
Tuple Space
Explosion:
A Denial-of-Service Attack
Against a Software Packet Classifier

Levente Csikor, Min Suk Kang, Dinil Mon Divakaran
Attila Kőrösi, Dávid Haja, Balázs Sonkoly, Dimitrios P. Pezaros,
Stefan Schmid, Gábor Rétvári

CoNEXT 2019 Dec 11, 2019

Packet Classification in the Past
Facebook

eMail

Storage

Drop

Packet Classifier
IDS

2/26

Proliferation of virtualization
eMail

Social Media

Storage

Packet Classifier
IDS

virtualized
Packet classifier
(e.g., Open vSwitch, VPP)

virtualized
Packet classifier
(e.g., Open vSwitch, VPP)

3/26

Algorithmic packet
classification is expensive on
general purpose processors...

Ben Pfaff et al. “The Design and Implementation of Open
vSwitch”, USENIX NSDI 2015.

4/26

In this talk
▻Tuple Space Explosion (TSE): Family of novel Denial-of-Service (DoS)
attacks against the de facto packet classifier algorithm (Tuple Space
Search scheme) used in Open vSwitch, VPP, GSwitch, etc.
▻Remote adversary can degrade the performance to 12% of the baseline
(10 Gbps) with only 672 kbps (!) attack traffic
▻Co-located adversary can virtually bring down the performance to 0%

▻Attack traffic is particularly hard to filter out:
▾no attack signature (packets w/ random headers)
▾low-rate (thousands of packets per second)
▾legitimate packets

▻Countermeasures
5/26

Threat model
▻System model:
▾typical multi-tenant cloud
▾OVS is used for packet processing
▾tenants use the Cloud Management System (CMS) to set
up their ACLs to
▾access-control, redirect, log, etc.

▻Attacker’s goal
▾send some packet towards the virtual switch that when
subjected to the ACLs will exhaust resources
▻Attacker’s capability
▾craft and send arbitrary packets to a target OVS
▿No privilege of the target (General TSE)
▿Co-locate with the target (Colocated TSE)

6/26

eMail

Social Media

Storage

Packet Classifier IDS

virtualized
Packet classifier

virtualized
Packet classifier

src_IP dst_por
t

action

* 993 allow

10.0.2.
2

* allow

* * drop

dst_port action

80 allow

* drop

7/26

22/02/2020

22/02/2020

Explosion in the Tuple Space
▻Problem: more masks → slower packet classification
▻Tuple Space Explosion phenomenon:
1) 16-bit TCP destination port → 16 masks
2) 32-bit source IP address → 32 masks
▻And that’s only ONE allow rule on ONE header

▻Multiple allow rules on multiple header fields
result in an exponential growth → cross-product
▾matching on either 1) or 2) → 16*32 = 512 masks

10/26

p p p
(TSE)

▻Goal: blow up the tuple space
▾Spawn as many masks (and hashes) as possible
▿to make classification a costly linear search

▾One packet for each bucket
◦port=[0, 64, 80, 81, …, 32768] (16 packets)

80/ffff

...

81/ffff 256/ff0064/fff0 32768/80000/ffc0

...2 drop 67 drop
80 allow 81 drop 256 drop 32768 drop

32769 drop
32770 drop
32771 drop
32772 drop
32773 drop
...
65535 drop

Flow Table

TCP DST PORT action

80 output:1

* drop

11/26

22/02/2020

p p p
(TSE)

▻Without the flow table → Difficult
▾All possible packets seems fine

▿BUT: 2k packets for a header of k bits!

◦too much effort

◦easily detectable (like a portscan, easily becomes volumetric)

▾Can we just send random packets?

13/26

TSE w/ random packets
▻Q: What are the chances that a random header spawns a new
mask (and hash)?

32768/8000
32768 drop
32769 drop
32770 drop
32771 drop
32772 drop
32773 drop
...
65535 drop

dport=32769

▻key finding is the number of wildcarded bits (k) for header length h

▾1*** **** **** **** (32768) ~ 50%

▾0000 0000 01** **** (64) ~ 0.1%

64/fff0
64 drop
65 drop
66 drop
67 drop
68 drop
69 drop
... ...
79 drop14/26

▻(M)easured and (E)xpected numbers for
different ACLs assumed to be installed
by the victim
▿Dp
◦dst_port only

▿SipDp
◦src_IP + dst_port

▿SpDp
◦src_port + dst_port

▿SipSpDp (full-blown)
◦src_IP+ src_port + dst_port

TSE w/ random packets

drop to 10%

15/26

Denial-of-Service
▻Success rate of randomly generated packets

▾672 kbps (!) attack traffic → 88% performance drop

▿1,000 pps → reduce from 10 Gbps to 1,2 Gbps

▻What if the adversary has more
knowledge/resources?
16/26

eMail

Social Media

Storage

Packet Classifier IDS

virtualized
Packet classifier

src_IP dst_port action

* 993 allow

10.0.2.2 * allow

* * drop

virtualized
Packet classifier

dst_port action

80 allow

* drop

src_IP src_port dst_port action

* * 80 allow

* 45321 * allow

10.0.0.1 * * allow

* * * drop

17/26

Co-located TSE attack
▻Adversary leases resources in the cloud
▻Configures its own ACL
▻Sends only the required number of packets
▾one packet for each mask (and hash)

▻More significant service degradation – much less packets
▾1000 pps → thousands of masks → close to 0% (full DoS)

▻However:
▾Attack is against the infrastructure not a specific target
▿DoS against the co-located services “only”
18/26

Effects in a broader scale
▻In a cloud, an attacker can easily exploit this!
▻Several public cloud deployments are affected

▾Docker/OVN (based on OVS)

✔Kubernetes/OVN (based on OVS)
▾Contiv/VPP Kubernetes (based on VPP)

✔OpenStack/Neutron/OVN (based on OVS)
▾OpenStack/Neutro-VPP (based on VPP)

19/26

Countermeasures
▻Filtering out the attack traffic is hard
▾legitimate traffic
▾no attack signature (random packets w/ random headers)
▾low-attack rate (thousands of packets per second)

▻A long term solution
▾Different classifiers:

▿Hierarchical trees, HyperCuts, HaRP, etc.

20/26

22/02/2020

22/02/2020

MFC Guard (MFCg) in action

MFC Guard (MFCg)
▻When MFC is cleaned the victim’s
performance goes back to its baseline
▾attack packets → slow path

▻CPU overhead?
▾1 kpps attack rate = 15% CPU usage

▾10 kpps attack rate = 80% CPU usage

24/26

22/02/2020

22/02/2020

22/02/2020

22/02/2020

General TSE
▻Random packets

▾Probability that from n random packets there will be at
least 1 packet that sparks an MFC entry for a given k is:

▾Ck is the number entries for a given k (e.g., k=0, Ck = 2

▻Expected value can be formalized by:

29/27

Countermeasures
▻Immediate yet impractical remedies
▾offload ACL implementation to a different switch
✗others might suffer from the same attack
▾high performance gateway appliance
✗cannot help against an attack within the cloud
▾switch MFC completely OFF
✗biggest performance improvement so far

30/27

Tuple Space Search
▻entries matching on the same header are collected into a hash
▿masked packet headers can be found fast

▾Masks and associated hashes are searched sequentially

▿independent to each other → early exit once there is a hit

▾PKT_IN → APPLY_MASK → LookUp → Repeat until found

Flow Table

TCP DST PORT action

80 output:1

* drop

80/ffff

...

81/ffff 256/ff0064/fff0 32768/80000/ffc0

...
1 drop
2 drop
3 drop
4 drop
5 drop
6 drop
... ...
63 drop

64 drop
65 drop
66 drop
67 drop
68 drop
69 drop
... ...
79 drop

80 allow 81 drop 256 drop
257 drop
258 drop
259 drop
260 drop
261 drop
... ...
511 drop

32768 drop
32769 drop
32770 drop
32771 drop
32772 drop
32773 drop
...
65535 drop

dport=80dport=32777

Can be a costly linear search in case of lots of mas

31/26

