
Loko: Predictable Latency in Small Networks

Chair of Communication Networks
Departement of Electrical and Computer Engineering
Technical University of Munich

Amaury Van Bemten*, Nemanja Deric*, Johannes Zerwas*, Andreas Blenk*, Stefan Schmid° and Wolfgang Kellerer*
amaury.van-bemten@tum.de

*Technical University of Munich (Munich, Germany)
°University of Vienna (Vienna, Austria)

December, 12 2019 – CoNEXT, Orlando, FL (USA)

©2019 Technical University of Munich



2

Loko: Predictable Latency in Small Networks



3

Loko: Predictable Latency in Small Networks



4

Loko: Predictable Latency in Small Networks

Industrial robot (eHealth 5G Research Hub Munich)



5

Loko: Predictable Latency in Small Networks

Industrial robot (eHealth 5G Research Hub Munich)

S

S

S

S

A

A

A



6

Loko: Predictable Latency in Small Networks

Industrial robot (eHealth 5G Research Hub Munich)

C

S

S

S

S

A

A

A



7

Loko: Predictable Latency in Small Networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Industrial robot (eHealth 5G Research Hub Munich)

C

S

S

S

S

A

A

A



8

Loko: Predictable Latency in Small Networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Industrial robot (eHealth 5G Research Hub Munich)

C

S

S

S

S

A

A

A



9

Loko: Predictable Latency in Small Networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Industrial robot (eHealth 5G Research Hub Munich)

C

S

S

S

S

A

A

A



10

Loko: Predictable Latency in Small Networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Low-cost
Many instances of such networks

Industrial robot (eHealth 5G Research Hub Munich)

C

S

S

S

S

A

A

A



11

Loko: Predictable Latency in Small Networks

S

S

A

A

C
S

S

S

S

A

A
S

A
S

A

A

Avionics networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Low-cost
Many instances of such networks



12

Loko: Predictable Latency in Small Networks

C

S SS A S A

Car networks

Low-capacity
~kbps, up to few Mbps, predictable traffic patterns

Small devices
Devices have to fit in small (~cm²) areas

Lightweight
Power consumption and physical constraints

Low-cost
Many instances of such networks



13

Loko: Predictable Latency in Small Networks



14

Loko: Predictable Latency in Small Networks

C

S

S

S

S

A

A

A

Industrial robot (eHealth 5G Research Hub Munich)



15

Loko: Predictable Latency in Small Networks

Hard latency requirements
Per-packet 100% guaranteed max. latency (~µs, ms)

C

S

S

S

S

A

A

A

Industrial robot (eHealth 5G Research Hub Munich)



16

Loko: Predictable Latency in Small Networks

State-of-the-Art?



17

Loko: Predictable Latency in Small Networks

State-of-the-Art?



18

Loko: Predictable Latency in Small Networks

State-of-the-Art?
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specialized hardware, vendor lock-in, inflexible 
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State-of-the-art guarantees are violated! Why?

These low-cost switches share the same hardware architecture

That‘s the only way to build a cheap programmable chip!
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State-of-the-art guarantees are violated! Why?

Most SoA assumes

1. Switches can process packets at line rate

2. Ports do not interfere
but not valid for such low-capacity switches

1. CPU processing hardly at line rate
2. CPU shared by ports

Valid for traditional switches (e.g., data centers)
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State-of-the-art guarantees are violated! Why?

For example Silo: 

 

Defines one independent (network calculus) service per port

Most SoA assumes

1. Switches can process packets at line rate

2. Ports do not interfere
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Instead, such switches have to be modeled as a shared service
which consists of the Integrated Switch + CPU

This forms the basis of Loko!
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Let‘s see for the Zodiac FX

DP
port 1

CP
port

DP
port 2

DP
port 3

DP

CP

For predictability, we have to identify ANY source of delay

runs an embedded OS-free infinite loop:

and because open-source, we can!
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This is what we do in §2.1, §2.2, §3.1 of the paper, we get

Done in §3 of the paper

Measure (CP and DP) throughput, per-packet delay and buffer capacity 
for each combination of the dimensions 

This is the exhaustive list of dimensions that influence the switch processing!

The performance is indeed predictable
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Step 0: Identification of independent services 

Step 1: Benchmarking of the service(s)

Step 2: Measurements  → deterministic model for the service(s)

Step 3: Switch model  network model (admission control)→ 

Can I add this flow?
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Step 2: Measurements  → deterministic model for the service

network calculus model

T = measured processing time

R = measured throughput
Take the worst-case for a given scenario

for throughput for processing timetime

data
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Step 2: Measurements  → deterministic model for the service

time

data

token bucket flow
from all ports

worst-case latency for all ports

worst-case buffer usage
fits CBR traffic pattern, typical for small networks
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Step 3: Switch model  network model (admission control)→ 

Resource allocation: logically allocate a maximum rate and burst to accept at each switch

b: max burst

r: max rate

D: max delay (ever)

B: max buffer usage (ever)

to ensure no packet loss
choose r, b such that B ≤ buffer capacity

for example:
r = R/5, max. b such that B ≤ buffer capacity 

 
… … … … or we can also do r = R, max. b such that B ≤ buffer capacity … or, … …  

Arbitrary decision, but should match traffic type!
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Step 3: Switch model  network model (admission control)→ 

 After per-switch resource allocation, admission control is easy

1. Keep track of per-switch usage (burst and rate)

2. Accept as long as usage ≤ allocation 

Can I add this flow? No!

Latency guarantee: sum of the D values at each hop

D

D
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Step 0: Identification of independent services 

Step 1: Benchmarking of the service(s)

Step 2: Measurements  → deterministic model for the service(s)

Step 3: Switch model  network model (admission control)→ 

Can I add this flow?
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b: max burst

r: max rate

D: max delay
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Loko: Proof-of-Concept Implementation and Evaluation

We add flows and observe delays/losses between H1–H3 

Remember! SoA was failing!

Loko successfully provides latency guarantees!

(for more than 10M packets and 30 minutes)
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Loko: Proof-of-Concept Implementation and Evaluation

burst multiplier: if > 1, flows send more than allowed

Packet loss

delay violation

No packet loss

packet loss

latency guarantee

More evaluations, including control plane incorporation and scalability analysis in the paper (§6.1, §6.2)

Loko successfully provides latency guarantees!

max delay
observed
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Loko: Predictable Latency in Small Networks

What else can we say?

Low-cost software implementations can be predictable and performant
provided there is no OS interference

for small networks, but also maybe… 

Loko-like approach for
proving the predictability of

software network functions implementation
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Thanks!
Data sets, traces, source code and configuration files available at

https://loko.lkn.ei.tum.de
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Step 1: Benchmarking of the service

DP

CP

For predictability, we have to identify ANY source of delay

DP
port 

1

CP
port

DP
port 

2

DP
port 

3

Only interference with 
pure packet processing

Let‘s analyze DP processing!

CP: §3.2 in paper 
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay
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+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port 

1

CP
port

DP
port 

2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
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1

CP
port

DP
port 

2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port 

1

CP
port

DP
port 

2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port 

1

CP
port
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port 

2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
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1
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port
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port 

2
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port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
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1
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port
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port 

2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
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port
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2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port 

1

CP
port

DP
port 

2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port 

1

CP
port

DP
port 

2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
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1
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port
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port 

2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
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port
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port 

2
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port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay
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port
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2
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port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
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port

DP
port 

2
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port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay

DP
port 

1
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port

DP
port 

2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay
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2
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port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay
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port 

2

DP
port 

3

+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service

For predictability, we have to identify ANY source of delay
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+-------------------------------------------------------+
|                     MATCHING TABLE                    | 
+----+-----------------+----------+----------+----------+
| id | matching        | action   | priority | counters |
+----+-----------------+----------+----------+----------|
| 0  | dst_ip=10.0.X.X | output=1 | 150      | counters |
| 1  | dst_ip=10.1.X.X | output=2 | 150000   | counters |
| 2  | dst_ip=10.2.X.X | output=3 | 500      | counters |
| 3  | dst_ip=10.2.5.5 | output=1 | 200      | counters |
| 4  | dst_ip=10.3.X.X | output=2 | 250000   | counters |
| 5  | dst_ip=10.4.X.X | output=1 | 250000   | counters |
| 6  | dst_ip=10.2.5.X | output=2 | 250000   | counters |
| 7  | dst_ip=10.2.5.X | output=1 | 100      | counters |
| 8  | dst_ip=10.2.5.X | output=3 | 300      | counters |
| 9  | dst_ip=10.2.5.X | output=2 | 500      | counters |
| 10 | dst_ip=10.2.X.X | output=1 | 500      | counters |
+----+-----------------+----------+----------+----------+

DP

CP

+------+---------------+
|packet|dst_ip=10.2.5.5|
+------+---------------+

rules one by one
checks only higher priority
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Step 1: Benchmarking of the service
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Measure throughput and per-packet delay
for each combination of the dimensions 
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Step 1: Benchmarking of the service
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Measure throughput and per-packet delay
for each combination of the dimensions 

17 entries
five-tuple matching

790-byte packets
output action
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Step 1: Benchmarking of the service
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Step 1: Benchmarking of the service
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Measure throughput and per-packet delay
for each combination of the dimensions 

all cases aggregated

max

min

avg
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Step 1: Benchmarking of the service

DP
port 
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3

Buffer capacity: §3.5 in paper  

Depends only on packet size

from 3 packets (1516 bytes) to 25 packets (64 bytes)

Very scarce resource!
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