
Loko: Predictable Latency in Small Networks

Chair of Communication Networks
Departement of Electrical and Computer Engineering
Technical University of Munich

Amaury Van Bemten*, Nemanja Deric*, Johannes Zerwas*, Andreas Blenk*, Stefan Schmid° and Wolfgang Kellerer*
amaury.van-bemten@tum.de

*Technical University of Munich (Munich, Germany)
°University of Vienna (Vienna, Austria)

December, 12 2019 – CoNEXT, Orlando, FL (USA)

©2019 Technical University of Munich

2

Loko: Predictable Latency in Small Networks

3

Loko: Predictable Latency in Small Networks

4

Loko: Predictable Latency in Small Networks

Industrial robot (eHealth 5G Research Hub Munich)

5

Loko: Predictable Latency in Small Networks

Industrial robot (eHealth 5G Research Hub Munich)

S

S

S

S

A

A

A

6

Loko: Predictable Latency in Small Networks

Industrial robot (eHealth 5G Research Hub Munich)

C

S

S

S

S

A

A

A

7

Loko: Predictable Latency in Small Networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Industrial robot (eHealth 5G Research Hub Munich)

C

S

S

S

S

A

A

A

8

Loko: Predictable Latency in Small Networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Industrial robot (eHealth 5G Research Hub Munich)

C

S

S

S

S

A

A

A

9

Loko: Predictable Latency in Small Networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Industrial robot (eHealth 5G Research Hub Munich)

C

S

S

S

S

A

A

A

10

Loko: Predictable Latency in Small Networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Low-cost
Many instances of such networks

Industrial robot (eHealth 5G Research Hub Munich)

C

S

S

S

S

A

A

A

11

Loko: Predictable Latency in Small Networks

S

S

A

A

C
S

S

S

S

A

A
S

A
S

A

A

Avionics networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Low-cost
Many instances of such networks

12

Loko: Predictable Latency in Small Networks

C

S SS A S A

Car networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Low-cost
Many instances of such networks

13

Loko: Predictable Latency in Small Networks

14

Loko: Predictable Latency in Small Networks

C

S

S

S

S

A

A

A

Industrial robot (eHealth 5G Research Hub Munich)

15

Loko: Predictable Latency in Small Networks

Hard latency requirements
Per-packet 100% guaranteed max. latency (~µs, ms)

C

S

S

S

S

A

A

A

Industrial robot (eHealth 5G Research Hub Munich)

16

Loko: Predictable Latency in Small Networks

State-of-the-Art?

17

Loko: Predictable Latency in Small Networks

State-of-the-Art?

18

Loko: Predictable Latency in Small Networks

State-of-the-Art?

? proprietary or not interoperable: expensive,
specialized hardware, vendor lock-in, inflexible

19

Loko: Predictable Latency in Small Networks

20

Loko: Predictable Latency in Small Networks
Loko: Predictable Latency in Small Programmable Networks

21

Loko: Predictable Latency in Small Networks
Loko: Predictable Latency in Small Programmable Networks

State-of-the-Art?

22

Loko: Predictable Latency in Small Networks
Loko: Predictable Latency in Small Programmable Networks

Zodiac GX
~$120

5x1G

765 gr.

232mm × 142mm × 45mm

Zodiac FX
~$70

4x100M

115 gr.

100mm × 80mm

Banana Pi R2
~$125

5x1G

100 gr.

148 mm × 100.5mm

Banana Pi R1
~$90

5x1G

83 gr.

148 mm × 100mm

small programmable
HARDWARE

State-of-the-Art?

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Low-cost
Many instances of such networks

23

Loko: Predictable Latency in Small Networks
Loko: Predictable Latency in Small Programmable Networks

Zodiac GX
~$120

5x1G

765 gr.

232mm × 142mm × 45mm

Zodiac FX
~$70

4x100M

115 gr.

100mm × 80mm

Banana Pi R2
~$125

5x1G

100 gr.

148 mm × 100.5mm

Banana Pi R1
~$90

5x1G

83 gr.

148 mm × 100mm

small programmable
HARDWARE

predictable latency
SOLUTION

for progr. networks

State-of-the-Art?

Silo [SIGCOMM15] QJump [NSDI15]

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Low-cost
Many instances of such networks

24

Loko: Predictable Latency in Small Networks
Loko: Predictable Latency in Small Programmable Networks

Zodiac GX
~$120

5x1G

765 gr.

232mm × 142mm × 45mm

Zodiac FX
~$70

4x100M

115 gr.

100mm × 80mm

Banana Pi R2
~$125

5x1G

100 gr.

148 mm × 100.5mm

Banana Pi R1
~$90

5x1G

83 gr.

148 mm × 100mm

small programmable
HARDWARE

predictable latency
SOLUTION

for progr. networks

State-of-the-Art?

Silo [SIGCOMM15] QJump [NSDI15]

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Low-cost
Many instances of such networks

25

26

Silo [SIGCOMM15]

27

Silo [SIGCOMM15]

latency guarantee

28

Silo [SIGCOMM15]

latency guarantee

lost packets

29

Silo [SIGCOMM15]

latency guarantee

lost packets
late packets

30

Silo [SIGCOMM15] QJump [NSDI15]

latency guarantee

lost packets
late packets

latency guarantee

31

Silo [SIGCOMM15] QJump [NSDI15]

latency guarantee

lost packets
late packets delayed packets

lost packets

latency guarantee

32

Silo [SIGCOMM15] QJump [NSDI15]

latency guarantee

lost packets
late packets delayed packets

lost packets

State-of-the-art guarantees are violated!

latency guarantee

33

Silo [SIGCOMM15] QJump [NSDI15]

34

Silo [SIGCOMM15] QJump [NSDI15]

State-of-the-art guarantees are violated!

35

State-of-the-art guarantees are violated! Why?

36

State-of-the-art guarantees are violated! Why?

These low-cost switches share the same hardware architecture

37

State-of-the-art guarantees are violated! Why?

These low-cost switches share the same hardware architecture

38

State-of-the-art guarantees are violated! Why?

These low-cost switches share the same hardware architecture

That‘s the only way to build a cheap programmable chip!

39

State-of-the-art guarantees are violated! Why?

Most SoA assumes

1. Switches can process packets at line rate

2. Ports do not interfere

40

State-of-the-art guarantees are violated! Why?

Most SoA assumes

1. Switches can process packets at line rate

2. Ports do not interfere
Valid for traditional switches (e.g., data centers)

41

State-of-the-art guarantees are violated! Why?

Most SoA assumes

1. Switches can process packets at line rate

2. Ports do not interfere
but not valid for such low-capacity switches

1. CPU processing hardly at line rate
2. CPU shared by ports

Valid for traditional switches (e.g., data centers)

42

State-of-the-art guarantees are violated! Why?

For example Silo:

Defines one independent (network calculus) service per port

Most SoA assumes

1. Switches can process packets at line rate

2. Ports do not interfere

43

Instead, such switches have to be modeled as a shared service
which consists of the Integrated Switch + CPU

44

Instead, such switches have to be modeled as a shared service
which consists of the Integrated Switch + CPU

This forms the basis of Loko!

45

Loko

Step 0: Identification of independent services

46

Loko

Step 0: Identification of independent services

Step 1: Benchmarking of the service(s)

47

Loko

Step 0: Identification of independent services

Step 1: Benchmarking of the service(s)

Step 2: Measurements → deterministic model for the service(s)

48

Loko

Step 0: Identification of independent services

Step 1: Benchmarking of the service(s)

Step 2: Measurements → deterministic model for the service(s)

Step 3: Switch model network model (admission control)→

Can I add this flow?

49

Loko

Step 0: Identification of independent services

Step 1: Benchmarking of the service(s)

Step 2: Measurements → deterministic model for the service(s)

Step 3: Switch model network model (admission control)→

Can I add this flow?

50

Step 1: Benchmarking of the service

Let‘s see for the Zodiac FX

DP
port 1

CP
port

DP
port 2

DP
port 3

51

Step 1: Benchmarking of the service

Let‘s see for the Zodiac FX

DP
port 1

CP
port

DP
port 2

DP
port 3

DP

CP

runs an embedded OS-free infinite loop:

52

Step 1: Benchmarking of the service

Let‘s see for the Zodiac FX

DP
port 1

CP
port

DP
port 2

DP
port 3

DP

CP

For predictability, we have to identify ANY source of delay

runs an embedded OS-free infinite loop:

53

Step 1: Benchmarking of the service

Let‘s see for the Zodiac FX

DP
port 1

CP
port

DP
port 2

DP
port 3

DP

CP

For predictability, we have to identify ANY source of delay

runs an embedded OS-free infinite loop:

and because open-source, we can!

54

Step 1: Benchmarking of the service

DP
port

1

CP
port

DP
port

2

DP
port

3

This is what we do in §2.1, §2.2, §3.1 of the paper, we get

This is the exhaustive list of dimensions that influence the switch processing!

55

Step 1: Benchmarking of the service

DP
port

1

CP
port

DP
port

2

DP
port

3

This is what we do in §2.1, §2.2, §3.1 of the paper, we get

Done in §3 of the paper

Measure (CP and DP) throughput, per-packet delay and buffer capacity
for each combination of the dimensions

This is the exhaustive list of dimensions that influence the switch processing!

56

Step 1: Benchmarking of the service

DP
port

1

CP
port

DP
port

2

DP
port

3

This is what we do in §2.1, §2.2, §3.1 of the paper, we get

Done in §3 of the paper

Measure (CP and DP) throughput, per-packet delay and buffer capacity
for each combination of the dimensions

This is the exhaustive list of dimensions that influence the switch processing!

The performance is indeed predictable

57

Loko

Step 0: Identification of independent services

Step 1: Benchmarking of the service(s)

Step 2: Measurements → deterministic model for the service(s)

Step 3: Switch model network model (admission control)→

Can I add this flow?

58

Step 2: Measurements → deterministic model for the service

59

Step 2: Measurements → deterministic model for the service

network calculus model

time

data

60

Step 2: Measurements → deterministic model for the service

network calculus model

T = measured processing time

R = measured throughput

time

data

61

Step 2: Measurements → deterministic model for the service

network calculus model

T = measured processing time

R = measured throughput
Take the worst-case for a given scenario

time

data

62

Step 2: Measurements → deterministic model for the service

network calculus model

T = measured processing time

R = measured throughput
Take the worst-case for a given scenario

time

data

63

Step 2: Measurements → deterministic model for the service

network calculus model

T = measured processing time

R = measured throughput
Take the worst-case for a given scenario

time

data

64

Step 2: Measurements → deterministic model for the service

network calculus model

T = measured processing time

R = measured throughput
Take the worst-case for a given scenario

for throughputtime

data

65

Step 2: Measurements → deterministic model for the service

network calculus model

T = measured processing time

R = measured throughput
Take the worst-case for a given scenario

for throughput for processing timetime

data

66

Step 2: Measurements → deterministic model for the service

67

Step 2: Measurements → deterministic model for the service

time

data

68

Step 2: Measurements → deterministic model for the service

time

data

69

Step 2: Measurements → deterministic model for the service

time

data

token bucket flow
from all ports

fits CBR traffic pattern, typical for small networks

70

Step 2: Measurements → deterministic model for the service

time

data

token bucket flow
from all ports

worst-case latency for all ports

fits CBR traffic pattern, typical for small networks

71

Step 2: Measurements → deterministic model for the service

time

data

token bucket flow
from all ports

worst-case latency for all ports

worst-case buffer usage
fits CBR traffic pattern, typical for small networks

72

Loko

Step 0: Identification of independent services

Step 1: Benchmarking of the service(s)

Step 2: Measurements → deterministic model for the service(s)

Step 3: Switch model network model (admission control)→

Can I add this flow?

73

Step 3: Switch model network model (admission control)→

74

Step 3: Switch model network model (admission control)→

75

Step 3: Switch model network model (admission control)→

76

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

77

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

r: max rate

78

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

b: max burst

r: max rate

79

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

b: max burst

r: max rate

D: max delay (ever)

80

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

b: max burst

r: max rate

D: max delay (ever)

B: max buffer usage (ever)

81

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

b: max burst

r: max rate

D: max delay (ever)

B: max buffer usage (ever)

to ensure no packet loss
choose r, b such that B ≤ buffer capacity

82

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

b: max burst

r: max rate

D: max delay (ever)

B: max buffer usage (ever)

to ensure no packet loss
choose r, b such that B ≤ buffer capacity

for example:
r = R/5, max. b such that B ≤ buffer capacity

83

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

b: max burst

r: max rate

D: max delay (ever)

B: max buffer usage (ever)

to ensure no packet loss
choose r, b such that B ≤ buffer capacity

for example:
r = R/5, max. b such that B ≤ buffer capacity

… … … … or we can also do r = R, max. b such that B ≤ buffer capacity

84

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

b: max burst

r: max rate

D: max delay (ever)

B: max buffer usage (ever)

to ensure no packet loss
choose r, b such that B ≤ buffer capacity

for example:
r = R/5, max. b such that B ≤ buffer capacity

… … … … or we can also do r = R, max. b such that B ≤ buffer capacity

85

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

b: max burst

r: max rate

D: max delay (ever)

B: max buffer usage (ever)

to ensure no packet loss
choose r, b such that B ≤ buffer capacity

for example:
r = R/5, max. b such that B ≤ buffer capacity

… … … … or we can also do r = R, max. b such that B ≤ buffer capacity … or, … …

86

Step 3: Switch model network model (admission control)→

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

b: max burst

r: max rate

D: max delay (ever)

B: max buffer usage (ever)

to ensure no packet loss
choose r, b such that B ≤ buffer capacity

for example:
r = R/5, max. b such that B ≤ buffer capacity

… … … … or we can also do r = R, max. b such that B ≤ buffer capacity … or, … …

Arbitrary decision, but should match traffic type!

87

Step 3: Switch model network model (admission control)→

 After per-switch resource allocation, admission control is easy

88

Step 3: Switch model network model (admission control)→

 After per-switch resource allocation, admission control is easy

1. Keep track of per-switch usage (burst and rate)

89

Step 3: Switch model network model (admission control)→

 After per-switch resource allocation, admission control is easy

1. Keep track of per-switch usage (burst and rate)

2. Accept as long as usage ≤ allocation

90

Step 3: Switch model network model (admission control)→

 After per-switch resource allocation, admission control is easy

1. Keep track of per-switch usage (burst and rate)

2. Accept as long as usage ≤ allocation

Can I add this flow?

91

Step 3: Switch model network model (admission control)→

 After per-switch resource allocation, admission control is easy

1. Keep track of per-switch usage (burst and rate)

2. Accept as long as usage ≤ allocation

Can I add this flow?

92

Step 3: Switch model network model (admission control)→

 After per-switch resource allocation, admission control is easy

1. Keep track of per-switch usage (burst and rate)

2. Accept as long as usage ≤ allocation

Can I add this flow?

93

Step 3: Switch model network model (admission control)→

 After per-switch resource allocation, admission control is easy

1. Keep track of per-switch usage (burst and rate)

2. Accept as long as usage ≤ allocation

Can I add this flow?

94

Step 3: Switch model network model (admission control)→

 After per-switch resource allocation, admission control is easy

1. Keep track of per-switch usage (burst and rate)

2. Accept as long as usage ≤ allocation

Can I add this flow?

95

Step 3: Switch model network model (admission control)→

 After per-switch resource allocation, admission control is easy

1. Keep track of per-switch usage (burst and rate)

2. Accept as long as usage ≤ allocation

Can I add this flow? No!

96

Step 3: Switch model network model (admission control)→

 After per-switch resource allocation, admission control is easy

1. Keep track of per-switch usage (burst and rate)

2. Accept as long as usage ≤ allocation

Can I add this flow? No!

Latency guarantee: sum of the D values at each hop

D

D

97

Loko

Step 0: Identification of independent services

Step 1: Benchmarking of the service(s)

Step 2: Measurements → deterministic model for the service(s)

Step 3: Switch model network model (admission control)→

Can I add this flow?

98

Loko: Proof-of-Concept Implementation and Evaluation

99

Loko: Proof-of-Concept Implementation and Evaluation

Take the worst-case
for a given scenario

100

Loko: Proof-of-Concept Implementation and Evaluation

Take the worst-case
for a given scenario

b: max burst

r: max rate

D: max delay

101

Loko: Proof-of-Concept Implementation and Evaluation

We add flows and observe delays/losses between H1–H3

102

Loko: Proof-of-Concept Implementation and Evaluation

We add flows and observe delays/losses between H1–H3

Remember! SoA was failing!

103

Loko: Proof-of-Concept Implementation and Evaluation

We add flows and observe delays/losses between H1–H3

Remember! SoA was failing!

104

Loko: Proof-of-Concept Implementation and Evaluation

We add flows and observe delays/losses between H1–H3

Remember! SoA was failing!

Loko successfully provides latency guarantees!

(for more than 10M packets and 30 minutes)

105

Loko: Proof-of-Concept Implementation and Evaluation

burst multiplier: if > 1, flows send more than allowed

Packet loss

No packet loss

latency guarantee

Loko successfully provides latency guarantees!

max delay
observed

106

Loko: Proof-of-Concept Implementation and Evaluation

burst multiplier: if > 1, flows send more than allowed

Packet loss

No packet loss

latency guarantee

Loko successfully provides latency guarantees!

max delay
observed

107

Loko: Proof-of-Concept Implementation and Evaluation

burst multiplier: if > 1, flows send more than allowed

Packet loss

No packet loss

packet loss

latency guarantee

Loko successfully provides latency guarantees!

max delay
observed

108

Loko: Proof-of-Concept Implementation and Evaluation

burst multiplier: if > 1, flows send more than allowed

Packet loss

delay violation

No packet loss

packet loss

latency guarantee

Loko successfully provides latency guarantees!

max delay
observed

109

Loko: Proof-of-Concept Implementation and Evaluation

burst multiplier: if > 1, flows send more than allowed

Packet loss

delay violation

No packet loss

packet loss

latency guarantee

More evaluations, including control plane incorporation and scalability analysis in the paper (§6.1, §6.2)

Loko successfully provides latency guarantees!

max delay
observed

110

Loko: Predictable Latency in Small Networks

What else can we say?

111

Loko: Predictable Latency in Small Networks

What else can we say?

Low-cost software implementations can be predictable and performant
provided there is no OS interference

112

Loko: Predictable Latency in Small Networks

What else can we say?

Low-cost software implementations can be predictable and performant
provided there is no OS interference

for small networks, but also maybe…

113

Loko: Predictable Latency in Small Networks

What else can we say?

Low-cost software implementations can be predictable and performant
provided there is no OS interference

for small networks, but also maybe…

Loko-like approach for
proving the predictability of

software network functions implementation

114

Thanks!
Data sets, traces, source code and configuration files available at

https://loko.lkn.ei.tum.de

115

References

 [NSDI15] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N.M. Watson, A. W. Moore, S. Hand, J. Crowcroft, „Queues Don’t Matter When You Can
JUMP Them!“ – USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2015.

 [SIGCOMM15] K Jang, J Sherry, H Ballani, T Moncaster, „Silo: predictable message latency in the cloud“ – ACM SIGCOMM, 2015.

116

Network Calculus

117

Scalability Analysis

118

Step 1: Benchmarking of the service

DP

CP

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

119

Step 1: Benchmarking of the service

DP

CP

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

120

Step 1: Benchmarking of the service

DP

CP

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

121

Step 1: Benchmarking of the service

DP

CP

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

122

Step 1: Benchmarking of the service

DP

CP

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

123

Step 1: Benchmarking of the service

DP

CP

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

Only interference with
pure packet processing

124

Step 1: Benchmarking of the service

DP

CP

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

Only interference with
pure packet processing

125

Step 1: Benchmarking of the service

DP

CP

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

Only interference with
pure packet processing

Let‘s analyze DP processing!

CP: §3.2 in paper

126

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

DP

CP

127

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

128

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

129

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

130

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

131

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

132

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

133

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

134

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

135

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

136

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

137

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

138

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

139

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

140

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

141

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

142

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

143

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

144

Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port

1

CP
port

DP
port

2

DP
port

3

+---+
| MATCHING TABLE |
+----+-----------------+----------+----------+----------+
| id | matching | action | priority | counters |
+----+-----------------+----------+----------+----------|
0	dst_ip=10.0.X.X	output=1	150	counters
1	dst_ip=10.1.X.X	output=2	150000	counters
2	dst_ip=10.2.X.X	output=3	500	counters
3	dst_ip=10.2.5.5	output=1	200	counters
4	dst_ip=10.3.X.X	output=2	250000	counters
5	dst_ip=10.4.X.X	output=1	250000	counters
6	dst_ip=10.2.5.X	output=2	250000	counters
7	dst_ip=10.2.5.X	output=1	100	counters
8	dst_ip=10.2.5.X	output=3	300	counters
9	dst_ip=10.2.5.X	output=2	500	counters
10	dst_ip=10.2.X.X	output=1	500	counters
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority

145

Step 1: Benchmarking of the service

DP
port

1

CP
port

DP
port

2

DP
port

3

Measure throughput and per-packet delay
for each combination of the dimensions

146

Step 1: Benchmarking of the service

DP
port

1

CP
port

DP
port

2

DP
port

3

Measure throughput and per-packet delay
for each combination of the dimensions

17 entries
five-tuple matching

790-byte packets
output action

147

Step 1: Benchmarking of the service

DP
port

1

CP
port

DP
port

2

DP
port

3

Measure throughput and per-packet delay
for each combination of the dimensions

max

min

avg

148

Step 1: Benchmarking of the service

DP
port

1

CP
port

DP
port

2

DP
port

3

Measure throughput and per-packet delay
for each combination of the dimensions

all cases aggregated

max

min

avg

149

Step 1: Benchmarking of the service

DP
port

1

CP
port

DP
port

2

DP
port

3

Buffer capacity: §3.5 in paper

Depends only on packet size

from 3 packets (1516 bytes) to 25 packets (64 bytes)

Very scarce resource!

	Slide 1
	Slide 2
	page3 (1)
	page3 (2)
	page3 (3)
	page3 (4)
	page3 (5)
	page3 (6)
	page3 (7)
	page3 (8)
	Slide 11
	Slide 12
	page6 (1)
	page6 (2)
	page6 (3)
	page7 (1)
	page7 (2)
	page7 (3)
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	page8 (6)
	page9 (1)
	page9 (2)
	page9 (3)
	page9 (4)
	page9 (5)
	page9 (6)
	page9 (7)
	page9 (8)
	page10 (1)
	page10 (2)
	page11 (1)
	page11 (2)
	page11 (3)
	page11 (4)
	page12 (1)
	page12 (2)
	page12 (3)
	Slide 42
	page14 (1)
	page14 (2)
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	page16 (1)
	page16 (2)
	page16 (3)
	page16 (4)
	page17 (1)
	page17 (2)
	page17 (3)
	Slide 57
	page19 (1)
	page19 (2)
	page19 (3)
	page19 (4)
	page19 (5)
	page19 (6)
	page19 (7)
	page19 (8)
	page20 (1)
	page20 (2)
	page20 (3)
	page20 (4)
	page20 (5)
	page20 (6)
	Slide 72
	page22 (1)
	page22 (2)
	page22 (3)
	page22 (4)
	page22 (5)
	page22 (6)
	page22 (7)
	page22 (8)
	page22 (9)
	page22 (10)
	page22 (11)
	page22 (12)
	page22 (13)
	page22 (14)
	page23 (1)
	page23 (2)
	page23 (3)
	page23 (4)
	page23 (5)
	page23 (6)
	page23 (7)
	page23 (8)
	page23 (9)
	page23 (10)
	Slide 97
	page25 (1)
	page25 (2)
	page25 (3)
	page26 (1)
	page26 (2)
	page26 (3)
	page26 (4)
	page27 (1)
	page27 (2)
	page27 (3)
	page27 (4)
	page27 (5)
	page28 (1)
	page28 (2)
	page28 (3)
	page28 (4)
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	page33 (1)
	page33 (2)
	page33 (3)
	page33 (4)
	page33 (5)
	page33 (6)
	page33 (7)
	page33 (8)
	page34 (1)
	page34 (2)
	page34 (3)
	page34 (4)
	page34 (5)
	page34 (6)
	page34 (7)
	page34 (8)
	page34 (9)
	page34 (10)
	page34 (11)
	page34 (12)
	page34 (13)
	page34 (14)
	page34 (15)
	page34 (16)
	page34 (17)
	page34 (18)
	page34 (19)
	page35 (1)
	page35 (2)
	page36 (1)
	page36 (2)
	Slide 149

