael Borokhovich
Independent Researcher

Andrzej Kamisiński
AGH University of Science and

Technology in Kraków

Georgios Nikolaidis
Barefoot Networks

Stefan Schmid
Faculty of Computer Science

University of Vienna

ABSTRACT

Highly dependable communication networks usually rely on some
kind of Fast Re-Route (FRR) mechanism which allows to quickly
re-route traffic upon failures, entirely in the data plane. This paper
studies the design of FRR mechanisms for emerging reconfigurable
switches.

Our main contribution is an FRR primitive for programmable

data planes, PURR, which provides low failover latency and high
switch throughput, by avoiding packet recirculation. PURR tolerates
multiple concurrent failures and comes with minimal memory re-
quirements, ensuring compact forwarding tables, by unveiling an
intriguing connection to classic “string theory” (i.e., stringology),
and in particular, the shortest common supersequence problem.
PURR is well-suited for high-speed match-action forwarding archi-
tectures (e.g., PISA) and supports the implementation of arbitrary
network-wide FRR mechanisms. Our simulations and prototype im-
plementation (on an FPGA and Tofino) show that PURR improves
TCAM memory occupancy by a factor of 1.5x—10.8x compared to
a naïve encoding when implementing state-of-the-art FRR mech-
anisms. PURR also improves the latency and throughput of data-
center traffic up to a factor of 2.8x—5.5x and 1.2x—2x, respectively,
compared to approaches based on recirculating packets.

CCS CONCEPTS

• Networks → Data path algorithms; Network reliability;
Programmable networks.

KEYWORDS

programmable networks, network robustness, fast reroute, fast
failover, shortest common supersequence

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00
https://doi.org/10.1145/3359989.3365410

ACM Reference Format:

Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej
Kamisiński, Georgios Nikolaidis, and Stefan Schmid. 2019. PURR: A Primi-
tive for Reconfigurable Fast Reroute: (hope for the best and program for the
worst). In The 15th International Conference on emerging Networking EXperi-

ments and Technologies (CoNEXT ’19), December 9–12, 2019, Orlando, FL, USA.

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3359989.3365410

1 INTRODUCTION

Emerging applications, e.g., in the context of business [21] and
entertainment [57], pose stringent requirements on the dependabil-
ity and performance of the underlying communication networks,
which have become a critical infrastructure of our digital society. In
order to meet such requirements, many communication networks
provide Fast Re-Route (FRR) mechanisms [5, 39, 64] which allow
to quickly reroute traffic upon unexpected failures, entirely in the
data plane. By proactively provisioning the switches with backup
forwarding rules, the robustness and availability of a network can
be increased significantly: as soon as a switch detects a failure, i.e.,
defective link or port, it can quickly detour the affected packets
using its own local backup rules.

Networking equipment manufacturers have so far integrated the
selected FRR capabilities directly in the silicon of their switches,
allowing network operators to simply use such functionality as a
black-box option. Emerging Programmable Data Planes [14], PDPs,
are about to break this black-box approach to data plane network
functionalities. Indeed, by allowing network operators to deploy
customized packet processing algorithms, PDPs are considered a
key enabler of many interesting new use cases including monitor-
ing [41, 60], traffic load-balancing [40], and many others [8]. How-
ever, little is known today about how to implement arbitrary FRR
mechanisms with reconfigurable switches. One simple approach is
to recirculate the packet back at the input of the switching pipeline
when a failure has been detected and select a different output port.
This however leads to increased packet processing latency and
reduced throughput.

We therefore aim to make FRR efficient, thus avoiding expensive
packet recirculations, and programmable, thus allowing operators
to pick any FRR mechanism (e.g., [45]). This is challenging and
involves multiple goals:

https://doi.org/10.1145/3359989.3365410
https://doi.org/10.1145/3359989.3365410

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA M. Chiesa et al.

• Flexibility: We aim to devise an FRR primitive that supports
arbitrary FRR mechanisms robust to single and multiple link
failures [26, 49]. FRR mechanisms deal with the computation of
primary and backup forwarding rules. The scope of this work
is to support the fast transition from primary to backup rules at
the individual switch level.

• Low latency and high throughput: Packets affected by a fail-
ure should be rerouted to an alternate active port as fast as possi-
ble without incurring any packet processing degradation. This
means packet processing latency should not depend on the num-
ber of failed ports on a switch: a key requirement for latency-
critical applications.

• Memory efficiency: A programmable FRR mechanism should
come with minimal memory requirements, i.e., the resulting for-
warding tables are required to be compact. Memory (especially
TCAM) is, in fact, a scarce yet precious resource of today’s hard-
ware PDPs [4].

In this paper we propose a new FRR primitive, PURR1, that serves
as a building block for implementing any arbitrary FRRmechanisms
while meeting the above requirements. At the heart of PURR lies a
technique that avoids recirculating packets through the entire packet
forwarding pipeline in search of an active (non-failed) port, which
would lead to worsened performance, i.e., higher latency and lower
throughput. In order to provide memory efficiency, PURR leverages
an intriguing connection between compact FRR forwarding tables
and algorithmic string theory (i.e., stringology): the main theoretical
contribution of this paper. Specifically, we show that it is possible
to implement arbitrary FRR mechanisms very efficiently using our
primitive, by modeling the optimization problem as a variant of
a Shortest Common Supersequence (SCS) problem. To this end, we
devise and analyze several new algorithms to efficiently solve SCS.
We show how optimized SCS solutions translate into low-memory
realizations of the given FRR mechanisms.
In summary, we make the following contributions:
• We explore the design space alongside the trade-offs of imple-
menting FRR mechanisms on hardware-based PDPs.

• We propose PURR, a new FRR primitive that can be adopted
as a building block for implementing arbitrary FRR algorithms.
PURR provides very low failover latency and high packet pro-
cessing throughput by requiring a single TCAM lookup, and low
memory overhead by exploiting an unexplored connection to
classic algorithmic string theory.

• PURR comes with solid algorithmic underpinnings. In particular,
we show that the underlying problem is a variant of SCS without
repetitions, and prove that this variant is still NP-hard. We then
present a novel and efficient heuristic to solve this variant of the
SCS problem, which may be of interest beyond the scope of this
paper.

• We report on an extensive evaluation, combining analytical re-
sults and simulations.We assessed PURR usingmicrobenchmarks
and large-scale simulations. Our main findings show PURR dra-
matically reduces memory requirements by a factor of 1.5x—10.8x
for a variety of existing FRR mechanisms compared to a naïve

1PURR stands for “a Primitive for reconfigUrable fast ReRoute”.

Pa
ck

et
s i

n

Match
FRR_id

Action wrt
port_set

1 1111000

………... ………….

4 0001111

Input
headers &
metadata

Match
port_set

Match
status

Action
fwd

1****** 1*** 1

…………. …………. …….

******1 **1* 3

Pa
ck

et
s o

ut

Ingress pipeline Egress pipeline
Packet recirculation

st
ag

e
1

Selected-Ports table Fwd-Packet table

st
ag

e
…

st
ag

e
N

st
ag

e
1

st
ag

e
…

st
ag

e
N

in
gr

es
s

bu
ffe

r

eg
re

ss

bu
ffe

r

Runtime P4
(Control plane)

Pa
rs

er

Figure 1: PISA abstraction with PURR pipeline.

approach. Our large-scale simulations show that packet recircu-
lation has devastating effects on the flow completion times of the
latency-sensitive flows, up to 2.8x—5.5x worse than PURR.

• We assessed the feasibility of realizing PURR in practice by im-
plementing it in P4 on the bmv2 software switch [20], a Tofino
switch [9], and an FPGA [74].
Our code is available to the public and fully reproducible [28].

2 BACKGROUND AND MOTIVATION

P4 background. P4 [14] is a programming language specifi-
cally designed to program data plane packet processing pipelines
based on a match-action architecture. The P4 language is target-
independent [19], i.e., it abstracts from the specific hardware charac-
teristics of a switch. A P4 compiler translates high-level P4 programs
into target-dependent switch configurations. Network operators
write forwarding behavior using P4 and subsequently compile these
programs into P4-enabled switches using vendor-specific compilers.
In this paper, we focus solely on hardware-based P4 switches.

The top part of Fig. 1 depicts a high-level abstraction of the
standard de-facto P4 packet processing pipeline, i.e., the PISA
pipeline [19]. This pipeline consists of a parser component followed
by an ingress and an egress forwarding pipelines. The parser can be
configured by the network operators to match arbitrary (ad-hoc)
fields in the packet header. Each pipeline consists of a sequence
of match-action stages, similarly to OpenFlow. The network oper-
ator can decide upon the size and number of match tables, their
matching type (e.g., exact, wildcard, range), and the actions associ-
ated with a match “hit” (e.g., rewrite the packet header, increase a
counter). Similarly to OpenFlow, P4 programmers can usemetadata

fields to carry information across different stages and match on
those fields. The metadata attached to a packet is lost as soon as
the packet leaves the switch. It is worth noting that P4 does not
dictate how the match-action tables are mapped onto the TCAM,
SRAM, and DRAM memories contained within each stage of the
pipeline. Clearly, different memory types strike different trade-offs
in terms of cost, energy consumption, and latency. TCAMmemories
support wildcard, which we will leverage in the rest of the paper.
The complexity of computing the mapping of the match tables to
the hardware memories is left to the P4 compiler, which is different
for each target packet processing switch.

PURR: A Primitive for Reconfigurable Fast Reroute CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Table T1
out_port tag

1 1
2 2
3 3
4 4

Table T2
tag status fwd tag & recirc

1 1*** 1 -
2 *1** 2 -
3 **1* 3 -
4 ***1 4 -
* **** − (tag++ % 4) +1

Figure 2: A packet recirculation forwarding table.

P4 and Fast ReRoute (FRR). The P4 abstraction has gained ever-
growing interests from the networking community thanks to its
flexibility and general-purpose interface. Yet, P4 comes with no
built-in support for commonly used Fast Re-Route (FRR) forwarding
operations, i.e., the forwarding action consists of a sequence of
ports such that a packet matching that action is forwarded to the
first active (i.e., non-failed) port in the sequence. This is similar to
FRR groups, henceforth called FRR sequences, of OpenFlow [24].
For example, consider an FRR mechanism that i) indexes all the
switches’ ports from 1 to k and ii) when the switch fails to send a
packet on a port with index i , it tries with ports i+1, i+2, and so on,
modulo the number of ports, until an active port is found. We call
the resulting FRR sequences (i.e., ⟨1, 2, 3, 4⟩, ⟨2, 3, 4, 1⟩, ⟨3, 4, 1, 2⟩,
and ⟨4, 1, 2, 3⟩), circular FRR sequences.

Based on extensive discussions with P4 developers, the imple-
mentation of FRR sequences in P4 is today left to the operator [53].
We note that FRR primitives devised in different contexts (e.g., BGP-
PIC [10, 18]) cannot support arbitrary FRR sequences (namely, only
FRR sequences of size 2).

Implementing an FRR primitive is far from being trivial. Without
specific built-in FRR hardware support within the hardware switch
devices, operators have to rely only on the match-action processing
pipeline to enable quick packet forwarding recomputation upon
any number of link failure detection. One way to achieve this goal
entails recirculating a packet through the switch pipeline multiple
times in search of the first non-failed port in an FRR sequence, or
alternatively, by writing a P4 program that checks the state of the
links in the FRR sequence either sequentially (i.e., through multiple
stages) or in parallel (i.e., using a TCAM). We now analyze these
three different possible solutions.
FRR sequences with packet recirculation. One simple way to
implement FRR is to recirculate a packet until an active outgoing
port is found. Consider the simple example of Fig. 2 in which we
want to support an FRR mechanism that is based on the afore-
mentioned set of FRR circular sequences, i.e., ⟨1, 2, 3, 4⟩, ⟨2, 3, 4, 1⟩,
⟨3, 4, 1, 2⟩, and ⟨4, 1, 2, 3⟩. To realize an FRR sequence with packet
recirculation, we store in the packet header/metadata information
about the port through which we should try to forward the packet,
i.e., the tag field, and increase this value if the currently pointed
port is down. The first tableT1 is used to simply attach the initial tag
to a packet. Each packet carries a port statusmetadata where each
bit in the status metadata represents the status of a port: it is set
to 1 if the port is active or to 0 otherwise. We assign a port identifier
to each port of the switch and let the ith bit in status represent
the ith port of the switch. The status matching operation simply

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

al
lfl

ow
s

FC
T

[m
s]

2.4x

FRR recirculation
CP reconvergence

(a) One link failure.

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

al
lfl

ow
s

FC
T

[m
s]

3.7x

FRR recirculation
CP reconvergence

(b) Two link failures.

10 20 30 40 50 60 70

Load [%]

100

101

Th
ro

ug
hp

ut
[G

bp
s]

2.7x

FRR recirculation
CP reconvergence

(c) One link failure.

10 20 30 40 50 60 70

Load [%]

100

101

Th
ro

ug
hp

ut
[G

bp
s]

3.3x

FRR recirculation
CP reconvergence

(d) Two link failures.

Figure 3: Packet recirculation performance analysis.

checks whether the port indexed by the tag field is up or down.
For instance, consider a packet destined to port 4. In the absence of
failures, this packet will enter the switch with status = 1111 and
get assigned tag = 4 in T1. It will then match the 4th entry in the
second table T2 and be forwarded on port 4. When port 4 fails, the
same packet will now match the 5th entry in T2. This will modify
tag to 1 and the packet will be recirculated, now matching the 1st

entry and being routed on port 1.
Packet recirculation degrades flow completion time. There
are (potentially) few drawbacks with the above implementation:
when a packet is recirculated, i) it can add an additional bandwidth
overhead on the switch capacity, resulting in a sort of “self-induced
incast” on the ingress buffer, ii) it increases the packet processing
latency since the same packet needs to go through the match-action
pipeline (including its buffers) multiple times. To better understand
the impact of recirculating packets in a concrete setting, we ran
a series of simulations using the ns3 discrete-event simulator. We
validated our ns3 model with a manufacturer of hardware PDPs.
We took existing ns3 implementations from the state-of-the-art
datacenter load-balancing codebase (i.e., Hermes [71]) and imple-
mented the F10 [45] state-of-the-art FRR mechanism on top of it.
The topology is a leaf-spine datacenter topology with two tiers, the
congestion control is DCTCP, and the routing is OSPF/ECMP. In
Fig. 3, we failed one or two links simultaneously and compared
an “ideal” OSPF routing approach that reconverges at the time of
the failure (i.e., “CP reconvergence”) with the packet recircula-
tion approach (i.e., “FRR recirculation”).2 Our results show that the
flow completion time (FCT) of latency-sensitive flows (i.e., small
flows with size ≤ 100 KB) is a factor of 2.4x and 3.7x higher with
“FRR recirculation” under one and two link failures, respectively,
compared to CP-reconvergence. We also measured the average
throughput achieved by the large flows (i.e., size ≥ 10 MB) when
recirculating packets, which achieved a 2.7x and 3.3x times lower
throughput than CP-reconvergence under one and two link failures,
respectively.

2Refer to Sect. 5 for detailed information about the datacenter setting.

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA M. Chiesa et al.

A sequential search of the first active port wastes hardware

resources. Another way to implement the above FRR on a match-
action pipeline would be to either sequentially or simultaneously
check through a specific sequence of outgoing ports, which port is
the first active one. This approach can easily be expressed in P4 as
a set of nested “if-else” statements and the compiler has to decide
whether to realize it in a sequential (on SRAM memory) or parallel
(on TCAM memory) manner. In the sequential case, the status of
each port in an FRR sequence is tested in each subsequent stage of
the match-action pipeline. This approach has two clear limitations:
i) it cannot support FRR sequences whose sizes are larger than the
number of stages and ii) it wastes resource at each stage that cannot
be used by forwarding functions that have a functional dependency
with the selected egress port.

A TCAM-based parallel search to the rescue! A P4 compiler
can encode a set of if-else statements within a TCAM memory,
which allows to perform the active-port search in parallel. We
present one naïve encoding approach in Fig. 4a where we realize
the same circular FRR sequences of the packet recirculation case
with one single TCAM lookup. One can assign an identifier FRRid
to each FRR sequence. When a packet arrives at the switch, we
attach both the status metadata field and a given FRRid to it. We
then match the packet with the TCAM memory and extract the
first active forwarding port. This approach is similar to the packet
recirculation one but we now find the first active port in “one shot”,
i.e., in one single TCAM lookup. As an example, the first four entries
in the table realize the FRR sequence ⟨1, 2, 3, 4⟩.
We now compute the amount of TCAM space needed to realize
a set of n circular FRR sequences using the aforementioned naïve
TCAM encoding. If the number of ports in each sequence is k , then
the number of TCAM entries will be nk and the TCAM occupancy
is nk(k + logn), where we need logn bits to encode FRR identifiers
and k bits to encode the status match part for each of the nk
entries. In the specific example of Fig. 4a, we can see that just a
single circular FRR sequence requires 4 TCAM entries and thus 24
bits of TCAM memory. Observe that already for k = 24 and 10 FRR
circular sequences, we need 5760 TCAM entries and ∼ 130 kbit
of TCAM space, which is already two order of magnitude larger
than what is available in today’s high-performance PDPs [4]. In
the remaining sections, we therefore address the following main
question:

“Canwe enable a new FRR primitive for programmable data planes that

requiresminimal TCAM overheadwhileminimizing flow performance

degradation due to network failures?”

3 A PRIMITIVE FOR FAST REROUTE

We now consider the problem of encoding an arbitrary set of FRR
sequences into a match-action TCAM-based packet processing
pipeline. We first discuss how to realize a specific set of FRR se-
quences (which we call “circular” FRR sequences), that capture
a wide variety of FRR mechanisms that have been proposed to
cope with multiple network failures [12, 16, 45]. Finally, we de-
vise a heuristic that efficiently encodes any type of arbitrary FRR
sequences into TCAM memories.

Table T1
FRRid status fwd

1 1*** 1
1 *1** 2
1 **1* 3
1 ***1 4
2 *1** 2
2 **1* 3
2 ***1 4
2 1*** 1
3 **1* 3
3 ***1 4
3 1*** 1
3 *1** 2
4 ***1 4
4 1*** 1
4 *1** 2
4 **1* 3
(a) Naïve approach

Table T1
FRRid port_set

1 1111000
2 0111100
3 0011110
4 0001111

↓

Table T2
port_set status fwd

1****** 1*** 1
*1***** *1** 2
1** **1* 3
1 ***1 4
****1** 1*** 1
*****1* *1** 2
******1 **1* 3

(b) Encoded approach

Figure 4: TCAM encodings of a circular FRR sequence.

3.1 A Model for Programmable FRR

Fast ReRoute (FRR) sequences. Network operators rely on FRR
mechanisms to compute a set of primary and backup forwarding
rules. These rules are used to reroute network traffic upon arbitrary
number of failures without the need to invoke the slower control
plane and reconverge the network data plane. When a switch re-
ceives a packet, it classifies it, possibly modifies the packet header,
and finally applies a forwarding action. In this paper, we model
each forwarding action with an FRR sequence, i.e., a sequence of
ports, e.g., ⟨port1,port4,port2,port3⟩, or ⟨1, 4, 2, 3⟩ for brevity. The
switch forwards packets to the first (traversing from left to right)
active port in a sequence. For instance, when all ports are active, a
switch using the FRR sequence F0 = ⟨1, 2, 3, 4⟩ will forward packets
through port 1. If both ports 1 and 2 fail, the switch reroute packets
through port 3. Packets belonging to different flows may share the
same forwarding behavior, that is, the same FRR sequence.
Target-dependent constraints. The architecture of a packet pro-
cessing system highly influences the way FRR sequences would be
supported. For instance, a software switch cannot typically lever-
age fast memories for ternary matching (i.e., TCAMs). Even among
physical switches with TCAM support there are differences to be
taken into account. As an example, the Intel FlexPipe [55] archi-
tecture does not support arbitrary width sizes for TCAM tables, a
functionality that is supported in the RMT (Reconfigurable Match
Tables) architecture [15]. We note that these details are not exposed
to the P4 programmer but handled by target-dependent P4 com-
pilers. In this paper, we focus our attention on the emerging PDPs
that support wildcard match tables (e.g., TCAMmemories). We now
describe a set of architectural constraints for hardware PDPs.
• Match-action pipeline stages. Each pipeline architecture con-
sists of a certain number of stages through which packets are

PURR: A Primitive for Reconfigurable Fast Reroute CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

being classified and modified. Certain stages may allow to per-
form parallel matches in different tables (e.g., FlexPipe) and each
stage contains a certain amount of resources for exact, prefix,
and ternary matches. As noted in Sect. 2, implementing FRR se-
quences in a sequential manner is highly undesirable in practice.
In fact, it prevents any forwarding operations with a functional
dependency on the egress port calculation to leverage the spare
SRAM and TCAM memories that reside within the stages used
to implement the FRR sequences. We therefore require the bulk
of our encoding to fit within a single stage (a small table can
be allowed in the previous stage to assign FRR identifiers and
initialize data structures).

• Number of TCAM entries and bits. Each stage s of thematch-action
pipeline has a certain number of TCAM entries. For instance, the
RMT architecture states a maximum of 32K TCAM entries per
stage, though this amount may be smaller in practice depending
on the specific vendor and product [4].3 In the FlexPipe archi-
tecture, there are only two stages with 12K entries each. In each
stage s , the amount of TCAM memory (in bits4) is also limited.
In the RMT architecture, roughly 1 Mbit of TCAM memory is
available per stage.

FRR encoding goal. Our objective is to provide a primitive that
will allow efficient realization of any set of FRR sequences. We
already explained in Sect. 2 that such a solution must be based on a
single TCAM lookup implementation. Given a set of FRR sequences
that correspond to a specific fast failover algorithm (e.g., DFS tra-
versal [12] or circular-arborescence [17]) our proposed primitive
will allow deploying them in a way that reduces the amount of
TCAM memory required.

3.2 A Primitive for Circular FRR

We now describe a TCAM scheme for encoding a specific class of
widely adopted FRR sequences, i.e., circular FRR sequences. This
class of FRR sequences is common of several existing FRR mech-
anisms, including F10 [45], arc-disjoint arborescences [17], and
graph-traversals [12]. We say that a set of FRR sequences is circular
if every FRR sequence in the set can be obtained from any other
sequence by a finite number of circular shift operations. Consider
a switch with four ports and the following set of FRR sequences:
F1 =⟨1, 2, 3, 4⟩, F2 =⟨2, 3, 4, 1⟩, F3 =⟨3, 4, 1, 2⟩, and F4 =⟨4, 1, 2, 3⟩.
Since every Fi can be obtained from any other Fj by circularly
shifting Fi to the left j − i mod 4 times, the set of FRR sequences
{F1, F2, F3, F4} are circular.
Encoding circular FRR sequences.We already described a naïve
approach for encoding circular FRR sequences in Sect. 2, which was
illustrated in Fig. 4a. As discussed earlier, this approach requires
nk(k + logn) TCAM bits, where n is the number of sets of circular
FRR sequences and k is the number of ports in the switch (and
hence, the length of an FRR sequence). Let us now propose a more
efficient way of encoding any set of circular FRR sequences (see
Fig. 4b). Let fi, j represent the j’th element of a sequence Fi . For
each sequence Fi , we assign a bit vector port_set of size 2k − 1,
where each bit represents a port of the switch in the order defined
3Also based on private communication with vendors.
4For simplicity, we use the “bit” terminology as opposed to the more correct “trits”
one, which captures the ternary nature of the TCAM elements.

by the sequence F1, i.e., bit number b of port_set represents port
f1,b mod k . For each sequence Fi we set k bits in its port_set
vector that correspond to the ports in Fi but in the same order
that the ports appear in Fi . In our example (Fig. 4b), the port_set
vector represents ports ⟨1, 2, 3, 4, 1, 2, 3⟩. Hence, for the sequence F1,
the port_set is 1111000, which means that the bits corresponding
to ports ⟨1, 2, 3, 4⟩ are set to 1. For the sequence F3, we will have
port_set = 0011110 which means that the bits corresponding to
ports ⟨3, 4, 1, 2⟩ are set.

The table T1 in Fig. 4b assigns the corresponding port_set for
each circular sequence of a given FRR set. Then, table T2 matches
the port_set and the statusmetadata fields to determine the first
active port for a given FRR sequence. For example, if a packet to be
rerouted according to sequence F4 (this is determined at an earlier
stage, not shown here), then table T1 will assign it port_set =
0001111. Now, let’s assume that ports 1 and 4 are down and ports 2
and 3 are up, which corresponds to the status = 0110. Then, the
first matching entry in tableT2 will be in row 6 (where port_set =
∗ ∗ ∗ ∗ ∗1∗) and thus, the packet will be forwarded via port 2. Notice
that different circular FRR sets will be assigned different FRRid in
table T1, and thus will have dedicated sets of entries in table T2.
Our encoding achieves an order of magnitude smaller

TCAM memories compared to a naïve approach. Let us now
analyze the TCAM space required to encode a set of n circular FRR
sequences, each sequence having length k (notice that there are at
most k such sequences, i.e., n ≤ k). The table T1 requires n entries,
each of size logn bits. The table T2 requires 2k − 1 entries, each of
size 2k − 1 + k bits. So, the total TCAM space required for a single
FRR set is n logn + (2k − 1) × (3k − 1) = O(k2). This result gives an
order of magnitude improvement over the naïve approach which
requires nk(k + logn) = O(k3) TCAM bits. Notice also that tableT1
does not require ternary matches and therefore can be implemented
in SRAM, saving the limited and expensive TCAM space even more.

3.3 A Primitive to Implement Them All

We now introduce and tackle the general problem of encoding ar-
bitrary set of FRR sequences that are not necessarily circular. The
input is a set of sequences and the output is the set of wildcard
(TCAM) and exact (SRAM) matches and actions to be installed in
the forwarding plane. We tackle this problem by generalizing the
port_set vector described in the previous subsection.
Single-table optimization. We first consider the problem of en-
coding a set of FRR sequences in a single TCAM table. The challenge
with arbitrary FRR sequences is that the mapping between bits in
the port_set vector and ports is not as obvious as it was in the
circular case. The port_set now has to represent a sequence of
ports that contains all the given FRR sequences as subsequences.
Essentially, the encoding problem boils down to finding the shortest
sequence that contains all the given sequences as subsequences
(i.e., skipping elements is allowed).
Unveiling an unexplored connection between FRR encod-

ings and algorithmic string theory. Our encoding problem can
be seen as a special (and unexplored) version of the classic Shortest
Common Supersequence (SCS) [30] problem, where no repetitions
are allowed. In the SCS problem, the input is a set of sequences

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA M. Chiesa et al.

S = {S1, . . . , Sk } and the goal is to compute a sequence of elements
S̄ such that any element of S is a subsequence of S̄ and S̄ is of
minimal size. This connection is interesting and raises the question
whether our version of the problem without repetitions can render
the problem simpler: SCS is known to be notoriously hard, in fact
NP-hard already for strings over a binary alphabet [56], and also
hard to approximate within polylogarithmic factors [37].

Unfortunately, this is not the case: we state this insight as a
theorem as the result is of independent interest.

Theorem 3.1. The SCS problem without repetitions is NP-hard to
optimize and approximate.

5

The proof follows from a careful analysis of the proof in [37]
for the general SCS problem (not repeated here due to space con-
straints). In no step during this proof, are any repetitions needed.
The dynamic programming building block: DPSCS. We first
discuss a well-known technique used to solve the SCS problem op-
timally based on Dynamic-Programming [69], called DPSCS. This
approach computes an optimum SCS solution in time O(kn), thus
solving the problem in efficient (polynomial) time only when the
number of sequences is constant. We use DPSCS as an ideal baseline
to compare our proposed heuristic and to deal with arbitrary num-
ber of sequences. The input to our problem is a setF = {F1, . . . , Fn }
of FRR sequences, where fi, j indicates the j’th element of sequence
Fi . The value of fi, j represents an index of a port in the switch. We
assume that all the sequences have the same length k .
The Fast-Greedy heuristic. The DPSCS algorithm computes
optimal solutions at the cost of running time, i.e., exponential
time in the number of sequences. For this reason, we introduce
Fast-Greedy (Alg 1), which strikes a different tradeoff in terms of
fast running time and reasonably good accuracy. At each iteration,
we trim the left-most element from some of the input sequences
according to the following approach. First, the algorithm identifies
the set S of the longest sequences at the current iteration. Then,
it looks at the leftmost elements of all these longest sequences
and identifies the one that appears most often (ties are broken
arbitrarily). This “most-frequent” element (denoted as a) is removed
from the sequences in S where it appears as the left-most element,
and added to the resulting SCS sequence. The process continues
until all the input sequences are empty. The running time of Fast-
Greedy is O(n2k) — much faster than any O(kn) DPSCS-based
heuristic, where k is the size of a FRR sequence. In Fig. 5, we show
an example of Fast-Greedy with four sequences F1=⟨2 3 1 0⟩,
F2 =⟨0 2 1 3⟩, F3=⟨3 0 2 1⟩, and F4=⟨1 0 2 3⟩. We highlight with a
green background the longest sequences during the computation,
which are those sequences fromwhich we extract the most frequent
element. At the beginning, all sequences have the same length
and all the left-most elements appear exactly once. The algorithm
selects 2 as the most frequent element and removes it from all the
sequences where it appears as the left-most element, i.e., only from
F1. Fast-Greedy then applies the same procedure until the input
sequences are empty. Consider the 3rd stage where Fast-Greedy
selects element 3 as the most frequent and removes it. The element
5 There exists a constant δ > 0 such that, if SCS has a polynomial-time approximation
algorithm with ratio logδ n, where n is the number of input sequences, then NP is
contained in DTIME(2polylogn).

Algorithm 1 Definition of Fast-Greedy.
Input: A set F = {F1, . . . , Fn } of FRR sequences each of
length k , where fi, j is the j’th element of sequence Fi .

(1) Set currscs :=⟨⟩
(2) Repeat until ∃i ∈ [1, . . . ,n], |Fi | > 0

• Let S = {i | |Fi | = m, i ∈ [1, . . . ,n]}, wherem =
maxi |Fi |

• Let a be the most frequent element in { fi,1 | i ∈ S}

• ∀i ∈ S, if fi,1 = a then Fi = ⟨fi,2, . . . , fi,k ⟩
• currscs := currscs ∪ < a >

(3) return currscs

F1=2 3 1 0
F2=0 2 1 3
F3=3 0 2 1
F4=1 0 2 3
remove 2

F1=3 1 0
F2=0 2 1 3
F3=3 0 2 1
F4=1 0 2 3
remove 0

F1=3 1 0
F2=2 1 3
F3=3 0 2 1
F4=1 0 2 3
remove 3

F1=1 0
F2=2 1 3
F3=0 2 1
F4=1 0 2 3
remove 1

F1=0
F2=2 1 3
F3=0 2 1
F4=0 2 3
remove 0

F1= ---
F2=2 1 3
F3=2 1
F4=2 3
remove 2

F1= ---
F2=1 3
F3=1
F4=3
remove 1

F1= ---
F2=3
F3= ---
F4=3
remove 3

Figure 5: Fast-Greedy example.

Table T1
FRRid port_set

1 10111000
2 01010101
3 00101110
4 00011101

→

Table T2
port_set status fwd

1******* **1* 2
*1****** 1*** 0
1*** ***1 3
1* *1** 1
****1*** 1*** 0
*****1** **1* 2
******1* 1*** 1
*******1 ***1 3

Figure 6: Fast-Greedy TCAM implementation.

is removed from F3 (where we selected it) and also from F1 where
it appears as the left-most element. The final supersequence is
< 2 0 3 1 0 2 1 3 >. By iteratively removing the common left-most
elements of each subsequence, we can guarantee the final sequence
will be a supersequence of each individual subsequence.

We now analyze the computational complexity of Fast-Greedy.
At each iteration, finding the most frequent left-most element costs
O(n) and each element is removed exactly once so the number
of removals is O(nk). Thus, the running time of this algorithm is
O(n2k).
Multi-table optimization.Wenow consider the problem inwhich
the FRR encoding can be realized across multiple tables instantiated

PURR: A Primitive for Reconfigurable Fast Reroute CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Algorithm 2 Definition of MultiTable-SCS (MT-SCS).
Function input: A set F = {F1, . . . , Fk } of FRR sequences
(1) Let S = {}, add {F1}, . . . , {Fk } into S , and let f = True
(2) Repeat until f is True
(a) S ′ = S and (Si , Sj) := maxi, j LCS(Si ∪ Sj)
(b) add {Si , Sj } into S ′ and remove Si and Sj from S ′

(c) if cost(S) ≤ cost(S ′), f =False; else S = S ′

(3) return S

in the same stage of the pipeline, which is possible on today’s
programmable switches [38]. This potentially allows us to build
even more compact representations of a set of FRR sequences. In
some cases, using multiple tables may also be necessary because
real hardware switches cannot handle tables of arbitrary width,
e.g., 512 bits. We describe a heuristic that carefully groups FRR
sequences based on a novel insight into the algorithmic theory of
strings (stringology), which is tailored for the specific case of FRR
sequences (i.e., no element repetitions).
The MultiTable-SCS heuristic. One way to “pack” FRR se-
quences into multiple tables is to aggregate similar FRR sequences
together. Intuitively, this allows similar sequences to share a small
port_set vector, potentially achieving better memory overheads
than with a single table.

Finding similar sequences leads us to consider a complementary
problem to SCS, i.e., the Longest Common Subsequence (LCS) [48]
problem.6 LCS is renown to be NP-hard but, again, in our context,
we do need to consider LCS with a tweak: we do not have any repe-
titions. This again poses the problem of whether the NP-hardness
of the LCS holds without repetitions. Interestingly, in this case, we
find that this version can be solved efficiently, in polynomial time
(i.e., O(nk2)).

Theorem 3.2. The LCS problem without repetitions is

polynomial-time solvable.

This motivates us to consider LCS as a way to efficiently group
FRR sequences into different tables. In MultiTable-SCS (Alg. 2),
we divide the input FRR sequences into n sets (step (1)) and then
aggregate the two sets Si and Sj with the largest LCS (steps (2a)
and (2b)). If aggregating these elements produces a lower memory
cost, we repeat the procedure. We stop it otherwise and return the
set partitioning, each set corresponding to a table encoding.

4 IMPLEMENTATION

In order to verify the feasibility of our primitive, we made several
implementations. In the following, we will first report on P4-based
implementations (i.e., bmv2 [20] and Tofino) and will then discuss
a Verilog implementation on the NetFPGA.
P4-based implementations. We successfully implemented our
primitive for a number of existing FRR mechanisms, including
arborescence-based FRR mechanisms [16], as well as the Depth
First Search (DFS), Breadth First Search (BFS) and the rotor router
mechanisms in [11]. We also successfully implemented our primi-
tive on the Tofino switch, further confirming the feasibility of our
approach. We will share our implementations together with this
6Note that, formally, LCS is not the dual problem of SCS.

paper. We note that implementing PURR in P4 is a simple operation.
It simply entails incorporating the two tables showed in Fig. 4b in
the existing forwarding pipeline. The first table only requires an
exact match operation while the second table requires the most
complex wildcard match.
FPGA-based implementation. We built the PURR prototype on
the NetFPGA-SUME platform [74], which is a PCIe adapter card
with 4x10 Gbps Ethernet interfaces and a large FPGA Xilinx Virtex-
7.

We leveraged the existing layer-2 switch implementation pro-
vided with NetFGPA-SUME package to deploy PURR. In this system,
packets first enter the device through one of the four 10 Gbps net-
work interfaces where packets are stored in First-In-First-Out (FIFO)
memory units, named input queues. The interface modules are con-
nected to the input arbiter. The arbiter switches between the input
queues in a round robin fashion, each time selecting a non-empty
queue and moving one packet from it to the next stage in the data
path. From the input arbiter on, there is a single pipeline with a
data width of 256 bits running at the frequency of 200 MHz, thus
guaranteeing enough bandwidth to support 40 Gbps transmission
rates. The forwarding logic comes after the input arbiter. It is re-
sponsible for selecting the output port based on standard layer-2
switching operation. After the decision is made, the packet reaches
the PURR primitive logic. Here, constant monitoring of the physical
network interfaces status is needed to activate the programmed
FRR mechanism. Indeed, the appropriate output port is selected
based on the status of the physical network interfaces and the result
of a matching against the TCAM memory. If the originally selected
destination port is active, then nothing changes. In contrast, if the
selected port is down, the new destination port will be selected
based on the TCAMmatching result, which depends on the adopted
FRR algorithm.

5 EVALUATION

We now assess the performance of the algorithms introduced in
Sect. 3 for encoding a set of FRR sequences into a TCAM memory.
We evaluate the algorithms along two dimensions: the amount
of memory needed to encode the FRR sequences in memory bits
and their running time. This first part of the evaluation focuses
on a single switch that gets a set of FRR sequences as input and
computes an encoding of these sequences in a TCAM memory.
In the second part of the evaluation, we set up a datacenter Clos
network and implement the state-of-the-art FRR mechanism for
Clos networks, i.e., F10 [45], using circular FRR sequences. We then
run simulations in ns3 to study the impact of using PURR w.r.t. an
approach based on recirculating packets.

5.1 FRR Encoding

In this section, we answer the following main question: “How much

TCAM memory (in bits and entries) do we need to implement a given

set of FRR sequences?”. We implement DPSCS and Fast-Greedy in
Python and consider three different dimensions: i)we vary the num-
ber of FRR sequences n, ii) we vary the size k of the FRR sequences,
iii) we either generate random sequences or construct sequences
derived from existing FRR mechanisms. For each simulation setting,
we run 6 simulations with different seeds.

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA M. Chiesa et al.

2 3 4 5 6 7 8

number of sequences

0
200
400
600
800

1000

M
em

or
y

co
st

[b
it]

dpscs fastgreedy

(a) Memory consumption in TCAM bits.

2 3 4 5 6 7 8

number of sequences

0

10

20

30

#T
C

A
M

en
tr

ie
s dpscs fastgreedy

(b) Memory consumption in TCAM entries.

2 3 4 5 6 7 8

number of sequences

10−1
100
101
102
103
104
105
106

Ti
m

e
[m

s]

dpscs fastgreedy

(c) Processing time.

Figure 7: Comparison of Fast-Greedy with respect to the

optimum. The size of the sequences is set to 7.

Encoding FRR sequences is crucial in high port density

switches. Wefirst evaluate the Naïve approach described in Fig. 4a
and compare it with our encoding-based mechanism described in
Fig. 4b. The results are based on the calculations described in Sect 3.2.
We consider the broad family of FRR mechanisms (e.g., F10 [45],
DFS [12], basic arc-disjoint spanning trees [16]), which rely on
circular FRR sequences. Realizing a circular FRR sequence over 8,
16, 32, and 64 ports takes 1.5x, 2.8x, 5.5x, and 10.8x higher mem-
ory requirements than using an encoding-based implementation,
respectively. A PDP target with 64 ports would require 327 KB of
TCAM to implement 10 circular FRR sequences. This corresponds
to 2 entire pipeline stages on the RMT architecture and roughly
5 stages in real-world programmable data planes [4]. An encoded
approach would merely require 30 KB, one tenth of the TCAM
memory contained in a single stage of the RMT architecture [15].
Fast-Greedy performs close to the optimumand is fast. We
now compare Fast-Greedy against the optimum SCS solver, i.e.,
DPSCS. We set the size of the sequences to 7 elements and vary
the number of sequences from 2 to 7. Fig. 7a and Fig. 7b show that
Fast-Greedy performs remarkably close to the optimum while
it consumes roughly 20% more TCAM bits and 10% more TCAM
entries than the optimum. We report the processing time in Fig. 7c.

101 102 103 104 105

number of sequences

102

103

104

105

106

107

M
em

or
y

co
st

[b
it]

k=8 k=16 k=32

(a) Memory consumption in TCAM bits.

101 102 103 104 105

number of sequences

101

102

103

#T
C

A
M

en
tr

ie
s k=8 k=16 k=32

(b) Memory consumption in TCAM entries.

102 103 104 105

number of sequences

20000

30000

40000

50000

M
em

or
y

co
st

[b
it]

random
tree

(c) Disjoint-tree vs. random sequences.

Figure 8: (a-b) Fast-Greedy with FRR sequences of size k .
(c) Comparing random and tree [16] sequences.

As expected, dynamic programming grows exponentially in the
number of sequences, requiring 15 minutes to find the optimum
SCS for even just 8 sequences. In contrast, Fast-Greedy runs in
less than one millisecond.
Fast-Greedy compresses hundreds of thousands of FRR se-

quences within limitedmemory. We show in Fig. 8a and Fig. 8b
the amount of memory in bits and the number of entries required
to implement a given set of FRR sequences. Our results show that
by doubling the number of ports on a switch the number of TCAM
entries increases roughly by a factor of 3.5x while the number of
TCAM bits increases by a factor of 7x. The amount of required
memory stabilizes around 1000 FRR sequences, after which the
encoding is capable of realizing the vast majority of possible FRR
sequences provided as input to Fast-Greedy.
Memory requirements of state-of-the-art FRR mechanisms.

We so far evaluated the memory requirements when the input of the
problem consisted of randomly derived FRR sequences. One may
ask whether existing FRR mechanisms (robust to multiple failures)
would require higher or lower memory than random sequences. To
the best of our knowledge, the best general FRR mechanisms that
are i) scalable, ii) robust to multiple failures, and iii) do not require
expensive transactional high-speed memories on the chip are those
based on computing a set of “arc-disjoint” spanning trees [16]. We

PURR: A Primitive for Reconfigurable Fast Reroute CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

quantify the memory requirements of an arc-disjoint FRR mech-
anism, called tree, in Fig. 8 deployed on Jellyfish [59] datacenter
topologies. Through tree, all the spanning trees are ordered in a
sequence and a packet is rerouted once on the next spanning tree
and once “bounced” on the opposite tree each time it hits a failed
link. Our results show that implementing FRR the rerouting deci-
sion made in Log-Basic induce the same memory requirements of
random sequences.
Multiple tables. We ran simulations using random sequences
in order to assess the benefits of splitting a set of FRR sequences
into multiple tables. In each simulation, we generate between 10
and 100K different random FRR sequences and run the LCS-based
MultiTable-SCS algorithm where the cost function minimizes
the amount of TCAM bits. We observe that the algorithm always
returned a single table, thus showing limited benefits in splitting
a table into multiple tables (unless some TCAM width constraints
apply). We note that all our encodings would fit in the TCAMwidth
of the RMT pipeline architecture in one single stage [15].

5.2 Datacenter Simulations

In this section, we answer the following main question: How does

the flow completion time (FCT) of latency-sensitive flows and the

throughput of bandwidth-intensive applications vary depending on

the implemented FRR primitive? We assess the impact of our FRR
primitive on a real datacenter workload. We note that our FRR
primitive is not specific to datacenter environments but also other
types of networks, e.g., WANs. We compare PURR against the per-
formance achieved using i) an FRR primitive based on recirculation
(“recirc”), ii) an ideal immediate reconvergence of the control-plane
(“reconv”)7, and iii) the case in which there are no failures (“no-
fail”).
Simulation reproducibility. We used the packet-level ns3 sim-
ulator [1] to evaluate the impact of different FRR primitives. To
make our simulations realistic and reproducible, we leverage the
publicly-available codebase of the state-of-the-art datacenter load
balancer, i.e., Hermes [71]. We inherit the same datacenter topology,
workloads, traffic generators, routing schemes, and transport proto-
cols. We implement different FRR primitives and FRR mechanisms
on top of this code and evaluate their performance. Our code will
be released to the public and fully reproducible [28].
Topology. The datacenter topology (see Fig. 9) consists of 4 leaf
and 4 spine switches. Each leaf switch interconnects 8 servers. All
links are 10 Gbps. The switching fabric has a 2 : 1 oversubscription
factor [2, 71]. The buffer size is 100 packets per port. The maximum
packet size is 1.3 KB. The leaf-spine and leaf-server link delays are
10 µs and 1 µs , respectively.
Routing and congestion control. We rely on the widely adopted
Valiant Load Balancing (VLB) routingmechanisms to forward traffic
in the datacenter [29]. Each flow of traffic between two servers
connected to two distinct leaf nodes is forwarded to a random spine
node and then directly to the destination leaf node. VLB has been
widely implemented using OSPF/ECMP [35], which splits flows

7In reality, reconvergence may take up to hundreds of milliseconds or even seconds to
happen [58]. During this time, packets arriving at the failed link would be dropped.

S1 S2 S3 S4

… … … …

L1 L2 L3 L4

spine
switches

8x10Gbps

leaf
switches

1st failed link

4x10Gbps

2nd failed
link

432
1

4
3

21

Figure 9: Topology used for simulated evaluation.

of traffic using a deterministic hash-based equal traffic splitting
mechanism.
Transport protocols. We use DCTCP [3] as the congestion con-
trol mechanism. DCTCP supports low-latency and high-throughput
communication. We use the same parameter of Hermes, setting the
ECN threshold to [15, 15] packets.
FRR mechanism: F10 [45]. We implement F10 as the FRR mech-
anism in our topology. F10 is the state-of-the-art FRR mechanism
in datacenter networks. In a datacenter with k links between a leaf
node and the above spine layer, F10 is capable of tolerating up to
k − 1 link failures, i.e., packets are guaranteed to reach their correct
destination without entering transient forwarding loops or being
dropped. F10 relies on circular FRR sequences, which we imple-
ment on all the network nodes. For example, in Fig. 9, the circular
sequence at node S4 is < 1, 2, 3, 4 >, which means that when both
links (L4, S4) and (L1, S4) fail, a packet that should be sent on port
4 would instead be sent on port 2, which is the first non-failed port
in the circular sequence. When the packet is received at node L2,
we apply again circular FRR forwarding and the packet is sent to
S1, which, in turn, forwards it to the correct destination.
Workloads.We use two empirically-derived realistic workloads:
i.e., web-search [3] and data-mining [29]. Both distributions are
heavy-tailed, with the data-mining workload being more skewed,
thus causing higher imbalances due to ECMP. The traffic generator
is based on the work in [7], which generates flows of traffic between
inter-cluster hosts according to a Poisson distribution and the given
network load, which ranges between 10% and 70%, a typical network
utilization in a datacenter [7]. We distinguish between small flows
(i.e., size ≤ 100 KB) and large flows (i.e., size ≥ 10 MB).
Metrics. For each network load, workload, and FRR primitive, we
simulate 4 seconds of traffic. For the recirculation and PURR FRR
primitives, we fail one or two links after 500 ms from the start of
the simulation For the OSPF reconvergence approach, we fail one
or two links at time zero and immediately recompute the optimal
OSPF routing. We measure the Flow Completion Times8 (FCTs) for
all the flows that ends after 500ms. We use the OSPF reconvergence
simulation to compute an upper bound on the optimal FCT achiev-
able by an FRR primitive. For each setting, we ran a minimum of

8Defined as the time difference between the last received packet and the first “time-
scheduled” sent packet.

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA M. Chiesa et al.

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

al
lfl

ow
s

FC
T

[m
s]

recirc
reconv

purr no-fail

(a) Data-mining, 1 link failure.

10 20 30 40 50 60 70

Load [%]

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

99
-s

m
al

lF
C

T
[m

s] recirc
reconv

purr no-fail

(b) Data-mining, 1 link failure.

10 20 30 40 50 60 70

Load [%]

100

101

Th
ro

ug
hp

ut
[G

bp
s] recirc

reconv
purr no-fail

(c) Data-mining, 1 link failure.

10 20 30 40 50 60 70

Load [%]

0.0

0.5

1.0

1.5

2.0

S
m

al
lfl

ow
s

FC
T

[m
s]

recirc
reconv

purr no-fail

(d) Data-mining, 2 links failures.

10 20 30 40 50 60 70

Load [%]

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

99
-s

m
al

lF
C

T
[m

s] recirc
reconv

purr no-fail

(e) Data-mining, 2 links failures.

10 20 30 40 50 60 70

Load [%]

100

101

Th
ro

ug
hp

ut
[G

bp
s] recirc

reconv
purr no-fail

(f) Data-mining, 2 links failures.

Figure 10: Comparison between purr and recirculation FRR primitives under 1 and 2 link failures.

40 simulations and compute the average and 99’th percentile of the
FCT and flow throughput.9

Modeling packet recirculation in ns3. When we recirculate a
packet in a PDP, the packet moves back to the ingress pipeline, thus
congesting the ingress buffer. Since ns3 does not model ingress
buffers, we add one “virtual ingress buffer” node in front of each
port. We set all latencies to zero so as to mimic an ingress buffer
attached to pipeline. We collaborated with one network engineer
from a manufacturer of hardware PDPs to validate our model while
trying to keep the model as general as needed to guarantee non-
disclosure agreement. We defer the reader to App. A for further
details.
PURR dramatically improves the flow completion time

(FCT) of the small flows. We ran our simulations for the data-
mining workload using the aforementioned setting andwe collected
our results in Fig. 10. With low network loads, e.g., 10%, and one
link failure (see Fig. 10a) we observe that our FRR primitive reduces
the FCT of the small flows from the 653 µs with packet recirculation
to 384 µs . This means that the FCT overhead introduced by FRR
compared to the 295 µs of the reconverged approach is reduced by a
factor of 4.3x. The main reason packet recirculation incurs a higher
FCT at low network loads is the packet recirculation operation,
which requires to traverse the forwarding pipeline (including its
possibly congested ingress buffer) a second time. Even at higher
loads, the purr FRR primitive reduces the FCT overhead by a fac-
tor of 2x compared to recirculating a packet. At higher network
loads, we note that PURR performs worse than the control plane
approach. This happens because PURR routes packets to a core
node that does not have a valid downward path towards the desti-
nation. This means the traffic has to be rerouted to a leaf node and

9We ran simulations for the equivalent of roughly 10000 hours (more than one year)
of computing time on a 2.60 GHz machine.

10 20 30 40 50 60 70

Load [%]

1.0

1.5

2.0

2.5

3.0

N
or

m
.

S
m

al
lF

C
T recirc imm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
.

Th
ro

ug
hp

utrecirc imm

(a) Web-search, 1 link failure.

10 20 30 40 50 60 70

Load [%]

1.0

1.5

2.0

2.5

3.0

N
or

m
.

S
m

al
lF

C
T recirc imm

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
.

Th
ro

ug
hp

utrecirc imm

(b) Web-search, 2 link failures.

Figure 11: FCT and throughput of the largeflowsnormalized

with respect to the purr FRR primitive.

bounced back to another core node with a valid downward path.
Consequently, PURR creates more congestion on the buffers at the
core node adjacent to the failed link, which increases the FCT of
the small flows. The control plane approach instead routes these
affected flows of traffic directly to a core node with a non-failed
downward path to the destination. With two link failures (Fig. 10d)
the trends are similar though the improvements at 10% and 70%
network loads reach 5.5x and 2.8x as the buffers become even more
congested than with one single failure.

PURR: A Primitive for Reconfigurable Fast Reroute CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

PURR guarantees near-optimal throughput at low network

loads.We measure the throughput of the largest flows in the net-
work and compare it among the same four approaches in Fig. 10c
and Fig. 10f under 1 and 2 failures, respectively. The throughput of
the large flows is computed as the ratio between the amount of all
the received bytes and the sum of the flow completion times. We
note that at 10% network load, purr achieves the same through-
put of the reconverged approaches, approaching 8 Gbps, a factor
of 2x higher than with packet recirculation. As the network load
increases, the throughput of purr quickly decreases, faster than in
the reconverged setting. This sharper drop of throughput can be
explained by the simple fact that at higher load, the impact of going
through a node with a lower available bandwidth is exacerbated.
We observe one peculiar result that seem counter-intuitive. We
note that we cannot compare the performance between one and
two link failures as the set of affected flows, as well as the number
of flows reaching the node with two failed links, is different. For
instance, with two failures, the amount of traffic received by leaf
node L4 is 50% smaller than with one single failure.
PURR improves performance on different workloads. We
run simulations using the web-search [29] workload and measure
the FCT of the small flows and the throughput of the large flows
normalizedwith respect to PURR. Fig. 11 quantifies the performance
drop of recirculation normalized with respect to PURR. As for
the datamining workload, we observe that the benefits of PURR are
higher at low network loads while they decrease as the network
becomes more congested and there is less spare bandwidth for
rerouting the affected flows.

5.3 FPGA Evaluation

In this section, we answer the following question: “How many

resources do we need to implement PURR on an FPGA chip?” Table 1
compares the resource utilization between a simple NetFPGA-SUME
switch and the same system augmented with our primitive. FRR16,
FRR32 and FRR64 represent the case when PURR needs 16, 32, and
64 entries in the TCAM, respectively. Such entries can be used to
enable different FRR sequences for the selected output port or to
allow a single FRR sequence in a system with a larger number of
ports. Considering the FRR16 case, PURR impacts only 0.07% of
the total available resources of the Slice Lookup Tables (LUTs). The
impact grows almost quadratically in the number of TCAM rules.
The other resources, i.e., Flip Flops and BRAM, are not affected.
This is because Slice LUTs are the main type of resources being
used to instantiate TCAMs on FPGAs.

Project Slice LUTs Flip Flops BRAM

Switch 43212 64811 204
Switch + FRR16 43523 64845 204
Switch + FRR32 44304 64901 204
Switch + FRR64 46476 65006 204

Table 1: HW switch augmented with PURR

6 FREQUENTLY ASKED QUESTIONS

Does PURR support any FRR mechanism? Yes! To the best of
our knowledge, PURR supports any deterministic FRR mechanism
proposed in the literature for datacenters and WAN networks, in-
cluding load-aware ones [23]. PURR receives as input a set of FRR
sequences that needs to be implemented into the networking de-
vices similarly to the OpenFlow fast reroute groups [51]. As long
as an FRR mechanism describes its primary and backup forwarding
behaviour as a set of primary and backup ports, PURR can encode
such a mechanism into the dataplane pipeline. We note that restora-
tion mechanisms requiring control plane invocation require more
complex primitives than PURR, which operates at the data plane
level. We leave probabilistic FRR mechanisms (e.g., [17]) as future
work.
Could PURR support selective traffic rerouting when multi-

ple links fail? Yes! When many links fail at one switch, we could
leverage priority queues to reroute the most critical traffic — a small
fraction of the overall traffic [36] — and drop the rest, based on the
available remaining capacity. Studying how to reroute the traffic
and in which proportions is left as future work.
How does PURR deal with dynamic updates? In the cases
when FRR sequences need to be added or modified at runtime,
we need to dynamically update the match-action tables. We di-
vide dynamic updates into three cases (consider Fig. 4b): i) the
mapping between bits in the port_set vector and switch ports
remains the same ii) the mapping between bits in the port_set
vector and switch ports changes but its length remains the same
iii) the mapping between bits in the port_set vector and switch
ports changes and its length has increased. In case i), we do not
have to modify the encoding mapping in T2 and simply modify or
add the port_set entries in T1. In case ii), we need to update or
add the entries in both tables. In the first two cases, the updates can
be issued to the P4 runtime, as long as the limit on the number of
entries is not reached. In the more remote case iii), the width of the
table T 2 has to be increased and the answer clearly depends on the
support from the target device. For instance, techniques on how
to partially reconfigure an FPGA in an online manner exist [66].
Similar techniques have been explored to dynamically reconfigure
the structure of the P4-based PISA forwarding tables [72, 73]. We
note that an operator does not have to recompile the tables if the
sequences have non-uniform lengths as long as the mapping allows
to implement such sequences. Moreover, if the target architecture
imposes certain limits on the TCAM table width, the multi-table
approach (discussed in Section 3.3) can be used for splitting the
encoding across multiple tables with a smaller width and length.
Finally, we note that one can carefully implement our encoding in a
way that any update to the (backup) FRR sequences does not impact
the (primary) forwarding rules, thus avoiding any disruption.
Could PURR be used to implement fast load-balancing for-

warding decisions? Yes! We believe PURR can be generalized to
support fast forwarding decisions based on a wide range of pro-
grammable conditions. For instance, an operator may be interested
in sending a packet to the first active port that has ≤ 50% utilization.
We could implement such decision using a vector similar to port

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA M. Chiesa et al.

status, which would however encode the utilization of the ports.
We leave this extension as future work.

7 RELATEDWORK

Connectivity disruptions in networks due to link failures are
common [44, 47, 50, 65] and happen in all kinds of networks,
from wide-area networks [34, 43] to data center networks [27].
Accordingly, many clever mechanisms have been developed to
provide fast re-routing under failures entirely in the dataplane,
e.g., [10, 12, 13, 17, 32, 33, 42, 44, 45]. Fast reroute mechanisms are
also included in MPLS networks [6, 64], IP networks [5], in Open-
flow [24], among many others. Detecting port failures falls beyond
the scope of this paper as it depends on specific hardware support.

FRR mechanisms can generally be categorized along different
dimensions, e.g., whether they tolerate only a single link/node
failure [52, 67, 70] or multiple ones [22, 62], or whether routing
tables are static (e.g., [13, 17, 45, 61, 62]) or dynamic (e.g., [25, 44]),
whether packet header rewriting is required (e.g., [22, 42, 44, 46]) or
packet duplication (e.g., [31]), whether provide low stretch [17, 23]or
load [54, 63, 68].

This paper complements all the above works in that our goal
is not to devise a new robust routing mechanism, but rather a
primitive which can be used to efficiently implement existing mech-
anisms. Several FRR primitives for quickly rerouting traffic has
been proposed, though in different contexts. BGP-PIC [18] and
Swift [33] support FRR sequences of size 2. Plinko [62] devised
both an FRR mechanism and an FRR primitive to tolerate multi-
ple failures. Unfortunately, the FRR primitive is coupled with the
proposed FRR mechanism, thus it cannot support arbitrary FRR
sequences. PURR is instead general and supports arbitrary FRR se-
quences/mechanisms of arbitrary size. Indeed, PURR instead leaves
the choice of which specific failover mechanisms to use to the net-
work operator, but then supports the mechanism by a low-latency
and compact realization, even tolerating multiple link failures. For
example, PURR could be used to realize compact programmable
implementations of F10 [45] or [12] which are based on circular FRR
sequences, which paves the way for a seamless implementation on
PDPs. To give another example, PURR supports DDC [44], which
provides ideal forwarding connectivity by performing series of link
reversal operations dynamically, eventually complementing it with
load-aware FRR support as discussed in Sect. 6.

8 CONCLUSION

This paper presented an FRR primitive for programmable data
planes, which allows to implement existing failover mechanisms
without recirculating packets and hence low failover latency and
high throughput. Our approach relies on an interesting connection
to a classic string manipulation problem for which we also pro-
vide new insights, and shows promising results on the PISA-based
architectures for which we implemented a prototype.

We understand our work as a first step building robust and self-
driving programmable networks and believe that it opens several
interesting avenues for future research. In particular, generalizing
our primitive for load-balancing purposes and supporting proba-
bilistic FRR mechanisms seem two attractive future directions.

ACKNOWLEDGEMENTS

We would like to acknowledge our shepherd Cristel Pellser and
the anonymous reviewers for their invaluable feedback on this
paper. The 1st author would like to thank Andy Fingerhut for dis-
cussions on the FRR primitives and the P4 language. The 7th author
would like to thank Szymon Dudycz from Wroclaw University
for discussions on the SCS problem. This research is supported
by the UK’s Engineering and Physical Sciences Research Coun-
cil (EPSRC) under the EARL: sdn EnAbled MeasuRement for alL
project (Project Reference EP/P025374/1). The research done by the
5th author is supported by the European Cooperation in Science
and Technology (COST) Action CA15127 “Resilient communica-
tion services protecting end-user applications from disaster-based
failures — RECODIS").

REFERENCES

[1] 2019. ns3 Network Simulator. (June 2019). https://www.nsnam.org/.
[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-aware Load Balancing for Datacenters. SIGCOMM Comput. Commun.

Rev. 44, 4 (Aug. 2014), 503–514. https://doi.org/10.1145/2740070.2626316
[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Confer-

ence (SIGCOMM ’10). ACM, New York, NY, USA, 63–74. https://doi.org/10.1145/
1851182.1851192

[4] Anonymous. 2019. FlexGate: High-performance Heterogeneous Gateway in Data
Centers. In Proceedings of the 3rd Asia-Pacific Workshop on Networking (APNet

’19). To appear.
[5] Alia Atlas and Alex Zinin. 2008. Basic Specification for IP Fast Reroute: Loop-Free

Alternates. RFC 5286. RFC Editor. 1–31 pages. https://doi.org/10.17487/RFC5286
[6] François Aubry, Stefano Vissicchio, Olivier Bonaventure, and Yves Deville.

2018. Robustly disjoint paths with segment routing. In Proceedings of the 14th

International Conference on emerging Networking EXperiments and Technolo-

gies, CoNEXT 2018, Heraklion, Greece, December 04-07, 2018. 204–216. https:
//doi.org/10.1145/3281411.3281424

[7] Wei Bai, Li Chen, Kai Chen, and Haitao Wu. 2016. Enabling ECN in Multi-
service Multi-queue Data Centers. In Proceedings of the 13th Usenix Conference on

Networked Systems Design and Implementation (NSDI’16). USENIX Association,
Berkeley, CA, USA, 537–549. http://dl.acm.org/citation.cfm?id=2930611.2930646

[8] Barefoot. 2018. In-Network DDoS Detection. (November 2018). https:
//barefootnetworks.com/use-cases/in-nw-DDoS-detection/.

[9] Barefoot. 2019. Tofino: World’s fastest P4-programmable Ethernet switch ASICs.
(2019). http://barefootnetworks.com/products/brief-tofino/ (accessed on June 26,
2019).

[10] Olivier Bonaventure, Clarence Filsfils, and Pierre Francois. 2007. Achieving
Sub-50 Milliseconds Recovery Upon BGP Peering Link Failures. IEEE/ACM Trans.

Netw. 15, 5 (Oct. 2007), 1123–1135. https://doi.org/10.1109/TNET.2007.906045
[11] Michael Borokhovich, Clement Rault, Liron Schiff, and Stefan Schmid. 2018. The

show must go on: Fundamental data plane connectivity services for dependable
SDNs. Computer Communications 116 (2018), 172 – 183. https://doi.org/10.1016/j.
comcom.2017.12.004

[12] Michael Borokhovich, Liron Schiff, and Stefan Schmid. 2014. Provable data
plane connectivity with local fast failover: introducing OpenFlow graph al-
gorithms. In Proceedings of the Third Workshop on Hot Topics in Software De-

fined Networking (HotSDN ’14). ACM, New York, NY, USA, 121–126. https:
//doi.org/10.1145/2620728.2620746

[13] Michael Borokhovich and Stefan Schmid. 2013. How (not) to shoot in your foot
with SDN local fast failover. In Conference on Principles of Distributed Systems

(OPODIS). Springer-Verlag.
[14] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95. https://doi.org/10.
1145/2656877.2656890

[15] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). ACM, New
York, NY, USA, 99–110. https://doi.org/10.1145/2486001.2486011

https://www.nsnam.org/
https://doi.org/10.1145/2740070.2626316
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.17487/RFC5286
https://doi.org/10.1145/3281411.3281424
https://doi.org/10.1145/3281411.3281424
http://dl.acm.org/citation.cfm?id=2930611.2930646
https://barefootnetworks.com/use-cases/in-nw-DDoS-detection/
https://barefootnetworks.com/use-cases/in-nw-DDoS-detection/
http://barefootnetworks.com/products/brief-tofino/
https://doi.org/10.1109/TNET.2007.906045
https://doi.org/10.1016/j.comcom.2017.12.004
https://doi.org/10.1016/j.comcom.2017.12.004
https://doi.org/10.1145/2620728.2620746
https://doi.org/10.1145/2620728.2620746
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2486001.2486011

PURR: A Primitive for Reconfigurable Fast Reroute CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

[16] Marco Chiesa, Andrei Gurtov, Aleksander Madry, Slobodan Mitrovic, Ilya Niko-
laevskiy, Michael Schapira, and Scott Shenker. 2016. On the resiliency of ran-
domized routing against multiple edge failures. In International Colloquium on

Automata, Languages, and Programming (ICALP). Leibniz.
[17] M. Chiesa, I. Nikolaevskiy, S. MitroviÄĞ, A. Panda, A. Gurtov, A. Maidry, M.

Schapira, and S. Shenker. 2016. The quest for resilient (static) forwarding tables. In
IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer

Communications. 1–9. https://doi.org/10.1109/INFOCOM.2016.7524552
[18] Cisco. 2014. BGP PIC Edge for IP and MPLS-VPN. (2014). https:

//www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-
3s/irg-xe-3s-book/irg-bgp-mp-pic.html (accessed on June 26, 2019).

[19] P4 Language Consortium. 2017. P4 Language Specification. (May 2017). https:
//p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf (accessed on June 26, 2019).

[20] P4 Language Consortium. 2019. Behavioral Model (BMv2). (June 2019). https:
//github.com/p4lang/behavioral-model.

[21] Yoav Einav. 2019. Amazon Found Every 100ms of Latency Cost them 1% in Sales.
In Gigaspaces.

[22] Theodore Elhourani, Abishek Gopalan, and Srinivasan Ramasubramanian. 2016.
IP Fast Rerouting for Multi-Link Failures. In Transactions on Networking, Volume:

24, Issue: 5. IEEE/ACM.
[23] Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.

2019. CASA: Congestion and Stretch Aware Static Fast Rerouting. In Proc. IEE

INFOCOM.
[24] Open Network Foundation. 2012. Switch Specification 1.3.1. (September

2012). https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-
spec-v1.3.1.pdf.

[25] Eli M. Gafni and Dimitri P. Bertsekas. 1981. Distributed algorithms for generating
loop-free routes in networks with frequently changing topology. In Transactions

on Communications, Volume: 29, Issue: 1. IEEE.
[26] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding

network failures in data centers: measurement, analysis, and implications. ACM
SIGCOMM Computer Communication Review 41, 4 (2011), 350–361.

[27] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
network failures in data centers: measurement, analysis, and implications. In
Computer Communication Review, Volume: 41, Issue: 4. ACM.

[28] GitHub. 2019. PURR Repository. (2019). https://bitbucket.org/marchiesa/purr.
[29] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. SIGCOMM

Comput. Commun. Rev. 39, 4 (Aug. 2009), 51–62. https://doi.org/10.1145/1594977.
1592576

[30] Dan Gusfield. 1997. Algorithms on strings, trees and sequences: computer science
and computational biology. Cambridge university press.

[31] Prashanth Hande, Mung Chiang, Robert Calderbank, and Sundeep Rangan. 2009.
Network pricing and rate allocation with content provider participation. In
Conference on Computer Communications (INFOCOM). IEEE.

[32] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto Dainotti,
Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast connectivity recovery
entirely in the data plane. In 16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 19). 161–176.
[33] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Vanbever.

2017. SWIFT: Predictive Fast Reroute. In Proceedings of the Conference of the ACM

Special Interest Group on Data Communication (SIGCOMM ’17). ACM, New York,
NY, USA, 460–473. https://doi.org/10.1145/3098822.3098856

[34] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mo-
han Nanduri, and Roger Wattenhofer. 2013. Achieving High Utilization with
Software-driven WAN. In Proceedings of the ACM SIGCOMM 2013 Conference on

SIGCOMM (SIGCOMM ’13). ACM, New York, NY, USA, 15–26. https://doi.org/10.
1145/2486001.2486012

[35] C. Hopps. 2000. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992. RFC
Editor. 1–8 pages. https://doi.org/10.17487/RFC2992

[36] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. 2013. B4: Experience with a Globally-
deployed Software Defined Wan. SIGCOMM Comput. Commun. Rev. 43, 4 (Aug.
2013), 3–14. https://doi.org/10.1145/2534169.2486019

[37] Tao Jiang and Ming Li. 1995. On the approximation of shortest common superse-
quences and longest common subsequences. In Journal on Computing, Volume:

24, Issue: 5. SIAM.
[38] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. 2015. Compiling

Packet Programs to Reconfigurable Switches. In Proceedings of the 12th USENIX

Conference on Networked Systems Design and Implementation (NSDI’15).
[39] Andrzej Kamisiński. 2018. Evolution of IP Fast-Reroute Strategies. In 2018 10th

International Workshop on Resilient Networks Design and Modeling (RNDM). 1–6.
https://doi.org/10.1109/RNDM.2018.8489832

[40] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon
Kim, and Jennifer Rexford. 2017. Clove: congestion-aware load balancing at the

virtual edge. In Conference on Emerging Networking EXperiments and Technologies

(CoNEXT). ACM.
[41] Changhoon Kim, Anirudh Sivaraman, Naga Praveen Katta, Antonin Bas, Ad-

vait Dixit, and Lawrence J Wobker. 2015. In-band Network Telemetry via Pro-
grammable Dataplanes. In Industrial demo, ACM SIGCOMM.

[42] Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Anderson,
Scott Shenker, and Ion Stoica. 2007. Achieving convergence-free routing us-
ing failure-carrying packets. In Special Interest Group on Data Communication

(SIGCOMM). ACM.
[43] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David

Gelernter. 2014. Traffic engineering with forward fault correction. In Special

Interest Group on Data Communication (SIGCOMM). ACM.
[44] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira,

and Scott Shenker. 2013. Ensuring connectivity via data plane mechanisms. In
Networked Systems Design and Implementation (NSDI). USENIX.

[45] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
2013. F10: A fault-tolerant engineered network. In Networked Systems Design and

Implementation (NSDI). USENIX.
[46] Suksant Sae Lor, Raul Landa, and Miguel Rio. 2010. Packet re-cycling: eliminating

packet losses due to network failures. In Hot Topics in Networks (Hotnets). ACM.
[47] Doug Madory. 2018. Large Outage in Pakistan. (November 2018). http://dyn.

com/blog/large-outage-in-pakistan/.
[48] David Maier. 1978. The complexity of some problems on subsequences and

supersequences. In Journal of the ACM, Volume: 25, Issue: 2. ACM.
[49] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee

Chuah, and Christophe Diot. 2004. Characterization of failures in an IP backbone.
In IEEE INFOCOM 2004, Vol. 4. IEEE, 2307–2317.

[50] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee
Chuah, Yashar Ganjali, and Christophe Diot. 2008. Characterization of failures
in an operational IP backbone network. In Transactions on Networking, Volume:

16, Issue: 4. IEEE/ACM.
[51] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-

terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. In Computer Communication Review,

Volume: 38, Issue: 2. ACM.
[52] Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, Zhi-Li Zhang, and Chen-Nee Chuah.

2007. Fast local rerouting for handling transient link failures. (2007).
[53] P4-dev maling list. 2018. (2018). http://lists.p4.org/pipermail/p4-dev_lists.p4.org/

2016-May/002027.html.
[54] Yvonne Anne Pignolet, Stefan Schmid, and Gilles Tredan. 2017. Load-optimal

local fast rerouting for resilient networks. In Dependable Systems and Networks

(DSN). IEEE.
[55] Ozdag R. 2012. Intel R Ethernet Switch FM6000 SeriesSoftware Defined Network-

ing. (2012). Intel Corporation.
[56] Kari-Jouko Räihä and Esko Ukkonen. 1981. The shortest common supersequence

problem over binary alphabet is NP-complete. Theoretical Computer Science,

Volume: 16, Issue: 2.
[57] Ryan Shea, Jiangchuan Liu, Edith C-H Ngai, and Yong Cui. 2013. Cloud gaming:

architecture and performance. IEEE network 27, 4 (2013), 16–21.
[58] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,
Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter Network. SIGCOMMComput.

Commun. Rev. 45, 4 (Aug. 2015), 183–197. https://doi.org/10.1145/2829988.2787508
[59] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. 2012. Jellyfish:

Networking Data Centers Randomly. In Proceedings of the 9th USENIX Conference

on Networked Systems Design and Implementation (NSDI’12). USENIX Association,
Berkeley, CA, USA, 17–17. http://dl.acm.org/citation.cfm?id=2228298.2228322

[60] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukr-
ishnan, and Jennifer Rexford. 2017. Heavy-Hitter detection entirely in the data
plane. In Symposium on SDN Research (SOSR). ACM.

[61] Brent Stephens, Alan L. Cox, and Scott Rixner. 2013. Plinko: Building Provably
Resilient Forwarding Tables. In Proceedings of the Twelfth ACM Workshop on Hot

Topics in Networks (HotNets-XII). ACM.
[62] Brent Stephens, Alan L. Cox, and Scott Rixner. 2016. Scalable Multi-Failure Fast

Failover via Forwarding Table Compression. In Proceedings of the Symposium on

SDN Research. ACM.
[63] Martin Suchara, Dahai Xu, Robert Doverspike, David Johnson, and Jennifer Rex-

ford. 2011. Network architecture for joint failure recovery and traffic engineering.
In Special Interest Group for the Computer Systems Performance Evaluation (SIG-

METRICS). ACM.
[64] George Swallow, Ping Pan, and Alia Atlas. 2005. Fast reroute extensions to

RSVP-TE for LSP tunnels. In RFC 4090.
[65] Daniel Turner, Kirill Levchenko, Alex C. Snoeren, and Stefan Savage. 2010. Cal-

ifornia fault lines: understanding the causes and impact of network failures.
Computer Communication Review, Vol: 40, Issue: 4.

https://doi.org/10.1109/INFOCOM.2016.7524552
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/irg-bgp-mp-pic.html
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://p4.org/p4-spec/p4-14/v1.0.4/tex/p4.pdf
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
https://bitbucket.org/marchiesa/purr
https://doi.org/10.1145/1594977.1592576
https://doi.org/10.1145/1594977.1592576
https://doi.org/10.1145/3098822.3098856
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.1145/2486001.2486012
https://doi.org/10.17487/RFC2992
https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1109/RNDM.2018.8489832
http://dyn.com/blog/large-outage-in-pakistan/
http://dyn.com/blog/large-outage-in-pakistan/
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/002027.html
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2016-May/002027.html
https://doi.org/10.1145/2829988.2787508
http://dl.acm.org/citation.cfm?id=2228298.2228322

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA M. Chiesa et al.

[66] Kizheppatt Vipin and Suhaib A. Fahmy. 2018. FPGA Dynamic and Partial Recon-
figuration: A Survey of Architectures, Methods, and Applications. ACM Comput.

Surv. 51, 4, Article 72 (July 2018), 39 pages. https://doi.org/10.1145/3193827
[67] JunlingWang and Srihari Nelakuditi. 2007. IP fast reroute with failure inferencing.

In Internet Network Management (INM). ACM.
[68] Ye Wang, Hao Wang, Ajay Mahimkar, Richard Alimi, Yin Zhang, Lili Qiu, and

Yang Richard Yang. 2010. R3: Resilient Routing Reconfiguration. In Computer

Communication Review, Volume: 40, Issue: 4. ACM.
[69] Wikipedia. [n. d.]. Shortest common supersequence problem. ([n. d.]). https:

//en.wikipedia.org/wiki/Shortest_common_supersequence_problem (accessed
on June 26, 2019).

[70] Baobao Zhang, JianpingWu, and Jun Bi. 2013. RPFP: IP fast reroute with providing
complete protection and without using tunnels. In International Symposium on

Quality of Service (IWQoS). IEEE.
[71] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury. 2017.

Resilient Datacenter Load Balancing in the Wild. In Proceedings of the Conference

of the ACM Special Interest Group on Data Communication (SIGCOMM ’17). ACM,
New York, NY, USA, 253–266. https://doi.org/10.1145/3098822.3098841

[72] Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4Visor: Lightweight
Virtualization and Composition Primitives for Building and Testing Modular
Programs. In Proceedings of the 14th International Conference on Emerging Net-

working EXperiments and Technologies (CoNEXT ’18). ACM, New York, NY, USA,
98–111. https://doi.org/10.1145/3281411.3281436

[73] Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. ShadowP4: Building
and Testing Modular Programs. In Proceedings of the ACM SIGCOMM 2018 Con-

ference on Posters and Demos (SIGCOMM ’18). ACM, New York, NY, USA, 150–152.
https://doi.org/10.1145/3234200.3234231

[74] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore. 2014. NetFPGA
SUME: Toward 100 Gbps as Research Commodity. IEEE Micro 34, 5 (Sep 2014),
32–41. https://doi.org/10.1109/MM.2014.61

APPENDIX

A PACKET RECIRCULATION IN NS3

Modeling packet recirculation in ns3. The impact of recircu-
lating packets on the forwarded traffic clearly depends on the spe-
cific hardware architecture of the considered networking device.
The ns3 simulator simplifies the internal architecture of a switch
node, which boils down to a crossbar engine (capable of any pro-
grammable forwarding function) and a set of egress buffers, one per
physical link. See Fig. 12a for a visual representation. Since nodes
do not have any ingress buffers, capturing the impact of packet
recirculation becomes problematic. In fact, when recirculating a
packet, a switch should become congested at the ingress buffer
of the port through which a packet is being recirculated (i.e., the
one where it was received). This would however never be the case
in “vanilla” ns3. Adding a physical loop between two independent
ports would not suffice as recirculated packets would be received
on a different port and immediately enqueued in the correct egress
queue. To reproduce the impact of packet recirculation in ns3, we
modeled the ingress buffer of each port on a switch with a “virtual”
node that is connected directly to the switch port (see Fig. 12b).
We set the latency between the two nodes to zero and the buffer
on the virtual node to 100 packets with an ECN threshold of 15
packets. We connect one virtual node to each port of a switch (we
show only one virtual node in Fig. 12b), thus virtual nodes simply
act as ingress buffers for the original node. The forwarding of a
packet is as follows : 1) a packet is received by the virtual node
and forwarded to the original node using the original primary link,
2) if the packet hits a failed link, it is recirculated back to the vir-
tual node using the recirculation link, 3) the packet is marked and
mirrored back to the original node, and 4) the packet is sent to its
backup forwarding egress port on the original node. We assume the
latency to process a packet through the pipeline is in the order of

primary link

original node

egress
buffer

cr
os

sb
ar

(a) Node representation in ns3.

primary link

recirculation link

1 2

3

virtual node original node

cr
os

sb
ar

cr
os

sb
ar

42

(b) Packet recirculation implementation (shown only for the primary link) .

Figure 12: Modeling packet recirculation in ns3.

hundreds of nanoseconds (not including the time spent in a buffer).
We corroborated the validity of our model with a manufacturer of
programmable switches — details are covered by a non-disclosure
agreement.

https://doi.org/10.1145/3193827
https://en.wikipedia.org/wiki/Shortest_common_supersequence_problem
https://en.wikipedia.org/wiki/Shortest_common_supersequence_problem
https://doi.org/10.1145/3098822.3098841
https://doi.org/10.1145/3281411.3281436
https://doi.org/10.1145/3234200.3234231
https://doi.org/10.1109/MM.2014.61

	Abstract
	1 Introduction
	2 Background and Motivation
	3 A Primitive for Fast Reroute
	3.1 A Model for Programmable FRR
	3.2 A Primitive for Circular FRR
	3.3 A Primitive to Implement Them All

	4 Implementation
	5 Evaluation
	5.1 FRR Encoding
	5.2 Datacenter Simulations
	5.3 FPGA Evaluation

	6 Frequently asked questions
	7 Related Work
	8 Conclusion
	References
	A Packet recirculation in NS3

